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ABSTRACT One of the Round 3 Finalists in the NIST post-quantum cryptography call is the Classic
McEliece cryptosystem. Although it is one of the most secure cryptosystems, the large size of its public key
remains a practical limitation. In this work, we propose a McEliece-type cryptosystem using large minimum
distance error-correcting codes derived from self-dual codes. To the best of our knowledge, such codes have
not been implemented in a code-based cryptosystem until now. Moreover, we modify the decryption step of
the system by introducing a decryption algorithm based on two private keys. We determine the parameters
of binary codes with large minimum distance, which, if implemented into a McEliece-type cryptosystem,
would provide a security level respectively of 80, 128, and 256 bits. For the 80-bit security case, we construct
a large minimum distance self-dual code of length 1 064, and use it to derive a random punctured code to be
used in the corresponding McEliece-type cryptosystem. Compared to the original McEliece cryptosystem,
the key size is reduced by about 38.5%, although an optimal decoding set is yet to be constructed to make
the new system fully defined and usable.

INDEX TERMS Post-quantum cryptography, McEliece cryptosystem, self-dual codes.

I. INTRODUCTION
The process initiated by NIST to standardize one or more
quantum-resistant public-key cryptographic algorithms is
ongoing, and currently at the fourth round.1 One of the
candidate submissions for the public-key encryption and
key-establishment algorithms is the Classic McEliece cryp-
tosystem. This fact indicates that after a long time of research
on the original encryption scheme [11], this public-key cryp-
tosystem is still considered one of the most secure.

Still, there is a major drawback, namely the size of its
public key. This is a practical limitation for broad use in
the current communication systems. For comparison, for the
128 bits security level of the McEliece cryptosystem, the size
of its public key is around 187.69 Kb [4], whereas the public
key of RSA for the same bit security is 3 Kb (or equivalently,
3 072 bits) [13, Table 2].

The associate editor coordinating the review of this manuscript and

approving it for publication was Oussama Habachi .
1As of April 2023.

A significant number of studies aim to minimize the key
size of the McEliece cryptosystem by using different families
of error-correcting codes, butmost of these variants have been
broken (see e.g. [6], [12], [14]).

This paper proposes a McEliece-type cryptosystem using
codes with error-correction capability higher than the capa-
bility of the codes adopted until now. By increasing the mini-
mum distance of the implemented codes, we aim to decrease
the size of the public key of the cryptosystem. More specifi-
cally, we use highminimum distance punctured codes derived
from self-dual codes. Such punctured codes have no specific
structure and do not belong to any known family of error-
correcting codes. Our choice to use binary self-dual codes as
a source code is based on two reasons: first, self-dual codes
with large minimum distance exist (e.g., the extended Golay
Code), and second, there is an algorithm for contracting
self-dual codes [7], [9], [22]. To the best of our knowledge,
self-dual or punctured codes derived from them have not been
implemented in a code-based cryptosystem until now. The
reason is most likely twofold: first, binary self-dual codes
with high minimum distance are known up to length 130,
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which is too small for current security requirements. Second,
there was no efficient decoding algorithm for such codes
until recently [23], an exception being the extended Golay
code [16].

The main contributions of this paper can be summarized
follows:

• We determine the parameters of a putative optimal self-
dual code, from which a punctured code would provide
a classic security level of 80, 128, and 256 bits (respec-
tively a quantum security level of 67, 101, and 183 bits)
if implemented in a McEliece-type cryptosystem.

• For the 80-bit security case, we construct an optimal
self-dual code of length 1 064. To the best of our knowl-
edge, such a code is presented here for the first time.

• We derive a punctured code of this self-dual code to gen-
erate the public key of a McEliece-type cryptosystem.
Further, we modify the decryption step of the system by
introducing a decryption algorithm that uses two private
keys, namely the punctured and the self-dual code.

Our theoretical analysis estimates that the security level
of the so defined system is 80 and 67 bits against classical
and quantum attacks, respectively. The size of the resulting
public key is 276.39 Kb, whereas the best-known example
of a binary Goppa code providing the same bit security level
in the original McEliece cryptosystem is 449.85 Kb [4].
Therefore, in this case, we achieve a reduction of the key
size around 38.5%. The results on the 80-bit security case
suggest that self-dual codes can be used in a McEliece-type
cryptosystem to reduce the key size for the same security level.
However, a current limitation is that to make this cryptosystem
usable, one also needs to define an optimal decoding set.
The computational effort to search for an optimal decoding
set is currently undergoing for the 80-bit security level case,
and we leave the complete definition and analysis of our
cryptosystem in this particular instance for future research.

