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Modelling Handed Shearing Auxetics:
Selective Piecewise Constant Strain Kinematics and Dynamic Simulation

Maximilian Stolzle, Lillian Chin, Ryan L. Truby, Daniela Rus, and Cosimo Della Santina

Abstract— Electrically-actuated continuum soft robots based
on Handed Shearing Auxetics (HSAs) promise rapid actuation
capabilities while preserving structural compliance. However,
the foundational models of these novel actuators required for
precise control strategies are missing. This paper proposes
two key components extending discrete Cosserat rod model
(DCM) to allow for modeling HSAs. First, we propose a
mechanism for incorporating the auxetic trajectory into DCM
dynamical simulations. We also propose an implementation of
this extension as a plugin for the Elastica simulator. Second,
we introduce a Selective Piecewise Constant Strain (SPCS)
kinematic parameterization that can describe an HSA segment’s
shape with fewer configuration variables. We verify both
theoretical contributions experimentally. The simulator is used to
replicate experimental data of the mechanical characterization
of HSA rods. For the second component, we attach motion
capture markers at various points to a parallel HSA robot and
find that the shape of the HSAs can be kinematically represented
with an average accuracy of 0.3 mm for positions and 0.07 rad
for orientations.

I. INTRODUCTION

Continuum soft robots promise natural compliance and safe
interaction with humans, thanks to their invertebrate-inspired
bodies [1]. Several actuation technologies for soft robots have
been explored in recent years, with the most popular being
cable-driven and pneumatic actuation [2].

Handed Shearing Auxetics (HSA) robots are a recent
development in this field [3]-[5], which directly transform
applied motor torques into complex motion primitives. This
novel type of actuator is based on an architected metama-
terial. The most important characteristic of this cylindrical
metamaterial is that twist strains along the handedness of
the structure lead to an elongation of the rod, which is
also called auxetic trajectory [6]. An HSA robot combines
multiple HSAs of different handedness with a platform
constraining the movement of the distal ends in the fashion
of a soft parallel manipulator. Differential elongation of the
rods enables complex motion primitives such as elongation,
bending, and twisting [3], which can be seen in Fig. 2.
HSA robots are particularly difficult to model and control as
the forces and torques causing the evolution of the system
are not directly produced by the actuator, but instead are
intrinsically generated as an effect of the modified cell state
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Fig. 1: An HSA robot in a twisted state: simulation and schematic
of kinematic model of single HSA rod.

of the metamaterial and of the interaction forces coming from
the parallel arrangement.

Finite Element Method (FEM) based approaches [7] have
proven to be effective in simulating soft parallel structures
[8] and could be a good candidate for representing the
complex behavior of HSA robots. However, in this paper we
strive for a less computationally expensive solution - towards
applications in model based control [9]. For this reason, we
look at the framework of the Discretized Cosserat Rod Model
(DCM). The Cosserat rod theory assumes the slenderness
of the object, e.g. that the length is much larger than the
radius, and allows for the rod to exhibit all six principal
strains. The 1D discretization of the rod along its length
dramatically reduces the computational demand compared to
FEM [10]. Several works in recent literature have successfully
applied this framework to soft robotics [11]-[13]. Among
them, in Piecewise Constant Strain (PCS) [14] the continuum
dynamics of the Cosserat model is discretized in space by
keeping a selection of strains constant along a segment of
the continuum. The most popular PCS is Piecewise Constant
Curvature (PCC) [15], which assumes a sequence of arcs.
Functional extensions of PCS use continuous function to
approximate the strain [16], [17].

However, none of these methods are currently applicable
to HSA robots, as they do not embed a mechanism for
incorporating the effect of the auxetic trajectory. We are
aware of just one work looking into kinematic modeling of
HSA robots [18], which however models the backbone of
the robot with PCC instead of modeling the HSAs. As a
consequence, the model cannot represent complex behaviors
of the module, like the twist in Fig. 1.

The goal of this paper is to provide such a mechanism, to
introduce a strategy for further reducing the dimensionality of
the model, and to provide extensive experimental validation to
both. More specifically, our extension to the DCM framework
couples the twist strain of the HSA rod to its rest length.
Additionally, we allow the rigidity of the rod to be modified
as a function of the twist strain. We have implemented this
mechanism as a plugin for Elastica [19], which we provide
open source '. This results in a compact dynamic model that

lhttps://github.com/tud—cor—sr/HSA—PyElastica
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we test experimentally.

