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Evolutionary Optimisation
of a Flexible-Launcher Simple Adaptive
Control System

Erwin Mooij

1 Introduction

From the early days in aeronautical engineering, where aircraft design problems
have ranged from wing divergence and control reversal to dynamic flutter calcu-
lations for avoiding wing failure, static, and dynamic aeroelasticity issues have
caused many control challenges and even loss of (fighter) aircraft during high-
speed manoeuvring (Schwanz and Cerra 1984). Not only can aircraft suffer from
aeroelastic effects, but also (small) conventional launch systems, which have long
and slender bodies, may suffer from an unwanted coupling between the rigid body
and its flexible modes. Even more so than for aircraft, this is not an isolated problem.
During the launcher’s flight, it uses a large amount of oxidiser and fuel, giving rise
to large changes in mass properties and thus the flexible response. Because also
the operational and atmospheric environment varies significantly, the entire flight
profile should be examined rather than a single worst-case point, to identify the
stability and controllability characteristics of the launch vehicle.

To control such a (very) non-linear system, robust non-linear control systems
are required to stabilise the system and respond to both modelled and unmod-
elled disturbances. Two (non-linear) controllers that can potentially handle the
aforementioned perturbations are an Incremental Non-linear Dynamic Inversion
(INDI) controller and a system based on Simple Adaptive Control (SAC). Amongst
others, INDI controllers have shown robust performance when applied to quadrotors
(Smeur et al. 2016), both in a simulation environment and during flight tests, as well
as hydraulic robot motion control (Huang et al. 2019). The alternative candidate,
SAC, has shown good performance for a variety of applications in the fields of
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autopilot design (Barkana 2004), space-telescope control (Mehiel and Balas 2004),
flexible structures (Barkana 2016), entry systems (Mooij 2018) and satellites with
flexible appendages (Gransden and Mooij 2018).

The focus of this chapter is, however, not to design the best possible control
system, but to develop a methodology to improve the performance of a controller
with multiple design parameters. The design of linear control systems, such as
the traditional proportional, integral, and derivative (PID) controllers, can be
easily done, using, for instance, Bode plots, Nyquist criteria, etc. For non-linear
controllers, the design criteria are much harder to formulate. Having concrete
performance indices, though, would facilitate the use of optimisation algorithms
that can then be used to improve the controller performance. To show the benefit
of such a methodology, we will centre it around the design of a SAC system, as
it has many more design parameters and would show the benefit of the proposed
methodology.

Due to the nature of the control system design, performance optimisation is
relatively difficult for the following reasons: (i) a large number of design parameters,
(ii) a complex system, (iii) no analytical gradient information, (iv) a large parameter
search space, (v) non-linear constraints and (vi) multiple objectives that may
be conflicting. One (global) optimisation technique that may prove useful for
this particular problem is the one based on evolutionary strategies. These have
arisen from the desire to model the biological processes of natural selection and
population genetics, with the original aim of designing autonomous learning and
decision-making systems (Holland 1975). Evolutionary algorithms, and their binary
counterparts genetic algorithms, have found widespread use in engineering systems
(Zalzala and Fleming 1997), e.g., aerodynamic plan-form design, optimal motion of
industrial robot arms, and the design of VLSI layouts. Also, in the field of control
engineering, many applications can be found: Tanaka and Chuang (1995) applied a
genetic algorithm in combination with a neural network to the scheduling of linear
controllers for the X-29, whereas Menon et al. (1995) used genetic programming
for the synthesis of a non-linear flight control system of a high-performance
aircraft. Fleming and Purshouse (2001) have given an extensive overview of genetic
algorithms in control systems engineering: applications include controller design
and system identification, as well as fault diagnosis, stability analysis and sensor–
actuator placement.

It is stressed that the proposed design methodology could well be connected
to other (multi-objective) optimisation algorithms, such as particle swarm optimi-
sation, differential evolution or ant-colony optimisation, to name but just a few.
The evolutionary algorithm has been selected as a showcase, mainly for its ease
of implementation, not claiming that it is the best method to use. For similar
reasons as the selection of the simple adaptive control system, we want to present a
design approach for control systems with multiple design parameters and potentially
conflicting performance objectives, thereby highlighting several steps in the design
process.
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As a reference, the two-stage PacAstro launcher for small payloads up to 225 kg
has been selected for its availability of some geometrical and structural data.1

The launcher is treated as a flexible beam with lumped masses to account for the
subsystems and the fuel. Its design and modelling has been extensively discussed
in earlier work, see, for instance, the work by Mooij and Gransden (2016), and will
only be summarised here to have some insight in the system that we will be working
with.

The layout of the rest of this chapter is as follows. In Sect. 2, the simulation model
is introduced, i.e., the pitch-plane state-space model of a flexible launcher. In Sect. 3,
the control system design is covered, starting with the definition of performance
metrics to be used in the (numerical) optimisation procedure, then followed by
the theory on simple adaptive control systems, and concluded by a summary of
the implementation and application of this control system to the flexible launcher.
The optimisation problem is formulated in Sect. 4, including a top-level description
of the evolutionary algorithm. Section 5 presents the results, divided into those
obtained with a single-objective and multi-objective approach. Section 6 concludes
this chapter with some final remarks.

2 Pitch-plane State-space Model of Flexible Launcher

For a first analysis towards investigating the stability and control characteristics of
flexible launchers, it suffices to consider the (linearised) pitch-plane motion only.
Mooij and Gransden (2016) describe a state-space model, derived for the error
dynamics of a flexible launcher, and the configuration for which is shown in Fig. 1.
For that error dynamics model, input is a modal description as a function of current
mass, the normal-load and pitch-moment distribution, and, of course, the flight
conditions. The mass matrix is created using a consistent formulation for a linearised
beam element. Furthermore, the launcher is assumed to move with a steady-state
velocity .u0, and the local deformation is determined by the combination of thrust,
T , gravity, .mgd , aerodynamic normal force, N , and aerodynamic pitch moment, M .

In its general form, the system equation of this state-space model is given by

.ẋ = Ax + Bu (1)

with .A and .B being the system and control matrix, respectively. Due to the different
nature of groups of state variables, it makes sense to partition .A and .B into sub-

1 PacAstro was a US transportation service company, formed in 1990, to provide low-cost
transportation of small satellites to Low Earth Orbit for approximately $5 million per launch
using proven technology (Fleeter et al. 1992). Unfortunately, the launcher never came to operation
despite several engine tests and three launch contracts, due to the lack of development funding.
The company ceased to be in 1997. In Appendix A, some geometrical and mass properties have
been provided.
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Fig. 1 Flexible vehicle definitions

matrices representing the rigid-body motion, the engine dynamics, and the flexible-
body motion, thereby identifying the coupling terms between the different sets. The
corresponding state-space matrices are then written as

.A =
⎡
⎣
ARR ARE ARF

AER AEE AEF

AFR AFE AFF

⎤
⎦ and B =

⎛
⎝
BR

BE

BF

⎞
⎠ (2)

with

1. R for the rigid-body states angle of attack,2 .α, pitch angle, .θ , and pitch rate, q
2. E for the engine states .ε̈T (angular acceleration), .ε̇T (angular velocity), and .εT

(the angular position or swivel angle). These states originate from the assumption
that the engine is modelled as an electro-hydraulic servo system, represented by
a third-order transfer function.