In summary, the main innovation underlying this paper
is the idea to investigate self-dual codes for McEliece-type
cryptosystems. The motivation, in perspective, is to obtain
more compact public keys in such cryptosystems, which is
the main issue for their use. The approach proposed in this
paper is still far from providing a practical solution, as the
limitation outlined above on the optimal decoding set sug-
gests. However, we deem this work to indicate a promising
future research direction in code-based cryptosystems.

II. BACKGROUND
Let Fn2 be the n-dimensional vector space over the binary
field F2, whose vector sum is the bitwise XOR between n-
bit vectors, while the multiplication by a scalar corresponds
to the logical ANDbetween a single bit and a n-bit vector. The
Hamming distance between two vectors in Fn2 is the number
of coordinates where they differ, while the Hamming weight
(or only weight) wt(v) of a vector v ∈ Fn2 is the number of
nonzero coordinates in v. A k-dimensional subspace C ofFn2 is
called a [n, k, d] binary linear code where d is the minimum

Hamming distance between any pair of vectors (also called
codewords) of C. Equivalently, d is the minimum Hamming
weight among all nonzero codewords of C. Since a [n, k, d]
binary linear code C is a vector subspace, it can be spanned
by a k×n generator matrix G of rank k . On the other hand, a
parity-check matrix H for C is a (n− k)× n matrix such that
Hx⊤

= 0 if and only if x ∈ C. The vector s = Hx⊤ is also
called the syndrome of x. A coset of a vector x ∈ Fn2 is the set
x + C = {x + c : c ∈ C}, and a coset leader is any element in
x + C with minimum Hamming weight.
Two binary linear codes C1 and C2 of length n are called

equivalent if one can be obtained from the other by a per-
mutation of coordinates, that is, if there exists a permutation
σ ∈ Sn, with Sn being the symmetric group of order n, such
that σ (C1) = C2. In particular, if a permutation σ maps a code
C to itself, then σ is called an automorphism of the code.
The inner product in Fn2 is given by

⟨u, v⟩ = u1v1 + u2v2 + · · · + unvn

for u, v ∈ Fn2, and u and v are orthogonal if such product is
equal to 0. Then, C⊥

= {v ∈ Fn2 : ⟨u, v⟩ = 0, ∀u ∈ C} is the
orthogonal of the code C.
The code C is called self-orthogonal if C ⊂ C⊥, and self-

dual if C = C⊥. It is known that theweight of any codeword of
a binary self-dual code is even [17, p.9]. If an error-correcting
code is a linear [n, k, d] code then it can correct up to t ≤ (d−

1)/2 errors. Let C be a linear code and Ci the set of all words of
C without the i-th coordinate. Then, Ci is the punctured code
of C on the i-th position.

A. McEliece CRYPTOSYSTEM
The McEliece Cryptosystem is the first code-based cryp-
tosystem, and it was proposed by Robert McEliece in
1978 [11]. The original cryptosystem uses a binary
[1 024, 524] code with an error-correcting capability of
50 errors. The steps of the encryption scheme are as follows:

1) Define the system parameters:

• k: the length of the message block.
• n: the length of the ciphertext.
• t: the number of the intentionally added errors
(equal to the error-correcting capability of the
implemented linear code).

2) Key generation: define:

• G: a generating matrix of an [n, k, 2t + 1] code for
which there is a fast decoding algorithm.

• P: a random n× n permutation matrix.
• S: a random dense k × k non-singular matrix and,
compute G′

= SGP, P−1.
• S−1: the inverse of P and S.

Note that G′ generates a linear code with the same n, k
and t . Then, one has:

• (G′, t): Public key.
• (G,P, S) or (DecG,P, S): Private key, whereDecG
is the fast decoding algorithm.
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3) Encryption: split the data for encryption into k-bit
blocks. Then each blockm is encrypted as r = mG′

+e,
where e is a random vector of length n and weight t .

4) Decryption: The received vector r is decrypted as
follows:

a) Compute r ′
= rP−1, which is mSG+ eP−1.

b) Decode r ′ into a codeword c′ using the efficient
decoding algorithm for the code with generator
matrix G, c′ = mSG.

c) Compute c such that cG = c′ (If G is in a
systematic form, then c is the first k bits of c′).

d) Compute m = cS−1.

The scheme above can be applied with any linear code for
which a fast decoding algorithm is known, and for which
there is a significant number of different codes of this fam-
ily for the chosen length, dimension, and error-correcting
capability. The original system in [11] employs a binary
[1 024, 524, 101] Goppa code.

B. CRYPTANALYSIS
As with any other public encryption scheme, the McEliece
cryptosystem gives the following information to the attacker:
the encryption parameters, the encryption and decryption
algorithms, and the public key. Hence, the adversary can also
select any plaintext and compute the corresponding cipher-
text.