We then use a combination of Constant Strain (CS) and
PCSs [14] to describe the shape of HSA rods, which we call
a Selective Piecewise Constant Strain (SPCS) model: while
some strains, such as twist & stretch, are mostly constant over
the length of the entire HSA, other strains such as bend &
shear significantly vary and are thus captured in a piecewise
parametrization. We provide an open-source implementation
of this kinematic model in JAX 2.

In summary, we contribute to the state of the art in modeling
of soft robots with:

1) A mechanism for integrating the auxetic trajectory of
HSAs into the discrete Cosserat rod theory [10], [20].

2) A plugin for the Elastica simulator [19], which also
includes the necessary boundary conditions and joint
formulations to simulate HSA robots.

3) A Selective Piecewise Constant Strain (SPCS) kinematic
model to parameterize the shape of HSAs with a
dramatically reduced number of states.

Contributions (1) and (2) are covered in Section II. Subse-
quently, we introduce the kinematic model from contribution
(3) in Section III and verify it in Section IV.

II. DYNAMIC SIMULATION OF HSA ROBOTS

We introduce a new concept to enable the simulation of
HSA robots with the discretized Cosserat rod theory, which
is used by many of the SoA simulators of soft continuum
robots [19], [20]. While we provide an implementation of
the proposed concept as a plugin to Elastica [19], the same
strategy could be used to adapt other simulators such as
SoRoSim [20] to HSA robots. We give some background
on the DCM in Section II-A. Then, in II-B, we propose a
mechanism to infuse the auxetic trajectory for a HSA into the
DCM framework. Subsequently, we verify the steady-state
behaviour of an HSA against the mechanical characteristics
in II-C. Next, we lay out in II-D the necessary boundary
conditions of the HSAs and describe the joint mechanism
connecting the platform with the rods. Finally, we explain in
Section II-E how we were able to reproduce in simulation
the main motion primitives of HSA robots.

A. Background: Discretized Cosserat-rod model

This subsection will introduce the governing equations
of the DCM following the work by Gazzola et al. [10].
According to the Cosserat rod theory, a slender rod’s shape
can be purely described by the line along its backbone. The
backbone curve is divided into a discrete set of nodes with
position r;(t) € R? for i € {1,...,n, + 1} and n, links
of orientation Q;(t) € R3*3. Differentiating the position
and orientation with respect to time gives the translational
and angular velocities v; = %% € R and w’ € R®. Each
node has a mass of m; and the rigid links are modelled
to have a second mass moment of inertia .JJ;. When a rod
of pnstretched length L is at rest, each link has a length
of [; and connects two consecutive vertices. The circumflex
accent will denote quantities in the rest configuration of
the rod. When the rod is in a deformed state, [ describes
the current edge length and the shear and axial strains are
considered in the vector 0 = (0, 0y O'Z)T. The curvature

T .
vector kg = (ks Ky K) captures the bending and

2https ://github.com/tud-cor-sr/jax-spcs—kinematics

twist strains. All strains are defined with respect to the
rest length of the link /; and the dilation factor e; = l—‘
denotes the deviation from that rest length. The shear and
stretch stiffness is specified through the diagonal matrix
S = diag(Fl,s, EL,,,GI,.) € R¥*3, where F, G are the
elastic and shear modulus respectively, and I € R3*3 is the
second area moment of inertia. Analogue, the bending and
twist rigidity is stored in B = diag(B,, By, B,) € R3*3.
For conciseness, we include below only the equation for the
translational accelerations. We refer the interested reader to
[10] for the equation on rotational accelerations and more
complimentary details about the DCM.

Ov; QTS ol .
i =AM 2L F; 1,...,ny+1
mi ( ” >+ , ieq{l,...,ny,+1},
(H

where F; € R? is the external force acting on the ith vertex.
Several quantities are expressed in the Voronoi domain D,
in which the length of the region D; can be computed as
D; = %,z € [1,ny — 1]. Examples are the the Voronoi
curvature /%2 over the interior vertices, and the bend twist
stiffness matrix B;. AP : {R3} y — {R3}y,1 is used as the
discrete difference operator.

B. Auxetic trajectory

We propose several adjustments to the standard definition of
the DCM to allow for realistic simulation of HSAs. The main
assumption behind the proposed concept is that twist strains
agreeing with the handedness of the rod will modify the
internal angle between the auxetic pattern cells and with that
also change the system characteristics such spring constant,
blocked force, etc.

