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A B S T R A C T

Particle-resolved Direct Numerical Simulations have been performed on the gravitational settling of mono-
disperse solid spheres in a viscous fluid and triply periodic domain. In a comprehensive study, the bulk solid
volume concentration was varied from 𝜙 = 0.5 to 30%. To study the effect of inertia, three different Galileo
numbers were considered in the inertial regime, 𝐺𝑎 = 144, 178 and 210, for which a single settling sphere
exhibits distinctly different wake and path characteristics. The particle/fluid mass density ratio was fixed at
1.5. We find that for 𝜙 = 2 − 30% the suspension microstructure and dynamics depend predominantly on the
bulk concentration. In qualitative agreement with previous studies in literature, three different sedimentation
regimes can be distinguished: (1) the dilute concentration regime for 𝜙 ≲ 2% with preferential settling of
particles in vertical trains, (2) the moderate concentration regime for 2% ≲ 𝜙 ≲ 10% with preferential
settling of particles in horizontal pairs with an interparticle distance of ∼ 1.5 particle diameters, and (3)
the dense concentration regime for 𝜙 ≳ 10% with a nearly random (‘‘hard-sphere’’) distribution of the
particles in space. The clustering of particles is dictated by, respectively, trapping of particles in the wake of
other particles, a drafting–kissing–tumbling (DKT) instability by which two vertically aligned particles quickly
reorient themselves into a horizontally aligned particle pair, and short-range multiparticle interactions through
viscous lubrication and to a lesser extent collisions between particles. In all cases, hindered settling at a reduced
speed is observed as compared to a single settling sphere. The well-known Richardson–Zaki relation for the
mean sedimentation velocity appears valid only for the dense concentration regime. We provide ample evidence
that in the dense regime the characteristic velocity and time scales of particle motion are proportional to

√

𝑔𝐷𝑝
and

√

𝐷𝑝∕𝑔, respectively, with 𝑔 the gravitational acceleration and 𝐷𝑝 the particle diameter. We also observe
an 𝜔−3 scaling of the particle velocity spectra for 𝜔

√

𝐷𝑝∕𝑔 ≳ 0.4 and we propose a model to explain this scaling
behavior, based on the inertial response of the particles to small-scale flow perturbations. Kinematic waves, i.e.,
vertically propagating plane waves in the local concentration field, are observed in all cases, though unrelated
particle motions are responsible for significant loss of the spatio-temporal coherence of the waves. The wave
speed was determined from repeated space–time autocorrelations of the local concentration field and appears
in reasonable agreement with Kynch sedimentation theory using the Richardson–Zaki relation. The passage
of kinematic waves causes perturbations in the particle velocity at a frequency that matches well with peak
frequencies in the particle velocity spectra for concentrations up to 𝜙 ≈ 10%. The time-lagged cross-correlation
of the vertical and horizontal particle velocity suggests that kinematic waves may trigger DKT instabilities,
while conversely DKT instabilities may be responsible for the onset of kinematic waves. Finally, we suggest
that obstruction and perturbation of the particle wake by neighboring particles could offer an explanation for
the small influence of the Galileo number on the suspension behavior for 𝜙 = 2 − 30%.
1. Introduction

Sedimentation refers to the collective settling of particles under
gravity or centrifugal forces. It is a commonly occurring process in
nature and many industrial applications. Examples are deposition of
sediments in rivers, sedimentation of volcanic ash, rainfall, settling
basins in waste water treatment, land reclamation through spraying
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large amounts of sediments in, e.g., sea, and blood separation cen-
trifuges. Sedimentation is also closely related to fluidization, where
an upward fluid flow exerts a hydrodynamic force on the particles
such that their average settling velocity is zero and which has many
applications in chemical industry. Provided that wall effects can be
neglected and the particles are homogeneously fluidized, the two pro-
cesses are dynamically similar, having the same relative particle/fluid
vailable online 3 May 2023
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velocity when the fluidization velocity (flow rate divided by the cross-
sectional area of the fluidization column) is equal to the average
particle settling velocity in sedimentation (Richardson and Zaki, 1954;
Barnea and Mizrahi, 1973). For many applications, it is desired to
accurately predict the sedimentation or fluidization velocity as function
of particle concentration. For fluidized bed reactors, a homogeneous
spatial particle distribution and strong fluid and particle mixing are
typically desired too.

A large body of sedimentation literature has focused on sedimenta-
tion of small particles in the Stokes regime (Davis and Acrivos, 1985;
Phillips et al., 1988; Ladd, 1993; Guazzelli and Hinch, 2011; Hamid
et al., 2013). The complex particle–fluid and multi-particle interac-
tions are responsible for chaotic particle behavior and limit a detailed
analytical treatment of the problem except for very dilute sphere sus-
pensions (Batchelor, 1972; Batchelor and Wen, 1982). Sedimentation
of larger particles in the inertial regime (i.e., at a Reynolds number
𝑅𝑒𝑇 > 𝑂(1), based on the terminal settling velocity and diameter of
a single settling particle) has received comparatively less attention.
The presence of inertial effects not only increases the complexity of
the flow physics, detailed and well-controlled experiments are par-
ticularly challenging in this regime and it puts severe requirements
on computational methods for accurate simulation of sedimentation.
However, the development of efficient methods for particle-resolved
simulations (Prosperetti and Tryggvason, 2009; Maxey, 2017) and the
ever increasing computing power have recently paved the way to study
the influence of inertia on sedimentation in great detail.

In the present study we consider sedimentation of non-colloidal
suspensions of spheres in a viscous and Newtonian fluid for which
molecular forces such as Van der Waals and electrostatic forces as well
as Brownian motion can be neglected. That is, we consider particle
diameters ≫ 1 μm and a large Péclet number related to Brownian par-
icle motion (Guazzelli and Morris, 2012). From dimensional analysis
t can be shown that the sedimentation dynamics of non-colloidal sus-
ensions in free (unbounded) space is governed by the following three
imensionless numbers: (1) the Galileo number, 𝐺𝑎 = 𝑣𝑔𝐷𝑝∕𝜈𝑓 , with

𝑣𝑔 =
√

|𝜌𝑝∕𝜌𝑓 − 1|𝑔𝐷𝑝 the inertio-gravitational velocity, 𝜌𝑝 the particle
mass density, 𝜌𝑓 the fluid mass density, 𝑔 the gravitational acceleration,
𝐷𝑝 the particle diameter, and 𝜈𝑓 the fluid kinematic viscosity, (2) the
particle-to-fluid mass density ratio, 𝜌𝑝∕𝜌𝑓 , and (3) the bulk solid volume
fraction, 𝜙. In literature, sometimes the terminal Reynolds number of a
single settling particle is used instead of 𝐺𝑎 to characterize the relative
importance of fluid inertia over viscous forces and the two numbers are
related to each other through 𝑅𝑒𝑇 =

(

2∕
√

3𝐶𝑑

)

𝐺𝑎 with 𝐶𝑑 = 𝐶𝑑 (𝑅𝑒𝑇 )
the sphere drag coefficient.

The seemingly simple case of a single sphere settling in free space
exhibits already rich physics as has been explored in a number of
comprehensive numerical studies (Jenny et al., 2004; Zhou and Dušek,
2015; Auguste and Magnaudet, 2018) and extensive experimental cam-
paigns (Veldhuis and Biesheuvel, 2007; Horowitz and Williamson,
2010; Raaghav et al., 2022). While for 𝐺𝑎 ≲ 155, a sphere settles
steadily in the vertical direction once it has reached its terminal ve-
locity and exhibits an axi-symmetric wake, at 𝐺𝑎 ≈ 155.6 (𝑅𝑒𝑇 ≈ 206.1)
nd irrespective of the particle-to-fluid density ratio, the sphere wake
ndergoes a regular bifurcation and becomes planar symmetric (Fabre
t al., 2012), causing the particle to steadily rotate and settle down
t a small inclination angle of a few degrees with respect to the
ertical (Zhou and Dušek, 2015). Upon further increasing the Galileo
umber, different transition scenarios exist dependent on the density
atio and thus on the influence of the fluid/solid coupling strength
n the translational and rotational sphere dynamics (Auguste and
agnaudet, 2018). At a density ratio around 1, the sphere undergoes
secondary Hopf bifurcation, displaying an oscillating oblique path

nd periodic vortex shedding from the wake. The wake then becomes
rregular and transitions into a chaotic state for 𝐺𝑎 ≳ 200, with the
phere settling on average in the vertical again, and with evidence of
2

an intermediate periodic (vertical oscillating) state for 250 ≲ 𝐺𝑎 ≲
00 (Zhou and Dušek, 2015; Raaghav et al., 2022).

The collective settling of particles is generally characterized by
indered settling, i.e., a reduced settling speed with respect to a single
ettling particle. This originates on the one hand from the higher
ixture mass density and thus larger Archimedes force, and on the

ther hand from the enhanced hydrodynamic drag on a particle from
he nearby presence of other particles and the upward return flow of the
luid (Barnea and Mizrahi, 1973). Hindered settling has already been
tudied over more than 80 years and many empirical correlations have
een proposed (Barnea and Mizrahi, 1973; Garside and Al-Dibouni,
977; Davis and Acrivos, 1985). Richardson and Zaki (1954) proposed
simple correlation that is widely used:

𝑠 = 𝑘𝑉𝑇 (1 − 𝜙)𝑛 , (1)

here 𝑉𝑇 is the terminal settling velocity of a single particle in free
pace, 𝑛 = 𝑛(𝑅𝑒𝑇 , 𝐷𝑝∕𝐷𝑝𝑖𝑝𝑒) with 𝐷𝑝𝑖𝑝𝑒 the diameter of the sedimen-
ation tube, and 𝑘 = 1 for sedimentation and 𝑙𝑜𝑔10(𝑘) = −𝐷𝑝∕𝐷𝑝𝑖𝑝𝑒

for fluidization. (The difference in 𝑘 value between sedimentation
and fluidization was attributed to the presence of a liquid velocity
gradient near the wall in the latter; the presence of a wall breaks the
similarity between the two processes.) Based on their experimental
data, Richardson and Zaki proposed correlations for 𝑛, varying from
𝑛 = 4.65 for the Stokes regime and when wall effects are negligible to
𝑛 = 2.39 for 𝑅𝑒𝑇 > 500.

Theoretical support for Eq. (1) has been provided by Batchelor
(1972) who derived that 𝑘 = 1 and 𝑛 = 6.55 for a very dilute, statisti-
cally homogeneous and monodisperse suspension in the Stokes regime,
while 𝑛 ≈ 5.6 when the spheres are slightly bidisperse in size at high
Péclet number based on the relative sphere settling velocity (Batchelor
and Wen, 1982; Davis and Birdsell, 1988). Garside and Al-Dibouni
(1977) critically evaluated Eq. (1) and proposed a single correlation
for 𝑛, which varies from 5.1 for the Stokes regime down to 2.7 for the
high-Reynolds regime. Moreover, they reported that Eq. (1) deviates
from experimental data for concentrations below 10%, an effect most
pronounced for the higher Reynolds number range. Here it should be
noted that Richardson and Zaki actually did not do measurements for
𝜙 < 𝑂(5%), but fitted Eq. (1) to the dense regime to determine 𝑛 and
𝑘𝑉𝑇 , and divided the latter by a theoretical estimate of 𝑉𝑇 to determine
𝑘.

The deviation of Eq. (1) from data for the dilute regime was noticed
in many later studies (Yin and Koch, 2007; Felice, 1999; Zaidi et al.,
2015; Shajahan and Breugem, 2020), with the deviation increasing
for decreasing 𝜙 and increasing 𝑅𝑒𝑇 . Interestingly, based on particle-
resolved simulations for 𝑅𝑒𝑇 ≃ 1 − 20 and 𝜌𝑝∕𝜌𝑓 = 2, Yin and
Koch (2007) attributed the deviation for 𝜙 ≲ 5% to anisotropy of
the suspension microstructure caused by inertial wake interactions
between spheres, while the suspension microstructure was isotropic
and exhibited a ‘‘hard-sphere’’ particle distribution (Wertheim, 1963;
Guazzelli and Morris, 2012) for 𝜙 ≳ 5% where Eq. (1) gave a good fit.
The wake interaction between vertically oriented pairs of spheres was
explained by a drafting–kissing–tumbling (DKT) phenomenon (Fortes
et al., 1987; Wu and Manasseh, 1998; Jayaweera et al., 1964) present
at finite Reynolds number. Shielded in the wake of the leading particle,
the trailing particle experiences less drag and accelerates towards the
leading particle (‘‘drafting’’), while simultaneously it experiences a
shear-induced lift force (Koch, 1993). When this lift force is not strong
enough, the particles will eventually touch (‘‘kissing’’). Either way,
irrespective whether actual contact is made or not, the particles will
quickly move from a highly unstable vertical to a horizontal pair ori-
entation and repel each other horizontally (‘‘tumbling’’). Yin and Koch
suggested that particle tumbling is hindered by the nearby presence of
other particles, explaining the observed enhanced likelihood of particle
pairs to orient themselves horizontally at a distance of 2–2.5 particle
diameters for 𝜙 = 1 and 5% at 𝑅𝑒𝑇 = 10, while the prevalence of
chaotic multi-particle interactions may explain the observed isotropic
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microstructure for 𝜙 = 20%. A similar tendency for horizontal particle
alignment at moderate concentrations and an isotropic particle distri-
bution for the dense regime was observed in later studies (Zaidi et al.,
2014; Hamid et al., 2014; Willen and Prosperetti, 2019; Seyed-Ahmadi
and Wachs, 2021).

Compared to the isotropic microstructure in the dense regime,
the enhanced drag from prevalent horizontal particle pairs in the
lower concentration range may explain the steeper decrease in the
sedimentation velocity with increasing concentration than expected
from Eq. (1) (Hamid et al., 2014). Consistent with this, Yin and Koch
found 𝑘 ≈ 0.86–0.92, which is thus smaller than 𝑘 = 1 suggested by
Richardson and Zaki but in agreement with 𝑘 ≈ 0.8–0.9 found from
experiments (Di Felice and Parodi, 1996; Felice, 1999) and particle-
resolved simulations (Willen et al., 2017; Willen and Prosperetti, 2019;
Shajahan and Breugem, 2020). Based on literature data and additional
simulations for 𝐺𝑎 = 4.6–153.6 and 𝜌𝑝∕𝜌𝑓 = 1.3–6, Yao et al. (2021)
recently proposed a correlation of 𝑘 in the form of an exponentially
decaying function in 𝐺𝑎2, which varies from 𝑘 = 0.89 for 𝐺𝑎 → 0 to
𝑘 = 0.7 for 𝐺𝑎 = 153.6. They attributed the drop in 𝑘 with increasing
𝐺𝑎 to the influence of 𝐺𝑎 on the frequency and lifespan of clusters
that were quantified by means of Voronoï tessellation. The change
in cluster formation was associated with appreciable particle wake
interactions for the lowest 𝐺𝑎 and the dominance of collisions over
wake interactions for the highest 𝐺𝑎 investigated.

Contrary to hindered settling, in several studies an increase in the
settling speed has been reported for very dilute suspensions when 𝐺𝑎
is sufficiently high (Kajishima and Takiguchi, 2002; Kajishima, 2004;
Uhlmann and Doychev, 2014; Zaidi et al., 2014; Huisman et al., 2016;
Fornari et al., 2016b; Seyed-Ahmadi and Wachs, 2021). This was first
observed in particle-resolved simulations by Kajishima and Takiguchi
(2002) for 𝜙 = 0.2%, 𝑅𝑒𝑇 = 350 and 400 (𝐺𝑎 ≈ 243 and 272) and
𝜌𝑝∕𝜌𝑓 = 8.8 and 10, respectively, though particle rotation was ignored
in their study for computational reasons. The enhanced settling speed
was related to the formation of elongated vertical clusters with a lateral
extent of ∼ 10𝐷𝑝 and a life time of several particle response times.
They attributed the formation of clusters to wake trapping of particles
in the unsteady wakes of other particles and the breakup of clusters
to turbulent stresses that are intensified by the presence of clusters.
Finally, their results suggest a threshold Reynolds number of around
200 (𝐺𝑎 ≈ 154) for vertical cluster formation and enhanced settling. In a
follow-up study, Kajishima (2004) studied the effect of particle rotation
and concentration on cluster formation at 𝑅𝑒𝑇 = 300 (𝐺𝑎 ≈ 214)
and 𝜌𝑝∕𝜌𝑓 = 8.8. When rotation is accounted for, no vertical clusters
were formed at 𝜙 = 0.05%, while clusters and an enhanced settling
speed of ∼ 20% was observed for 𝜙 = 0.1–0.4%. Furthermore, particle
rotation was responsible for a shorter lifetime and irregular formation
of clusters, which was attributed to the rotation that particles obtain in
the high shear zones surrounding the clusters and the resulting Magnus
lift force that tends to expel particles from the clusters.

The results of Kajishima and Takiguchi (2002) and Kajishima (2004)
were corroborated by particle-resolved simulations of Uhlmann and
Doychev (2014) for 𝐺𝑎 = 121 and 178, 𝜌𝑝∕𝜌𝑓 = 1.5 and 𝜙 = 0.5%. While
particles were nearly randomly distributed in space for 𝐺𝑎 = 121 and
settled on average at approximately the same speed as a single settling
particle, elongated vertical clusters with a lateral extent of ∼ 10𝐷𝑝 were
formed for 𝐺𝑎 = 178 and the average settling speed was enhanced by
about 12%. They attributed the formation of these vertical clusters to
particle wake attraction related to the DKT mechanism, though Yin and
Koch (2007) invoked the same DKT mechanism to explain the reduced
likelihood of finding vertical particle pairs and the higher likelihood
of finding horizontal particle pairs in their simulations at lower 𝐺𝑎
and higher 𝜙. Based on the critical 𝐺𝑎 for transition of the wake and
path of a single settling sphere from axisymmetric and vertical to plane
symmetric and oblique, Uhlmann and Doychev (2014) conjectured that
the threshold Galileo number for the emergence of the vertical clusters
3

is approximately 155 related to the enhanced likelihood of particles
to encounter each other when they are settling in an oblique fash-
ion. Experimental evidence of vertical cluster formation and enhanced
settling was provided by Huisman et al. (2016) for 𝐺𝑎 = 110–310,
𝜌𝑝∕𝜌𝑓 = 2.5 and 𝜙 = 0.02–0.1% with a maximum speed increment of
25% found for 𝐺𝑎 = 170 and 𝜙 = 0.05%. Contrary to the conjecture
of Uhlmann and Doychev (2014) also an enhanced settling speed of
up to 19% was found for 𝐺𝑎 = 110, though Huisman et al. noted that
their results may have been biased by the presence of a large-scale
flow circulation induced by the settling of the particles in the middle of
their settling tank. Particle-resolved simulations by Zaidi et al. (2014)
showed significantly enhanced settling for 𝜙 = 0.5 and 1%, 𝜌𝑝∕𝜌𝑓 = 2.5
and 𝑅𝑒𝑇 ≥ 175. The latter condition corresponds to 𝐺𝑎 ≥ 138, thus well
below 155.