Concerning the adversary’s goals (total break, partial
break, or distinguishing break), there are three main cate-
gories of attacks:

• Key-recovery attack: the attacker deduces the private
key.

• Message-recovery attack: the attacker obtains a part of
or the complete plaintext corresponding to a ciphertext
without knowing the private key.

• Distinguishing attack: the attacker can distinguish a
ciphertext from a random message without knowledge
about the private key, or the attacker can distinguish the
public key from a random code.

Next, we review a few of the known attacks on the
McEliece encryption scheme. For each attack, we evaluate
the probability of success or the inverse problem of evaluating
the average number of attempts of the attack until the attacker
achieves its target.

For algorithmic attacks the security level of a system is
defined as a minimum work factor. The work factor is the
average number of elementary (binary) operations needed to
perform a successful attack [1, p.72].

In the following sections, we describe the main attacks
published in the relevant literature, assuming that a McEliece
cryptosystem is defined by a private key (G,P, S), where G
is a k×n generator matrix of a binary [n, k, 2t+1] code, P is
a random n× n permutation matrix, and S is a random dense
k × k non-singular matrix. The public key is (G′, t) where
G′

= SGP. Further, we assume that the attacker has access to
a ciphertext c produced by the encryption scheme.

We start by first recalling the components over which
brute-force attacks can be mounted. Then, we describe the
basic Information Set Decoding (ISD) attack and its work
factor, along with some of its improved versions, particularly
Stern’s ISD attack.

1) BRUTE-FORCE ATTACKS
A brute-force attack can be mounted towards different com-
ponents of the encryption system:

• Towards the message: the attacker takes a random mes-
sage m1 of length k , encrypts it to c1 = m1 · G′, and
computes the difference e1 = c − c1. If the difference
e1 hasweight≤ t , then the plaintext corresponding to the
ciphertext c is exactly m1 and the attack succeeds. Then
the probability of success is 1/2k since the number of all
possible messages of length k is 2k .

• Towards the coset leaders of the code generated by G′:
the attacker computes the syndrome of all coset leaders.
The coset leader with syndrome equal to the syndrome
of the ciphertext c is the error vector. Knowing the error
vector, one can compute the codeword and then the
message. The number of the coset leaders is |Fn2|/|C

′
| =

2n−k . Therefore, the work factor of this attack is at least
2n−k .

• Towards the error-vector: the attacker searches among
the vectors e of length n and weight t such that the
syndrome of e is equal to the syndrome of the received
vector c (the ciphertext). Thus, it is a search on e such
that S(e) = e · HT equals S(c), where H represents
the parity-check matrix corresponding to G′. This prob-
lem is equivalent to finding a linear combination of t
columns of H , which results in a column vector with
weight S(c). Since there are

(n
t

)
possible choices for the

vector e, the work factor of the brute force attack towards
the error vector is

(n
t

)
.

2) INFORMATION SET DECODING ATTACKS
Prange introduced the ISD technique in 1962 [19] as an
efficient decoding method for cyclic codes. Several works
(e.g., [8], [10], [15]) considered increasingly improved ver-
sions of the ISD decoding algorithm to attack the original
McEliece cryptosystem described in [11].

An information set for a [n, k] code C is any subset A =

{i1, · · · , ik} of k coordinates such that, for any given set of
values bi ∈ F2, with i ∈ A, there is a unique codeword c ∈ C.
The information set thus consists of any k indices such that
the corresponding k columns of a generator matrix of C have
rank k .

Let v = mG′
+ e, where G′ is a generator matrix of an

[n, k, 2t + 1] code C and e is an error vector of weight t . Let
A be an information set of k coordinates such that all entries of
the error vector indexed byA are 0. In summary, the algorithm
for the ISD attack works as follows:

1) Choose k out of n indices for the information set. These
k columns of G′ are permuted to the first k positions,
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which is G′P = [Ak |An−k ], where Ak are the chosen k
columns and An−k is the rest of G′.

2) Transform the matrix [Ak |An−k ] in systematic form,
which takesO(k3) operations [11], since it entails solv-
ing k linear equations in k unknowns. This is equivalent
to transforming G′P into [Ik |A′

n−k ] = UG′P, where U
is the transformation matrix.

3) Compute m as m = vAU , where vA are the k coordi-
nates of v in the positions of the information set A. Then
e = r − mG′. If wt(e) = t , then m is the encrypted
message. The possibilities for the error vector e to have
0 coordinates in the information set are k out of n − t
coordinates, i.e.

(n−t
k

)
;

4) Estimate how many of the choices for k out of n
columns have rank k of the generator matrices of the
family of [n, k, 2t + 1] binary codes. In the origi-
nal code-based cryptosystem, Goppa codes were used,
and for these codes, around 29% of the choices of k
columns are invertible.