3. F for the flexible-body states .η̇i and .ηi for mode i. The total number of states in
this group depends on how many bending modes .nf are taken into account.

2 Pitch-plane translational motion is defined by .u0 and the vertical velocity, w. However, to study
the rotational motion for a single point in the trajectory, it makes more sense to use the angle of
attack, .α, which can be derived from the (small) w through the relation

.Δα = Δw

u0
⇒ Δα̇ = Δẇ

u0
(3)
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The state vector, .x, is thus given by .xT = (
α θ q ε̈T ε̇T εT η̇1 η1 . . . η̇nf

ηnf

)T. The
only control is the commanded swivel angle, so .u = εT ,c. The corresponding sub-
matrices, derived by Mooij and Gransden (2016), are given in Appendix B.

The engine is considered to be an electro-hydraulic servo system, approximated
by a third-order system (Rolland Collette 1967),

.

(
s3 + 2ζeωes

2 + ω2
e s + Keω

2
e

)
εT = Keω

2
eεT ,c (4)

with defining parameters .ωe and .ζe, the natural frequency and damping of the engine
dynamics, and a gain, .Ke, an amplification factor that improves the response (time).
The values used in this study are .ωe = 50 rad/s, .ζe = 0.7, and .Ke = 15. Given
the above transfer function means that the acceleration derivative (.

...
ε T ) is excited by

.Keω
2
eεT ,c, with the latter parameter being the commanded swivel angle. In case of

a significant attitude correction, .εT ,c may be deflected at its limit value (of .±6◦),
which means that .

...
ε T = 3927 rad/s.3. Consequently, even after a mere 0.01 s, the

acceleration .ε̈T will be about 40 rad/s.2. It is clear that therefore some (mechanical)
limits should be imposed on the engine states. As mentioned, .εT ,max = 6◦, but the
values for the maximum acceleration are not known for the PacAstro. Sutton and
Biblarz (2017) mention a value of .ε̈T = 30 rad/s.2 and .ε̇T = 20 rad/s for the Space
Shuttle main engines. Even though these engines may be heavier than the one of the
current study, they give a good indication. Considering smaller (and lighter) nozzles,
the acceleration limit is put to .ε̈T ,max = 50 rad/s.2.

In Fig. 2, the reference trajectory of the PacAstro until first-stage burnout (.tf =
126 s, .hf = 67.7 km) is plotted. The figure shows an almost linear increase in
velocity with altitude and, similarly, also in Mach number up to a maximum value
of .M = 8.8. The dynamic pressure peaks at .q̄ = 43.5 kPa at around .h = 11.1 km
(time of maximum dynamic pressure (TMDP), .t = 63 s, .M = 1.83). With an initial
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Fig. 3 Natural frequencies of the launch vehicle during flight

mass of .m0 = 32,475 kg and a constant mass flow of .ṁ = −186.6 kg/s, the final
mass is .mf = 8963.4 kg.

The normalised bending modes, necessary to find the in-flight bending defor-
mations of the longitudinal axis, were calculated in Matlab® using an in-house
finite-element mesher and solver. At .t = 0 s, the four lowest initial natural
frequencies are 5.2, 16.2, 29.7, and 40.0Hz, respectively, whereas their variation
as a function of the flight time is shown in Fig. 3.

To generate an N -degree-of-freedom approximate differential equation model
for a continuous system, the displacement of the continuous system is expanded as a
linear combination ofN prescribed shape functions. In other words, the deformation
.u(x, t) is approximated by

.ud(x, t) =
N∑

i=1

φi(x)ηi(t) (5)

where x is the spatial coordinate, t is the time, .φi(x) is the ith assumed mode shape,
.ηi(t) is the ith generalised coordinate, and N is the number of terms or modes
that are included in the approximation. The rotation .ϕd(x, t) of (an element of) the
structure is given by

.ϕd(x, t) = −
N∑

i=0

σi(x)ηi(t) (6)

with .σi(x) = − dφi(x)
dx . In the current research, for the mode shapes, .φi , the

eigenvectors, derived from the finite-element model’s mass and stiffness matrices,
will be used.
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3 Control System Design

3.1 Introduction

As benchmark, we assume a feedback law with proportional and derivative gains of
.Kp = 2.8 (on .θ ) and .Kd = 0.9 s (on q) (Mooij and Gransden 2016). This design
is based on a closed-loop rigid-body requirement of 3 rad/s .≤ ωr ≤ 8 rad/s, with
a damping factor of .ζ ≈ 0.7, and designed for the point of maximum dynamic
pressure (.t = 63 s).3

The Bode plot for the elastic system is given in Fig. 4 for the moment of
maximum dynamic pressure. It shows that the elastic mode may pose a problem
while controlling high-frequency oscillations due to, for instance, turbulence. It is
clear that perturbations will be amplified while controlling an error in the pitch angle
(by using the engine swivel angle). However, in case the deformations remain small,
the problems will most likely remain limited. At its natural frequency of 37.3 rad/s,
the bending mode spikes. The second bending mode spikes at a frequency around
105 rad/s and will probably have marginal to no effect on the control.

Section 3.2 will summarise the design elements of the selected robust control
system that should be able to counter the (non-linear) effects of engine dynamics
and flexible modes.
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Fig. 4 Bode plots for the time of maximum dynamic pressure (t = 63 s)

3 The achieved closed-loop natural frequencies for rigid body and engine were .ωr,cl = 4.9 rad/s
(rigid body) and .ωe,cl 37.1 rad/s (engine), with damping factors .ζcl = 0.75 and .ζe = 0.64.
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To allow for comparison of the different control system designs, the performance
of a controller can be judged by several metrics. For the current control system
design, we may look at the minimum state deviation of the plant with respect to
the guidance commands. Another objective in the design could be to minimise the
control effort that is required to influence the launcher’s behaviour. For instance, in
the case of launcher control system design, these two objectives can be expressed as
the integrated pitch-angle deviation and the integrated swivel angle (equivalent to,
for instance, the total hydraulic power required), and are given by

.

∑
θerr

=
t∫

0

|θc(t) − θp(t)|dt
∑
εT

=
t∫

0

|εT (t)|dt (7)

A graphic representation of the above metrics is shown in Fig. 5a, represented by
the grey areas enclosed by the curves. It may be obvious that both individual areas
should be as small as possible for optimal controller performance, which means that
their numerical equivalent can be used to evaluate different controller designs. In
the given example, .

∑
θerr

= 6.55◦s and .
∑
εT

= 17.21◦s.

Another metric could be the oscillatory behaviour of either the state or control
variables. Oscillations in the control may not only be energy expensive and a
burden on the hardware, and it could also lead to instabilities. To detect oscillations
or otherwise discrete changes in the controls, the cumulative moving standard
deviation can be used. For a subset j of .ns out of a total of N samples of an

arbitrary control signal u, the moving mean is defined as .ȳj = 1
ns

j+ns−1∑
i=j

ui .