From the above literature discussion, it is clear that flow inertia may
have a profound effect on the suspension microstructure and the flow
dynamics, in particular in the lower concentration range. Compared to
the moderate 𝐺𝑎 regime, only few studies have yet addressed the effect
of flow inertia for 𝐺𝑎 > 100 for a wide range in 𝜙, see the overview
of particle-resolved Direct Numerical Simulation (DNS) studies of the
inertial regime in Table 1.

In a previous study for 𝐺𝑎 = 144, 𝜌𝑝∕𝜌𝑓 = 1.5 and 𝜙 varying from
0.5%–30% (Shajahan and Breugem, 2020), we observed three different
settling regimes with a different suspension microstructure: a dilute
concentration regime for 𝜙 ≲ 1%, a moderate concentration regime
for 1 ≲ 𝜙 ≲ 10%, and a dense concentration regime for 𝜙 ≳ 10%,
with a preference of particles to settle in vertically aligned clusters,
horizontally aligned pairs and a nearly isotropic fashion, respectively.
Little is yet known about how the microstructure and related flow
dynamics will change when increasing 𝐺𝑎 and how this will affect the
transition between flow regimes when the concentration is varied. In
the present study, we aim to gain understanding of the structure and
dynamics of sedimenting suspensions by (1) examining the competing
influences of wake trapping, drafting–kissing–tumbling and multiparti-
cle interactions, and (2) examining the influence of inertia by varying
𝐺𝑎 for a wide range of concentrations. Partially motivated by earlier
studies of Uhlmann and Dušek (2014) and Uhlmann and Doychev
(2014), we have chosen 3 different Galileo numbers, 𝐺𝑎 = 144, 178
and 210, at a fixed density ratio of 𝜌𝑝∕𝜌𝑓 = 1.5. For a single settling
particle in free space, these values are a priori expected to correspond
to a steady vertical settling path at 𝐺𝑎 = 144 with 𝑅𝑒𝑇 ≈ 184, a steady
oblique settling path at 𝐺𝑎 = 178 and 𝑅𝑒𝑇 ≈ 240, and an oscillating
oblique or chaotic settling path at 𝐺𝑎 = 210 and 𝑅𝑒𝑇 ≈ 293 (Zhou and
Dušek, 2015).

For our study, we employed particle-resolved DNS to simulate sed-
imentation of spheres in a triply periodic computational domain at
𝜙 = 0.5–30% and the chosen 𝐺𝑎 values. The case of 𝜙 = 0.5% was
simulated only for 𝐺𝑎 = 144 as to check whether or not vertical
particle clustering would result in an enhanced settling speed in this
case as Uhlmann and Doychev (2014) suggested that 𝐺𝑎 ≳ 155 is
required for this. The lowest concentration considered for 𝐺𝑎 = 178
and 210 is 𝜙 = 2% as the focus of the present study is primarily on
the moderate and dense concentration regime. The DNS is based on
an Immersed Boundary Method for the fluid/solid coupling (Breugem,
2012) in combination with a soft-sphere collision model for frictional
particle collisions (Costa et al., 2015). A few results for 𝐺𝑎 = 144 from
our previous study (Shajahan and Breugem, 2020) are included in the
present study for the sake of comparison with the other 𝐺𝑎.

We present results for the suspension microstructure by means
of particle-conditioned averages, particle statistics such as the mean
and root-mean-square (rms) velocities of the particles and fluid phase,
probability density functions (pdfs) of the particle velocity, and par-
ticle velocity correlations and related frequency (energy) spectra. We
also examine the role of particle collisions by analyzing the particle
force balance. Finally, we analyze the properties of so-called kinematic

waves (Kynch, 1952; El-Kaissy and Homsy, 1976; Batchelor, 1988;
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Table 1
Overview of the investigated parameter ranges in particle-resolved DNS studies of fluidization and
sedimentation in free space (no walls) of non-colloidal monodisperse spheres in the inertial regime (𝐺𝑎 ≫ 1).
Studies are ordered by the highest investigated 𝐺𝑎 value. When 𝐺𝑎 was not provided in the reference, it
was estimated from 𝑅𝑒𝑇 using Abraham’s empirical correlation for the drag coefficient (Abraham, 1970),
and vice versa when only 𝐺𝑎 was provided.

Literature reference 𝐺𝑎 𝑅𝑒𝑇 𝜙 (in %) 𝜌𝑝∕𝜌𝑓
Climent and Maxey (2003) 1.4–18.1 0.1–10 0.3–12 0.9-5
Hamid et al. (2014) 0.97–18.1 0.05–10 1–40 5
Yin and Koch (2008) 2.0–28.3 0.2–20 1,20 2
Yin and Koch (2007) 4.6–28.5 1–20 0.5–40 2
Zaidi et al. (2015) 1.4–53.4 0.1–50 0–40 2.5a

Esteghamatian et al. (2017) 59.4 57.9 ∼ 47 10
Willen et al. (2017), Willen and Prosperetti (2019) 49.7–99.4 43.3–110.8 8.7–34.9 2-5
Shajahan and Breugem (2020) 144 185.9 0.5–30 1.5
Fornari et al. (2016b) 144.9 188 0.5,1 1.02
Yao et al. (2021) 4.6–153.6 0.95–200.0 22–43 1.3-6
Seyed-Ahmadi and Wachs (2021) 70,160 72.4,210.3 1–20 2
Uhlmann and Doychev (2014) 121,178 141.6,260.6 0.5 1.5
Fornari et al. (2016a) 19–200 10.8–276.5 0.5 1.02
Zaidi et al. (2014) 4.7–214.0 1–300 0.5–5 2.5
Kajishima (2004) 214.0 300 0.05–0.4 8.8
Zaidi (2018) 3.2–272.2 0.5–400 1–20 2.5a

Kajishima and Takiguchi (2002) 53.4–272.2 50–400 0.2 8.8,10

Present study 144–210 185.9–290.4 0.5–30 1.5

aDensity ratio was not explicitly mentioned, but presumed here to be 2.5 based on earlier publication of
the same lead author.
(
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Kytömaa and Brennen, 1991; Jackson, 2000), i.e., vertically propa-
gating plane waves in the local concentration with a relatively small
amplitude, which we observed before in our previous study for 𝐺𝑎 =
144 (Shajahan and Breugem, 2020). Recently, Willen et al. (2017) ana-
lyzed the characteristics of kinematic waves in DNS of a homogeneously
fluidized bed for 𝐺𝑎 = 50–99, 𝜌𝑝∕𝜌𝑓 = 2–5 and 𝜙 = 8.7–34.9%. The wave
speed was found to be in good agreement with Kynch theory (Kynch,
1952) in combination with the Richardson–Zaki correlation, Eq. (1),
for the sedimentation velocity. Based on a truncated spatial Fourier
series reconstruction, they demonstrated the footprint of propagating
concentration waves on the vertical fluid velocity. In the present study
we will adopt a different method to analyze kinematic waves based on
repeated space–time autocorrelations of the local concentration field,
which avoids the need to apply filtering in wavenumber space. Fortes
et al. (1987, p. 468) suggested that particle aggregation associated
with DKT interactions may cause propagation of ‘voidage cracks’ in
fluidization and we will explore this idea in the present sedimentation
study with regard to kinematic waves.

The remainder of this manuscript is organized as follows. In Sec-
tion 2 we provide details on the computational method and setup used
in the DNS. In Section 3 we present results for a single settling sphere at
the three chosen Galileo numbers. In Section 4 the results are discussed
for sedimenting suspensions. Finally, in Section 5 we summarize the
conclusions and provide a discussion of our main findings.

2. Computational setup

2.1. Governing equations and collision model

The physics of the fluid phase and the particle dynamics are gov-
erned by the Navier–Stokes and Newton–Euler equations, respectively.
We use the following inertial scales to non-dimensionalize these equa-
tions: 𝑙𝑟𝑒𝑓 = 𝐷𝑝, 𝑢𝑟𝑒𝑓 =

√

𝑔𝐷𝑝, 𝑡𝑟𝑒𝑓 = 𝑙𝑟𝑒𝑓∕𝑢𝑟𝑒𝑓 , 𝑝𝑟𝑒𝑓 = 𝜌𝑓 𝑢2𝑟𝑒𝑓 and
𝑎𝑟𝑒𝑓 = 𝑢2𝑟𝑒𝑓∕𝑙𝑟𝑒𝑓 . The non-dimensional Navier–Stokes equations for an
incompressible and Newtonian fluid are then given by:

∇ ⋅ 𝐮𝑓 = 0 , (2a)
𝜕𝐮𝑓
𝜕𝑡

+ ∇ ⋅ 𝐮𝑓𝐮𝑓 = −∇𝑝ℎ − ∇𝑝 + 1
√

𝑔𝐷3
𝑝∕𝜈

2
𝑓

∇2𝐮𝑓 , (2b)

where 𝐮𝑓 is the fluid velocity and 𝑝 is the total fluid pressure excluding
the contributions from the weight per unit volume of the fluid and
4

𝛥

the net weight per unit volume of the suspended particles, 𝑝ℎ. Note
that

√

𝑔𝐷3
𝑝∕𝜈

2
𝑓 = 𝐺𝑎∕

√

𝜌𝑝∕𝜌𝑓 − 1. The gradient of 𝑝ℎ is equal to ∇𝑝ℎ =
𝜌𝑝∕𝜌𝑓 − 1

)

𝜙 �̃�, where �̃� is a dimensionless unit vector pointing in the
irection of gravity. The linear velocity, u𝑝, and the angular velocity,
𝑝, of a particle are described by the Newton–Euler equations, which

or non-colloidal solid spheres are given by:
( 𝜌𝑝
𝜌𝑓

𝜋
6

) 𝑑𝐮𝑝
𝑑𝑡

= ∮𝐴𝑝

𝝉𝑓 ⋅ 𝐧 𝑑𝐴 + 𝜋
6

( 𝜌𝑝
𝜌𝑓

− 1
)

(1 − 𝜙) �̃� + 𝐅𝑐 , (3a)
( 𝜌𝑝
𝜌𝑓

𝜋
60

) 𝑑𝝎𝑝

𝑑𝑡
= ∮𝐴𝑝

𝐫 × (𝝉𝑓 ⋅ 𝐧) 𝑑𝐴 + 𝐓𝑐 , (3b)

where 𝝉𝑓 is the stress tensor for a Newtonian fluid defined as 𝝉𝑓 =
−𝑝𝐈 +

(

1∕
√

𝑔𝐷3
𝑝∕𝜈

2
𝑓

)

(∇𝐮𝑓 + ∇𝐮𝑇𝑓 ) with I the unit tensor, r is the
osition vector relative to the centroid of the particle, n is the outward-
ointing unit normal on the particle surface (𝐴𝑝), and F𝑐 and T𝑐 are the
ollisional force and torque, respectively. Eqs. (2a)–(3b) are coupled
ith each other through the no-slip/no-penetration condition at the

urface of the particles:

𝑓 = 𝐮𝑝 + 𝝎𝑝 × 𝐫 at A𝑝 . (4)

Collisions between particles are modeled using a frictional soft-sphere
collision model described in detail by Costa et al. (2015). In this
model the rigid particles are allowed numerically to overlap slightly.
A linear spring–dashpot model is used in which the collision force is
computed from the overlap and relative velocity between the particles.
The model accounts for transition from the stick to the slip regime
dependent on the ratio of the tangential to the normal component of
the collision force. The spring stiffness and damping coefficients for
the normal and tangential collision force components are expressed in
terms of four model parameters (van der Hoef et al., 2006): the dry
normal and tangential (or rotational) coefficients of restitutions, 𝑒𝑛,𝑑𝑟𝑦
and 𝑒𝑡,𝑑𝑟𝑦, respectively, the Coulomb coefficient of sliding friction, 𝜇𝑐 ,
and the collision duration, 𝑇𝑐 . Joseph and Hunt (2004) experimentally
determined that 𝑒𝑛,𝑑𝑟𝑦 = 0.97, 𝑒𝑡,𝑑𝑟𝑦 = 0.39 and 𝜇𝑐 = 0.15 for the oblique
mpact of a glass particle on a thick Zerodur (glass-like) wall in both
ir and an aqueous glycerine solution. We took the same values for
ur collision parameters with the exception of 𝑒𝑡,𝑑𝑟𝑦, which was set to
.1; the lower value effectively promotes transition to the slip regime.
he collision duration is a numerical parameter. In order to accurately
esolve collisions in time, it was artificially stretched to 𝑇𝑐 = 8𝛥𝑡 with

𝑡 the computational time step (Costa et al., 2015).
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As will be explained in Section 2.2, the present DNS makes use
of a fixed Cartesian grid for the fluid phase. Hydrodynamic interac-
tions between particles are resolved as long as the distance between
particle interfaces is larger than 𝑂(𝛥𝑥) with 𝛥𝑥 the grid spacing; the
associated interaction force and torque are included in the first term at
the right-hand side of Eqs. (3a) and (3b), respectively. For distances
smaller than the grid spacing, the normal interaction force between
particles is increasingly underestimated as the flow in the intervening
gap between the particles is not sufficiently resolved anymore. To
compensate for this, a lubrication correction force is added to the right-
hand side of Eq. (3a) when the distance between particle interfaces
drops below a grid-dependent threshold value. The correction is based
on an asymptotic analytical expression for the lubrication force for
the normal approach between two equal solid spheres in the Stokes
regime (Costa et al., 2015; Dance and Maxey, 2003). As the analytical
correction force approaches infinity in the limit of zero gap width,
the diverging behavior is capped when the gap width drops below a
threshold distance of 5⋅10−4𝐷𝑝, which can be associated with the typical
height of roughness asperities on the surface of the particles (Joseph
and Hunt, 2004).

2.2. Numerical method, initialization and flow parameters

The DNS is based on the computationally efficient Immersed Bound-
ary Method (IBM) of Breugem (2012) for the particle/fluid coupling,
which is a modified version of the original IBM introduced by Uhlmann
(2005). The IBM makes use of two different grids: a fixed Eulerian grid
for the fluid phase and a Lagrangian grid on the surface of every particle
and moving with the particle. A key ingredient of the IBM is that the
no-slip/no-penetration condition given by Eq. (4), is not imposed in a
direct manner, but forces are added locally near the particle’s surface
to enforce this condition by good approximation. The additional IBM
force, 𝐟 , is added to the right-hand side of the fluid momentum Eq. (2b).
The present IBM falls in the class of direct-forcing methods (Fadlun
et al., 2000) and is embedded in the predictor–corrector scheme used
to integrate the Navier–Stokes equations. The force is calculated using
a regularized delta-function approach in which the regularized delta
function proposed by Roma et al. (1999) is used to first interpolate
the provisional fluid velocity from the Eulerian to the Lagrangian grid,
then the IBM force is computed on the Lagrangian grid such that
the corrected velocity will fulfill the no-slip/no-penetration condition,
and finally the IBM force is spread back from the Lagrangian to the
Eulerian grid using the same regularized delta function. From the force
distribution on the Lagrangian grid, the overall hydrodynamic force
and torque acting on the particle are computed. The IBM contains a
multi-direct forcing scheme (Luo et al., 2007) to reduce the error in the
enforced no-slip/no-penetration condition caused by overlapping inter-
polation kernels from neighboring Lagrangian grid points. Furthermore,
the Lagrangian surface grid is slightly retracted towards the interior of
the particle over a distance of 0.3𝛥𝑥 to compensate for the finite width
of the interpolation kernels. This improves the accuracy of the overall
method. The reader is referred to Breugem (2012) for further details
and validation of the present IBM.

The three-step Runge–Kutta method of Wray (Wesseling, 2001)
is used to integrate the Navier–Stokes and Newton–Euler equations
in time. The computational time step, 𝛥𝑡, is dynamically adjusted to
ensure numerical stability. The Navier–Stokes equations are discretized
in space on a fully staggered Cartesian grid. The central-differencing
scheme is used to approximate spatial gradients. The computational
domain is a triply periodic rectangular box. Gravity is acting in the
negative 𝑦-direction.

At the start of the simulations, the particles are randomly placed in
the domain subject to the criterion that they must not overlap with each
other. The particles and fluid phase are initialized with zero velocity.
When the particles start to fall downwards by the action of gravity,
5

a return fluid flow co-develops by virtue of the imposed hydrostatic 1
Table 2
Physical parameters and computational settings used in the present parametric DNS
study: 𝐺𝑎 is the Galileo number, 𝜙 is the global solid volume fraction, 𝑁𝑝 is the
number of particles in the computational domain, 𝐿𝑥 × 𝐿𝑦 × 𝐿𝑧 are the dimensions of
the computational domain, 𝐷𝑝∕𝛥𝑥 is a measure for the grid resolution, and 𝑇𝑜𝑏𝑠 is the
duration of the observation interval over which statistics were obtained.
𝐺𝑎 𝜙 𝑁𝑝 𝐿𝑥 × 𝐿𝑦 × 𝐿𝑧 𝐷𝑝∕𝛥𝑥 𝑇𝑜𝑏𝑠∕

√

𝐷𝑝∕𝑔

144 0.005 2686 37.5𝐷𝑝 × 200𝐷𝑝 × 37.5𝐷𝑝 16 2157
0.02 2388 25𝐷𝑝 × 100𝐷𝑝 × 25𝐷𝑝 16 2134
0.04 4775 25𝐷𝑝 × 100𝐷𝑝 × 25𝐷𝑝 16 1036
0.06 7163 25𝐷𝑝 × 100𝐷𝑝 × 25𝐷𝑝 16 1046
0.08 9549 25𝐷𝑝 × 100𝐷𝑝 × 25𝐷𝑝 16 1060
0.10 11936 25𝐷𝑝 × 100𝐷𝑝 × 25𝐷𝑝 16 1060
0.15 17903 25𝐷𝑝 × 100𝐷𝑝 × 25𝐷𝑝 16 1143
0.20 23871 25𝐷𝑝 × 100𝐷𝑝 × 25𝐷𝑝 16 1154
0.25 29838 25𝐷𝑝 × 100𝐷𝑝 × 25𝐷𝑝 16 1144
0.30 35806 25𝐷𝑝 × 100𝐷𝑝 × 25𝐷𝑝 16 1134

178 0.02 2388 25𝐷𝑝 × 100𝐷𝑝 × 25𝐷𝑝 24 1367
0.04 4775 25𝐷𝑝 × 100𝐷𝑝 × 25𝐷𝑝 24 684
0.06 7163 25𝐷𝑝 × 100𝐷𝑝 × 25𝐷𝑝 24 706
0.08 9549 25𝐷𝑝 × 100𝐷𝑝 × 25𝐷𝑝 24 727
0.10 11936 25𝐷𝑝 × 100𝐷𝑝 × 25𝐷𝑝 24 735
0.15 17903 25𝐷𝑝 × 100𝐷𝑝 × 25𝐷𝑝 24 753
0.20 23871 25𝐷𝑝 × 100𝐷𝑝 × 25𝐷𝑝 24 745
0.25 29838 25𝐷𝑝 × 100𝐷𝑝 × 25𝐷𝑝 24 731
0.30 35806 25𝐷𝑝 × 100𝐷𝑝 × 25𝐷𝑝 24 729

210 0.02 2388 25𝐷𝑝 × 100𝐷𝑝 × 25𝐷𝑝 24 983
0.06 7163 25𝐷𝑝 × 100𝐷𝑝 × 25𝐷𝑝 24 673
0.10 5968 25𝐷𝑝 × 50𝐷𝑝 × 25𝐷𝑝 24 693
0.20 11936 25𝐷𝑝 × 50𝐷𝑝 × 25𝐷𝑝 24 693
0.25 14919 25𝐷𝑝 × 50𝐷𝑝 × 25𝐷𝑝 24 768
0.30 17903 25𝐷𝑝 × 50𝐷𝑝 × 25𝐷𝑝 24 713

pressure gradient in Eq. (2b). Within a few tens of time units
√

𝐷𝑝∕𝑔,
the flow reaches a statistically steady state in which the average particle
velocity is slightly fluctuating in time around a constant value. The
imposed hydrostatic pressure gradient then balances the submerged
weight of the suspension and the overall mixture (fluid+particles)
velocity is zero. The zero bulk mixture velocity mimics the virtual
presence of a bottom wall as in a batch sedimentation process. The
statistics shown later in this manuscript have been calculated for 𝑡 >
50

√

𝐷𝑝∕𝑔 to ensure that a statistically steady state was reached in all
imulations.