Therefore, the work factor for the ISD attack is

k3
(n
k

)
β
(n−t
k

) ,

where β is the proportion of the invertible k columns out of n
for the generator matrices of the family of [n, k, 2t+1] codes.
Note that β depends on the specific family.

3) STERN’S ISD ATTACK
Stern [21] proposed a refinement of the ISD attack, which
is based on the use of the extended code generated by G′′,
defined as:

G′′
=

(
G′

x

)
=

(
G′

u · G′
+ e

)
. (1)

It is known [1] that such code has only one minimum weight
codeword, which coincides with e. Stern’s attack consists
in finding the unique codeword e of weight t in the code
generated by G′′. The algorithm is probabilistic, using two
input parameters p and l with the parity check matrix of the
extended code.

The work factor is B = f1 + f2 + f3 for one iteration of the
attack, where [21]:

f1 =
1
2
(n− k)3 + k(n− k)2,

f2 = 2pl
(
k/2
p

)
,

f3 = 2p(n− k)

(k/2
p

)2
2l

.

The total work factor of the attack is B
Pt
, where Pt is the

probability of finding a codeword of weight t in one iteration.
In particular, Pt is estimated in [21] as:

Pt =

( t
2p

)( n−t
k−2p

)(n
k

) ·

(2p
p

)
4p

·

(n−k−t+2p
l

)(n−k
l

) . (2)

TABLE 1. Shorthand notation for the attacks considered in this paper.

4) QUANTUM BASIC INFORMATION SET DECODING ATTACK
Let v = mG + e, G and e be defined as before. The Basic
Quantum ISD attack first searches for an invertible submatrix
GS of G, by selecting k of its columns. Once it is found, the
algorithm computes (vi1 , vi2 , . . . , vik ) · GS−1

= m, with m ∈

Fk2, then determines mG ∈ Fn2, and finds the error vector e =

v− mG, checking if its Hamming weight is t .
Regarding [3], randomly searching for a root can succeed

in approximately
(n
k

)
/0.29

(n−t
k

)
iterations, where one itera-

tion of this function has aroundO(n3) bit operations. Grover’s
algorithm uses about square root of the number of iterations,

i.e.,
√(n

k

)
/0.29

(n−t
k

)
.

Then the work factor for the Basic Quantum ISD attack,
which is the complete number of qubit operations for finding

a solution, is O(n3)
√(n

k

)
/0.29

(n−t
k

)
. Note that the meaning of

0.29 is that, on average, 29% of the selected matrices GS are
non-singular whenG is a generator matrix of the Goppa code.
A list of the described attacks with names used further in this
work are reported in Table 1.

III. PARAMETERS ESTIMATION FOR SELF-DUAL CODES
WITH BIT SECURITY 80, 128, AND 256
To estimate parameters for the self-dual codes, which would
provide a security level of 80, 128, and 256 bits, we apply the
upper bounds for the work factor of the attacks in the previous
section to the known recently proposed Goppa codes with
these security levels. Since our attacks are not the best known,
we expect to obtain higher values for the upper bounds.
These higher values we use further for the estimation of the
parameters of the self-dual codes.

The private key of the original McEliece cryptosystem is a
[1 024, 525] Goppa code with the error-correcting capability
of 50 errors. Initially, it was estimated to provide a security
of 64 bits. Later, via an improved version of Stern’s attack
in [4] the security of the system was reduced to 60.5 bits.
In the same publication, the authors proposed parameters
for the Goppa codes, where implementation in the McEliece
cryptosystem would provide a security level of 80, 128, and
256 bits. The proposed codes are listed in Table 2. The latest
proposed codes providing security levels of 128, 196, and
256 bits are in the NIST proposal [2].

From the results listed in Table 2, it follows that we have
to search for codes providing a bit security level of 83, 148,
and 302 to ensure that they would provide at least 80, 128,
and 256 bit security concerning the latest attacks. In Table 3,
we list the parameters of a few such codes.
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TABLE 2. min(Log2(Workfactor )) of the attacks A1, . . . , A6 in Section II-B.

Note that these are the parameters of the punctured
[n, k, 2t + 1] codes. The corresponding self-dual codes must
be of length n+2 and minimum weight 2t+3, to ensure that
the punctured codes are within the required parameters. The
upper bounds for the minimum weight of a putative self-dual
[n1, n1/2, d1] code are as follows [20]:

d1 ≤ 4⌊
n1
24

⌋ + 4 , if n1 ̸≡ 22 (mod 24),

d1 ≤ 4⌊
n1
24

⌋ + 6 , if n1 ≡ 22 (mod 24).
(3)

Remark 1: In our estimation, we consider a minimum
weight that is 15% smaller than the above bounds. In this way,
we achieve the following:

• increasing the probability that such a code exist and can
be constructed;

• if such a code exists, then a large number of codes with
the same parameters, length, and minimumweight exist.
This is a preliminary requirement for the security of the
McEliece-type cryptosystem.