Here, j will run from .j = 1+.ns /2 to N -.ns /2, so each subsequent subset will
shift by only one sample. Let the squared deviation from this mean be defined as
.su,j = (uj+ns/2 − ȳj )

2, which represents the value at the midpoint of subset j . The
cumulative standard deviation, .Fu, for subset j is then

.Fuj
=

√√√√ 1

N − ns − 1

j∑
k=1

sk (8)

Figure 5b shows the oscillation pattern of the swivel angle for two (poor) controller
performances. The cumulative standard deviation increases more rapidly when a
discrete jump occurs or when there is an interval with persistent oscillations. As a
metric, the grey area under the curve can be used, which, while minimised, would
lead to a smoother behaviour. For the two cases shown, the numerical values are
.FεT

= 36.2◦ and 116.9◦, respectively.
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Fig. 5 Controller performance indices. (a) Integrated state deviation and control effort: .
∑
θerr

=
6.55◦s and .

∑
εT

= 17.21◦s. (b) Oscillation metrics: .FεT
= 36.2◦ (left) and .116.9◦ (right)

3.2 Simple Adaptive Control

The concept of so-called simple adaptive control (SAC) is based on the principle
of tracking the output of a reference model (Kaufman et al. 1998). Therefore, this
system could also be classified as a model reference adaptive control (MRAC)
system, although a principal difference from the original MRAC is that full state
knowledge of the plant to be controlled is not required. A schematic overview of
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Fig. 6 Basic architecture of a simple adaptive control algorithm

a simple adaptive controller is shown in Fig. 6. The (single-actuator) control law is
given by

.up(t) = Kr(t)r(t) (9)

where .r(t) = (
ey(t) xTm(t) uTm(t)

)T
and .Kr(t) = (

Ke(t) KT
x (t) Ku(t)

)
. It can be

seen that the model input .um and model state .xm are required to form part of the
input signal .up to the plant. Moreover, the so-called output error .ey serves as a
feedback quantity to form the third element that composes .up. The three gains, i.e.,
.Ke, .Kx, and .Ku, are adaptive.

To compute the adaptive gains, .Kr is defined to be the sum of a proportional and
an integral component:

.Kr(t) = Kp(t) + Ki(t) (10)

with

.Kp(t) = ey(t)rT(t)Tp (11)

.Ki(t) = Ki,0 +
t∫

0

eyrT(t)Tidt (12)

In Eqs. (11) and (12), the weighting matrices .Tp and .Ti are positive semi-definite
and positive definite, respectively. Note that the proportional gain component has
a direct influence on the transient tracking behaviour but is strictly speaking not
required to enforce asymptotic tracking, as .Tp can be zero; tracking is guaranteed
by the integral gain. To improve the transient response by only using an integral
gain, a constant gain value has been added to .Ki. An advantage over the use of the
proportional gain is that this constant value is independent of .ey and is therefore
non-zero even if .ey is zero.
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One way to improve the damping of the system is to include the error derivatives
in the output error vector and apply a form of PD error scaling. The attitude
controller aims at simultaneously reducing both the pitch angle, .θ , and the pitch
rate, q (which equals .θ̇ ). This means that if errors in both are added together (with a
proper scaling), the combined error would be similar to the output of a PD controller.
And we know of such controller that the D term improves stability and damping of
the control. Thus, the generic formulation of the output error becomes in that case

.ey = K
(
ym − yp

) = K
(
Cmxm(t) − Cp(xp, t)xp(t)

)
(13)

where .K includes the appropriate ratio of adding the proportional and derivative
signals together.

So far, an ideal environment has been considered. To cope with environmental
disturbances, such as wind gust and turbulence, that lead to a persistent non-zero
error and therefore to a continuous change in the integral gain .Ki, a robust design
can be applied to adjust the integral gain and preventing it from reaching very high
values. The integral term of Eq. (11) is adjusted as follows:

.K̇i = ey(t)rTTi − σiKi(t) (14)

Without the .σi-term, .Ki(t) is a perfect integrator and may steadily increase (and
even diverge) whenever perfect output-following is not possible. Including the .σi-
term, .Ki(t) is obtained from a first-order filtering of .ey(t)rTTi and, therefore, cannot
diverge, unless the output error diverges.

3.3 Implementation

The current application of SAC focuses on a flexible launch vehicle with third-
order engine dynamics. As a reference model, a simplified model is chosen: a rigid
representation of the same launcher, stabilised by a PD controller and ideal engine
dynamics. The reference model includes pitch angle and pitch rate only, contrary
to the rigid-body model given by Eq. (B.1). In this way, the model is insensitive to
angle-of-attack perturbations and will provide a more stable model that is easier to
follow. The reference model is excited by the output error, i.e., the current difference
between model output and plant output, and transformed to equivalent model state
errors. If at every control sample the difference between the current state error
and the one of the previous sample is added to the model state vector, the model
controller will bring this error back to zero. In that way, the signals .um and .xm are
created. Together with .ey , Eq. (13), the vector .r is composed, and the plant input .up

can be calculated according to Eq. (9), after having calculated .Kp and .Ki, Eqs. (11)
and (12).
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Fig. 7 Reference-model response to a 2◦ step command in pitch angle: difference between the
two-state and three-state models (includes angle of attack)

So, the reference model is given by the reduced rigid-body model, and the full
form of which is given in Appendix B:

.

(
θ̇m

q̇m

)
=

[
0 1

0
Cmq q̄Sref dref

Iyy

] (
θm

qm

)
+

[
0

LeT
Iyy

]
εT ,m (15)

so .xm = (
θm qm

)T
and .um = εT ,m. The reference model is controlled by the

benchmark PD controller, with .Kp = 2.8 on the pitch-angle error and .Kd = 0.9
on the pitch-rate error. The attitude command that the launcher has to follow
is now enforced on the reference model, which will provide a smooth transient
response that the plant will try to follow. The output error, .ey , will be formed as
.ey = Kp(θm − θp) + Kd(qm − qp), with the initial setting for the gains to be
the same as for the reference-model controller. It is noted that both the model-
controller gains and the output-error gains could be part of the optimisation process
and do not necessarily have to be the same. However, initial runs showed that using
the selected gains gives a good model performance. To avoid having an excessive
number of design variables, we will keep these values for now. Finally, the nominal
controller frequency is set to 100Hz. This may seem like a rather large value, but it
is, unfortunately, one of the characteristics of SAC (Messer et al. 1994).

Figure 7 shows the transient response of the reference model, while being
subjected to a pitch-angle command of .θc = 2◦ for the time of maximum dynamic
pressure (.t = 63 s). For each plot, two curves are shown, i.e., one for the model with
two states, given by Eq. (15), and one for a three-state model. The latter model also
includes the angle of attack, see Eq. (B.1) for the corresponding state matrix. The
difference in response is immediately clear. Due to the strong coupling between
angle of attack and pitch motion, a large angle of attack is induced. Because the
launcher is unstable (.Cmα > 0), it takes a lot longer and more control effort to
stabilise the system. The two-state model settles almost immediately, and this is
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exactly the kind of behaviour that we want the plant to have, thus confirming the
choice of reference model.