As mentioned in the introduction section, we performed a paramet-
ic study in which we varied the Galileo number and the bulk solid
olume fraction. The particle-to-fluid mass density ratio was fixed at
value of 1.5. In total 25 different sedimentation cases have been

imulated. The simulation parameters are listed in Table 2.
Note that the domain height in case A1 was set to 200 particle diam-

ters, which is 2–4 times larger than in the other cases. This was done
or two reasons. Firstly, to improve convergence of particle statistics
y increasing the number of particles in the domain for this case with
he lowest bulk concentration. Secondly, to accommodate large-scale
olumnar structures present at this bulk concentration (Shajahan and
reugem, 2020). We checked a posteriori for all cases that the domain
eight was much larger than the estimated vertical distance over
hich fluctuations in the vertical particle velocity are decorrelated,

ee Shajahan and Breugem (2020) where a prior analysis is presented
or 𝐺𝑎 = 144. A higher grid resolution was used for 𝐺𝑎 = 178 and
10 than for 𝐺𝑎 = 144, in order to sufficiently resolve the flow field
t the higher Galileo and hence higher Reynolds numbers. The chosen
rid resolutions for the different Galileo numbers were motivated by a
revious numerical study of Uhlmann and Dušek (2014) in which they
nalyzed the grid sensitivity of their DNS/IBM results for gravitational
ettling of a single particle at the same density ratio and for a similar
ange in Galileo number as considered in the present study. The grid
esolution of the Lagrangian grid was chosen to match as closely as
ossible the resolution of the Eulerian grid, corresponding to 746 and

721 Lagrangian grid cells for 𝐷𝑝∕𝛥𝑥 = 16 and 24, respectively.
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Fig. 1. Visualization of the instantaneous flow field around a single particle settling in free space for 𝐺𝑎 = 144, 178 and 210. Top panels show the 𝜆2 = −0.015 isocontour of the
𝜆2 vortex identification criterion (Jeong and Hussain, 1995). Bottom panels show isocontours of the relative fluid velocity ranging from −0.2

√

𝑔𝐷𝑝 to 1.0
√

𝑔𝐷𝑝 (see main text for
a more detailed explanation).
3. Single settling particle in free space

For each investigated Galileo number, an additional simulation was
performed of a single settling particle in free space to determine the
terminal settling velocity of an individual particle and to validate the
DNS code. The size of the rectangular computational domain and the
grid resolution are listed in Table 3. Prescribed inflow and convective
outflow boundary conditions were applied in the vertical 𝑦-direction
and periodic boundary conditions were imposed in the horizontal 𝑥
and 𝑧 directions. The initial centroid position of the particle was set
to 𝑥 = 𝐿𝑥∕2, 𝑦 = 9𝐷𝑝 and 𝑧 = 𝐿𝑧∕2. A moving frame of reference
was used in which the inflow velocity was set slightly higher than
the expected terminal settling velocity of the particle. This was done
in order to track the particle motion over a sufficiently long time to
capture the development of possible wake and sphere path instabilities.
Following the procedure used by Uhlmann and Dušek (2014), during
the first part of the simulation the particle was fixed in space till the
flow around the particle was fully developed. Then the simulation was
restarted and the particle was allowed to move freely during the second
part of the simulation. The terminal settling velocity was determined
from the difference between the vertical particle drift velocity and the
prescribed inlet velocity.

Similar to Uhlmann and Dušek (2014), Fig. 1 shows visualizations
of the fully developed flow field around the freely settling particle for
each Galileo number. The top panels show visualizations in terms of
the 𝜆2 vortex identification criterion (Jeong and Hussain, 1995). For
the vertical plane passing through the particle centroid and parallel to
the particle velocity, the bottom panels show isocontours of the vertical
6

fluid velocity relative to the particle. At 𝐺𝑎 = 144 the particle falls
steadily downwards along the vertical and exhibits an axisymmetric
wake. At 𝐺𝑎 = 178 the particle settles steadily along a slightly oblique
trajectory at an angle of approximately 7.1◦ with the vertical. The
wake is no longer axisymmetric, but plane symmetric, and contains
two characteristic vortex threads. Consistent with the presence of a
skewed wake, the particle rotates steadily along a horizontally aligned
axis with an angular velocity of approximately 0.052

√

𝑔∕𝐷𝑝 (in the
clockwise direction for the plane shown in Fig. 1). Finally, at 𝐺𝑎 = 210
the particle shows periodic wake shedding with an oscillation period
of 7.3

√

𝐷𝑝∕𝑔. This is accompanied by a small periodic oscillation of
the inclination angle at which the particle is falling, varying in the
range of 9.6–9.9◦. The flow visualizations for 𝐺𝑎 = 144 and 178 are in
good agreement with the numerical results presented by Uhlmann and
Dušek (2014) for the same Galileo numbers based on spectral/spectral-
element simulations and simulations based on an IBM similar to the
one presently used. Minor differences can be attributed to differences
in domain size, grid resolution, boundary conditions and accuracy of
the methods used. The case of 𝐺𝑎 = 210 was not investigated by them,
but they did simulate the case of 𝐺𝑎 = 190, which exhibits similar
oscillatory behavior.

For all three Galileo numbers, the values for the terminal settling
velocity, 𝑉𝑇 ∕

√

𝑔𝐷𝑝, and the corresponding terminal Reynolds number,
𝑅𝑒𝑇 = |𝑉𝑇 |𝐷𝑝∕𝜈𝑓 , are shown in Table 3. Good agreement is found with
the results from the spectral/spectral-element simulations of Uhlmann
and Dušek (2014) for 𝐺𝑎 = 144 and 178. The table also includes
the expected terminal Reynolds number from the balance between
the submerged weight of the particle and the steady hydrodynamic
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Table 3
Computational settings, terminal settling velocity and terminal Reynolds number obtained from DNS of a single settling particle with a particle-
to-fluid density ratio of 1.5. 𝐺𝑎 is the Galileo number, 𝐿𝑥 × 𝐿𝑦 × 𝐿𝑧 is the domain size, 𝐷𝑝∕𝛥𝑥 is a measure for the grid resolution, 𝑉𝑇 ∕

√

𝑔𝐷𝑃
is the normalized terminal settling velocity in the vertical direction, and 𝑅𝑒𝑇 is the terminal settling Reynolds number. The last three columns
show 𝑅𝑒𝑇 obtained from, respectively, the present DNS, the spectral/spectral-element simulations of Uhlmann and Dušek (2014) for their largest
domain size, and the expected values using Abraham’s correlation for the drag coefficient (Abraham, 1970).
𝐺𝑎 𝐿𝑥 × 𝐿𝑦 × 𝐿𝑧 𝐷𝑝∕𝛥𝑥 𝑉𝑇 ∕

√

𝑔𝐷𝑝 𝑅𝑒𝑇 (present) 𝑅𝑒𝑇 (from Uhlmann and Dušek, 2014) 𝑅𝑒𝑇 (model Abraham, 1970)

144 22𝐷𝑝 × 30𝐷𝑝 × 22𝐷𝑝 16 −0.913 185.9 185.1 184.5
178 22𝐷𝑝 × 30𝐷𝑝 × 22𝐷𝑝 24 −0.953 239.8 243.0 239.8
210 22𝐷𝑝 × 30𝐷𝑝 × 22𝐷𝑝 24 −0.978 290.4 – 293.3
drag force using Abraham’s empirical correlation for the drag coef-
ficient (Abraham, 1970). Again, good agreement is found for all 𝐺𝑎
values, which demonstrates the accuracy of our simulations for the
chosen grid resolutions.

4. DNS results for sedimenting suspensions

4.1. Instantaneous spatial particle distribution

Snapshots of the instantaneous spatial particle distribution are
shown in Fig. 2 for 𝜙 = 6%, 20% and 30% for each investigated
Galileo number. For a compact representation, only part of the flow
domain is shown (25𝐷𝑝 × 50𝐷𝑝 × 6.25𝐷𝑝). The particles are colored
by their instantaneous vertical velocity normalized with the mean
sedimentation velocity, 𝑉𝑠. A discrete colorbar is used to distinguish
between four groups of particles: particles settling at a velocity higher
than the mean with 𝑣𝑝∕𝑉𝑠 > 1.25 (red color), particles settling around
the mean in the range of 0.75 < 𝑣𝑝∕𝑉𝑠 < 1.25 (yellow), particles settling
at a velocity less than the mean with 0 < 𝑣𝑝∕𝑉𝑠 < 0.75 (blue), and
particles moving in the upward direction, 𝑣𝑝∕𝑉𝑠 < 0 (green).

The snapshots clearly show that in all cases a large number of
particles settle at a velocity significantly lower or higher than the
mean. Also, the slower and faster moving particles are seemingly
segregated in space and contained in relatively large-scale structures
with a spatial dimension ≫ 𝐷𝑝. A small amount of particles appears
to move even in the upward direction. The relative fraction of upward
moving particles increases with increasing bulk concentration as will
be analyzed in more detail in Section 4.5. This likely originates from a
locally strong return flow of the fluid, which may drag some particles
along in the upward direction. Hydrodynamic particle interactions and
particle bouncing after collisions might also cause individual particles
to move instantaneously upward. Finally, we remark that no clear
effect of the Galileo number can be discerned from the snapshots in
contrast with the 𝐺𝑎-dependent wake dynamics of a single settling
particle discussed in the previous section. For a more in-depth analysis
of particle clustering and effects of 𝐺𝑎 on this, we present results for the
suspension microstructure by means of the particle-conditioned average
concentration and flow field in the next subsection.

4.2. Suspension microstructure

The particle-conditioned average (PCA) concentration field has been
computed in the same way as in our previous study (Shajahan and
Breugem, 2020). First, we computed the spatial distribution of the
instantaneous solid phase indicator function around each particle, 𝛾(𝐱−
𝐱𝑐 , 𝑡), in two mutually perpendicular and vertically oriented planes
passing through the particle centroid at 𝐱𝑐 (𝑡). Here we define 𝛾 as
the local solid volume fraction in a grid cell, which varies between 0
for cells located fully inside the fluid phase and 1 for cells contained
fully inside particles. The 2D spatial distributions of 𝛾 were then aver-
aged over all particles and time, and, because of statistical symmetry,
also over the two mutually perpendicular planes to obtain the PCA
concentration field, 𝛾(𝐱 − 𝐱𝑐 ), where the bar denotes the statistical
average. A similar procedure was used to compute the PCA relative
particle and fluid velocity fields, defined by 𝛾[𝐮𝑝(𝐱 − 𝐱𝑐 , 𝑡) − 𝐮𝑝(𝐱𝑐 , 𝑡)]∕𝛾
and (1 − 𝛾)[𝐮 (𝐱 − 𝐱 , 𝑡) − 𝐮 (𝐱 , 𝑡)]∕(1 − 𝛾), respectively.
7

𝑓 𝑐 𝑝 𝑐
Fig. 2. Instantaneous snapshots of the spatial particle distribution in sedimenting
suspensions as function of Galileo number and bulk concentration (indicated by the
numbers on top of the panels). The particles are colored by their vertical velocity
normalized with the mean sedimentation velocity, 𝑣𝑝∕𝑉𝑠. Note that 𝑣𝑝 > 0 (upward
moving particle) corresponds to 𝑣𝑝∕𝑉𝑠 < 0 as 𝑉𝑠 < 0. (a) 𝐺𝑎 = 144, (b) 𝐺𝑎 = 178,
(c) 𝐺𝑎 = 210. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 3 presents the PCA concentration field in the vertical plane
through the reference particle centroid as function of bulk concentra-
tion and Galileo number. The local mean concentration is normalized
with the bulk concentration to highlight regions with higher (blue)
and lower (red) than average concentration. The vectors show the PCA
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Fig. 3. Particle-conditioned average concentration field in the vertical plane through the reference particle centroid and normalized with the bulk concentration, 𝛾∕𝜙. The vectors
represent the PCA relative particle velocity field. For clarity, the vectors within a radial distance of 1.5𝐷𝑝 of the reference particle centroid have been omitted as they are much
larger than the vectors further away from the reference particle. The reference vector below the color legend has a magnitude of 0.001

√

𝑔𝐷𝑝. Because of mirror symmetry only
𝑥∕𝐷𝑝 ≥ 0 is shown. The concentration is increasing from left to right from 𝜙 = 2–30%. (a) 𝐺𝑎 = 144, (b) 𝐺𝑎 = 178, (c) 𝐺𝑎 = 210.
relative particle velocity field. At first sight, the PCA concentration
field does not vary much with the Galileo number and depends pre-
dominantly on the bulk concentration. At 𝜙 = 2%, we observe a clear
tendency for vertical aggregation of particles. This is most pronounced
at 𝐺𝑎 = 178 and extends from 𝑦∕𝐷𝑝 ≃ 1.5 − 5. At all three Galileo
numbers, this is accompanied by an elevated concentration in the
lateral direction around a spot centered at 𝑥∕𝐷𝑝 ≃ 1.5 and fading away
for larger 𝑥. At 𝜙 = 2% particles thus show an enhanced likelihood
to settle in vertical trains of several particle diameters long as well as
in a pairwise side-by-side motion. The relative particle velocity field
shows the tendency of vertically aligned particles to move towards
the reference particle, consistent with the wake-trapping mechanism.
At close encounter with the reference particle, a DKT-type instability
seems to be responsible for a quick reconfiguration of vertically aligned
particles towards horizontal side-by-side motion, consistent with the
8

local pattern in the relative particle velocity and a characteristic X-
shaped region near the reference particle with a lower than average
concentration.

Interestingly, not shown here but discussed in Shajahan and Breugem
(2020), the tendency of particles to aggregate in the vertical is even
much more pronounced for 𝜙 = 0.5% and 𝐺𝑎 = 144, where the particle
clusters are alike the columnar structures reported by Uhlmann and
Doychev (2014) for 𝜙 = 0.5% and 𝐺𝑎 = 178. Contrary to 𝜙 = 2%,
this is accompanied by a significantly less likelihood for particles to
settle side-by-side (see Fig. 5a in Shajahan and Breugem (2020)). We
observe from Fig. 3 that the tendency to aggregate in the vertical
quickly vanishes with increasing bulk concentration. Already at 𝜙 = 6%
the tendency has almost completely disappeared, while simultaneously
the tendency for pairwise side-by-side motion has become stronger
as compared to 𝜙 = 2%. Thus, 𝜙 = 2% marks the transition from
the dilute to the moderate concentration regime, with a tendency of
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Fig. 4. Particle-conditioned average fluid flow field in the vertical plane through the reference particle centroid and normalized with the mean relative fluid velocity, 𝑉𝑟 = 𝑉𝑠 −𝑉𝑓 .
The solid lines are isocontours varying from 0 to 0.8 at intervals of 0.2. Because of mirror symmetry only 𝑥∕𝐷𝑝 ≥ 0 is shown. The concentration is increasing from left to right
from 𝜙 = 2–30%. (a) 𝐺𝑎 = 144, (b) 𝐺𝑎 = 178, (c) 𝐺𝑎 = 210.
particles to aggregate in the vertical at lower bulk concentrations by
the wake-trapping mechanism and a tendency of particles to settle
side-by-side in a pairwise manner at a distance of ∼ 1.5𝐷𝑝 by a DKT-
type instability at moderate bulk concentrations. The breakdown of
the vertical aggregates in the moderate concentration regime might
be related to the increased importance of short-range particle–particle
interactions at the cost of long-range hydrodynamic interactions like
wake trapping. This is consistent with a more localized preferential
concentration pattern and a more confined particle recirculation pat-
tern at higher 𝜙. Recall that preferential settling in a dominant pairwise
side-by-side configuration was reported before by Yin and Koch (2007)
for the moderate Reynolds number regime (𝑅𝑒𝑇 = 10, 𝜌𝑝∕𝜌𝑓 = 2)
at 𝜙 = 1% and 5% with interparticle distances of ∼ 2.5𝐷𝑝 and ∼
2𝐷𝑝, respectively. Thus, our results show that such dominant pairwise
particle configuration is still present at similar bulk concentrations but
more than tenfold higher 𝑅𝑒𝑇 .