Most importantly, we introduce a distinction between the
the printed, initial, length of the HSA L and the rest length
of the rod L. This allows us to mirror the auxetic trajectory,
as the minimum energy length is increased with applied twist
angles / strains [6]. Similar to the HAT accent, which denotes
rest quantities, the BAR accent will point out quantities of
the HSA in the initial / printed state. We propose to linearly
scale the edge rest length /; with the twist strain /ﬁ:’z:

L=0+e)l ie{l,...,n,+ 1}, 2)

g; = max (min (h Ce A"(K%2 ), €max) »Emin) - (3)
In this expression, the twist strain Hiﬁ’z is elevated from the
Voronoi to the vertex domain with the averaging operator
AP {R3Y Ny — {R3}n41. h € {—1,1} is the handedness of
the rod. Right is defined as the positive, and left as the negative
handedness. C. is the extension factor, which needs to be
tuned with respect to the chosen auxetic pattern. The minimum
and maximum extension €min, €max are the limits of the
auxetic trajectory and depend on the HSA type: for example
closed HSAs can only exhibit positive elongations [6]. After
the rest length is adjusted, the axial stiffness of the rod will
guide the current edge length /; towards the (target) edge rest
length. Furthermore, we recall the definition of bend / twist

, {(Qirr QT . .
strains: K}, = log@%ﬂ. To keep the twist strain constant

across the entire auxetic trajectory, we define the twist strain
with respect to the initial Voronoi length D; = %

i log(Qit1 Q7)

Kp = =

. . ie{l,...
: D i€{

,ny + 1} “4)
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Fig. 2: Motion primitives of Handed Shearing Auxetic (HSA) robots: elongation, bending in the four cardinal directions (e.g. north (N),
south (S), west (W), east (E)), and clock-wise (CW) and counter-clockwise (CCW) twisting. First row (a): depicts the necessary actuation
inputs to generate these motion primitives. Pure elongation is achieved by applying the motor torques of the same magnitude but opposite
direction to the left-handed (L) and right-handed (R) HSAs. For bending, there exists a delta in elongation of the rods while the sum of
torques is still zero. Last but not least, counter-clockwise twisting is achieved by applying more torque to the right-handed, than to the
left-handed HSA rods. Second row (b): Snapshots of the experimental platform when actuated according the above specified sequence.
Third row (c): Renderings of simulated steady-states of an HSA robot. It consists of four HSA rods and a platform at the distal end. The
red arrows point along the local x-axis and the green arrows along the local y-axis respectively. The blue arrow signifies the z-axis of the

local frame of the platform.

TABLE I: Parameters of simulated HSA rods in Section II-C for
various number of HSA row tilings nrows. Row tilings represent
the number of vertically stacked unit cells [6]. The rest length L
and the elastic modulus F are a linear function of the twist strain
K. B. represents the twist rigidity.

TNrows L [mm)] E [kPa] B. [Nm2 /rad]
4 75(1+ 3.04 k2) 576.9 + 36.1 Kk 0.00375
6 89(1+3.50k2) 309.3 + 13.1 k 0.00213
8 100 (14 3.77 k) 203.5+ 10.6 k. 0.00183
10 112 (1 + 3.64 k2) 197.6 + 7.5 Kk, 0.00167
12 124 (1 + 3.53 k) 1976 + 2.4 kK, 0.00124

Finally, recent work by Good et al. [6] has shown that
HSAs exhibit special mechanical characteristics, such as that
the spring constant increases with the twist angle. Therefore,
we allow the shear / stretch and bend / twist rigidity matrices
S and B to be modified dynamically during the simulation
with the twist strain. For example, for the the axial stiffness
of a closed HSA can be modelled as a linear function of the
twist strain [6]

. =8+ Cs, A" (k. .),
where Cg, is a tunable constant.

&)

C. Verification of single HSA steady-state behaviour

We verify that our simulator can represent the steady-state
behaviour of a real HSA by re-producing the characterisation
results for closed HSAs by Good et al. [6]. More specifically,
we let the simulator converge to steady-state and then identify
several mechanical properties such as blocked force (Fy,),
minimum energy length, holding torque (7,) and the spring
constant (k). Following the reporting in [6], we tune the
parameters of our simulation to match the behaviour of closed
Carbon FPU50 HSAs with 19 mm outside diameter, 2 mm

wall thickness, as good as possible. We report the chosen
simulation parameters in Table I. The HSA rod is modelled to
consist of n, = 10 nodes and 9 links with a material density
of p = 1050kg/m3. For all simulations, the proximal end
of the rod is constrained and only rotations around the z-
axis are allowed to mirror the actuation with electric motors.
Furthermore, twisting is constrained at the distal end which
allows twist strains to build-up in the rod. Otherwise, the
distal end is unconstrained.