The design parameters of the adaptive controller are the weighting matrices, .Tp
and .Ti, the initial values of the integral gain, .Ki,0, and, as a safeguard against
diverging output errors, the filter parameter, .σi . The full form of either .Tp or .Ti
is given by

.T =

⎡
⎢⎢⎢⎣

Teyey Teyθm Teyqm TeyεT ,m

Tθmey Tθmθm Tθmqm TθmεT,m

Tqmey Tqmθm Tqmqm TqmεT,m

TεT,mey TεT,mθm TεT,mqm TεT,mεT ,m

⎤
⎥⎥⎥⎦ (16)

which represents 16 design parameters per matrix. However, it is common practise
to restrict to diagonal matrices, and thus only four parameters per matrix remain.
With four initial gain values, .Ki,0, and a single filter parameter .σi associated with
.ey , the total number of design parameters can vary between 13 and 37.4

4 Optimisation Problem

Ever since its conception in the 1970s, there has been a non-wavering interest
in problem-solving systems based on the principles of evolution: such systems
maintain a population of potential solutions and include some selection process,
which is based on the fitness of individuals, and some “genetic” operators that
allow for the creation of new individuals. Almost each genetic (operating on
binary strings) or evolutionary (operating on “real-life” parameters, e.g., floating-
point variables) algorithm has the following structure (Goldberg 1989, Michalewicz
1996):

begin
initialise population .P(0) with N individuals;
evaluate .P(0) and assign fitness to individuals;
t := 1;
repeat

select .P(t) from .P(t − 1);
recombine .P(t) through crossover and mutation;
evaluate .P(t) and assign fitness to individuals;
t := t + 1;

until (termination condition)
end

4 The minimum number could actually be four, as the principal requirement that .Ti is positive
definite dictates four diagonal elements larger than zero. The positive semi-definite condition of .Tp
could in principle lead to .Tp = 0. All other parameters can be non-zero to improve the performance
but can be zero in the baseline algorithm.
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The above pseudo-code represents a probabilistic algorithm, which maintains
a population of individuals, .P(t) = {xt1 · · · xtN} for iteration t . Each individual
.xti , which represents a potential solution to the problem at hand, is evaluated to
give some measure of its “fitness.” A new population is formed by selecting the
more fit individuals. Some members of the new population undergo transformations
by means of genetic operators: unary transformations (mutation), which create
new individuals by a small change in a single individual, and higher order
transformations (crossover), which create new individuals by combining parts from
two or more individuals. The termination condition can be a predefined number of
iterations (also called generations) or a convergence criterion.

The applied operators in this study are a combination of simple, arithmetic and
heuristic crossover, and multi non-uniform mutation. A detailed description of these
(and other) operators can be found in the book by Michalewicz (1996). Here, we
will restrict to a brief description. In simple crossover, two parents .p1 and .p2
are selected, and a simple single-point crossover is applied. This means that an
independent parameter in .p1 is selected at random and one child is formed by taking
the first part of .p1 (up to the selected parameter) and the second part of .p2 (onwards
from the selected parameter). A second child is formed by the two remaining parts.
Arithmetic crossover takes two parents .p1 and .p2 and performs an interpolation over
a random distance along the line formed by the two parents. Heuristic crossover,
finally, takes two parents .p1 and .p2 and performs an extrapolation along the line
formed by the two parents outward in the direction of the better parent.

Non-uniform mutation randomly selects one variable .xj of an individual .pi and
sets it equal to a non-uniform random number, with a (random) dependency on the
generation number. This latter Gaussian distribution starts wide and narrows to a
point distribution as the current generation approaches the maximum generation. In
multi-non-uniform mutation, this operator is applied to each independent variable
of the chosen individual.

For the selection method, we use stochastic universal sampling (SUS) (Baker
1987), which is some variation of roulette wheel selection (RWS) in the sense
that the fitness determines the probability that the individual is selected. However,
contrary to RWS where only one individual is selected, in SUS up to N individuals
can be selected with multiple equally spaced pointers. By applying SUS, clustering
of individuals in subsequent generations (genetic drift) will be reduced.

The fitness .Φi of an individual i can either be directly or indirectly derived from
its objective function(s). In single-objective optimisation, any one of the above
defined performance metrics can be used directly. In case two or more objective
functions are used, a trade-off has to be made if improving one objective will result
in the simultaneous degradation of the other. From the available methods to derive a
single fitness value from multiple objectives, the concept of Pareto ranking is used
(Cvetković 2000, Fonseca 1995).

Pareto-based fitness assignment was first proposed by Goldberg (1989), who
suggested the use of non-domination ranking and selection to move a population
towards the Pareto front in a multi-objective optimisation problem. Fonseca (1995)
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discusses a variation of this ranking method, which will be used in this study and is
summarised below.

The problem under consideration is to simultaneously minimise the k compo-
nents of a vector function .f = (f1, f2, . . . , fk), each of which is a function of
the design variables .x = (x1, x2, . . . , xn). The problem has usually no unique
solution, but a set of equally efficient (or non-inferior) alternative solutions, which
together form the so-called Pareto-optimal set or Pareto front when they are plotted
in relation to the inferior solutions. For a minimisation problem, a vector .f =
(f1, f2, . . . , fk) is said to be inferior to .g = (g1, g2, . . . , gk) if .g is partially less
than .f, i.e.,

.∀i ∈ {1, 2, . . . , k}, gi ≤ fi ∧ ∃i ∈ {1, 2, . . . , k}, gi < fi (17)

Consider now an individual .xf at generation t with corresponding objective
vector .f, and let .rf(t) be the number of individuals in the current population which
are preferable (or superior) to it. The current position of .xf in the individuals’ rank
is then given by

.rank(xf, t) = r
(t)
f (18)

Note that by definition the individuals that form the Pareto front all have rank zero.
The rank-based fitness assignment is further developed as follows:

1. Sort population according to rank.
2. Assign fitness .Φ by interpolating from the best individual to the worst according

to some function. In the current study, an exponential function of the form

.Φ
(
r
(t)
f

)
= sρ

r
(t)
f (19)

is used, where s is the relative fitness (.s > 1), whereas the parameter .ρ should
fulfil

.

N−1∑
i=0

= N

s
(20)

with N being the population size. In the limit case of N approaching infinity, the
above power series equals .

1
1−N

, which yields .ρ = 1 − s
N
.

3. Average the fitness assigned to individuals with the same rank, to sample them at
the same rate while keeping the global population fitness constant.
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5 Results

In this section, we present the results of the optimisation study, where different
combinations of design variables will be explored. Note that the results are in
support to present (and discuss) the design methodology for control systems with
more than just a few design parameters. All simulations are run for a single point in
the trajectory, i.e., the point of maximum dynamic pressure (.t = 63 s). We will not
try to get the best possible design and establish its robustness by doing an extensive
sensitivity analysis. To do so would require quite some more space than we have
available in this chapter.

To begin with, in Sect. 5.1, the parameter ranges will be established by doing a
simple Monte Carlo simulation. Inspecting the results and varying the ranges will
quickly lead to a design space that is not too large (and non-linear) and will allow
the optimisation algorithm to find an optimal design. In case the design space is too
large, convergence may become an issue for some evolutionary algorithms.

Section 5.2 will present the results for a single-objective optimisation. There,
the focus is on minimising the integrated pitch-angle deviation, without looking
at the associated control effort and possible oscillations in either state or control.
Finally, in Sect. 5.3, the exercise is repeated by optimising multiple objectives
simultaneously.

5.1 Design Space Exploration

The design space exploration will be done for the rigid launcher, as the optimisation
later will be carried out for a so-called nominal (.= ideal) system. The effect of
engine dynamics and flexible modes will be studied later, after an optimal control
system design has been established.