From 𝜙 = 10 to 20% we observe yet another transition from
preferential setting in a pairwise side-by-side motion at moderate bulk
9

concentrations (2% ≲ 𝜙 ≲ 10%) towards a more and more concentric
ring-like distribution in the dense regime (𝜙 ≳ 10%). This indicates
a tendency towards a random ‘‘hard-sphere distribution’’ consistent
with the observations of Yin and Koch (2007) for 𝜙 = 20% in the
low and moderate Reynolds number regimes (𝑅𝑒𝑇 = 1 and 10). They
attributed the randomness of the distribution to chaotic motions from
many-particle interactions. The layering in concentric rings originates
from the restriction that hard spheres cannot overlap (‘excluded volume
effect’) (Guazzelli and Morris, 2012). This causes a quasi-ordering of
the distribution close to the reference particle, which quickly fades
away over a distance of a few particle diameters related to increasingly
uncorrelated motions of the spheres. We remark that at 𝜙 = 30% the
ring-like distribution is still not fully spherically symmetric, with a
higher preference for horizontal than vertical particle alignment within
the spherical shells, consistent with the local particle recirculation
pattern. This suggests that weak DKT-type instabilities still play a role
here.
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Fig. 4 presents the results for the PCA relative vertical fluid velocity
as function of bulk concentration and Galileo number. The relative
velocity is scaled with the difference between the mean fluid and mean
sedimentation velocity, 𝑉𝑟 = 𝑉𝑓 −𝑉𝑠 = −𝑉𝑠∕(1−𝜙) using that 𝜙𝑉𝑠 + (1−
)𝑉𝑓 = 0 for zero bulk mixture velocity. We loosely characterize the
ertical extent of the fluid wake by the 0.8 isocontour of the normalized
elative velocity (i.e., the upper contour in the plots). At 𝜙 = 2%, the
ertical wake extent is then approximately 3.5𝐷𝑝 for 𝐺𝑎 = 144 and
𝑎 = 178 and around 3𝐷𝑝 for 𝐺𝑎 = 210. Interestingly, the tip of the 0.8

socontour roughly matches with the local concentration maximum in
he vertical clusters observed in Fig. 3. Furthermore, although the effect
f 𝐺𝑎 appears to be fairly small, the larger wake extent for 𝐺𝑎 = 144
nd 𝐺𝑎 = 178 seems consistent with the observation from Fig. 3 that
ertical clustering is more confined in the lateral direction for 𝐺𝑎 = 144
nd 𝐺𝑎 = 178 (stronger wake trapping due to a more pronounced fluid
ake), while the particle surplus region around 𝑥∕𝐷𝑝 ≃ 1.5 is most
ronounced for 𝐺𝑎 = 210 (stronger DKT-type instabilities).

The extent of the fluid wake declines rapidly when increasing the
ulk concentration from the dilute to the moderately dense regime, in
ine with a weakening of the wake trapping mechanism and stronger
ocal instability mechanisms such as DKT based on hydrodynamic in-
eractions between neighboring particles. The decay of the wake extent
ontinues when increasing the bulk concentration from the moderate
o the dense regime, but at a much slower pace. Beyond 𝜙 ≈ 10%,
he extent of the wake is apparently so small that it can only facilitate
eak DKT-type instabilities, while simultaneously short-range particle–
article interactions such as lubrication and collisions start to dominate
he particle dynamics. At 𝜙 = 25% and 30% the wake structure is nearly
dentical and limited in extent to about one particle diameter.

.3. Mean particle sedimentation velocity

The mean particle sedimentation velocity was obtained by averag-
ng the time series of the particle-mean velocity for 𝑡 > 50

√

𝐷𝑝∕𝑔 for
hich the flow was in a fully developed state. The result is shown in
log–log plot in Fig. 5 as function of the bulk void fraction, 1 − 𝜙,

and Galileo number. The figure clearly shows the effect of hindered
settling: the sedimentation velocity drops rapidly with decreasing bulk
void fraction and hence increasing bulk concentration. For each 𝐺𝑎
and 𝜙 ≳ 10%, the data points lie approximately on a straight line,
in agreement with the Richardson–Zaki power-law relation given by
Eq. (1). The dashed lines show the fit of Eq. (1) to the DNS data
for 𝜙 ≥ 10%. The values for the correction factor, 𝑘, and the power-
law exponent, 𝑛, are given in Table 4 along with the values for 𝑛
estimated from the following correlations provided by Richardson and
Zaki (1954):

𝑛 =

⎧

⎪

⎨

⎪

⎩

[

4.45 + 18 𝐷𝑝
𝐷𝑝𝑖𝑝𝑒

]

⋅ (𝑘𝑅𝑒𝑇 )−0.1 , 1 < 𝑘𝑅𝑒𝑇 < 200 ,

4.45 ⋅ (𝑘𝑅𝑒𝑇 )−0.1 , 200 < 𝑘𝑅𝑒𝑇 < 500 ,
(5)

where 𝐷𝑝∕𝐷𝑝𝑖𝑝𝑒 is the particle-to-pipe diameter ratio in the experiments
of Richardson and Zaki. As the flow domain in the DNS is a rectangular
box with triply periodic boundary conditions, we evaluated Eq. (5) both
for 𝐷𝑝∕𝐷𝑝𝑖𝑝𝑒 = 0 and 𝐷𝑝∕𝐷𝑝𝑖𝑝𝑒 = 1∕25 based on the lateral extent of
the flow domain of 25𝐷𝑝. The actual confinement effect from the finite
ateral domain extent in the DNS is expected to be in between these
wo extreme cases. Indeed, this appears to be the case for 𝐺𝑎 = 144
nd 178, see Table 4. For 𝐺𝑎 = 210, the Richardson–Zaki correlation
redicts no confinement effect on the sedimentation velocity. The
orresponding DNS value for 𝑛 is in fairly good agreement with the
orrelation estimate (deviation of +14%). Note that the DNS values for
are varying in a non-monotonic manner with 𝐺𝑎. Nonetheless, in all

ases the value is close to 3, which indicates a nearly 𝐺𝑎-independent
xponent over the currently investigated 𝐺𝑎 range.

From Fig. 5 it can be observed that the Richardson–Zaki relation
nderestimates the sedimentation velocity for 𝜙 < 10%. The deviation
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Fig. 5. Double-log plot of the normalized mean particle sedimentation velocity,
|𝑉𝑠|∕

√

𝑔𝐷𝑝, as function of bulk void fraction, 1 − 𝜙, and Galileo number. The dashed
lines represent fits of the Richardson–Zaki relation, Eq. (1), to the data points for
𝜙 ≥ 10%. The black symbols at 𝜙 = 0 indicate the mean single-particle terminal settling
velocity, see Table 3.

increases for smaller 𝜙 and is largest for 𝜙 = 0. Indeed, the fitted
value for the correction factor 𝑘 is significantly smaller than one. This
is well known from literature, see, e.g., Felice (1999) and Yin and
Koch (2007). Their reported values for 𝑘 are in the range of 0.8–0.9,
which is in good agreement with our DNS results. It is interesting to
note that 𝜙 = 10% marks the transition from the moderate concen-
tration regime with an anisotropic microstructure towards the dense
concentration regime with a more isotropic microstructure as discussed
previously. Our results thus substantiate the suggestion of Yin and Koch
(2007) that the Richardson–Zaki relation is associated with a ‘‘hard-
sphere distribution’’. This also implies that the underestimation of the
sedimentation velocity for 𝜙 < 10% can be attributed to anisotropy
of the microstructure, which in turn is originating from hydrodynamic
particle interactions in the inertial regime (wake trapping and DKT-type
instabilities). Finally, it is worth mentioning that for 𝐺𝑎 = 144 and
𝜙 = 0.5% the mean sedimentation velocity is very close to the mean
single-particle settling velocity at the same 𝐺𝑎 (difference of 0.2%).
Thus we do not observe enhanced settling at this 𝐺𝑎, consistent with
the presumed threshold of 𝐺𝑎 ≈ 155 for this.

4.4. Particle and fluid rms velocities

Fluctuations in the vertical particle velocity are defined as temporal
deviations in the vertical particle velocity around the mean sedimenta-
tion velocity, 𝑣′𝑝 = 𝑣𝑝 − 𝑉𝑠. Similarly, vertical velocity fluctuations of
the fluid phase are defined as 𝑣′𝑓 = 𝑣𝑓 −𝑉𝑓 = 𝑣𝑓 +𝜙𝑉𝑠∕(1−𝜙). As mean
elocities in the horizontal directions are very close to zero, as expected
or sedimenting suspensions, horizontal velocity fluctuations are simply
efined by the instantaneous horizontal velocity. Figs. 6.a and 6.b
epict the root-mean-square (rms) of the particle and fluid velocity
luctuations, respectively, both for the vertical (red symbols) and the
ateral direction (blue symbols). Because of statistical symmetry, the
orizontal rms velocities in 𝑥 and 𝑧 are nearly the same. Hence, they
re represented by their average value,

√

(𝑢2𝑝,𝑟𝑚𝑠 +𝑤2
𝑝,𝑟𝑚𝑠)∕2.

Focusing on the particle rms velocities, a clear 𝐺𝑎-dependent peak
can be observed in the vertical and to a lesser extent also the lateral
direction in the range of 𝜙 = 4–8%. The peak rms value varies in a
on-monotonic fashion with 𝐺𝑎 with the highest value for 𝐺𝑎 = 210
nd the lowest value for 𝐺𝑎 = 178. On the other hand, when normalized
ith

√

𝑔𝐷 , the particle rms velocities are nearly independent of 𝐺𝑎 for
𝑝
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Table 4
Values for the correction factor, 𝑘, and the power-law exponent, 𝑛, in Eq. (1), obtained from fitting the DNS data for 𝜙 ≥ 10%.
The last two columns show estimates for 𝑛 from the empirical Richardson–Zaki correlations given by Eq. (5).
𝐺𝑎 𝑘 𝑛 𝑛 from Eq. (5) with 𝐷𝑝∕𝐷𝑝𝑖𝑝𝑒 = 0 𝑛 from Eq. (5) with 𝐷𝑝∕𝐷𝑝𝑖𝑝𝑒 = 1∕25

144 0.83 3.00 2.69 3.12
178 0.82 2.85 2.62 3.05
210 0.85 2.92 2.57 2.57
Fig. 6. Root-mean-square velocity of (a) particles and (b) fluid, normalized with
√

𝑔𝐷𝑝, and shown as function of 𝜙 and 𝐺𝑎. Red and blue symbols refer to the vertical (𝑦) and
lateral (𝑥 and 𝑧) direction, respectively. Circles, squares and triangles correspond to 𝐺𝑎 = 144, 178 and 210, respectively. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
Fig. 7. Double-log plot of (a) the particle rms velocity normalized with |𝑉𝑠| and (b) the fluid/particle rms velocity ratio as function of 𝜙 and for the three different Galileo numbers.
Red and blue symbols refer to the vertical (𝑦) and lateral (𝑥 and 𝑧) direction, respectively. Circles, squares and triangles correspond to 𝐺𝑎 = 144, 178 and 210, respectively. The
dashed lines represent power-law fits of the DNS data to Eq. (6a) and (6b) for 𝐺𝑎 = 178 and 𝜙 ≥ 10%. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
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𝜙 ≳ 20% and gradually decrease with increasing bulk concentration.
The 𝐺𝑎-dependent peak in the particle rms velocity in the moderate
concentration regime is consistent with contributions from hydrody-
namic particle–particle interactions related to DKT-type instabilities.
Conversely, the 𝐺𝑎-independent particle rms velocities in the dense
concentration regime are consistent with short-range particle–particle
interactions through lubrication and particle collisions. For the fluid
velocity rms we observe a peak in the moderate concentration regime
too, though less distinct for the lateral fluid rms having an almost
constant value for 𝜙 ≳ 8%. Also, different from the particle rms
velocities, the fluid rms velocities exhibit a mild 𝐺𝑎 dependency over
the entire concentration range.

In Fig. 7.a the particle rms velocities are plotted once again but
now normalized with the mean sedimentation velocity and using log-
arithmic scales on both axes. Scaled in this manner, we observe that
the particle rms velocities increase with increasing bulk concentration.
In agreement with the DNS study of Zaidi (2018), for sufficiently
high concentration the trend can be fairly well approximated by the
11
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following power-law relation:
𝑢𝑝𝑖,𝑟𝑚𝑠
|𝑉𝑠|

= 𝐶𝜙𝑚 , (6a)

where the subscript 𝑖 denotes the velocity component in direction 𝑖,
and 𝐶 and 𝑚 are constants. We find that also the rms of the fluid
velocity follows a power-law scaling, and so does the fluid-to-particle
rms velocity ratio as is clear from Fig. 7.b:
𝑢𝑓𝑖,𝑟𝑚𝑠
𝑢𝑝𝑖,𝑟𝑚𝑠

=
𝐶𝑓𝑖

𝐶𝑝𝑖
𝜙(𝑚𝑓𝑖−𝑚𝑝𝑖) , (6b)

here the subscripts 𝑝 and 𝑓 refer to the particles and fluid, respec-
ively. We determined the power-law coefficients by fitting the DNS
ata to Eqs. (6a) and (6b) for 𝜙 ≥ 10%. The fitted values are listed in
able 5.

Interestingly, our results contradict the findings from the DNS study
f Zaidi (2018), who reported approximately equal power-law expo-
ents for the vertical and the horizontal particle rms velocity: 𝑚𝑝ℎ∕𝑣 = 0
or 𝑅𝑒 = 200 and 𝑚 = −0.1 for 𝑅𝑒 ≳ 300. For our range of 𝑅𝑒 =
𝑇 𝑝ℎ∕𝑣 𝑇 𝑇
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Table 5
Values for the coefficients in Eqs. (6a) and (6b) for, respectively, the normalized particle rms velocity and the fluid/particle
rms velocity ratio, obtained from fitting the DNS data for 𝜙 ≥ 10%. Subscripts 𝑝, 𝑓 , 𝑣 and ℎ refer to, respectively, the particles,
the fluid, the vertical and the lateral direction.
𝐺𝑎 𝑚𝑝𝑣 𝐶𝑝𝑣 𝑚𝑝ℎ 𝐶𝑝ℎ 𝑚𝑓𝑣 − 𝑚𝑝𝑣 𝐶𝑓𝑣∕𝐶𝑝𝑣 𝑚𝑓ℎ − 𝑚𝑝ℎ 𝐶𝑓ℎ∕𝐶𝑝ℎ

144 0.29 0.72 0.39 0.60 0.14 2.16 0.23 1.80
178 0.40 0.76 0.45 0.57 0.07 2.08 0.19 1.83
210 0.23 0.60 0.35 0.52 0.18 2.43 0.23 1.99
(
v
p

186–290, we consistently find 𝑚𝑝ℎ > 𝑚𝑝𝑣 > 0 (i.e., different exponents
nd a rising trend) with 𝑚𝑝ℎ and 𝑚𝑝𝑣 in the range of 0.35–0.45 and
.23–0.40, respectively. The reason for our different findings is unclear,
hough it might be related to a different particle/fluid density ratio
onsidered by Zaidi (2018) (2.5 vs 1.5 in our case).

Normalized with the mean sedimentation velocity, the lateral parti-
le rms velocity rises steeper with bulk concentration than the vertical
article rms velocity. A higher vertical than horizontal rms particle
elocity has been reported in many previous studies (Climent and
axey, 2003; Yin and Koch, 2008; Uhlmann and Doychev, 2014; Zaidi

t al., 2014; Hamid et al., 2014; Esteghamatian et al., 2017; Zaidi,
018; Willen and Prosperetti, 2019). The anisotropy in the particle
elocity fluctuations thus gradually decreases, though the power-law
its predict that it remains to exist in the very dense regime: assuming

maximum flowable packing fraction of 𝜙 ≃ 0.65, the ratio of the
ertical to the horizontal particle rms velocity approaches a value of
pproximately 1.2 for all three Galileo numbers. Finally, we observe
rom Fig. 7.b that the ratio of the fluid to the particle rms velocity is
ncreasing with 𝜙 and generally larger than one. The only exception is
he lower bulk concentration range (𝜙 ≲ 8%) for the lateral direction,

where the fluid rms velocity is a bit smaller than the particle rms
velocity.

4.5. Pdf of particle velocity

In Fig. 8 we show the normalized probability density function (pdf)
of the particle velocity in the vertical (left) and the lateral (right)
direction as function of bulk concentration and Galileo number (in-
creasing from top to bottom). Note that 𝑣𝑝 − 𝑉𝑠 < 0 corresponds to
particles falling faster than the mean sedimentation velocity as 𝑉𝑠 is
negative. For comparison, a Gaussian distribution is included in the
plots. At first glance, the distribution of the particle velocities is close
to Gaussian, in particular for 𝜙 > 6%, which agrees with the Gaussian
distribution found for 𝜙 = 12% in the simulations of Climent and Maxey
(2003). Indeed, in the dense regime, the computed third and fourth
standardized moment of the particle velocity, known as the skewness
and kurtosis, are close to 0 and 3, respectively, as expected for a
Gaussian distribution. The 𝐺𝑎-independent and Gaussian distribution
at the higher bulk concentrations is consistent with a tendency towards
a more random spatial arrangement of the particles and the dominant
contribution of short-range particle–particle interactions to the particle
dynamics. Furthermore, the collapse of the pdfs in the dense regime
indicates that the velocity fluctuations scale with the rms velocity.

Although perhaps not immediately obvious from the pdfs, with
increasing bulk concentration an increasing fraction of particles is
instantaneously moving upwards. Using Eq. (6a), 𝑣𝑝 = 0 corresponds to
a standardized vertical velocity of (𝑣𝑝−𝑉𝑠)∕𝑣𝑝,𝑟𝑚𝑠 = (1∕𝐶𝑝𝑣)𝜙

−𝑚𝑝𝑣 , which
for 𝑚𝑝𝑣 > 0 indeed becomes smaller with increasing bulk concentration.
For 𝐺𝑎 = 178, we find that 𝑣𝑝 = 0 corresponds to a standardized vertical
velocity of 4.1 for 𝜙 = 6%, 2.5 for 𝜙 = 20% and 2.1 for 𝜙 = 30%,
which explains why at this Galileo number upward moving particles
are hardly present for 𝜙 = 6% but can be clearly observed for 𝜙 = 30%
in the snapshots of Fig. 2. The red dashed vertical line in Figs. 8.a,c,e
marks the value of −𝑉𝑠∕𝑣𝑝,𝑟𝑚𝑠 (𝑣𝑝 = 0) at 𝜙 = 30%. A few percent of
all particles are moving upward at this concentration with the fraction
decreasing with increasing 𝐺𝑎 for the currently examined 𝐺𝑎 range
(∼ 3% at 𝐺𝑎 = 144 vs less than 2% at 𝐺𝑎 = 210).
12
Closer inspection for the lower concentration range reveals that the
pdf of the vertical particle velocity is negatively skewed for 𝜙 = 0.5%
at 𝐺𝑎 = 144 (Fig. 8(a)) and to a lesser extent also for 𝜙 = 2% at
𝐺𝑎 = 178 (Fig. 8(c)). The peak of the skewed pdf corresponds to
particles falling a bit slower than the mean, while the longer left than
right tail indicates that extreme events (say, |𝑣𝑝| > |𝑉𝑠| + 2𝑣𝑝,𝑟𝑚𝑠) are
more often associated with particles falling significantly faster than the
mean. Skewed pdfs for the vertical particle velocity were also found
in the previously mentioned sedimentation experiments by Huisman
et al. (2016), though much more pronounced and associated with a
significantly enhanced mean settling speed with respect to settling of
a single particle in free space. Huisman et al. attributed the skewed
pdf to the tendency of particles to form vertical columnar clusters,
caused by the inertial trapping of particles in the wake of other particles
underneath. The particles that fall in tandem are less exposed to the
fluid flow and hence they settle faster than the other particles. The
latter was clearly shown by Uhlmann and Doychev (2014) for the case
of 𝐺𝑎 = 178, 𝜌𝑝∕𝜌𝑓 = 1.5 and 𝜙 = 0.5%.