Next, we will go into more detail about each mechanical
characteristic. Holding torque: We apply a given torsional
torque 7, at the proximal end of the HSA and then record
the twist angle of the base ¢g at steady-state. Minimum
energy length: The proximal end of the HSA is rotated to
a given twist angle ¢o. The minimum energy length is then
is identified as the steady-state length of the HSA. Spring
constant: For a given twist angle ¢y with the HSA at rest, the
spring constant is identified by applying a small pulling force
to the distal end and then measuring the displacement of the
tip at steady-state. Blocked force: Differently from the other
simulations, the distal end is constrained at its initial position
such as to prevent the rod from extending. The blocked force
Fy, is identified by evaluating the internal axial force for a
given twist angle.

The results show that the proposed simulator can accurately
represent the steady-state behaviour of the HSAs with the
simulated characteristics mostly staying within the stated
error-range of the experimental measurements by Good et
al. [6]. The only exception is Fig. 3(a), in which the simulation
is overestimating the blocked force Fj,. This points to the
fact that this linear approximation of the auxetic trajectory is
only accurate in a limited range of the motion range of the

Authorized licensed use limited to: TU Delft Library. Downloaded on May 17,2023 at 12:14:21 UTC from IEEE Xplore. Restrictions apply.
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Fig. 3: Results for verification of steady-state behaviour of the proposed simulator: the solid lines represent the mechanical characteristics
obtained for closed HSA rods by Good et al. [6] with corresponding error bars. The dashed lines correspond to the same characteristics
obtained with our simulator. The simulation parameters are separately tuned for HSAs with variety of row tilings. When an HSA contains
a higher number of row tiling, it will allow for larger elongations while simultaneously trading-off the spring constant [6].

closed HSAs. Further research is necessary to come up with
auxetic trajectory models for semi-closed and open HSAs.

D. Simulating HSA robots: boundary conditions and joints

We discuss here how to combine a platform and multiple
HSAs to form a HSA robot. Assume to have ngga rods
equilly distributed along a circle of radius R.sa in the x-y
plane with the rods pointing towards the positive z-direction
in a straight configuration. We need boundary conditions
for the proximal ends of the rods to generate the parallel
structure. The positions of the proximal nodes are constrained
to remain at their initial position 7y. For the same purpose, the
translational rates, e.g. vg, are set to zero at each time-step.

In our plug-in to Elastica, we provide the user with two
options for actuating the HSAs. (a) The orientation of the
proximal link @y is moved to a desired orientation QS. In
this case, the twist angle ¢3 of the proximal end is controlled.
Again, the rotational rates wg are set to zero. (b) Twist
torques 7y . are applied to the proximal link of the HSA.
The two remaining rotational DoF (rolling and pitching) of
the proximal link are constrained by setting their rotational
rates wo , and wq , tO zero.

Additionally, rigid joints between the rods and the platform
are necessary. These are achieved by simulating a spring-
damper system between the distal end of each HSA and the
platform. For the translations, we compute the contact force
F as

Fo=kp (1) —rny+1) + vr (V) — vpy11), (©)
where kp is the translational joint stiffness, and vp the
translational damping coefficient. While 7, 41, and v, 41
are the position and the velocity of the distal node of the rod
respectively, rg and fuflv +1) are the position and velocity of
the attachment point of the same rod (e.g. the jth rod) on
the platform. We determine the position and velocity of this
attachment point using rigid body kinematics with regard to
the Center of Mass (CoM) of the platform. The contact force
F. is applied with an opposite sign to the distal end of the
HSA and to the platform, respectively. Please note that the
contact force F' also generates a torque 7x, on the platform,
as the force is not applied at the CoM of the rigid body.

Similarly to the contact force, a contact torque 7. is
computed to reduce any error in the orientation and angular

velocity between the two systems

Te = kr (Qp 1og(Qp Q) + v (Qpuwp — Qn,wny) (D)
where the log(-) : R3*3 — operator computes the rotation
vector from the rotation matrix [10], and @}, is the material
frame of the platform.