Assuming diagonal .Tp and .Ti, four initial integral gains, and one filter parameter,
the 13 parameters are varied according to a uniform distribution. After some trial
and error, the final ranges that were determined are the following:

1. .Tp: .Teyey ∈ [0,400], .Tθmθm ∈ [0,800], .Tqmqm ∈ [0,1600], and .TεT,mεT ,m
∈

[0,1600].
2. .Ti: .Teyey ∈ [0.15,60], .Tθmθm ∈ [25,10000], .Tqmqm ∈ [1.5,600], and .TεT,mεT ,m

∈
[1,400].

3. .Ki,0: each gain is sampled from the interval [0, 5].
4. .σi is sampled from [0, 2].

A total of .N = 2500 runs were executed, using the Mersenne Twister random
generator, initialised with random seed 0.

In Fig. 8, the four objectives, integrated state deviation, .
∑
θerr

, integrated control

effort, .
∑
εT

, and the two corresponding oscillatory indices, .Fθ and .FεT
, have been

plotted. It is obvious that there is a large variation in performance, but it appears
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Fig. 8 Design space exploration: four objectives, N = 2500 Monte Carlo runs (.t = 63 s)

that for each of the objectives there are quite small values. Just looking at the two
plots indicates a dense band of points that seem to converge in the direction of
some minimum value. Obviously, the integrated control effort can never reach zero
because that would mean that the launcher is not controlled, immediately leading
to a large integrated pitch-angle error. However, the two oscillation indices could
converge to values close to zero, as that would imply a very smooth control. Note,
though, that even a relatively smooth change of the control or state would already
increase these objectives, so they could never be exactly zero.

It should also be noted that a small value in one objective does not necessarily
mean a small value for all other objectives as well. In other words, the Pareto front in
a four-dimensional objective space does not necessarily lie close to the bottom-left
corner (the origin). In Sect. 5.3, the Pareto concept will be discussed in more detail.

Now that we have established the ranges of the independent parameters, we can
move on to the next step, i.e., the single-objective optimisation.

5.2 Single-objective Optimisation

Before any optimisation process can start, it is important to tune the algorithm, i.e.,
to determine the (optimal) values of algorithm-specific settings, in relation to the
problem at hand. The optimisation of the integrated state deviation by means of the
evolutionary algorithm is done for 30 generations, with an initial population size of
50 individuals. The settings (and operators) we found to work well for the problem
at hand were:

• Stochastic universal sampling as selection method, with the number of spins
being 1
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• Arithmetic crossover, with the total number of crossovers5 being 40 and the
number of retries to obtain a valid design with respect to the constraints being
10 (if no valid design is obtained, the objective value is penalised with a large
value of 10.5).

• Multi-non-uniform mutation, with the number of mutations being 10, the maxi-
mum number of generations, .Gmax = 30, and the shape parameter, .b = 3

To eliminate the random effect, the runs were repeated with different random seeds.
We found that the solutions converged to (almost) the same value; nonetheless, re-
running the optimisation multiple times should be standard practise.

For the first batch, the objective is the integrated state deviation, with the
reference-model pitch angle being the target value. Figure 9a shows the average
objective value, .ȳ, as a function of generation number. Also included are the .ȳ ±
1-.σ lines, to show the spread of individuals in objective space as a function of the
successive generations.6 The results show a quick convergence, with reaching the
best value after about eight generations. The response curves for the best individual
are shown in Fig. 9b. The plant responds a bit faster than the reference model,
which is most likely due to the perturbing angle of attack. As we mentioned,
this perturbation is absent in the reference model. However, it induces a deviation
between reference-model and plant pitch angle, which leads to larger gains to
anticipate on the induced error. The global response of the plant becomes thus a
bit more “aggressive.” As the plant is faster, it will also slow down a bit quicker,
thus becoming slower than the reference model close to the set point. Finally, the
swivel angle remains non-zero for a much longer time than would be suggested by
the practically zero error in the pitch angle. This is easily explained by the fact that
the angle of attack needs quite a long time to be “pushed back” to zero.

In case we change the objective to be minimised to the integrated state deviation
with respect to the guidance command,7 i.e., the step command, the results shown in
Fig. 10a, b are obtained. At first sight, the results seem to be similar, but some small
differences can be seen. In the first place, the converged minimum value is a bit
smaller and convergence is slightly faster. In the second place, because the response
is even faster than before, there is a slight overshoot of the plant pitch angle.

To compare the two final designs, in Table 1, the design parameters are listed.
It is clear that both designs are not the same, although with some imagination one

5 A crossover involves two parents and will produce two children. This means that given a number
of crossovers and depending on their fitness (and selection), the population size is not constant and
could be even double of the one with what we started.
6 This figure shows that there is a significant spread in the initial (= first) generation, implying a
good coverage of the design space. However, it is important to realise that a large standard deviation
can also be caused by just a few outliers, not necessarily in the direction of the optimum.
7 Note that the adaptive algorithm still aims at tracking the reference model. However, since the
optimiser is forced to follow the guidance command, the resulting response is somewhat of a
compromise: the optimiser pushes forward to the guidance command, whereas the controller pulls
back towards the reference model.
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Fig. 9 Single-objective optimisation (reference-model tracking): mean fitness as a function of
generation number and best individual’s response. (a) Average fitness. (b) Best individual
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Fig. 10 Single-objective optimisation (command-value tracking): mean fitness as a function of
generation number and best individual’s response. (a) Average fitness. (b) Best individual

could say that the order of magnitude is the same. Conclusion from this is that there
will be multiple solutions possible, leading to more or less the same performance,
i.e., there are possibly many local optima. That means that it is not always easy
for the optimiser to find the optimal solution. Concerning the adaptive algorithm, it
may be possible that minute changes in the design parameters have no effect on the
performance; only relatively large variations will show in a change in performance.

Until now we have kept both the reference-model-controller gains, .Kp and .Kd ,
and the output-error gains, Eq. (13), constant and in both cases the same. However,
as they are directly related to both the reference model and the plant response, it
may be interesting to see whether the optimiser will also keep the gains constant
(and the same). We will therefore add four more independent parameters: .Km =



270 E. Mooij

0 5 10 15 20 25 30 35 40
time (sec)

-2

-1

0

1

2

sw
iv

el
 a

ng
le

 (d
eg

)

0 5 10 15 20 25 30 35 40
time (sec)

0

0.5

1

1.5

2

pi
tc

h 
an

gl
e 

(d
eg

) command
state
reference model

(a)

0 5 10 15 20 25 30 35 40
time (sec)

0

0.5

1

1.5

2

pi
tc

h 
an

gl
e 

(d
eg

) command
state
reference model

0 5 10 15 20 25 30 35 40
time (sec)

-2

-1

0

1

2

sw
iv

el
 a

ng
le

 (d
eg

)

(b)

Fig. 11 Single-objective optimisation including with reference-model gains and output gains:
response plots. (a) Reference-model tracking. (b) Guidance-command tracking

Table 1 Optimal design parameters simple adaptive controller (single-objective optimisation)

Reference-model tracking Guidance-command tracking

.Tp .Ti .Ki,0 .σi .Tp .Ti .Ki,0 .σi

.ey 290 45 1.37 4.43 317 33 1.31 3.96

.θm 670 5952 0.0 1.43 698 4248 0.0 1.48

.qm 737 279 0.0 0.63 419 151 0.0 3.20

.εT ,m 1238 246 0.0 1.02 803 125 0.0 1.59

(
Km,p Km,d

)T
, with each gain varied over the range [0.5,5], and the output-error

gains, .Ke = (
Ke,p Ke,d

)T
, varied over the range [0.5,4].