The size of the putative punctured codes B1, B9, and
B31 is at least 38% smaller than the size of the proposed
smallest Goppa codes D1, D2, and D4 providing the secu-
rity level of 80, 128, and 256 bits, correspondingly. In the
next section, we will present a possible construction of a
self-dual code where the punctured code has the parameters
of B1.

IV. A NEW EXAMPLE OF McEliece-TYPE CRYPTOSYSTEM
WITH 80-BIT SECURITY
In this section, we first construct an example of a
binary [1 064, 532, d ≥ 162] self-dual code, to define
a McEliece-type cryptosystem with 80 bit security. Then,
we derive a punctured code from such code to generate the
public key of the encryption scheme. Next, we discuss an
efficient decoding algorithm suitable for the new self-dual
code. The decoding is used in the decryption step of the
cryptosystem. Further, we propose a modified decryption
algorithm for the McEliece-type system with two private
keys: the new binary [1 064, 532, d ≥ 162] self-dual code
and one of its punctured codes. The decryption integrates the
decoding of the complete self-dual code. Finally, we discuss
the bit security level of the McEliece-type cryptosystem thus
defined.

A. A BINARY [1 064, 532, D ≥ 162] SELF-DUAL CODE
The upper bound for the minimum weight d of a binary
[1 064, 532, d] self-dual code is 180 (Eq.(3)). Here we con-
struct such a code where the aim is for d to be at least 162.
Note that this value for d is much smaller than the upper
bound (see Remark 1).
To construct a binary [1 064, 532, d ≥ 162] self-dual code

we use a known algorithm presented in [7] and [22].
Let us assume that a self-dual [1 064, 532, d ≥ 162] code

exists. LetB be such a code and letB have an automorphism σ

of order 133 with 8 cycles of length 133 and no fixed points.
Without loss of generality σ can be represented as:

σ = �1�2 . . . �8 ,

where �i is a cycle of length 133 for 1 ≤ i ≤ 8.
If v ∈ B, then v can be expressed as

v = (v|�1, v|�2, . . . , v|�8) ,

where v|�i = (v0, v1, . . . , v132) denotes the coordinates of
v in the i−th cycle of σ . Let further Fσ (B) and Eσ (B) be
respectively defined as Fσ (B) = {v ∈ B| vσ = v} and
Eσ (B) = {v ∈ B| wt(v|�i) ≡ 0 (mod 2), i = 1, . . . , 8}.
According to [7], both Fσ (B) and Eσ (B) are linear subcodes
of B. Moreover, B = Fσ (B) ⊕ Eσ (B), where ⊕ stands for the
direct sum of linear subspaces. Then, a generator matrix of B
can be decomposed as:

G =

(
X
Y

)
, (4)

where X is a generator matrix of Fσ (B) and Y is a generator
matrix of Eσ (B).

The maps π and ϕ are defined as follows:

π : Fσ (B) → F8
2 , π(v|�i) = vj , (5)

for some j ∈ �i, i = 1, . . . , 8, and

ϕ : Eσ (B) → P8 , (6)

where v|�i = (v0, v1, . . . , v132) is identified with the polyno-
mial ϕ(v|�i)(x) = v0+v1x+· · ·+v132x132 inP for 1 ≤ i ≤ 8,
and P is the set of even weight polynomials in the quotient
ringR1 = F2[x]/(x133 − 1).
An inner product in P8 is defined as:

⟨g, h⟩ = g1(x)h1(x−1) + · · · + g8(x)h8(x−1) (7)

for all g, h ∈ P8.
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TABLE 3. min(Log2(Workfactor )) of the attacks A1, . . . , A6 in Section II-B.

Algorithm 1 Construction of a Self-Dual Code Having an
Automorphism
1 Determine a generator matrix X ′ of π (Fσ (B)).
2 Find the generator matrix X of Fσ (B) corresponding to X ′.
3 Construct a generator matrix Y ′ of ϕ(Eσ (B)).
4 Find the generator matrix Y of Eσ (B) corresponding to Y ′.

5 if G =

(
X
Y

)
generates a code with a minimum weight d ,

then
6 return G (G generates B);
7 else
8 return to 1.