E. Qualitative evaluation of motion primitives in simulation

We reproduce the typical motion primitives of a HSA
robot consisting of four HSAs (e.g. ngsa = 4) in simulation
and show the final steady-states in Fig. 2. Two of the
HSAs are left-handed and positioned diagonally from each
other. Each rod is discretized by n, = 25 links and 26
point mass vertices. Furthermore, it has a printed length
of L = 100mm, an outside radius of 25.4mm and a
wall-thickness of 2.43 mm. The rods are placed at a radial
distance of R.ysa = 24 mm from the center of the robot
and a material density of pgsa = 1050kg/m? is assumed.
Therefore, the chosen simulation parameters mirror the
geometric characteristics of our experimental platform. Based
on an elastic modulus £ = 10 MPa and a shear modulus
G = 0.6 MPa, the shear and stretch stiffnesses amount to
Sgy = 101.5N/m, and S, = 1753.5 N/m. We set the bend
and twist rigidities B, By, and B, to 0.02 Nm? /rad and
0.014 Nm? /rad respectively. When twist strains are present,
we extend the rest length of the rod by 0.01 m/rad after
taking into account the handedness of the HSA.

The cylindrical platform is of diameter 95 mm, has a
thickness of 3 mm and is modelled to have a density of p, =
700 kg/m?3. The joint stiffness parameters kr = 5-10° N/m
and k; = 20 Nm/rad are chosen for the fixed joint between
HSAs and platform. The joint damping coefficients vg, v,
are set to zero.

Our qualitative results in Fig. 2 demonstrate that we are
able to generate all motion primitives in simulation. For the
shown deformations, we apply maximum twist angles of
(bO,max = mrad.

III. A SELECTIVE PIECEWISE CONSTANT STRAIN
KINEMATIC MODEL FOR HSAS

In this section, we aim to derive a forward kinematic model
which can be used to describe the shape of an HSA with a
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4: Visualization of the
proposed SPCS kinematic
model for the case of ng =
2 segments: The forward
kinematics describe a trans-
formation from the base
frame {Sz} to the local
frame {S,} at the coordi-
nate s € [0, L] and consist
of a) a rotation around the
zp-axis of the base frame
by angle ¢o, b) an expo-
nential map e*~ %) & for
the transformation from the
proximal end of the ith
segment to the local frame
of the coordinate s.

VT2 = elete

1
1
1
1
1
1
1
)
A

minimum amount of parameters. More specifically, we want
to describe the transformation from the base frame {Spz}
to a local frame {S;s}(g,s) at a coordinate s € [0, L]. This
coordinate lies on the backbone of an HSA rod of printed (i.e.
initial) length L. For this purpose, we combine the existing
kinematic models CS and PCS [14] to selectively keep specific
strains constant along the entire length of the robot or vary
them piece-wise among the segments. This parametrization
can be combined with the results in Sec. II to generate a
compact dynamic model.

First, we define that
£(g5) = (Ka o:)" €R® (®)
represents the three rotational and three linear strains present
in a rod [14]. Subsequently, propose the following configura-

tion vector for an HSA

a=(d0 abs abos. apos,i qgcs,ns)T )
where ¢g € R is the twist angle at the base and allows for the
rotation of the motor actuating the HSA rod. gcg € R"¢.©s
is a strain component constant along the entire rod, and
grcs,i € R™Pes g e {1,... npcg} is the configuration of
each PCS segment. The ith segment has a initial length of /;
with its tip at the coordinate L; The strain in the ith segment
is then the sum of the rest strain { = (0 0 0 0 0 1)T,
cs, and Epcs,i:

& =&+ Bes qes + Brees,i gecs,i, t€{1,...,ns}. (10)
Analogue to the concept introduced in [17], Bcg € R6%7a.cs,
Bpcg € R8Xmares gre the strain bases of gos and gpcs
respectively.

Ky Kz Oz Oy

In this paper, we specifically investigate a setting where
the twist & stretch strains are constant across the entire
rod and the bend & shear strains vary for each segment.