With otherwise the same settings, the optimiser is run twice, once for reference-
model tracking and once for guidance-command tracking. The response curves for
the optimal designs are shown in Fig. 11, with corresponding gain values .Km =
(3.50, 2.79)T and .Ke = (2.84, 2.58)T for the former and .Km = (3.06, 1.53)T and
.Ke = (3.31, 1.20)T for the latter. Tracking the reference model leads to a more
relaxed response and a much lower control effort. However, one should not forget
that the reference-model response should meet with the requirements set to the
attitude controller design. Thus, it might be that the response is too slow. A separate
optimisation of the reference model is thus always required. In case of guidance-
command tracking, one can also see that the reference model is quicker to act, with
a steeper transient response. Comparing the results with those of Figs. 9b and 10b
does show a smoother response, so it would be a good idea to keep the gains as
design variables.

Comparing .Km and .Ke, they are obviously not the same, as we had assumed in
our initial runs. Also, if we compare the gain sets between the two designs, they are
not the same. Inspecting the other design parameters, they differ as well from the
values listed in Table 1. All in all, we can conclude that the design space and its
relation with the objective space is a complex one, which should be kept in mind.
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Fig. 12 Multi-objective optimisation (command-value tracking), rigid launcher. Initial population
size 50 individuals. (a) Pareto front, initial and final. (b) Number of Pareto individuals

What we saw from the above results is that a smaller integrated state deviation
means that the plant is closer in following the reference model or the guidance
command. However, as found by Messer et al. (1994), this may indicate that the
control effort is ever increasing. Comparing the two profiles of the swivel angle,
we see that while tracking the command the swivel angle is indeed slightly larger.
Therefore, it would be wise to include minimisation of the integrated control effort
in the optimisation process. This will be addressed in the next section.

5.3 Multi-objective Optimisation

From the single-objective optimisation results, we found that a closer model or
command-following would require more control effort, which was not taken into
account in the optimisation process. Furthermore, we established that the design
parameters to be included are .Tp, .Ti, .Ki,0, .σi , .Km, and .Ke, representing a total of
17 design parameters.

For our first batch of simulations, we will include the integrated control effort,
.
∑
εT

, besides the integrated state deviation, .
∑
θerr

. With otherwise the same algorithm

settings, the results shown in Figs. 12 and 13 are obtained. Two initial population
sizes have been used, i.e., 50 and 200, to try and find out which minimum population
size we can use. Figure 12a shows the progression of the Pareto front for the
50-individual initial population. The progression of the front is clear, i.e., in the
midrange an improvement in .

∑
θerr

of more than 10% is achieved. Also, the initial

front was quite sparse, whereas the final front is much denser and seems to have
converged quite well.
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Fig. 13 Multi-objective optimisation (command-value tracking), rigid launcher. Initial population
size 50 individuals. (a) Pareto front, initial and final. (b) Number of Pareto individuals

The total range of variation for either objective is 2◦s for the control effort and
17◦s for the state deviation. Each of the Pareto individuals represents a(n)(sub-) opti-
mal control system design: selecting a better control effort has obviously an adverse
effect on the state deviation, and vice versa, as was already established from the
single-objective optimisation runs. In case either or both have a minimum/maximum
requirement, a plot like this will allow for the selection of the right design.

One should not forget, however, that for any of these so-called heuristic methods
it cannot be proven that the Pareto front has indeed converged to its “theoretical”
value and that the global optimum has been found. It could be, after all, that the
algorithm got stuck in a local minimum. A way to check this is to let the algorithm
run for more generations, but looking at the “clustered” condition of the final front—
as well as the total number of individuals in the front, see Fig. 12b—it does not seem
likely that more progress can be made. A second check could be to do a localised
small-scale Monte Carlo run around each Pareto individual, with, for instance, a
5% variation of the original range of the design parameters. Having done this, only
showed a marginal shift of the front, so with this method it is as far as we can go. It
is curious to note, though, that one individual of the initial front is ahead of the final
front, so the conclusions are not black and white. It would be good to keep track of
all fronts and compose a final Pareto front from all individual fronts. In that respect,
we will include elitism for the remainder of the runs, i.e., the best individual for each
objective is carried over to the next generation, to avoid losing out on potentially
good individuals.

Figure 13 shows the same plots, but now for an initial population size of 200.
Apart from the much larger number of individuals in the Pareto fronts, the final front
is more stretched out, and at the lower right corner, it is also more rotated towards
the origin. In the mid-region, the values seem to be more or less the same, but at
the edges a better performance in the individual objectives is found. In conclusion,
for the number of design parameters, a population size of 50 seems on the low side.
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Fig. 14 Multi-objective
optimisation, including
off-diagonal elements in .Tp,
rigid launcher. Initial
population size 200
individuals
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However, for mid-level performance individuals, it is sufficient. The advantage is, of
course, that with a smaller initial population (and correspondingly a smaller number
of crossovers and mutations), the CPU load of the algorithm is far less.

One additional test is done, to verify whether off-diagonal elements in one (or
both) of the weighting matrices has an advantage. Since there are 10 more design
parameters per matrix, we decided to extend only .Tp, as the integral gains already
have a (constant) initial value. The range of the off-diagonal elements is taken
as .±10% of the corresponding diagonal element in that row. Any .Tp that is not
positive semi-definite, taken as a constraint, is penalised with a very large objective
value and effectively “killed off.” Doing the run, with an initial population of 200
to account for the 25 design parameters, resulted in the plot of Fig. 14a. Some
interesting aspects came forward. Despite the large variation in performance in the
initial population, the converged Pareto front only occupies a small region in the
objective space. The integrated state deviation has decreased to quite low values,
albeit at the expense of a slightly larger control effort. The final Pareto front could
have progressed more, as is evident from the initial Pareto front, that intersects
with the final one.8 The conclusion is that including off-diagonal elements may
be beneficial and should be studied in more detail. Because of the different focus of
this chapter, unfortunately we have to leave it at that.

8 These results show that the elitism operator should not be limited to keeping only the best values
for each objective, as has been implemented here, but should potentially include the complete
Pareto front. A good algorithm to do so has been proposed by Tan et al. (2003), involving Tabu
search. This method keeps an archive of the latest Pareto individuals, and in each successive
generation the current Pareto front is removed from the population to maintain search diversity
and added to the archive. From this archive, the newly dominated individuals are removed such
that the absolute best Pareto front is maintained. It is possible to insert a few Pareto individuals
back into the population, e.g., every fifth generation, as it may help convergence to the (global)
optimum.
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Fig. 15 Controller designed for a rigid body applied to one with engine dynamics. Controller
frequency 100Hz. (a) Rigid-body response. (b) Rigid body with engine dynamics

So far, we have been studying the response of the rigid launcher. Let us now
include engine dynamics and see how this changes the picture. In principle, we
would expect that if the engine dynamics is sufficiently fast—which should be
the case with .ωe = 50 rad/s—adding the dynamics will not change the response.
However, upon inspection, selecting a Pareto individual from the final front with
small state deviation and slightly larger control effort (such that engine dynamics
will be excited a bit more), this is not the case. For the rigid system, the response is
smooth (Fig. 15a), with performance indices given by .