According to [22], for the images π (Fσ (B)) and ϕ(Eσ (B))
the following holds:

1) π (Fσ (B)) is a binary self-dual code of length 8;
2) ϕ(Eσ (B)) is a self-orthogonal code, i.e.,

u1(x)v1(x−1) + · · · + u8(x)v8(x−1) = 0, (8)

for all u, v ∈ ϕ(Eσ (B)).

The code generation procedure, following [7] and [22]
using the above-defined sets, images and properties, is sum-
marized in Algorithm 1.

To construct the code B, we take the steps of Algorithm 1.

1) Determine a generator matrix of π (Fσ (B)).
Since the image π (Fσ (B)) is a binary self-dual code of
length 8, a possible generator matrix of π (Fσ (B)) is:

X ′
=


1 0 0 0 0 1 1 1
0 1 0 0 1 0 1 1
0 0 1 0 1 1 0 1
0 0 0 1 1 1 1 0


2) Find the corresponding generator matrix X of Fσ (B).

The corresponding to X ′ generator matrix of Fσ (B) is:

X =


s o o o o s s s
o s o o s o s s
o o s o s s o s
o o o s s s s o

, (9)

where s = (1, 1, . . . , 1) is the all ones vector and o is
the zero vector in F133

2 .
3) Construct a generator matrix Y ′ of ϕ(Eσ (B)).

The image ϕ(Eσ (B)) ⊂ P8, where P is the set of
even-weight polynomials inR1.
The factorization of the polynomial x133 − 1 over F2 is

x133 − 1 = h0(x)h1(x) . . . h9(x) ,

where h0 = x − 1, deg(h1(x)) = deg(h2(x)) = 3 and
deg(hj(x)) = 18 for j = 3, . . . , 9. Next, denote by:

• gj(x) =
x133−1
hj(x)

.
• Ij = ⟨gj(x)⟩: the ideal ofR1 generated by gj(x).
• ej(x): the generator idempotent of Ij for j =

0, . . . , 9.
Then, according to [18, p.56], we have:

• R1 = I0 ⊕ I1 ⊕ · · · ⊕ I9.
• Ij is a field with 2deg(hj(x)) elements, j =

0, 1, . . . , 9.
• ei(x)ej(x) = 0, i ̸= j.

After generating the idempotent ej(x) of the ideal Ij,
for j = 1, . . . , 9, we observe that e1(x−1) = e2(x),
e3(x−1) = e4(x), e5(x−1) = e6(x), e7(x−1) = e8(x),
and e9(x−1) = e9(x). The same relations also hold
for the generator polynomials gi(x) for 1 ≤ i ≤ 9,
i.e., g1(x−1) = g2(x), g3(x−1) = g4(x), etc. Using
these relations and the self-orthogonality of the image
ϕ(Eσ (B)), we construct a generator matrix of ϕ(Eσ (B))
having the form:

Y ′
=

Y1...
Y9

 , (10)

where Yj is 4 × 8 matrix with elements of Ij, for j =

1, . . . , 9. The cells Y1, Y3, Y5, and Y7 are constructed
under certain conditions, which we discuss at the end
of this section. The cells Y2, Y4, Y6, and Y8 are obtained
from the previous four cells using the orthogonality
condition Eq. (8). Also there, we present a particu-
lar example of the complete generator matrix Y ′ of
ϕ(Eσ (B)) in Eq. (10). We note that for each of Y1, Y3,

43516 VOLUME 11, 2023



L. Mariot et al.: On McEliece-Type Cryptosystems Using Self-Dual Codes With Large Minimum Weight

Y5, Y7, and Y9 there are at least 16 · 218 choices. This
leads to more than 220 choices for Y ′. Each of these
choices can be mapped into 8! matrices by a column
permutation. Therefore, we have at least 235 choices
for the matrix Y ′.

4. Find the corresponding generator matrix Y of Eσ (B).
The matrix Y ′ defines the generator matrix of the sub-
code Eσ (B) as

Y =

 y1,1 y1,2 . . . y1,8
...

...
...

y36,1 y36,2 . . . y36,8

 , (11)

where each entry of the first 8 rows is a right circulant
3 × 133 matrix since Ij is a cyclic [133, 3] code for
j = 1, 2, and each entry of the rest of the rows is a right
circulant 18× 133 because Ij is a cyclic [133, 18] code
for j = 3, . . . , 9.2

In step 3 we mentioned that the cells Y1, Y3, Y5, and
Y7 are constructed under certain conditions. The matrix
Y ′, i = 1, . . . , 9, specifies the generator matrix Y of the
subcode Eσ (B). The minimumweight of the code B has
to be greater than or equal to 162. Thus, the same has
to hold for the minimum weight of Y . In this regard,
we construct the Yi cells according to the following
requirements:

• each row of Yi, i = 1, . . . , 9, has at least four non
zero elements, i.e., each row has weight greater
than or equal to four;

• the weight of Y1,
(
Y1
Y2

)
, Y3,

(
Y3
Y4

)
, Y5,

(
Y5
Y6

)
, Y7,(

Y7
Y8

)
and Y9 is at least 3.