Accordingly, we choose gos = (k2 O'z)T and gpcs,; =
JW-)T. Then, the corresponding strain

(’iz,i Hy,i Ox,i
bases are determined to be -
~foo 1 0 0 0 6x2
Bes=1p 0 0 0 0o 1| €R"
1 00 0 0 0]F (11)
1
Bpcs,i = 8 0 8 (1) 8 8 € R6*4,
0 0 0 0 1 O

Next, we find homogeneous forward kinematic mappings
for the given configuration and strains. As the twist angle ¢q
demands a rotation around the local zz-axis of the base frame,

—8— Elongation

154 Circles
—®— Lemniscate
—0— Twisting

1.0 —®— Rand. actuation

0.5 1

Positional error ¢, [mm]
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-~ 116G
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Fig. 5: Verification of kinematic models in simulation. The plot in
the first row shows the positional error e, of the kinematic model
against the simulated HSA. The plot in the second row visualizes
the rotational error metric equat, Which is based on the vector
component of the unit quaternion. For more information on the
evaluation metrics, we refer to Section IV-C. The kinematic model
used here assumes the twist & stretch strains to be constant along
the entire HSA and the bend & shear strains to be captured by
ng segments. Along this line, we report the performance of the
kinematic model for a parametrization containing between one and
five segments.

the matrix R%(¢o) € SO(3) contains the rotation from the
base frame {Sg} to the proximal end of the rod denoted as
frame {Sp}. For a point s on the ith segment with constant
strain &;, the transformation matrix from the segment’s
proximal frame {S;_1} to the local frame at coordinate s is
given by the exponential map e : se(3) — SE(3) [14]
e(siLifl)éi =14 + (S — i/i—l) Sz + (1 — COS((S — Ei_1) 91))

3 L i i & a1y
9—2 + ((s— Li—1) 0 —sin((s — Li—1)6s)) 973

where & € se(3) is the strain twist vector and 0; =

\/ K2, + Ky ;4 K2, is the magnitude of the rotational strain.

Therefore, the fully assembled transformation T}j(q) from
the base frame {Sp} to the tip frame of the ith segment can
be expressed as

Ti(q) = TH(¢o) Iy €175 (q) € SE(3). (13)

IV. VERIFICATION OF THE SPCS MODEL

The section is structured as follows. We introduce relevant
actuation sequences for the HSA robot in IV-A. Next,
we present an inverse kinematic approach to identify the
kinematic configuration in IV-B. Translational and rotational
error metrics are then defined in IV-C to evaluate the quality
of reconstructions. Finally, we verify the performance of the
proposed SPCS kinematic model both for simulated data
(IV-D) and on experimental datasets (IV-E). The code and
all datasets are made available on GitHub 3.

3https ://github.com/tud-cor-sr/hsa-kinematic-model
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Platform 4x FPU 50 HSAs

A. Actuation sequences

We collect datasets with a variety of actuation sequences,
which includes both pure motion primitives and random
actuation. For all sequences, we apply a twist angle of
magnitude |uq| [0,7 rad] at the base of each HSA.
The sign of uq is determined by the handedness h of the
respective HSA. The elongation dataset consists of samples
between the rest and fully-elongated HSA state. Please refer
to Fig. 2(a) for more details how each motion primitive can be
invoked. For the bending motion primitive, we consider two
separate trajectory types: a) a Lemniscate trajectory and b) a
trajectory containing circles of varying bending angles. The
different bending angles are achieved by varying the actuation
angle from 20 % to 100 % of its maximum magnitude. For
each fixed bending angle, we collect 15 samples along
the circle, e.g. 15 different azimuth angles. To achieve the
desired azimuth angle, we smoothly interpolate between
the east, north, west, and south actuation specifications of
Fig. 2(a). The twisting trajectory collects discrete samples
between maximum clockwise (CW) and maximum counter-
clockwise (CCW) twisting. Finally, we collect a dataset
of randomly sampled actuation inputs, which combines
the elongation, bending, and twisting motion primitives. In
total, the elongation and Lemniscate trajectories contain 100
samples each, the circles and twisting trajectory have 225
and 100 samples respectively. 500 samples are included in
the random actuation actuation sequence.

B. Inverse Kinematics

Differential inverse kinematics can be used to reconstruct
the rod’s configuration ¢ from N known poses Tz €
SE(3),i € [1, N] along the rod. We implemented an inverse
kinematics algorithm based on the analytical Jacobian J' €
R6*7 of the pose representation

X;gi = (€ €y €z 1N &z Pz Py pz)T € R77
which includes rotational orientation estimates in unit quater-
nion representation Q = (e, €, €. n)T and positions in
Cartesian space p = (D= Dy pz)T. Please note that usually
¢o does not need to be found through (differential) inverse
kinematics, but can rather be directly be read-out from the
encoders of the electric servos. All N poses and Jacobians
can be vertically stacked as y € R and J, € R7V*6
respectively. This then allows us to then iteratively optimize
the pose error e, = xq — X between the known pose xq and

Reflective marker

. 1
8x Motion capture cameras

Workstation

6: Experimental setup with the
HSA robot attached in platform-
down configuration to the mo-
tion capture cage. The robot
contains two left-handed (L) and
f two right-handed (R) HSA rods
1

1

=

respectively. Rods of the same
handedness are placed opposite
of each other. The reflective
markers allow us to determine
the pose information of the base,
an intermediate point along the
left HSA rod, and the platform.

the pose x computed using the forward kinematics

Givr1 = Gie + AJA (@) (xa — X(9)) (14)
where ¢ is the current configuration estimate, and A is the
step size.