Interestingly, we observe that the negatively skewed pdf for the
vertical velocity corresponds to super-Gaussian behavior for the lateral
velocity (a more peaky distribution with an enhanced kurtosis), which
is most pronounced for 𝜙 = 0.5–4% at 𝐺𝑎 = 144 (Fig. 8(b)) and to
a lesser extent for 𝜙 = 2% at 𝐺𝑎 = 178 (Fig. 8(d)). Similar behavior
was reported by Fornari et al. (2016a) at 𝐺𝑎 ≈ 145, 𝜌𝑝∕𝜌𝑓 = 1.02
and 𝜙 = 0.5 and 1%. The higher peak around the origin is consistent
with particles settling in rather stable vertical trains, whereas the
longer tails might indicate strong horizontal particle excursions related
to the initial formation or final breakup of the columnar structures.
The skewed behavior of the vertical particle velocity and the super-
Gaussian behavior for the lateral particle velocity both vanish with
increasing bulk concentration. This is consistent with increasingly less
stable columnar structures related to a smaller extent of the fluid
wake (Fig. 4), disturbances from multi-particle interactions and more
pronounced DKT-type instabilities in the moderate concentration range
(2% ≲ 𝜙 ≲ 10%).

4.6. Particle velocity correlations

Fig. 9 presents the temporal autocorrelations of the vertical (left)
and lateral (right) particle velocity fluctuations as function of bulk
concentration and Galileo number (increasing from top to bottom). For
the vertical particle velocity, the autocorrelation is defined by:

𝜌𝑣𝑣(𝜏) = 𝑣′𝑝(𝑡)𝑣′𝑝(𝑡 + 𝜏)∕𝑣′2𝑝 . (7)

A first striking observation is the much slower decay of the autocorre-
lation of the vertical velocity fluctuations at 𝐺𝑎 = 144 and 𝜙 = 0.5%
Fig. 9(a)) as compared to the other autocorrelations of the vertical
elocity at the same 𝐺𝑎 but with higher bulk concentrations. The
ositive correlation at 𝜙 = 0.5% up to 𝑡 = 400

√

𝐷𝑝∕𝑔 is consistent
with the tendency of particles to settle preferentially in columnar
structures. Also, a mild oscillatory behavior can be observed in this
case with local minima near ∼ 125 and ∼ 375

√

𝐷𝑝∕𝑔 and a local
maximum in between at ∼ 225

√

𝐷𝑝∕𝑔, indicating an oscillation time
period of 𝑂(200 − 250)

√

𝐷𝑝∕𝑔. Interestingly, the autocorrelation of the
corresponding lateral velocity fluctuations at 𝐺𝑎 = 144 and 𝜙 = 0.5%
(Fig. 9(b)) gradually drops off to zero without signs of oscillatory
behavior as seen for the vertical velocity component. Apparently, a
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Fig. 8. Probability density function of the vertical (𝑣𝑝, left) and lateral (𝑢𝑝 and 𝑤𝑝, right) particle velocity as function of bulk concentration and Galileo number (increasing from
op to bottom). The pdf is normalized with the rms particle velocity. Black squares represent a Gaussian distribution. (a) Vertical velocity, 𝐺𝑎 = 144, (b) lateral velocity, 𝐺𝑎 = 144,
c) vertical velocity, 𝐺𝑎 = 178, (d) lateral velocity, 𝐺𝑎 = 178, (e) vertical velocity, 𝐺𝑎 = 210, (f) lateral velocity, 𝐺𝑎 = 210. The red dashed vertical line in (a), (c) and (e) marks

the value of −𝑉𝑠∕𝑣𝑝,𝑟𝑚𝑠 (𝑣𝑝 = 0) at 𝜙 = 30%. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
ecurrent instability mechanism is at work that affects only the vertical
nd not the lateral velocity component at 𝜙 = 0.5% and 𝐺𝑎 = 144.
his hints at the possible presence of kinematic waves, which travel in
he vertical and may potentially disturb the earlier mentioned ‘‘stable’’
olumnar structures present at this bulk concentration. We will discuss
his in more detail later.

A second striking observation is the presence of a clear negative
orrelation peak for the vertical velocity component around 𝑂(40 −
0)
√

𝐷𝑝∕𝑔 and subsequent oscillatory behavior for 𝜙 = 2–20% at 𝐺𝑎 =
144, 𝜙 = 4–20% at 𝐺𝑎 = 178, and 𝜙 = 6–20% at 𝐺𝑎 = 210. The
oscillation frequency varies with bulk concentration and 𝐺𝑎, but is
equal to ∼ 120

√

𝐷𝑝∕𝑔 at 𝜙 = 6% for all 𝐺𝑎, thus roughly twice as
ow as the frequency found for 𝜙 = 0.5% and 𝐺𝑎 = 144. Interestingly,

similar oscillation period was found by Fornari et al. (2016a) for
𝑎 ≈ 145, 𝜌𝑝∕𝜌𝑓 = 1.02 and 𝜙 = 1%, at least when the oscillation period

s normalized with
√

𝐷𝑝∕[(𝜌𝑝∕𝜌𝑓 − 1)𝑔], i.e., using the reduced gravity
instead of gravity. This suggests that the use of the reduced gravity is
13
preferred over gravity when the density ratio is varied, as may also be
expected from the gravity term in Eq. (3a).

For all three Galileo numbers, the negative peak and oscillatory
behavior in the correlation for the vertical velocity are absent at 𝜙 =
25 and 30%. This again is reminiscent of a change in the particle
dynamics, now from the moderate to the dense regime, consistent with
the transition to a ‘‘hard-sphere distribution’’ dominated by short-range
particle–particle interactions for dense sedimenting suspensions. The
observations for the correlation of the vertical velocity component in
the moderate and dense regime hold also largely for the horizontal ve-
locity component: a negative correlation peak and oscillatory behavior
for the moderate concentrations and the absence of this for the most
dense cases. A more quantitative frequency analysis will be discussed
later when we present frequency spectra of the velocity fluctuations.

From the autocorrelations we have computed the integral time
scale, 𝜏𝐿, defined as:

𝜏𝐿 =
∞
𝜌(𝜏) 𝑑𝜏 . (8)
∫0
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Fig. 9. Temporal autocorrelation of the vertical (𝑣′𝑝, left) and lateral (𝑢′𝑝 and 𝑤′
𝑝, right) particle velocity fluctuations, shown as function of bulk concentration and Galileo number

(increasing from top to bottom). Because of statistical symmetry, the correlations are shown only for positive time shifts and, for clarity, only up to 400
√

𝐷𝑝∕𝑔. (a) Vertical velocity,
𝑎 = 144, (b) lateral velocity, 𝐺𝑎 = 144, (c) vertical velocity, 𝐺𝑎 = 178, (d) lateral velocity, 𝐺𝑎 = 178, (e) vertical velocity, 𝐺𝑎 = 210, (f) lateral velocity, 𝐺𝑎 = 210.
A
s

This is a rough proxy of the largest time over which particle ve-
locity fluctuations are still correlated. In our previous study (Shajahan
and Breugem, 2020) we multiplied it with the mean sedimentation
velocity to estimate the corresponding vertical correlation distance.
Fig. 10 shows 𝜏𝐿∕

√

𝐷𝑝∕𝑔 for the vertical (red) and lateral (blue) particle
elocity fluctuations as function of 𝜙 and 𝐺𝑎. The normalized integral

time scale rapidly drops off when increasing 𝜙 from the dilute to the
oderate concentration regime, in particular for the vertical velocity,

nd then more gradually decreases towards a constant value of ∼ 8
or the vertical and ∼ 3 for the lateral velocity for 𝜙 > 10%. While

the Galileo number has clearly some influence on 𝜏𝐿 in the dilute
and moderate concentration regime, especially for the vertical velocity,
it has almost no effect on 𝜏𝐿 in the dense regime. This is consistent
with the importance of wake-related particle interactions for 𝜙 ≲ 10%
nd increasingly dominant short-range multi-particle interactions for
≳ 10%. The constant value of 𝜏𝐿∕

√

𝐷𝑝∕𝑔 in the dense regime implies
that

√

𝐷 ∕𝑔 is the relevant time scale for particle interactions in this
14

𝑝 d
regime, at least when the density ratio is kept constant as in our present
study.

Instead of using Eq. (8), the integral time scale can also be obtained
from an analysis of particle dispersion by means of the mean square
particle displacement as function of time (Shajahan and Breugem,
2020). Twice the integral time scale marks the transition from the bal-
listic to the diffusive particle transport regime (Nieuwstadt et al., 2016).
Furthermore, it can be shown that in the diffusive regime (i.e., for
𝑡 ≳ 2𝜏𝐿) the vertical particle diffusivity, 𝑦𝑦, is given by Nieuwstadt
et al. (2016):

𝑦𝑦
√

𝑔𝐷3
𝑝

= 2

(

𝑣𝑝,𝑟𝑚𝑠
√

𝑔𝐷𝑝

)2 (
𝜏𝐿,𝑣𝑣

√

𝐷𝑝∕𝑔

)

. (9)

similar expression can be derived for the horizontal particle diffu-
ivity. The diffusivity is higher in the vertical than in the horizontal

irection, related to the higher rms velocity and integral time scale in



International Journal of Multiphase Flow 166 (2023) 104498T. Shajahan and W.-P. Breugem

T
c
1
n
p

Fig. 10. Normalized integral time scale 𝜏𝐿∕
√

𝐷𝑝∕𝑔 for the vertical (𝑣′𝑝, red) and
lateral (𝑢′𝑝 and 𝑤′

𝑝, blue) particle velocity fluctuations as function of 𝜙 and 𝐺𝑎. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

the vertical. It is also higher for the dilute and moderate concentration
regime than for the dense regime. As the normalized rms velocity and
the normalized integral time scale are both independent of 𝐺𝑎 in the
dense regime, so does also the particle diffusivity: it scales with

√

𝑔𝐷3
𝑝

and gradually decreases with concentration in the dense regime.
For DKT-type instabilities it may be expected that vertical and

horizontal velocity fluctuations are related to each other. To investigate
this, we have computed the cross-correlation defined by:

𝜌𝑣𝑢(𝜏) =
𝑣′𝑝(𝑡)𝑢

′
𝑝ℎ(𝑡 + 𝜏)

𝑣′𝑝𝑢
′
𝑝ℎ

with 𝑢𝑝ℎ =
√

𝑢2𝑝 +𝑤2
𝑝 . (10)

he cross-correlation is shown in Figs. 11.a–c as function of bulk
oncentration and Galileo number. For bulk concentrations of up to
0%, we observe a positive correlation peak larger than 1 at a slightly
egative time lag followed by a strong anti-correlation peak for a
ositive time lag of 𝜏∕

√

𝐷𝑝∕𝑔 ≈ 10–16. The anticorrelation peak is
even larger than the positive correlation peak for 𝜙 = 0.5 and 6%
at 𝐺𝑎 = 144 and for 𝜙 = 6 and 10% at 𝐺𝑎 = 210. We attribute
this behavior to DKT-type events in which a particle gets trapped in
the wake of another particle and will display a more vertical path
(‘‘drafting’’ with faster settling and hence 𝑣′𝑝 < 0, and 𝑢′𝑝ℎ < 0), while
directly after close contact with the leading particle (‘‘kissing’’), it will
experience a strong perturbation in its horizontal velocity at a still
enhanced fall velocity (‘‘tumbling’’ with 𝑢′𝑝ℎ > 0 and 𝑣′𝑝 < 0). This also
explains why the anti-correlation peak vanishes in the dense regime
where short-range multi-particle interactions and collisions dominate
the particle dynamics. The chaotic motions in the dense regime are
responsible for a more symmetric cross-correlation, which rapidly drops
off to zero for non-zero time lag. As seen before for the autocorrelations,
also the cross-correlation exhibits oscillatory behavior for the lower
concentration range, which in some cases is most pronounced for
positive time lags (e.g., for 𝜙 = 2% at 𝐺𝑎 = 144 and 178 with an
oscillation period of 𝑂(100) time units, and for 𝜙 = 10% at 𝐺𝑎 = 144 and
𝐺𝑎 = 210 with an oscillation period of 𝑂(65) time units). We speculate
that in these cases DKT-type instabilities might be responsible for the
onset of large-scale instabilities such as kinematic waves. Conversely,
the presence of slow oscillations for negative time lags, such as for
𝜙 = 6% at all 𝐺𝑎, would then suggest that the opposite may also be true
and that kinematic waves may trigger DKT-type instabilities by local
compaction of the suspension along the vertically traveling waves. We
will explore this in more detail later.
15
To assess the coupling of the vertical with the horizontal par-
ticle velocity fluctuations, we computed the corresponding zero-lag
cross-correlation coefficient from:

𝑟𝑣𝑢 =
𝑣′𝑝𝑢

′
𝑝ℎ

𝑣𝑝,𝑟𝑚𝑠𝑢𝑝ℎ,𝑟𝑚𝑠
. (11)

The cross-correlation coefficient is equal to ±1 when the vertical and
horizontal particle velocity fluctuations would be instantaneously fully
coupled and is equal to 0 when they are completely uncorrelated with
each other. The results are depicted in Fig. 11(d) as function of 𝜙
and 𝐺𝑎. The coupling of the velocity fluctuations is clearly strongest
for 𝜙 = 2 and 4%, where DKT-type instabilities are active. In the
moderate concentration regime, it is highest for 𝐺𝑎 = 178, except for
𝜙 = 2% where a slightly higher peak is found for 𝐺𝑎 = 144. For all
bulk concentrations and Galileo numbers, the coupling is smaller than
0.16 and thus seems relatively weak. This might indicate that chaotic
particle interactions are interfering with DKT-type instabilities already
in the moderate concentration regime. It is striking that at 𝐺𝑎 = 144
the correlation coefficient is about a factor 1.5 smaller for 𝜙 = 0.5%
than for 𝜙 = 2%. However, note that the correlation coefficient is
based on the covariance at zero time lag, while for 𝜙 = 0.5% the
anti-correlation peak corresponds to a lagged cross-correlation of about
−1.7. The corresponding lagged correlation coefficient is thus about
−1.7 × 0.104 ≈ −0.18. Similarly, at 𝜙 = 2% the cross-correlation peaks
around 1.15 at a slightly negative time shift, with a corresponding
lagged correlation coefficient of about 1.15 × 0.155 ≈ 0.18. Thus, the
lagged correlation coefficients at 𝜙 = 0.5 and 2% are comparable in
magnitude.

4.7. Frequency spectra of particle velocities

To investigate the presence of dominant frequencies in the parti-
cle velocity fluctuations, we have computed the frequency spectrum
of the particle velocity from the Fourier transform of the temporal
autocorrelation. For the vertical velocity component this is given by:

𝐸𝑣𝑣(𝜔)
𝑅𝑣𝑣(0)

√

𝐷𝑝∕𝑔
= 2ℜ

(

1
2𝜋 ∫

∞

−∞
𝜌𝑣𝑣(𝜏)𝑒−𝑖𝜔𝜏𝑑𝜏

√ 𝑔
𝐷𝑝

)

, (12a)

where ℜ(..) denotes the real part of the transform and where we
normalized the spectrum with the velocity variance (𝑅𝑣𝑣(0) = 𝑣′2𝑝 ) and
the gravitational time (

√

𝐷𝑝∕𝑔). Note that 𝜌𝑣𝑣(−𝜏) = 𝜌𝑣𝑣(𝜏) at statisti-
cally steady state and this is how we obtained the autocorrelation for
negative time lags. The frequency spectrum describes the contribution
of the different frequency components of the velocity signal to the
overall velocity variance and hence the one-sided integral over the
normalized spectrum is equal to 1:

∫

∞

0

𝐸𝑣𝑣(𝜔∗)
𝑅𝑣𝑣(0)

√

𝐷𝑝∕𝑔
𝑑𝜔∗ = 1 , (12b)

where 𝜔∗ = 𝜔
√

𝐷𝑝∕𝑔. Also, the value of the frequency spectrum at
zero frequency is related to the integral time scale defined by Eq. (8)
according to:

𝐸𝑣𝑣(0)
𝑅𝑣𝑣(0)

√

𝐷𝑝∕𝑔
= 2

𝜋
𝜏𝐿,𝑣𝑣

√

𝐷𝑝∕𝑔
. (12c)

Fig. 12 presents the normalized frequency spectra for the vertical
(left) and horizontal (right) particle velocity fluctuations as function
of bulk concentration and Galileo number (increasing from top to
bottom). At all Galileo numbers, clear peak frequencies can be observed
in the lower frequency range for 𝜙 ≲ 10%, while no distinct peaks at
all are present at 𝜙 = 25 and 30%. This suggests that the frequency
peaks for the lower concentration range can be attributed to wake-
related hydrodynamic particle interactions. Focusing on 𝐺𝑎 = 144,
for 𝜙 = 0.5 and 2% very low peak frequencies with 𝜔∗ < 0.01 are
present in the vertical velocity spectrum, which are likely related to
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Fig. 11. Temporal cross-correlation of vertical velocity fluctuations with fluctuations in the horizontal velocity magnitude, shown as function of bulk concentration and Galileo
umber. For clarity, only a range of 400 time units is shown, centered around 0. (a) 𝐺𝑎 = 144, (b) 𝐺𝑎 = 178, (c) 𝐺𝑎 = 210. (d) Correlation coefficient for fluctuations in the vertical
elocity and in the magnitude of the horizontal velocity, shown as function of bulk concentration and Galileo number.
o
n

he presence of persistent columnar structures in which particles settle
t an enhanced velocity in these cases, especially for 𝜙 = 0.5%. For
= 2–8%, where DKT-type instabilities are active, a clear peak is found

n both the horizontal and the vertical velocity spectrum at 𝜔∗ ≈ 0.05
ith a corresponding oscillation period of ≈ 126

√

𝐷𝑝∕𝑔. This agrees
well with the oscillation period of ∼ 120

√

𝐷𝑝∕𝑔 observed earlier in the
autocorrelation for the vertical particle velocity at 𝜙 = 6% for all 𝐺𝑎.
For 𝜙 = 10%, a dominant peak frequency is present at 𝜔∗ ≈ 0.08 in both
spectra with a corresponding oscillation period of ≈ 79

√

𝐷𝑝∕𝑔. Upon
further increasing the bulk concentration beyond 15%, no dominant
peak frequencies can be observed anymore and the spectrum varies
more gradually with frequency. The spectra for 𝐺𝑎 = 178 and 210
are qualitatively similar to the spectra for 𝐺𝑎 = 144. The same peak
frequencies can be observed, though the height of the peaks depends
on 𝐺𝑎. For 𝐺𝑎 = 210 we also observe a significant frequency peak at
𝜔∗ ≈ 0.08 for 𝜙 = 20%.