In step 4, the matrix Y has to satisfy the following
requirements:

• The first 24 rows, corresponding to
(
Y1
Y2

)
have a

minimum weight of at least 162.
• Each next 18 rows corresponding to a row in Ys,
s = 3, . . . , 9, have a minimum weight of at least
162.

• The linear combinations of up to 8 rows of the

144 rows of Y corresponding to
(
Y3
Y4

)
,
(
Y5
Y6

)
,(

Y7
Y8

)
and the 72 rows corresponding to Y9, have

a weight of at least 162.
Once we have constructed the generator matrices for
the subcodes Fσ (B) and Eσ (B), we can proceed to step
5. of Algorithm 1.

5. If G =

(
X
Y

)
generates a code with a minimum weight

d ≥ 162, where X and Y are given in Eq. (9) and

2The first rows of the circulants corresponding to the polynomials
in the matrix Y ′ and the corresponding binary generator matrix
G can be found at the following repository: https://github.com/
NoAuthorSubmission/McEliece_Data

Eq. (11) respectively, then G generates the code B.
To obtain a generator matrix of B, we developed a soft-
ware in C++ that performs the following operations:

• Construct sub-matrices of Y corresponding to Ys,
with s = 1, . . . , 8, which meet the conditions in
Step 3.

• Create the sub-matrix of Y corresponding to
Y9 defined in step 3.

• Create the matrix G defined in Eq. (4) and the
parity-check matrix H of G.

• Compute the weight of all linear combinations
up to 8 rows of G and of H . This calculation is
performed by implementing the algorithm for effi-
ciently computing the codewords of fixed weight
in linear codes (for the binary case) presented
in [5].

Calculating the exact minimum weight has a work
factor of 287 (regarding Stern’s attack, Section II-B),
which is infeasible. Instead, the following computa-
tions are carried out:
(1) All linear combinations of up to 8 vector rows of

G and the corresponding parity check matrix are
computed. The resulted codewords have a weight
greater than or equal to 168.

(2) Simulations of a random linear combination of
a random number of rows of G on a single 16
RAM Intel7 PC for 30 days resulted in vectors
with weight greater than or equal to 168.

(3) From the requirements for steps 3 and 4, it follows
that the first 24×1 064 sub-matrix and every next
18×1 064 sub-matrix of Y has a minimumweight
of at least 168.+

Based on this evidence, we expect the matrix G with
the defined above sub-matrices X and Y to generate a
self-dual [1 064, 532, d ≥ 162] code.

Remark 2: Note that for the submatrix Y of G =

(
X
Y

)
,

there are at least 235 possible choices (as explained at the end
of Step 3, Algorithm 1). It is not known how many of the
corresponding self-dual codes of length 1 064 generated by
the matrices G have a minimum weight d ≥ 162.

B. McEliece-TYPE CRYPTOSYSTEM USING THE NEW
CODE EXAMPLE
Let Bp be a punctured [1 062, 531, d ′

≥ 160] code obtained
from the self-dual code B with generator matrix G, from
Section IV-A, by removing the first two columns and the first
row of G. Denote this generator matrix of Bp by Gp.

A decoding scheme, recently introduced in [23], decodes
binary self-dual codes having an automorphism φ of order
pr including only cycles of length pr , for p and r being odd
prime numbers. This decoding is a hard decision iterative
decoding scheme using a set of cyclically different codewords
with weights d + o, for o = 0, 2, 4 or any small number.
Two codewords are called cyclically different if one cannot
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be obtained from the other by applying φl , for some l, that
is, b ̸= φl(c) for 1 ≤ l ≤ pr − 1, ∀ b, c ∈ C. An optimal
decoding set can be defined after experiments with sets of
cyclically different codewords of minimum weight or mixed
sets of codewords of different weights close to the minimum
weight. The new self-dual code B possesses an automorphism
σ of order 133 with eight cycles of length 133 and no fixed
points. Therefore, the decoding scheme of [23] is a valid
decoding scheme for B.
Next, we define the McEliece cryptosystem using the

punctured code Bp. Recall that Bp is a [1 062, 531, d ′
≥ 160]

punctured code obtained from the self-dual code B, while G
and Gp are respectively generator matrices of B and Bp.

1) System parameters:
• k = 531: the length of the message m.
• n = 1 062: length of the ciphertext r .
• t = 75: number of the intentionally added errors.