C. Evaluation metrics

We briefly introduce the metrics to quantify shape recon-
struction accuracy by the proposed kinematic parametriza-
tion. We first define a Root Mean-Squared Error (RMSE)
for comparing each ground-truth position p! € R3,t €
{1,...,m:},3 € {1,..., N} to the position estimated by the
kinematic model p¢ over a time period of n; steps

ey = ZZ Hpt pt“ cR.

t=1 i=1
The rotational RMSEs equa; 1S computed analogue by
substituting p in (15) with the quaternion vector component
€ = (ex €y €) . Finally, we compute the XYZ Euler
angle error as

15)

(fﬁ(Rt i Z))Q

eR?,
TltN

t=1 i=1
where fy(+) is the operator to compute the XYZ Euler angles

9=(a B ’y)T from a rotation matrix R € SO(3).

D. Simulation results

(16)

€eul =

We employ the higher dimensional HSA robot simulator
proposed in Section II to generate steady-state HSA states.
We use the same simulation parameters as in Section II-E.
This provides us with 25 discrete poses along each of the
four HSAs. Then, we perform differential inverse kinematics
with a step size of A = 0.2 to find an optimal configuration
q describing the shape of the HSA. We choose a higher step
size (A = 1) for regressing the twist strains.

For the kinematic model, we assume that the twist &
stretch strains are constant along the entire HSA rod. The
bend & shear strains on the other hand are instead piece-wise
constant across ng segments. We evaluate the influence of
the ng parameter and test the performance of a kinematic
model involving between 1 and 5 PCS segments.

The results are in Fig. 5. While a kinematic model with
a single CS segment still works sufficiently well for the
elongation and bending motion primitives, its performance
deteriorates for any trajectories involving twisting. Instead,
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TABLE II: Experimental verification of kinematic models on an HSA robot. Motion capture markers attached to one of the HSAs provide
with two ground-truth poses along the rod, and we measure ¢o from the servo readings (13 constrains in total). In the spirit of an
ablation study, we investigate different variations of the proposed kinematic parametrization. For Constant Curvature (CC), Constant Twist
(CT), Constant Shear (CSH), and Constant Axial (CA) strain, the strain is kept constant along the entire HSA. For Piecewise Constant
Curvature (PCC), Piecewise Constant Twist (PCT), Piecewise Constant Shear (PCSH), and Piecewise Constant Axial (PCA) strain, the
strain components are parameterized separately for each of the two segments. Additionally, we test the importance of including the shear
strain component. For each kinematic parametrization, we state the Degrees of Freedom (DoF). We report RMSEs for both translations and
rotations (see Sec. IV-C).

Trajectory CC CT CSH CA PCC PCT PCSH PCA DoF ep [mm] equat [-] €cul,a [rad] ecul,g [rad] ecur,~ [rad]

Elongation X v x v / X X X 7 1.010  0.0092 0.0029 0.0079 0.0166
Elongation X v x v / X v X 11 0.126  0.0082 0.0020 0.0031 0.0166
Elongation X X X X 4 4 v 4 13 0.009 0.0042 0.0020 0.0031 0.0070
Circles X v X v 7/ X X X 7 1.744  0.0136 0.0108 0.0123 0.0228
Circles X v X v 7/ X v X 11 0.227  0.0082 0.0110 0.0122 0.0227
Circles X X X X v v v 4 13 0.092  0.0093 0.0116 0.0125 0.0075
Lemniscate X v X v 7/ X X X 7 1.227  0.0098 0.0042 0.0051 0.0195
Lemniscate X v X v / X v X 11 0.215  0.0082 0.0045 0.0053 0.0195
Lemniscate X X X X v 4 v v 13 0.023  0.0052 0.0043 0.0054 0.0076
Twisting X v X v / X X X 7 2.931  0.0136 0.0121 0.0186 0.0195
Twisting X v x v v X v X 11 0.263  0.0141 0.0130 0.0196 0.0194
Twisting X X X X v v v v 13 0.030 0.0127 0.0131 0.0217 0.0017
Rand. actuation X v X vV / X X X 7 4.345  0.0381 0.0678 0.0544 0.0195
Rand. actuation X v X V / X v X 11 0.365 0.0383 0.0681 0.0544 0.0193
Rand. actuation X X X X v v v 4 13 0.255  0.0380 0.0700 0.0527 0.0200

ii)