Interestingly, for 𝜙 ≳ 20%, both the normalized horizontal and the
normalized vertical velocity spectra collapse for 𝜔∗ ≲ 0.02 and 𝜔∗ ≳ 0.1,
independent of the Galileo number. For 𝜔∗ ≲ 0.02 the spectra are con-
stant and approximately equal to 5 for the vertical velocity and 2 for the
horizontal velocity. This is consistent with the values of approximately
8 and 3 for the normalized integral time scale of, respectively, the
vertical and the horizontal velocity in the dense regime, see Fig. 10 and
Eq. (12c). For 𝜔∗ ≳ 0.1, the vertical velocity spectrum varies with the
frequency as 𝜔∗

−1.25 between 0.1 ≲ 𝜔∗ ≲ 0.4 and as 𝜔∗
−2.75 for 𝜔∗ ≳ 0.4.

For the same frequency range, the horizontal velocity spectrum scales
as 𝜔 −0.6 between 0.1 ≲ 𝜔 ≲ 0.4 and as 𝜔 −3 for 𝜔 ≳ 0.4. Our results
16

∗ ∗ ∗ ∗
are consistent with an approximate −10/3 slope of the vertical particle
velocity spectrum at high frequencies for 𝐺𝑎 = 4.6–153.6 in Yao et al.
(2021), though no explanation was provided by them for the observed
scaling.

The 𝐺𝑎-independent scaling of the velocity spectra in the dense
regime suggests that the particle dynamics is dominated by multi-
particle interactions by viscous lubrication and possibly particle col-
lisions. Furthermore, the collapse of the spectra for the low and the
higher frequency range indicates that in the dense regime the rms
particle velocity and

√

𝐷𝑝∕𝑔 are the characteristic velocity and the
characteristic time scale of the particle velocity fluctuations. In fact,
this is in line with the Gaussian distribution of the normalized particle
velocity and the constant 𝜏𝐿∕

√

𝐷𝑝∕𝑔 in the dense regime, irrespective
of the value of the Galileo number. The change in the power-law
scaling exponent at 𝜔∗ ≈ 0.4, corresponding to an oscillation period
f approximately 16

√

𝐷𝑝∕𝑔, indicates a change in the underlying dy-
amics. It is also striking that for 0.1 ≲ 𝜔∗ ≲ 0.4 the power-law scaling

exponent for the horizontal velocity spectrum is approximately a factor
2 smaller than the power-law scaling exponent for the vertical velocity
spectrum, while for 𝜔∗ ≳ 0.4 the power-law scaling exponents are
nearly the same. In Appendix A we propose a model that predicts an
𝜔∗

−3 scaling of the spectra for 𝜔∗ ≳ 0.4. It is based on the inertial
response of the particles to small-scale flow structures with a presumed
𝑘−3 wavenumber spectrum, as has been also observed for homoge-
neous bubble swarms (Lance and Bataille, 1991; Risso, 2018), that are
advected by the mean relative fluid flow towards the particles and

effectively impose high-frequency force perturbations on the particles.
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Fig. 12. Double-log plots of the normalized frequency spectra of the vertical (𝑣′𝑝, left) and horizontal (𝑢′𝑝 and 𝑤′
𝑝, right) particle velocity fluctuations, shown as function of bulk

concentration and Galileo number (increasing from top to bottom). Black dashed lines indicate power-law scaling of the normalized spectra in the normalized frequency for the
most dense concentration cases in specific frequency ranges. (a) Vertical velocity, 𝐺𝑎 = 144, (b) horizontal velocity, 𝐺𝑎 = 144, (c) vertical velocity, 𝐺𝑎 = 178, (d) horizontal velocity,
𝑎 = 178, (e) vertical velocity, 𝐺𝑎 = 210, (f) horizontal velocity, 𝐺𝑎 = 210.
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e also discuss the scaling behavior of the spectra for 0.1 ≲ 𝜔∗ ≲ 0.4. It
s left for future research to investigate the physical origin of the power-
aw scalings in more detail and to what extent it can be generalized to
ther Galileo numbers and density ratios.

.8. Role of particle collisions

From Eq. (3a) it follows that at statistically steady state the mean
ertical hydrodynamic drag force (𝐹 𝑑) should balance the net gravity

force (𝐹𝑛𝑔) acting on the particles:

𝐹 𝑑

𝜌𝑓 𝑔𝐷3
𝑝
= −

𝐹 𝑛𝑔

𝜌𝑓 𝑔𝐷3
𝑝
= 𝜋

6
(
𝜌𝑝
𝜌𝑓

− 1)(1 − 𝜙) , (13)

here the net gravity force is the downward gravity force minus the
pward and concentration-dependent Archimedes force related to the
17
pward hydrostatic pressure gradient. Note that the mean collision
orce acting on the particles is zero as during a collision between two
articles the same collision force acts on both particles but in opposite
irection and hence their sum is zero. To assess the importance of
article collisions we have therefore evaluated the mean magnitude of
he collision force, |𝐅𝑐 | =

√

𝐹 2
𝑐,𝑥 + 𝐹 2

𝑐,𝑦 + 𝐹 2
𝑐,𝑧. In Fig. 13(a) we show

the mean vertical hydrodynamic drag force and the mean magnitude
of the collision force as function of 𝜙 and 𝐺𝑎. The forces have been
normalized with the net gravity force. From this figure we observe first
that the normalized mean drag force is constant and equal to 1, which
substantiates that the suspension is in a statistically steady state in all
cases. Second, we observe that the effect of collision forces seems negli-
gible for 𝜙 ≲ 10%, in line with the dominant contribution of long-range
hydrodynamic particle interactions to the overall particle dynamics
(inertial wake suction and DKT-type instabilities). With increasing bulk
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Fig. 13. (a) Mean vertical drag force (𝐹 𝑑 , red symbols) and mean magnitude of the collision force (|𝐅𝑐 |, blue symbols) normalized with the net gravity force (𝐹 𝑛𝑔) and shown as
unction of 𝜙 and 𝐺𝑎. Circles, squares and triangles correspond to 𝐺𝑎 = 144, 178 and 210, respectively. (b) Average number of particles undergoing a collision during a computational
ime step (𝑁𝑐 ), scaled with the total number of particles (𝑁𝑝) and shown as function of 𝜙 and 𝐺𝑎.
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oncentration, collisions become gradually more important, though the
ean magnitude of the collision force is still only about 20% of the net

ravity force at the highest concentration. Third, we observe that the
ollision force is nearly independent of 𝐺𝑎, which might be related to
he scaling with the net gravity force as this is ultimately the driving
orce responsible for sedimentation. Besides, in the dense regime, the
elevant velocity and length scales are proportional to

√

𝑔𝐷𝑝 and 𝐷𝑝,
espectively. Thus, when the collision force is scaled with 𝑔𝐷3

𝑝 or,
lternatively, with the net gravity force that is proportional to 𝑔𝐷3

𝑝 , it
s expected that the collision force is independent of 𝐺𝑎, at least in the
ense regime.

To further assess the influence of collisions on the particle dynamics,
e have also computed the average number of colliding particles by

ounting at every time instant the number of particles with a non-
ero collision force and averaging this number over time. The average
umber normalized with the total number of particles is shown in
ig. 13(b). We observe a gradual increase in the number of collisions
s function of concentration, which is nearly independent of 𝐺𝑎. At the
owest concentration hardly any particle is colliding, at 𝜙 = 10% this
s about 25% of the total number of particles and at 𝜙 = 30% this is
early 90%. The high collision likelihood and the seemingly small mean
agnitude of the collision force at 𝜙 = 30% suggest that collisions are

requent but gentle in the dense regime. This is likely related to viscous
ubrication between particles that tends to reduce the relative velocity
etween two approaching particles prior to their collision. This can
e further assessed by means of the impact Stokes number, a measure
f the initial relative momentum of the approaching particles to the
ypical loss of their relative momentum by viscous lubrication (Davis
t al., 1986):

𝑡 =
𝜌𝑝

(

1
6𝜋𝐷

3
𝑝

)

𝑣𝑟𝑒𝑙
3
2𝜋𝜌𝑓 𝜈𝑓𝐷

2
𝑝

, (14a)

here 𝑣𝑟𝑒𝑙 is the initial relative approach velocity. For 𝑆𝑡 ≲ 10 the parti-
les will not rebound upon a collision due to strong viscous damping by
ubrication, while 𝑆𝑡 ≳ 103 corresponds to the granular regime where
he particles will rebound with their initial approach velocity times the
ry coefficient of restitution (Legendre et al., 2006). For simplicity, we
estrict ourselves to collisions in the vertical as velocity fluctuations
re strongest in this direction. We model the typical relative velocity
etween two particles by 𝑣𝑟𝑒𝑙 =

√

(𝑣′𝑝,1 − 𝑣′𝑝,2)
2 ≈

√

2 𝑣𝑝,𝑟𝑚𝑠 based on the
crude assumption that in the dense regime the chaotic motions of the
particles are uncorrelated. Using Eqs. (1) and (6a) we can then rewrite
Eq. (14a) into the following form:

𝑆𝑡 =

√

2
⋅

(𝜌𝑝∕𝜌𝑓 )𝐺𝑎
√

⋅
𝑘|𝑉𝑇 |
√

⋅ 𝐶𝑝𝑣𝜙
𝑚𝑝𝑣 (1 − 𝜙)𝑛 , (14b)
18

9 (𝜌𝑝∕𝜌𝑓 ) − 1 𝑔𝐷𝑝 o
where the values of |𝑉𝑇 |∕
√

𝑔𝐷𝑝, 𝐶𝑝𝑣 and 𝑚𝑝𝑣, and 𝑛, are listed as
unction of 𝐺𝑎 in Tables 3–5, respectively. Evaluating 𝑆𝑡 for 𝜙 = 10%,
e find that 𝑆𝑡 ≈ 10, 10 and 15 for 𝐺𝑎 = 144, 178 and 210, respectively.
imilarly, for 𝜙 = 30%, we find that 𝑆𝑡 ≈ 6, 8 and 9, respectively. The
ow values of 𝑆𝑡 are supporting evidence that in the dense regime parti-
le interactions are indeed dominated by viscous lubrication rather than
ctual particle collisions, at least for the currently investigated range
f 𝐺𝑎 and density ratio of 1.5. Based on a similar analysis, Willen and
rosperetti (2019) reached at the same conclusion for their simulations
t 𝐺𝑎 = 49.7–99.4 and 𝜌𝑝∕𝜌𝑓 = 2–5.

The dominant contribution from viscous lubrication in the dense
egime may also be understood from analyzing the Reynolds number
ased on the ‘‘mean collision distance’’, which we define as the typ-
cal distance traveled by two particles from the moment they start
pproaching each other till the moment that they collide. We estimate
his distance by

√

2 𝜆mfp, where 𝜆mfp is the ‘‘mean free path’’ traveled by
a particle between two consecutive collisions (the collision distance is a
factor

√

2 larger to account for the relative motion between particles).
Based on kinetic theory of granular gases, see Eq. 13 in Willen and
Prosperetti (2019), the mean free path is modeled as:

𝜆mfp =
𝐷𝑝

6
√

2𝜙
⋅
2(1 − 𝜙)3

(2 − 𝜙)
. (15)

he associated Reynolds number based on the collision distance and
elative particle velocity can now be estimated from:

𝑒𝑐𝑜𝑙 =
(
√

2𝜆mfp)(
√

2𝑣𝑝,𝑟𝑚𝑠)
𝜈𝑓

= 1.5
(𝜌𝑝∕𝜌𝑓 )𝜙

⋅
2(1 − 𝜙)3

(2 − 𝜙)
⋅ 𝑆𝑡 . (16)

or 𝜙 = 10%, 𝑅𝑒𝑐𝑜𝑙 ≈ 75, 80 and 116, for 𝐺𝑎 = 144, 178 and 210,
espectively. Similarly, for 𝜙 = 30%, we find that 𝑅𝑒𝑐𝑜𝑙 ≈ 9, 11 and 13,
espectively. For 𝜙 = 10%, the collision Reynolds number is thus well
ithin the inertial regime, which leaves room for inertial interactions
efore lubrication starts to become dominant at close distance between
he approaching particles. For 𝜙 = 30%, the collision Reynolds number
s already in the weakly inertial regime, and thus lubrication sets in
uch sooner after particles start approaching each other.

.9. Kinematic waves

As mentioned in the introduction, sedimenting suspensions may
xhibit kinematic waves. They manifest themselves as vertically prop-
gating waves in the horizontal plane average concentration, defined
y 𝛷(𝑦, 𝑡) = ⟨𝛾⟩ℎ, where 𝛾(𝑥, 𝑦, 𝑧, 𝑡) is the solid phase indicator function
equal to 1 in the solids and 0 in the fluid) and the brackets denote
he average over the horizontal directions. To visualize the presence

f kinematic waves in the present simulations, in Fig. 14(a), 14(c) and
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14(e) we have plotted the plane-averaged concentration normalized by
the bulk concentration as function of height and time at 𝜙 = 30% for
ach Galileo number.

At first sight, the space–time diagrams in Fig. 14 look rather noisy.
ignificant variations in the plane average concentration can be ob-
erved of 𝑂(25%) of the bulk concentration. Note that 𝜙 = 30%
orresponds to an average number of 0.3𝐿𝑥𝐿𝑧∕(𝜋𝐷2

𝑝∕8) ≈ 477 spheres
passing through a horizontal plane in the computational domain, where
𝜋𝐷2

𝑝∕8 is the average area of the circle formed when randomly cutting
a sphere in the horizontal. Thus, a variation of ±25% in the local
concentration corresponds to variations of 𝑂(100) particles. Careful
inspection of the space–time plots shows that there are two distinct
wavy patterns present as indicated by the dashed and solid black lines
in the panels. First, we observe a stripe pattern originating from small-
amplitude waves with a wave length of 𝑂(𝐷𝑝), which are traveling
downwards with an average speed equal to 𝑉𝑠 as indicated by the black
dashed lines. Recall from Fig. 2 that in the instantaneous snapshots of
the spatial particle distribution relatively large structures are present
with groups of particles moving collectively faster or slower than the
mean sedimentation velocity. Because of the finite lateral domain size,
there is also a finite number of such large structures passing through a
horizontal plane. Random fluctuations in this number of passing struc-
tures will cause mild fluctuations in the local plane average velocity
around the mean sedimentation velocity and, associated with this, mild
fluctuations in the local plane average concentration. The stripe pattern
is thus expected to gradually fade away when the horizontal dimensions
of the computational domain are increased, though we have not tested
this. Next to the stripe pattern, we observe larger-amplitude waves with
a much larger wave length. We associate these waves with kinematic
waves. They appear to travel upwards at a fraction of |𝑉𝑠| for 𝐺𝑎 = 144
and 178, while moving slowly downwards for 𝐺𝑎 = 210, as indicated
by the black solid lines in the panels.

As already mentioned, the signal of 𝛷 is rather noisy. The noise
is responsible for a loss of spatio-temporal coherence of the kinematic
waves. To isolate the component of 𝛷 related to kinematic waves
it seems therefore natural to apply an additional local time average
that filters out the ‘‘high-frequency noise’’ while it preserves the low-
frequency signal of the kinematic waves: �̂� = ∫ 𝑇 ∕2

−𝑇 ∕2 𝛷(𝑡 + 𝜏)𝑑𝜏∕𝑇 with
𝑇 the filter width. The filter width should satisfy 𝜏𝐿,𝑣𝑣 ≪ 𝑇 ≪ 𝑇𝐾𝑊 ,
where 𝑇𝐾𝑊 is the kinematic wave period. In Appendix B we argue that
�̂� is approximately governed by the following transport equation:

𝜕�̂�
𝜕𝑡

+ 𝑉𝐾𝑊
𝜕�̂�
𝜕𝑦

≈ 𝜕
𝜕𝑦

(

𝑦𝑦
𝜕�̂�
𝜕𝑦

)

, (17a)

here 𝑦𝑦 is the particle diffusivity in the vertical given by Eq. (9)
nd 𝑉𝐾𝑊 ≈ 𝜕

[

𝑉𝑠(𝜙)𝜙
]

∕𝜕𝜙 is the speed at which kinematic waves are
ropagating in the vertical (Kynch, 1952). Based on the Richardson–
aki relation for 𝑉𝑠 given by Eq. (1), which is valid for 𝜙 ≳ 10%, the

kinematic wave speed can be further approximated by:

𝑉𝐾𝑊 ≈
[

1 − (𝑛 + 1)𝜙
1 − 𝜙

]

𝑉𝑠(𝜙) . (17b)

here 𝑛 is the power-law exponent in the Richardson–Zaki relation.
Instead of applying local time averaging to the space–time plots in

ig. 14, we use here the method of repeated space–time autocorrela-
ions to visualize the spatio-temporal structure of the kinematic waves.
he method is explained in detail in Appendix C. The main principle
f the method is that the spatio-temporal structure of traveling waves
s preserved in a space–time autocorrelation. By performing repeated
utocorrelations, the dominant wave component is amplified relative to
ther less dominant components and ‘‘noise’’ is filtered out. We define
he first autocorrelation as the ordinary autocorrelation of the raw
ignal and the 𝑛th autocorrelation as the autocorrelation of the (𝑛−1)th
utocorrelation. The rank 𝑛 can be tuned to amplify the dominant
raveling wave component to the desired degree, see Appendix C.
n advantage of the repeated autocorrelation technique is that no a
19

s

riori assumption is required on the properties of kinematic waves as
ompared to filtering in time, space, frequency and/or wave number
pace (Willen et al., 2017).

The right panels in Fig. 14 show the 7th space–time autocorrelation
orresponding to the space–time plots of the plane average concen-
ration in the left panels. From the smooth fields thus obtained, we
etermined the wave speed of the dominant kinematic wave from
he slope of the least-squares regression line through the correlation
axima. The results are shown in Fig. 15(a). Kinematic waves travel

lways slower than the mean sedimentation velocity and their wave
peed goes down with increasing concentration. Interestingly, in the
ange of 𝜙 = 20–30% their velocity reduces to zero, corresponding to
standing wave, and they start to propagate upwards upon further

ncreasing the bulk concentration as also visible from Figs. 14(b) and
4(d). The agreement with the model predictions from Eq. (17b) is
easonably good, especially for 𝐺𝑎 = 178. The model overpredicts the
ormalized wave speed in the lower concentration range as well as at
= 30%. We note that less good agreement has to be expected for the

ower concentration range anyway, as the model is based on Eq. (1)
hat underestimates the sedimentation velocity for 𝜙 ≲ 10%. Differ-
nces between the model and the DNS may also be related to model
ssumptions such as the quasi-steady response of the settling speed of
he particles to changes in the local concentration and the assumption
hat perturbations in the local concentration are small relative to the
ulk concentration. We have also determined the wave length of the
ominant kinematic wave from the average vertical distance between
onsecutive maxima in the 7th space–time autocorrelation at zero time
ag. Fig. 15(b) shows the result. Large variations in kinematic wave
ength can be observed, varying from about 5 to 40 particle diameters.
t each 𝐺𝑎, the lowest wave length is found for 𝜙 = 30%. No clear trend
an be seen in the dependency of the wave length of 𝐺𝑎.