∑
θerr

= 1.73◦s, .
∑
εT

= 14.31◦s,

.Fθ = 1.28◦s, and .FεT
= 3.50◦. The value of the oscillation indices is mainly

driven by the discrete changes in the system. Changing to a rigid launcher with
engine dynamics, the response deteriorates significantly, with performance indices
of .

∑
θerr

= 6.09◦s, .
∑
εT

= 211.86◦s, .Fθ = 2.78◦s, and .FεT
= 126.37◦. Looking at the

corresponding response in Fig. 15b, the high oscillation index means that the system
is in a high-frequency bang–bang state.

The SAC system is in principle a high-gain system, which will amplify the noise
that enters the system. From the theoretical model of a rigid launcher with engine
dynamics (Eq. (B.2)), we find there is a (strong) coupling between the engine and
the angle of attack and, through the aerodynamics, the pitch rate and thus pitch
angle. Having fast dynamics in the system requires a high controller frequency, as
was also confirmed by Messer et al. (1994). They found, for their experimental
setup of a suspended mass system, that for successful realisation of the controller a
sampling frequency 40–80 times the Nyquist frequency is required. Going back to
the results we got, it could lead to two changes in the approach: the control system
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Fig. 16 Pareto front for
three-objective optimisation,
rigid launcher with engine
dynamics. Initial population
size 100 individuals
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has to be re-optimised, but now with engine dynamics included, or the frequency of
the controller is significantly increased, and then the system is re-optimised. Being
able to find a good design with controller frequency set to 100 Hz would be the best,
of course, in terms of on-board computer load. Unfortunately, a proper design could
not be found. Thus, we will increase the frequency to 500 Hz and add the swivel
oscillation index to the objectives.

The results of the three-objective optimisation are shown in Fig. 16. What is
immediately clear is that there is an almost linear relationship between the integrated
control effort and the control oscillation. That means that in principle we can do with
one of the two, most notably the control oscillation, because lowering the oscillation
seems to lower the control effort as well. This was indeed confirmed by doing a two-
objective optimisation with .

∑
θerr

and .FεT
, which gave almost the same final Pareto

front.9

From the obtained results, we will now select a design with a low oscillation
index, which, unfortunately, will give us a large pitch-angle deviation. In a way this
makes sense because a slower control response would induce smaller oscillations
that are then less amplified. But a slower response would also yield a larger
state deviation. Running the design does indeed show that the oscillations have
almost disappeared. The optimisation process has thus led to a conceptual design
of the control system that forms a good basis for further refinement. To show the
final result, we will run the simulation once more, with the same settings for the
controller, but now also including the first and second flexible modes. The result
can be seen in Fig. 17.

Figure 17a shows the pitch-angle response, which is on the slow side, as
expected. Even though the reference model tracks the command very well (in part

9 The alternative of keeping the integrated control effort as objective was not as effective to reduce
the oscillation index, though.
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Fig. 17 Final controller design applied to flexible launcher with engine dynamics. (a) Rigid-body
response. (b) First flexible mode

due to the high frequency), the plant response lags behind due to the lower swivel
command. Because the swivel oscillations are virtually absent, also the flexible
modes are not more excited than what is due to the rigid-body coupling (Fig. 17b).
The corresponding performance indices are .

∑
η̇f,1

= 94.7 s, .
∑
ηf,1

= 7.4 s, .Fη̇f,1 = 5.1 s,

and .Fηf,1 = 0.6 s.10

6 Concluding Remarks

In this chapter, a methodology has been presented to design and analyse control
systems with multiple design parameters and possibly conflicting objectives. These
objectives have been formulated in a numerical way, i.e., the integrated state
deviation, integrated control effort, and an oscillation index using a moving-average
technique. Because of such a formulation, numerical optimisation can be applied
to go through a large number of designs and converge towards an optimum. As
an example of the methodology, an evolutionary algorithm has been applied to the
design of a simple adaptive control system.

Design space exploration helps to establish the bounds on the independent
variables. Too large bounds can lead to a random behaviour of the optimisation
algorithm, and with too narrow bounds the algorithm may miss the global optimum

10 For comparison, if the simulation with results shown in Fig. 15b would be repeated for a
flexible launcher, the indices would be .

∑
η̇f,1

= 774.5 s, .
∑
ηf,1

= 75.2 s, .Fη̇f,1 = 650.1 s, and

.Fηf,1 = 53.5 s. These very high values indicate severe deflections/vibrations, which could lead
to hardware damage or even a complete breakup of the launcher.
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and get stuck in a local one. The first step in the design process was to use single-
objective optimisation. This led to a small integrated state deviation, but without
guarantee that the control effort would be low. Adding this objective and executing
the next step in the design process gave a Pareto front with converged close-
to-optimal solutions. Finally, by adding also a control oscillation index as third
objective, an attempt was made to lower the oscillatory behaviour of the control.
It was observed that the same could be achieved by using only the integrated state
deviation and the oscillation index.

In terms of controller performance, the results worked well enough for the rigid
launcher. However, when engine dynamics was added, the same controller could
not stabilise the system, and a strong oscillatory behaviour was the result. This
could be solved by increasing the controller frequency and redoing the optimisation
by including the aforementioned oscillation index. The final design was practically
oscillation free and worked also well on the flexible launcher.

The introduced control system design methodology was shown to work well in
a conceptual design environment, where baseline controllers (with multiple design
parameters and thus quite a number of design degrees of freedom) can be quickly
analysed, and their performance improved. Depending on the complexity of the
design space, convergence will sometimes quickly come to a stop. Local refinement
by using a limited Monte Carlo analysis around the Pareto solutions could serve as
a confirmation for convergence. To account for the random effect, it is advised to
always redo the optimisation with multiple seeds to initialise the random generator.

As recommendations for future work, one could think of confirming the versa-
tility of this methodology by designing different control systems, possibly using
different (and more complex) design criteria. Because the evolutionary algorithm
was applied without a proper trade-off, other (global) optimisation techniques could
be tried to improve the efficiency of the methodology.

Zooming in on the application at hand, it should be verified what the computa-
tional load means for an on-board implementation. Requiring a controller frequency
of 100 or even 500Hz is perhaps not a trivial requirement. For the flexible launcher,
it would be interesting to study whether the same controller compared to one for
the rigid launcher comes out of the optimisation process and whether the use of
a different reference model may lead to an improved performance. Finally, the
controlled flight from launch to payload separation should be verified to ensure that
the controller always meets the performance requirements, taking transient effects
due to the rapidly changing flight conditions, aerodynamic properties, and depletion
of the fuel and oxidiser tanks into account. In principle, the adaptive controller
should be able to adapt to those changes, but re-optimising the controller parameters
for different conditions and using some form of interpolation in between design
points may ultimately yield the best possible performance.
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Appendix A: Pac Astro Mass Properties and Geometry

Tables A.1 and A.2 show the mechanical properties and additional masses of the
launch vehicle model.