2) Key generation:
• Gp: a generator matrix of a [1 062, 531, 160] code,
a punctured code of a self-dual [1 064, 532, d ≥

162] code.
• P: a random n× n permutation matrix.
• S: an invertible k × k matrix such that SGpP is in
a systematic form.

• G′
p = SGpP, P−1 and S−1: the inverse of P and S.

• Public key: (G′
p, t).

• Private key: (Gp,G,P, S).
3) Encryption:

• e: a random error vector of length n and wt(e) = t .
• m → r = mG′

p + e
4) Decryption: For the decryption, we define two more

elements. Let S1 and P1 be extended matrices of S and
P defined as follows:

S1 =


1 0 . . . 0
0
... S

0

 , (12)

P1 =


1 0 . . . 0
0
... P

0

 . (13)

One can show that for the matrices defined above the
following holds:

(0|m) · S1 · G · P1
= (0|m · S) · G · P1
= (m∗

1,m
∗

2|m · S · Gp · P)

= (m∗

1,m
∗

2|m · G′
p). (14)

Thus, we can decode r ′ of length 1 062 via decoding a
padded (∗, ∗ | r ′) of length 1 064 by the initial self-dual

Algorithm 2 Decryption Using Padded Ciphertext for
McEliece Cryptosystem With Private Keys Bp and B
1 Denote s = [[0, 0], [0, 1], [1, 0], [1, 1]], i = 1, t = 75,

n = 1062, k = n/2.
2 Compute r ′

= rP−1, r-received vector of length k
3 while i < 5
4 Pad r ′ into (s[i]||r ′)
5 Decode (s[i]||r ′) into c1, c1 ∈ B, by Algorithm 1 [23]

with Bmix .
6 if 5) successful then
7 Denote c2 = c1[3 : n+ 2], m2 = c2[1 : k]
8 Compute m1 = m2 · S−1

9 if (m1 ∈ B1 AND weight(m1 · G′
p − r ′) == t) then

10 return r as m1
11 i = i+ 1
12 return ‘Unsuccessful decryption’

code B. The decryption process, including this decod-
ing strategy, is described in Algorithm 2.

Algorithm 2 includes the decoding Algorithm 1 [23] with
decoding set Bmix containing cyclically different codewords
of the self-dual code B of weight 168, 180, 184, and 188.
Remark 3: Note that first, the decoding set is much smaller

(at least 133 times smaller) than the complete set of code-
words with weight 168, 180, 184, and 188, and second, the
decoding runs around t iterations (steps 2 till 8 of Algorithm 1
in [23], t = 75) for correcting the t errors.
An example of a self-dual [266, 133, 36] code, constructed

via an automorphism of order 133 as the code B, is included
in [23]. Using a set of only 2 614 codewords the mentioned
decoding algorithm corrects up to t − 2 errors in 100% of
the cases, where t = 17. Since increasing the number of
codewords with weight d+o, for o = 0, 2, 4, in the decoding
set increases the decoding performance of the algorithm,
there will be a set that decodes t errors in 100% of the cases.
Note that the minimum weight of the punctured code Bp

is 160, which means Bp has an error-correcting capability of
up to 79 errors. According to the estimation in Section III
for a security level of 80 bits, code Bp is required to correct
75 errors, which is t − 4. In such a setup, we expect that the
decoding algorithm from [23] will decode Bwith the same or
close to the efficiency of decoding of B266 when using a large
enough decoding set.

The cryptanalysis of the system includes the attacks
A1, . . . ,A5 described in Section II-B. According to Table 2,
the original McEliece cryptosystem with a security level of
80 bits has a security level of 82 bits against the attacks
A1, . . . ,A5. The new system with the public key G′

p, accord-
ing to Table 2 (first row), has a security level of 87 bits against
the same attacks. The gap of 7 bits is to ensure that the same
system has a security level of 80 bits against improved ver-
sions of these attacks. The punctured code Bp and the public
keyG′

p created by it are not self-orthogonal and do not belong
to any specific family of codes. Therefore, the problem of
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decoding the public key or decoding B1 is expected to be as
difficult as the problem of decoding a random code.

V. CONCLUSION
This paper proposed a McEliece-type cryptosystem using
high minimum distance self-dual codes and punctured codes
derived from them. We determined the parameters of a puta-
tive optimal self-dual code, providing a classic (respectively,
quantum) security level of 80, 128, and 256 (respectively,
67, 101, and 183) bits. For the 80-bit security case, we con-
structed an optimal self-dual code of length 1 064, reducing
the key size by around 38.5% with respect to the original
McEliece cryptosystem. The main limitation of our work is
that a complete optimal decoding set is needed to make our
cryptosystem practically usable. The computational search
of such a decoding set is currently undergoing, and it is a
direction for future research on the topic.
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