In Section 4.6 we suggested that the oscillatory behavior observed
n some of the correlations can be related to the possible presence of
inematic waves. Fig. 15(c) illustrates how the passage of vertically
ropagating, plane kinematic waves will periodically perturb the par-
icles. The corresponding angular perturbation frequency is given by:

𝐾𝑊 =
2𝜋|𝑉𝑠 − 𝑉𝐾𝑊 |

𝜆𝐾𝑊
. (18)

In Fig. 16 we have plotted the peak frequencies of the particle velocity
spectra shown in Fig. 12 as function of the bulk concentration for
each investigated Galileo number. For comparison we also plotted the
expected perturbation frequency from the kinematic waves as given by
Eq. (18).

Interestingly, for 𝐺𝑎 = 144 we find an almost perfect match of the
xpected kinematic wave frequency with the peak frequency of either
he horizontal or the vertical velocity spectrum. For 𝜙 = 4 and 10%
here is a good match with both velocity spectra. Furthermore, when
lso considering the frequency of the second largest peak (not shown
ere), the match between the velocity spectra is further improved
e.g., for 𝜙 = 2%, the 2nd peak in the vertical velocity spectrum
oincides with the peak frequency of the horizontal velocity spectrum).
t 𝜙 = 25 and 30% the agreement of the peak frequencies with the
inematic wave frequency is poor, but recall that the corresponding
pectra vary smoothly without any distinct frequency peak. Different
rom 𝐺𝑎 = 144, for 𝐺𝑎 = 178 only a good match of the peak frequencies
ith the kinematic wave frequency is found for 𝜙 = 4%. For 𝜙 ≥ 6%,

he normalized kinematic wave frequency is beyond 0.1, which is in
he range where for 𝐺𝑎 = 178 the velocity spectra vary smoothly
ith frequency. At 𝐺𝑎 = 210, a good match is found only for the

ower concentration range till and with 𝜙 = 10%. To conclude, for
ll 𝐺𝑎, a good match is found only in the lower concentration range,
here we expect that wake trapping and DKT-type instabilities are
ctive. Based on this, we hypothesize that kinematic waves may trigger
uch instabilities at particle level, while conversely such instabilities
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Fig. 14. (a), (c) and (e) Space–time plot of the instantaneous horizontal plane average concentration normalized with the bulk concentration, 𝛷(𝑦, 𝑡)∕𝜙, at 𝜙 = 30% for 𝐺𝑎 = 144, 178
and 210, respectively. The slope of the black lines corresponds to 𝑉𝑠∕

√

𝑔𝐷𝑝 (dashed) and 𝑉𝐾𝑊 ∕
√

𝑔𝐷𝑝 (solid). (b), (d) and (f) Space–time plot of the 7th space–time autocorrelation
of plane average concentration field shown in (a), (c) and (e), respectively. The slope of the black solid line corresponds to 𝑉𝐾𝑊 ∕

√

𝑔𝐷𝑝.

Fig. 15. (a) Kinematic wave speed normalized by the mean sedimentation velocity and shown as function of 𝜙 and 𝐺𝑎. Positive (negative) values correspond to downward
(upward) traveling waves. Black lines represent the model predictions from Eq. (17b). (b) Kinematic wave length normalized with the particle diameter and shown as function
of 𝜙 and 𝐺𝑎. (c) Illustration of the perturbation of a particle by the passage of a kinematic wave. On statistical average, the particles are moving with the mean sedimentation
velocity 𝑉𝑠. The presence of vertically propagating plane kinematic waves with a wave length 𝜆𝐾𝑊 and speed 𝑉𝐾𝑊 will periodically perturb the particles with an oscillation period
of 𝜆𝐾𝑊 ∕|𝑉𝑠 − 𝑉𝐾𝑊 |.

Fig. 16. Normalized frequencies of dominant peak in the frequency spectra of the particle velocity shown in Fig. 12, plotted as function of the bulk concentration. In the legend,
u/w and v refer to the spectrum for the horizontal and the vertical velocity, respectively. The yellow line is the perturbation frequency from the passage of kinematic waves.
(a) 𝐺𝑎 = 144, (b) 𝐺𝑎 = 178, (c) 𝐺𝑎 = 210. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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may be responsible for the onset of kinematic waves. This is in line
with our previous analysis of the lagged cross-correlations discussed in
Section 4.6.

Finally, we assess from Eq. (17a) the effect of particle dispersion on
damping of kinematic waves. To this purpose, we define a ‘‘kinematic
wave dispersive damping number’’,  , as the ratio of the advection to
he diffusion time scale based on Eq. (17a):

=
𝜆𝐾𝑊 ∕|𝑉𝐾𝑊 |

𝜆2𝐾𝑊 ∕𝑦𝑦
=

𝑣2𝑝,𝑟𝑚𝑠 𝜏𝐿,𝑣𝑣 𝜔𝐾𝑊

𝜋 |𝑉𝑠 − 𝑉𝐾𝑊 | |𝑉𝐾𝑊 |

. (19)

We found that  < 0.47 for 𝜙 ≤ 20%, while  > 0.63 at 𝜙 = 25 and
30% for all 𝐺𝑎. Dispersive damping may thus explain why no significant
imprint of kinematic waves is found on the particle velocity spectra in
the dense regime.

5. Conclusions and discussion

We presented DNS results for sedimenting suspensions of solid
spheres in a viscous fluid. The particle/fluid density ratio was fixed at
1.5, while the bulk concentration was varied from 0.5%–30% and three
different Galileo numbers were considered in the range of 144–210.
Based on our comprehensive analysis, our main conclusions are:

(1) The suspension dynamics for 𝜙 = 2–30% depends mostly on the
bulk concentration, while at fixed bulk concentration qualita-
tively similar behavior is observed for all three Galileo numbers.
In qualitative agreement with previous studies in literature (Yin
and Koch, 2007; Uhlmann and Doychev, 2014), three concen-
tration regimes with a different microstructure can be distin-
guished: (i) the dilute concentration regime for 𝜙 ≲ 2% with
preferential settling of particles in vertical trains, (ii) the mod-
erate concentrations regime for 2% ≲ 𝜙 ≲ 10% with a preference
of particles to settle side-by-side in horizontal particle pairs at a
distance of ∼ 1.5𝐷𝑝, and (iii) the dense concentration regime for
𝜙 ≳ 10% with a nearly random (‘‘hard-sphere’’) distribution of
the particles in space. The transition across regimes is gradual.
For instance, for 𝜙 = 2% we found an enhanced likelihood for
settling in both vertical trains of a few particles and in horizontal
particle pairs.

(2) The vertical trains in the dilute regime are formed by the wake-
trapping mechanism. While for two isolated particles wake trap-
ping is typically followed by a drafting–kissing–tumbling (DKT)
instability, the vertical trains in dilute suspensions are rather sta-
ble, suggesting that ‘‘kissing’’ and ‘‘tumbling’’ is suppressed. The
stability is reflected in the super-Gaussian pdf of the horizontal
particle velocity. The negatively skewed pdf of the vertical par-
ticle velocity provides evidence of an enhanced settling speed of
particles contained within the vertical trains. The formation of
vertical trains is most pronounced for 𝐺𝑎 = 144 and 𝜙 = 0.5%.
At the same density ratio and bulk concentration, Uhlmann and
Doychev (2014) found no significant change in the settling speed
for 𝐺𝑎 = 121 and a 12% increase for 𝐺𝑎 = 178. Our result for
𝐺𝑎 = 144 does not show enhanced settling, consistent with the
presumed threshold of 𝐺𝑎 ≈ 155 for this to happen (Uhlmann
and Doychev, 2014). With increasing concentration, the extent
of the fluid wake behind the particles decreases rapidly and so
does the extent of the vertical trains till they finally disappear at
a bulk concentration of 2–4%. Multiparticle interactions might
also contribute to destabilization and breakdown of the vertical
clusters when the bulk concentration is increased.

(3) The particle-conditioned mean concentration and particle veloc-
ity field indicate that in the moderate concentration regime the
horizontal particle pairs originate from a DKT-type instability.
The active role of DKT in this regime is further supported
21

by the strong anti-correlation peak in the autocorrelation and
cross-correlation of the particle velocity fluctuations. The cross-
correlation coefficient exhibits a clear peak in the lower con-
centration range, though the relatively low value below 0.2
suggests that DKT is not a very strong mechanism and has to
compete with chaotic motions from multiparticle interactions.
The decreasing extent of the fluid wake behind the particles and
the increasing importance of multiparticle interactions might be
responsible for gradual weakening of the DKT mechanism with
increasing bulk concentration. Normalized with

√

𝑔𝐷𝑝 the par-
ticle rms velocity exhibits a 𝐺𝑎-dependent peak in the moderate
concentration range, which underlines the importance of inertial
hydrodynamic interactions between particles. The nearly Gaus-
sian pdf of the particle velocity exhibits no sign of a significantly
different average settling speed of the particle pairs compared to
the mean sedimentation velocity.

(4) In the dense concentration regime particle velocity fluctuations
are dominated by short-range multiparticle interactions. The
observed asymmetry in the concentric ring-like pattern of the
particle-conditioned mean concentration, with a higher prefer-
ence for horizontal than for vertical particle alignment, suggests
that DKT-type instabilities are still present, though weak and
confined in space to an interparticle distance of about 1–2
particle diameters at 𝜙 = 30%. The anti-correlation peak in the
autocorrelation and cross-correlation of the particle velocities is
very small and consistent with weak and spatially confined DKT
instabilities. The pdfs of the particle velocities exhibit a Gaus-
sian distribution. The frequency spectra of the particle velocity
fluctuations vary smoothly with frequency in the absence of
distinct frequency peaks. Furthermore, they exhibit clear power-
law scaling: the spectra of the vertical and horizontal velocity
components scale with, respectively, 𝜔∗

−1.25 and 𝜔∗
−0.6 for 0.1 ≲

𝜔∗ ≲ 0.4, and with, respectively, 𝜔∗
−2.75 and 𝜔∗

−3 for 𝜔∗ ≳
0.4. We proposed a model to explain the 𝜔∗

−3 scaling from the
inertial response of the particles to small-scale fluid perturba-
tions. It is left for future research to investigate the physical
origin of the power-law scaling in more detail. The normalized
frequency spectra are nearly independent of 𝐺𝑎 in the dense
regime, in particular for the low and the higher frequency range.
The same holds for the particle rms velocities when normal-
ized with

√

𝑔𝐷𝑝. This indicates that
√

𝑔𝐷𝑝 and
√

𝐷𝑝∕𝑔 are the
characteristic velocity and time scale for fluctuating particle
motions in the dense regime, at least when the particle/fluid
density ratio is kept constant. Particle collisions occur frequently
but are gentle. Estimates of the impact Stokes number and the
collision Reynolds number indicate that particle interactions are
dominated by viscous lubrication rather than particle collisions.

(5) Kinematic waves have been detected in all investigated cases,
though overlaid with noise from unrelated particle motions. The
noise is likely responsible for a loss of spatio-temporal coherence
of the waves. The wave speed found from the method of repeated
autocorrelations is in reasonable agreement with the prediction
from Kynch theory using the Richardson–Zaki relation for the
mean sedimentation velocity. The kinematic waves have a clear
imprint on the frequency spectra of the particle velocity for
concentrations till 𝜙 ≈ 10%, being responsible for peak frequen-
cies of roughly 𝑂(0.05)

√

𝑔∕𝐷𝑝. The oscillatory behavior of the
autocorrelation and especially the cross-correlation of the parti-
cle velocity in the moderate concentration regime suggests that
kinematic waves possibly trigger DKT-type instabilities, while
conversely DKT-type instabilities might also generate kinematic
waves. At the highest concentrations in the dense regime, we
found no imprint of kinematic waves on the frequency spectra
of the particle velocity. Weak DKT-type instabilities and strong

dispersive damping might be the reason.
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(6) The Richardson–Zaki relation, Eq. (1), provides a good fit to the
DNS data for 𝜙 ≳ 10%, while it underestimates the mean sedi-
mentation velocity in the lower concentration range with the de-
viation increasing for decreasing concentration. This substanti-
ates the hypothesis of Yin and Koch (2007) that the Richardson–
Zaki relation is associated with a ‘‘hard-sphere distribution’’ of
the particles, and that DKT-type instabilities are responsible for
the underestimation of the sedimentation velocity in the lower
concentration range. We also found evidence of a power-law
scaling in the bulk concentration of the particle rms velocity
normalized with the mean sedimentation velocity, in particular
for the dense regime.

It is striking that for given bulk concentration the suspension mi-
rostructure is qualitatively similar for all three Galileo numbers. While
or a single settling particle the particle’s wake structure is very differ-
nt for the three investigated Galileo numbers (a steady axi-symmetric
ake for 𝐺𝑎 = 144, a steady planar oblique wake for 𝐺𝑎 = 178, and
n oscillating planar oblique wake for 𝐺𝑎 = 210), in the moderate
nd dense concentration regime the fluid wake structure is actually
ery similar, see Fig. 4. This is likely related to physical obstruction
nd perturbation of the particle wake by nearby neighboring particles.
ased on this we hypothesize that the wake structure is controlled by
he bulk concentration instead of the Galileo number beyond a 𝐺𝑎-
ependent threshold concentration at which the particle mean free path
s of the same order as the extent of the wake of an isolated settling
article. When the extent of the wake is roughly estimated by 𝑂(10𝐷𝑝),
e find from Eq. (15) a threshold concentration of about 𝑂(1%), which

eems quite plausible. Indeed, we find fairly little influence of 𝐺𝑎
n the wake structure for 𝜙 = 2%, while the microstructure and
uspension behavior for 𝐺𝑎 = 144 and 𝜙 = 0.5% is quite different
rom the case of 𝐺𝑎 = 178 and 𝜙 = 0.5% studied by Uhlmann and
oychev (2014). It remains to be seen to what degree our classifi-
ation and characterization of the different settling regimes hold for
alileo numbers outside the presently studied range. More in partic-
lar, inertial hydrodynamic particle interactions associated with wake
rapping and DKT are expected to ultimately vanish when the Galileo
umber is gradually lowered towards the Stokes regime. The DNS
esults of Yin and Koch (2007) indicate that DKT and related preference
or horizontal particle pair alignment are still present at 𝐺𝑎 = 11.5
𝑅𝑒𝑇 ≈ 5), while absent for 𝐺𝑎 ≤ 6.3 (𝑅𝑒𝑇 ≲ 2). Consequently, the
ange of the random ‘‘hard-sphere’’ distribution is extended towards
ignificantly lower concentrations in the low (viscous-dominated and
eakly inertial) 𝐺𝑎 regime as compared to the ≳ 10% concentration

ange for the higher (inertia-dominated) Ga regime presently studied.
Finally, it would be interesting to study the effect of varying the

article/fluid density ratio on the different settling regimes. The density
atio is known to affect the wake and path of a single settling path
eyond the steady oblique regime and will thus likely have an effect
n the suspension dynamics in the dilute concentration regime. The
ensity ratio also influences the particle response time and hence will
ikely influence inertial hydrodynamic particle interactions too.
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ppendix A. Scaling of particle velocity spectra in the dense con-
entration regime

We adopt the following simple model for particle velocity fluctua-
ions in the dense concentration regime:
𝑑𝑣′𝑝
𝑑𝑡

= 𝛽𝑓 ′ −
(𝑣′𝑝 − 𝑣′𝑞)

𝜏𝑝
, (A.1)

where the term on the left hand side accounts for the effect of particle
inertia and added mass, the first term on the right hand side accounts
for forcing by fluid pressure and viscous stress fluctuations, with 𝛽 a
dimensionless function of the particle-to-fluid density ratio and particle
volume fraction and 𝑓 ′ the fluctuating hydrodynamic force per unit
particle mass, and the last term on the right hand side accounts for
lubrication interactions with neighboring particles with a typical veloc-
ity fluctuation 𝑣′𝑞 and with 𝜏𝑝 an apparent time scale at which viscous
lubrication acts.

Assuming that the particle velocity fluctuations are uncorrelated
with the velocity fluctuations of neighboring particles, the following
equation can be derived for the temporal autocovariance of the particle
velocity fluctuations:

𝑑2𝑅𝑣𝑣

𝑑𝜏2
−

𝑅𝑣𝑣

𝜏2𝑝
= −𝛽2𝑅𝑓𝑓 , (A.2)

here 𝑅𝑓𝑓 is the temporal autocovariance of 𝑓 ′. By taking the Fourier
transform of this equation, we can relate the frequency spectrum of the
particle velocity to the frequency spectrum of the fluid forcing:

𝐸𝑣𝑣(𝜔) =
𝛽2𝜏2𝑝

1 + (𝜔𝜏𝑝)2
⋅ 𝐸𝑓𝑓 (𝜔) . (A.3)

o model the forcing spectrum for the higher-frequency range, we
ssume that the forcing perturbations originate from small-scale fluid
elocity perturbations ahead of the particle that are transported with
he mean relative fluid velocity towards the particle and subsequently
locked and deflected by the particle. This yields a force perturbation
n the particle of 𝑓 ′ = 𝑂(𝑉𝑟𝜕𝑣′𝑓∕𝜕𝑦) with 𝑉𝑟 = −𝑉𝑠∕(1 − 𝜙) the
ean relative fluid velocity. Similar to Taylor’s hypothesis of frozen

urbulence (Nieuwstadt et al., 2016), we assume that the fluid velocity
erturbations are rapidly advected past the particle compared to their
ifetime. We can thus relate the forcing spectrum to the wavenumber
pectrum of fluid velocity perturbations, 𝐹 (𝑘), as follows:

𝑓𝑓 (𝜔) ∝
(𝑉𝑟𝑘)2𝐹 (𝑘)

𝑉𝑟
, (A.4)

here the wavenumber 𝑘 of the fluid perturbations relates to the
requency 𝜔 of particle perturbations as 𝑘 = 𝜔∕𝑉𝑟.