Table A.1 Mechanical properties of the launch vehicle structural model

End

coordinate

. m

Moment

of inertia

.
[
m4

]
Young’s

Modulus

.[GPa]
Area

. m2
Thickness

. mm

Mass

.[kg]
Density

.
[
kg/m3]Section [ ] [ ] [ ]

Aft stage 1 3.07 3.93e.−3 0.69 1.63e.−3 30.46 72.4 2740

Fuel 1 6.03 1.51e.−2 2.64 6.28e.−3 230.91 73.8 2710

Intertank 1 8.63 1.78e.−2 3.10 7.37e.−3 102.69 72.4 2740

LOX 1 14.36 1.98e.−2 3.46 8.23e.−3 546.42 73.8 2710

Forward stage 1 16.79 1.48e.−2 2.59 6.16e.−3 67.30 72.4 2740

Aft stage 2 17.91 1.48e.−2 2.59 6.16e.−3 67.30 72.4 2740

Fuel 2 18.30 9.45e.−3 1.65 3.92e.−3 16.29 73.8 2710

Intertank 2 19.87 1.28e.−2 2.24 5.33e.−3 55.21 72.4 2740

LOX 2 20.96 1.03e.−2 1.79 4.27e.−3 49.62 73.8 2710

Forward stage 2 21.97 9.16e.−3 1.60 3.81e.−3 25.37 72.4 2740

Fairing 22.97 8.36e.−3 1.46 3.47e.−3 22.70 113 4430

Frustrum 25.58 7.04e.−3 1.23 2.93e.−3 53.54 113 4430

Nose 25.77

Table A.2 Additional
masses of the launch vehicle
model (excluding fuel
masses)

Stage 1 Stage 2

Mass

[kg]

Location

[m]

Mass

[kg]

Location

[m]Subsystem

Engine 225 1.54 60 16.79

Thrust structures 55 2.20 20 21.46

Gimbal system 80 2.20 20 17.35

Pressurant 130 7.50 30 19.87

Valves and lines 130 7.50 50 19.00

GNC electronics 40 21.97

Payload adapter 20 22.47

Payload 225 22.97
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Appendix B: State-space Matrices

The rigid-body sub-matrices (including coupling terms), .ARR, .ARE, and .ARF are
given by

.ARR =

⎡
⎢⎢⎣

−CNα q̄Sref

mu0
− gd sin θ0

u0

CNq q̄Sref

mu0
+ 1

0 0 1
Cmα q̄Sref dref

Iyy
0

Cmq q̄Sref dref

Iyy

⎤
⎥⎥⎦ (B.1)

.ARE =
⎡
⎢⎣

meΔLe

mu0
0 T

mu0

0 0 0
meLeΔLe+Ie

Iyy
0 LeT

Iyy

⎤
⎥⎦ (B.2)

.ARF =
⎡
⎣

aα,η̇1 aα,η1 . . . aα,η̇N
aα,ηN

0 0 . . . 0 0
aq,η̇1 aq,η1 . . . aq,η̇N

aq,ηN

⎤
⎦ (B.3)

with, for .i = 1, . . . , nf :

.aα,η̇i
= −CNη̇i

q̄Sref aα,ηi
= −CNηi

q̄Sref − T σi(xe)

mu0

.aq,η̇i
= Cq,ηi

q̄Sref dref

Iyy

aq,ηi
= Cmηi

q̄Sref dref − LeT σi(xe) − T φi(xe)

Iyy

In the above equations, m and .Iyy are the (current) mass and moment of inertia
of the launcher, .me and .Ie are the mass and moment of inertia of the engine, and
.ΔLcm,e is the distance from gimbal point to centre of mass of the engine. .CNα and
.CNq are the normal force gradients with respect to .α and q, and .Cmα and .Cmq are the
corresponding pitch-moment gradients. Due to the bending of the launcher frame,
local aerodynamic force and moment effects are introduced through the gradients
.CNηi

, .CNη̇i
, .Cq,ηi

, and .Cmηi
, and the details of which are provided by Mooij

and Gransden (2016). Finally, .φi(x) and .σi(x) are the modal-mass normalised .ith

bending shape and slope at location x, in this case the engine location .xe.
The engine is modelled as third-order transfer function, with input parameters .ωe,

.ζe, and .Ke, which are the natural frequency and damping of the engine dynamics
and an amplification gain, respectively. The 3.×3 engine sub-matrix, .AEE, is defined
to be



280 E. Mooij

.AEE =
⎡
⎣

−2ζeωe −ω2
e −Keω

2
e

1 0 0
0 1 0

⎤
⎦ (B.4)

where the corresponding coupling matrices are zero, i.e., .AER = .AEF = .0.
Each bending motion depends on the generalised force for that specific motion.

This generalised force is found by multiplying all the external loads with the
eigenvector of that mode. As before, the external loads are a function of the bending
motion and the position along the vehicle. Note that the subscripts i and j below
both indicate a flexible mode, up to the maximum of .nf . So, for .AFR, .AFE and .AFF,
we have

.AFR =

⎡
⎢⎢⎢⎢⎢⎢⎣

aη̇1,α aη̇1,θ aη̇1,q

0 0 0
...

...
...

aη̇nf
,α aη̇N ,θ aη̇nf

,q

0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(B.5)

with

.aη̇i ,α = −q̄Sref

Ltot∫

0

C′
Nα

φi(x)dx aη̇i ,θ = −gd sin θ0

Ltot∫

0

φi(x)m(x)dx

.aη̇i ,q = − q̄Sref

u0

Ltot∫

0

(x − xcm)C′
Nα

φi(x)dx

.AFE =

⎡
⎢⎢⎢⎢⎢⎢⎣

aη̇1,ε̈T
0 aη̇1,εT

0 0 0
...

...
...

aη̇nf
,ε̈T

0 aη̇nf
,εT

0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(B.6)

with

.aη̇i ,ε̈T
= meΔLcm,eφi(xe) + Ieσi(xe) aη̇i ,εT

= T φi(xe)
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.AFF =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

aη̇1,η̇1 aη̇1,η1 . . . aη̇1,η̇nf
aη̇1,ηnf

aη1,η̇1 aη1,η1 . . . aη1,η̇nf
aη1,ηnf

...
...

...
...

...

aη̇nf
,η̇1 aη̇nf

,η1 . . . aη̇nf
,η̇nf

aη̇N ,ηN

aηnf
,η̇1 aηnf

,η1 . . . aηnf
,η̇nf

aηnf
,ηnf

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(B.7)

with, for .i �= j :

.aη̇i ,η̇j
= − q̄Sref

u0

Ltot∫

0

φi(x)C′
Nα

φj (x)dx

.aη̇i ,ηj
= −q̄Sref

Ltot∫

0

φi(x)C′
Nα

σj (x)dx − T φi(xe)σj (xe)

.aηi ,η̇j
= aηi ,ηj

= 0

and for .i = j

.aη̇i ,η̇i
= aη̇i ,η̇i

− 2ζf,iω
2
f,i aη̇i ,ηi

= aη̇i ,ηi
− ω2

f,i

.aηi ,η̇i
= 1 aηi ,ηi

= 0

Lastly, to complete the model description, the components of .B are stated:

.BR = BF = 0 (B.8)

and

.BE =
⎛
⎝

Keω
2
e

0
0

⎞
⎠ (B.9)
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