(a) Lemniscate trajectory

ii)

(b) Twisting trajectory

Fig. 7: Sequence of stills for a Lemniscate and a twisting trajectory. Top row i): frames of a video recording the HSA robot during
the experiments. The shape of the front-left HSA rod is fitted using inverse kinematics and rendered in ii). Bottom row ii): Rendered
shape of the HSA rod produced by evaluating the forward kinematics along the backbone length. The arrows with full opacity denote the
ground-truth pose of three points along the HSA rod as measured by the motion capture system. The red arrow points along the local
x-axis and the green arrow along the local y-axis respectively. The arrows with slight transparency represent poses along the backbone
computed with the forward kinematics. We assume the last 25 mm and 20 mm at the proximal and distal end of the rod respectively to be
rigid and therefore do not include them in the kinematic parametrization.
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two segments of our model are sufficient to accurately
represent the shape of the HSA.

E. Experimental results

In addition to the simulations, we also experimentally verify
the kinematic model using an HSA robot consisting of four
closed rods 3D-printed via digital projection lithography from
the flexible photopolymer resin Carbon FPU 50 [4]. Each
HSA rod was printed to a length of L = 101.6 mm and
is independently actuated by DYNAMIXEL MX-28T servo
motors. As seen in Fig. 6, we attach motion capture markers
to several points on the robot to track the ground-truth pose
information. Namely, we measure the pose of the motor base,
the platform, and the midpoint of one of the right-handed
HSA rods (i.e. the front-left HSA on the picture). Please
note, that we extract the rotation angle ¢y from the servo
encoders directly. The robot is mounted at its base to a cubical
cage of side length 750 mm in platform-down configuration.
Eight Optitrack Prime X 13 cameras are attached to the cage
tracking the reflective markers at 30 Hz.

We actuate the robot from a workstation next-by with the
control loop running at 10 Hz. The control loop communicates
motor position setpoints uq € R* to the servos. The inner
control loop of the servos then applies the appropriate torques
to guide the motors towards the desired position. As soon as
the motors have reached their goal position, we wait for 2s to
reach steady-state and then read-out the pose measurements.

In Fig. 7, we show sequences of stills for the Lemniscate
and twisting trajectory. The kinematic model used here
assumes a constant twist strain along the entire rod and
employs two PCS segments to capture the remaining five
strains. We see that except for extreme twisting states, e.g.
the far right image in Fig. 7(b), the kinematic model is able
to represent the complex HSA shape very well.

In Tab. II, we quantitatively evaluate multiple kinematic
models on the trajectories defined in IV-A. The first (7 DoF)
and second (11 DoF) kinematic models are very similar as
both assume constant twist and constant stretch along the
entire HSA. The other strains are contained in two PCS
segments in both cases. However, the first model exhibits
much larger positional errors as it neglects shear strains,
which are very important in HSA robots, but were not
accounted for in the literature [18]. The third model provides
the upper bound on the performance, as it has with 12
comparatively many DoF and uses a piecewise formulation
with two segments for all segments.

V. CONCLUSION

This work provided for the first time solutions for modeling
the kinematics and the dynamics of electrically-actuated
continuum soft robots based on Handed Shearing Auxetics.
We have shown that coupling the twist strains to rest lengths
can allow simulators based on the discrete Cosserat rod
theory. While the proposed linear approximation of the auxetic
trajectory works well for closed HSAs within a bounded
motion range, future work shall derive a more general
model also applicable for semi-closed and open HSAs [6].
Furthermore, we have proposed the SPCS kinematic model
that can express the shape of HSAs with 11 DoF. Fitting
this kinematic model to the experimental results showed a
very good match for representing the shape of the HSAs. In
particular for large actuation magnitudes within the twisting

motion primitive, the HSAs leave the auxetic trajectory and
seem to experience buckling behaviour. For this case, the
SPCS model is not accurate anymore. Future work will focus
on utilizing the kinematic model proposed in this work for
model-based control of HSA robots.
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