For bubble-induced agitation of the fluid in homogeneous bubble
swarms, Lance and Bataille (1991), Risso (2018) used the spectral en-
ergy balance to argue that 𝐹 (𝑘) ∼ 𝜖𝑘−3∕𝜈 for sufficiently large 𝑘, where
𝑓

https://doi.org/10.4121/1cc98fd6-8d50-4203-96c0-125020c4c242
https://doi.org/10.4121/1cc98fd6-8d50-4203-96c0-125020c4c242
https://doi.org/10.4121/1cc98fd6-8d50-4203-96c0-125020c4c242
https://www.surf.nl
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𝜖 is the viscous dissipation rate per unit fluid mass. A similar scaling
based on the same argumentation is expected to hold for sedimenting
sphere suspensions. Eq. (A.3) then becomes:

𝐸𝑣𝑣(𝜔) ∝
𝛽2(𝜔𝜏𝑝)2

1 + (𝜔𝜏𝑝)2
⋅
𝜖𝑉 2

𝑓𝑟

𝜈𝑓𝜔3
. (A.5)

Finally, two frequency limits can be considered:

𝜔𝜏𝑝 ≪ 1 ∶ 𝐸𝑣𝑣(𝜔) ∝

(

𝛽2𝜖𝑉 2
𝑓𝑟𝜏

3
𝑝

𝜈𝑓

)

⋅
(

𝜔𝜏𝑝
)−1 , (A.6a)

𝜔𝜏𝑝 ≫ 1 ∶ 𝐸𝑣𝑣(𝜔) ∝

(

𝛽2𝜖𝑉 2
𝑓𝑟𝜏

3
𝑝

𝜈𝑓

)

⋅
(

𝜔𝜏𝑝
)−3 . (A.6b)

In the dense concentration regime, the characteristic velocity and time
scale are proportional to

√

𝑔𝐷𝑝 (Fig. 6.a) and
√

𝐷𝑝∕𝑔 (Fig. 10), respec-
tively. We thus expect that 𝜖 ∝ 𝜈𝑓 𝑔∕𝐷𝑝, 𝜏𝑝 ∝

√

𝐷𝑝∕𝑔 and the pre-factor
at the right-hand side of the above equation to be proportional with
√

𝑔𝐷3
𝑝 . In fact, the change in scaling behavior of the velocity spectra

t 𝜔
√

𝐷𝑝∕𝑔 ≈ 0.4 suggests that 𝜏𝑝 ≈ 2.5
√

𝐷𝑝∕𝑔 for the currently inves-
tigated particle-to-fluid density ratio of 1.5. Thus, the above equation
can be rewritten into the following form:

𝜔
√

𝐷𝑝∕𝑔 ≪ 0.4 ∶
𝐸𝑣𝑣

√

𝑔𝐷3
𝑝

∝
(

𝜔
√

𝐷𝑝∕𝑔
)−1

, (A.7a)

𝜔
√

𝐷𝑝∕𝑔 ≫ 0.4 ∶
𝐸𝑣𝑣

√

𝑔𝐷3
𝑝

∝
(

𝜔
√

𝐷𝑝∕𝑔
)−3

, (A.7b)

hich for the high-frequency limit is in very close agreement with the
bserved scaling of the spectra in Fig. 12, though with a slightly less
teep slope (−2.75 vs −3) for the vertical velocity fluctuations. For the
ower-frequency range, the model prediction is less good, likely because
he 𝑘−3 scaling of 𝐹 does only hold for sufficiently large 𝑘 (Lance and
ataille, 1991). For 0.1 ≲ 𝜔 ≲ 0.4 the fluid forcing seems anisotropic as
he power-law scaling for the horizontal and vertical velocity spectra
re different. The fact that their power-law exponents differ by a factor
suggests that the forcing of the two velocity components is still related

o the same mechanism. We speculate that this could be a local DKT-
ype interaction between particles, but it is left for future study to test
his hypothesis.

ppendix B. Mass balance equation for plane average concentra-
ion

We define the horizontal plane average concentration by 𝛷(𝑦, 𝑡) =
𝛾⟩ℎ, where 𝛾(𝑥, 𝑦, 𝑧, 𝑡) is the solid phase indicator function (equal to 1
n the solids and 0 in the fluid) and the brackets with subscript ℎ denote
he average over the horizontal directions in the computational domain
𝑥 and 𝑧). In a similar vein, we define the intrinsic plane average of the
ertical particle velocity by 𝑉𝑖 = ⟨𝛾𝑣𝑝⟩ℎ∕𝛷. Mass conservation requires

that:

𝜕𝛷
𝜕𝑡

+
𝜕
(

𝑉𝑖𝛷
)

𝜕𝑦
= 0 . (B.1)

From Fig. 14 we observe that 𝛷 is a rather noisy signal. To isolate the
component of 𝛷 related to kinematic waves, we introduce a local time
average defined by �̂� = ∫ 𝑇 ∕2

−𝑇 ∕2 𝛷(𝑡 + 𝜏)𝑑𝜏∕𝑇 . We require that the filter
width 𝑇 is much larger than the integral time scale of the fluctuations
in the vertical particle velocity (𝜏𝐿,𝑣𝑣) on the one hand, while much
smaller than the period of the kinematic waves (𝑇𝐾𝑊 ) on the other
hand: 𝜏𝐿,𝑣𝑣 ≪ 𝑇 ≪ 𝑇𝐾𝑊 . When this condition is satisfied, the local time
average preserves the signal related to low-frequency kinematic waves,
while high-frequency ‘‘noise’’ is filtered out. We now decompose 𝛷 and

̂ ̃ ̂ ̃
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𝑉𝑖 according to 𝛷 = 𝛷 + 𝛷 and 𝑉𝑖 = 𝑉𝑖 + 𝑉𝑖, where the tilde symbol
enotes the deviation from the local time average. Application of the
ocal time average to Eq. (B.1) yields the following result:

𝜕�̂�
𝜕𝑡

+
𝜕
(

𝑉𝑖�̂�
)

𝜕𝑦
= −

𝜕̂̃𝑉𝑖�̃�
𝜕𝑦

. (B.2)

Assuming that the local time and plane average particle velocity is
in quasi-steady equilibrium with the local time and plane average
concentration (Kynch, 1952), we use the approximation 𝑉𝑖 ≈ 𝑉𝑠(�̂�)
(i.e., 𝑉𝑖 is equal to the mean sedimentation velocity of a spatially
uniform suspension with a concentration �̂�). Based on a similar analysis
as in chapter 10 of Nieuwstadt et al. (2016), we approximate the flux
at the right-hand side by:

−̂̃𝑉𝑖�̃� ≈ 𝑦𝑦
𝜕�̂�
𝜕𝑦

, (B.3)

where 𝑦𝑦 is the particle diffusivity in the vertical given by Eq. (9).
rovided that there are no shock discontinuities and hence that �̂� is
moothly varying in space, we may write Eq. (B.2) into the following
orm (cf. Eq. 3.18 in Batchelor (1988)):

𝜕�̂�
𝜕𝑡

+ 𝑉𝐾𝑊
𝜕�̂�
𝜕𝑦

≈ 𝜕
𝜕𝑦

(

𝑦𝑦
𝜕�̂�
𝜕𝑦

)

, (B.4)

where 𝑉𝐾𝑊 = 𝜕
[

𝑉𝑠(�̂�)�̂�
]

∕𝜕�̂� is the speed at which kinematic waves
are propagating in the vertical (Kynch, 1952). Finally, we assume that
variations in �̂� are small compared to the bulk concentration 𝜙, so that
we may approximate 𝑉𝐾𝑊 by Batchelor (1988):

𝑉𝐾𝑊 ≈
[

1 − (𝑛 + 1)𝜙
1 − 𝜙

]

𝑉𝑠(𝜙) . (B.5)

where 𝑛 is the power-law exponent in Eq. (1) for 𝑉𝑠(𝜙), valid for 𝜙 ≳
0%.

ppendix C. Method of repeated space–time autocorrelations

The principle of the proposed method is that traveling wave char-
cteristics of kinematic waves are preserved in the space–time autocor-
elation of a space–time concentration field, while uncorrelated noise
s filtered out. In addition, the ‘‘rank’’ of the autocorrelation can be
uned to amplify traveling wave modes when their contribution to the
ariance of the original signal is weak and to determine which wave
ode is dominant. We define the first autocorrelation as the standard

utocorrelation of a concentration field, and the second autocorrelation
s the autocorrelation of the first autocorrelation. More in general, we
efine the 𝑛th autocorrelation as the autocorrelation of the (𝑛 − 1)th

autocorrelation. To illustrate how the method works, we decompose
the fluctuating, plane-averaged concentration, 𝛷′(𝑦, 𝑡), into 𝑁 traveling
sine waves with amplitude 𝐴𝑙, wave speed 𝑐𝑙 and phase 𝜃𝑙, and a
remaining term  :

𝛷′(𝑦, 𝑡) =
𝑁−1
∑

𝑙=0
𝐴𝑙 sin([𝑦 − 𝑐𝑙𝑡]𝑘𝑙 + 𝜃𝑙) + (𝑦, 𝑡) . (C.1)

Note that for 𝑐𝑙 = 0,  = 0, and 𝑁 equal to the number of grid cells
in the periodic 𝑦-direction, Eq. (C.1) is essentially the Discrete Fourier
Transform of 𝛷′ at a given time. The variation of 𝛷′ in time is thus
accounted for by non-zero values of 𝑐𝑙 and  . Below we will determine
the autocorrelations for the model signal given by Eq. (C.1) under the
assumption that  can be modeled by white noise.

The first space–time autocorrelation of the above model signal can
be computed by first computing the autocovariance, 𝑅1(�̌�, 𝑡), with �̌�
and 𝑡 denoting the spatial and temporal lag, respectively, and then
normalizing it with the variance 𝑅1(0, 0). In preliminary form, the

autocovariance is given by:
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Fig. C.1. Illustration of the method of repeated autocorrelations applied to the plane-averaged concentration field of the case with 𝐺𝑎 = 144 and 𝜙 = 30%, see also Fig. 14a, b.
The slope of the black solid line corresponds to 𝑉𝐾𝑊 ∕

√

𝑔𝐷𝑝 determined from the 7th autocorrelation. (a)–(h) First till and with eighth autocorrelation.
𝑅1(�̌�, 𝑡) =
1

𝑇 𝐿 ∫

𝑇

𝑡=0 ∫

𝐿

𝑦=0

𝑁−1
∑

𝑙=0

𝑁−1
∑

𝑞=0
𝐴𝑙𝐴𝑞

[

sin
(

[𝑦 − 𝑐𝑙𝑡]𝑘𝑙 + 𝜃𝑙
)

]

×
[

sin
(

[𝑦 + �̌� − 𝑐𝑞(𝑡 + 𝑡 )]𝑘𝑞 + 𝜃𝑞
)

]

𝑑𝑦 𝑑𝑡 + 𝑅 (�̌�, 𝑡) , (C.2a)

where

𝑅 (�̌�, 𝑡) =

{

𝜎2 for �̌� = 𝑡 = 0 ,
0 otherwise .

(C.2b)

Here 𝐿 is the height of the periodic domain and the integration time
𝑇 is sufficiently large such that an integer number of periods of every
wave component is captured. The integral in Eq. (C.2a) is only nonzero
for 𝑙 = 𝑞 and hence we can write 𝑅1 as the sum of the following
components:

𝑅1(�̌�, 𝑡) = 𝑅11(�̌�, 𝑡) + 𝑅12(�̌�, 𝑡) + 𝑅13(�̌�, 𝑡) + 𝑅14(�̌�, 𝑡) + 𝑅 (�̌�, 𝑡) , (C.3)

with the components 𝑅11 till and with 𝑅14 given by:

𝑅11(�̌�, 𝑡) = 1
𝑇 𝐿 ∫

𝑇

𝑡=0 ∫

𝐿

𝑦=0

𝑁−1
∑

𝑙=0
𝐴2
𝑙

[

sin
(

[𝑦 − 𝑐𝑙𝑡]𝑘𝑙
)

]

cos
(

𝜃𝑙
)

×
[

sin
(

[𝑦 − 𝑐𝑙𝑡]𝑘𝑙 + 𝜃𝑙
)

cos
(

[�̌� − 𝑐𝑙𝑡 ]𝑘𝑙
)

]

𝑑𝑦 𝑑𝑡 ,

=
𝑁−1
∑

𝑙=0

1
2
𝐴2
𝑙 cos

2 (𝜃𝑙
)

cos
(

[�̌� − 𝑐𝑙𝑡 ]𝑘𝑙
)

, (C.4a)

𝑅12(�̌�, 𝑡) = 1
𝑇 𝐿 ∫

𝑇

𝑡=0 ∫

𝐿

𝑦=0

𝑁−1
∑

𝑙=0
𝐴2
𝑙

[

cos
(

[𝑦 − 𝑐𝑙𝑡]𝑘𝑙
)

]

sin
(

𝜃𝑙
)

×
[

sin
(

[𝑦 − 𝑐𝑙𝑡]𝑘𝑙 + 𝜃𝑙
)

cos
(

[�̌� − 𝑐𝑙𝑡 ]𝑘𝑙
)

]

𝑑𝑦 𝑑𝑡 ,
24
=
𝑁−1
∑

𝑙=0

1
2
𝐴2
𝑙 sin

2 (𝜃𝑙
)

cos
(

[�̌� − 𝑐𝑙𝑡 ]𝑘𝑙
)

, (C.4b)

𝑅13(�̌�, 𝑡) = 1
𝑇 𝐿 ∫

𝑇

𝑡=0 ∫

𝐿

𝑦=0

𝑁−1
∑

𝑙=0
𝐴2
𝑙

[

sin
(

[𝑦 − 𝑐𝑙𝑡]𝑘𝑙
)

]

cos
(

𝜃𝑙
)

×
[

cos
(

[𝑦 − 𝑐𝑙𝑡]𝑘𝑙 + 𝜃𝑙
)

sin
(

[�̌� − 𝑐𝑙𝑡 ]𝑘𝑙
)

]

𝑑𝑦 𝑑𝑡 ,

= −
𝑁−1
∑

𝑙=0

1
4
𝐴2
𝑙 sin

(

2𝜃𝑙
)

sin
(

[�̌� − 𝑐𝑙𝑡 ]𝑘𝑙
)

, (C.4c)

𝑅14(�̌�, 𝑡) = 1
𝑇 𝐿 ∫

𝑇

𝑡=0 ∫

𝐿

𝑦=0

𝑁−1
∑

𝑙=0
𝐴2
𝑙

[

cos
(

[𝑦 − 𝑐𝑙𝑡]𝑘𝑙
)

]

sin
(

𝜃𝑙
)

×
[

cos
(

[𝑦 − 𝑐𝑙𝑡]𝑘𝑙 + 𝜃𝑙
)

sin
(

[�̌� − 𝑐𝑙𝑡 ]𝑘𝑙
)

]

𝑑𝑦 𝑑𝑡 ,

=
𝑁−1
∑

𝑙=0

1
4
𝐴2
𝑙 sin

(

2𝜃𝑙
)

sin
(

[�̌� − 𝑐𝑙𝑡 ]𝑘𝑙
)

. (C.4d)

By summing up the contributions, we obtain the following expressions
for the autocovariance and variance, respectively:

𝑅1(�̌�, 𝑡) =
𝑁−1
∑

𝑙=0

1
2
𝐴2
𝑙 cos

(

[�̌� − 𝑐𝑙𝑡 ]𝑘𝑙
)

+ 𝑅 (�̌�, 𝑡) , (C.5a)

𝑅1(0, 0) =
𝑁−1
∑

𝑙=0

1
2
𝐴2
𝑙 + 𝜎2 . (C.5b)

Finally, the first space–time autocorrelation is obtained by dividing
Eq. (C.5a) by Eq. (C.5b):

𝜌1(�̌�, 𝑡) =
𝑁−1
∑

𝐴𝑙,1 cos
(

[�̌� − 𝑐𝑙𝑡 ]𝑘𝑙
)

+ 𝜌 (�̂�, 𝑡) , (C.6a)

𝑙=0
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B

B

B

B

C

C

D

D

𝐴𝑙,1 =
𝐴2
𝑙

∑𝑁−1
𝑞=0 𝐴2

𝑞 + 2𝜎2
𝜌 =

2𝑅
∑𝑁−1

𝑞=0 𝐴2
𝑞 + 2𝜎2

. (C.6b)

e remark that 𝜌 (�̂�, 𝑡) ≠ 0 only when �̂� = 𝑡 = 0 as white noise
orrelates with itself only for zero displacement.

The second space–time autocorrelation is computed in a similar
anner and is equal to:

2(�̂�, 𝑡) =
𝑁−1
∑

𝑙=0
𝐴𝑙,2 cos

(

[�̂� − 𝑐𝑙𝑡 ]𝑘𝑙
)

, (C.7a)

𝐴𝑙,2 =
𝐴2
𝑙,1

∑𝑁−1
𝑞=0 𝐴2

𝑞,1

=
𝐴4
𝑙

∑𝑁−1
𝑞=0 𝐴4

𝑞

. (C.7b)

The second autocorrelation can be readily generalized to the 𝑛th
pace–time autocorrelation, which for 𝑛 > 1 reads:

𝑛(�̂�, 𝑡) =
𝑁−1
∑

𝑙=0
𝐴𝑙,𝑛 cos

(

[�̂� − 𝑐𝑙𝑡 ]𝑘𝑙
)

for 𝑛 > 1 , (C.8a)

𝐴𝑙,𝑛 =
𝐴(2𝑛)
𝑙

∑𝑁−1
𝑞=0 𝐴(2𝑛)

𝑞

. (C.8b)

he higher-rank autocorrelation maintains the traveling wave char-
cteristics of the original signal. In addition, the higher the rank of
he autocorrelation, the more the dominant traveling wave mode is
mplified with respect to less dominant traveling wave modes. Let 𝑙1
nd 𝑙2 be the dominant and second dominant traveling wave mode,
hen the 𝑛th autocorrelation amplifies the dominant traveling wave
ode by a factor

(

𝐴1∕𝐴2
)(2𝑛) relative to the second dominant mode. So

ven in the presence of weak traveling wave modes and/or modes with
early similar amplitude, the rank of the autocorrelation may be tuned
o amplify traveling wave signals and to determine which mode stands
ut over other possibly present modes. Another benefit of the method of
epeated autocorrelations is that it requires no a priori assumption on
he range in wave number (𝑘𝑙) and frequency (𝑐𝑙𝑘𝑙) of the dominant
raveling wave modes as compared to, e.g., spectral band-pass filter
ethods. The method of repeated autocorrelations is illustrated in

ig. C.1 for 𝐺𝑎 = 144 and 𝜙 = 30%, showing the first till and with the
ighth space–time autocorrelation of the plane-averaged concentration
ield. As is clearly visible, the correlations are nearly identical for rank
hree and higher, as expected from the theoretical example discussed
bove. We picked the seventh autocorrelation for determining the
inematic wave velocity and wave length in the present study to make
ure that only the most dominant wave mode was left in the data.
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