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a b s t r a c t

Robotic tasks which involve uncertainty – due to variation in goal, environment configuration, or
confidence in task model – may require human input to instruct or adapt the robot. In tasks with
physical contact, several existing methods for adapting robot trajectory or impedance according
to individual uncertainties have been proposed, e.g., realizing intention detection or uncertainty-
aware learning from demonstration. However, isolated methods cannot address the wide range of
uncertainties jointly present in many tasks.

To improve generality, this paper proposes a model predictive control (MPC) framework which
plans both trajectory and impedance online, can consider discrete and continuous uncertainties,
includes safety constraints, and can be efficiently applied to a new task. This framework can consider
uncertainty from: contact constraint variation, uncertainty in human goals, or task disturbances. An
uncertainty-aware task model is learned from a few (≤ 3) demonstrations using Gaussian Processes.
This task model is used in a nonlinear MPC problem to optimize robot trajectory and impedance
according to belief in discrete human goals, human kinematics, safety constraints, contact stability, and
frequency-domain disturbance rejection. This MPC formulation is introduced, analyzed with respect to
convexity, and validated in co-manipulation with multiple goals, a collaborative polishing task, and a
collaborative assembly task.

© 2023 Elsevier B.V. All rights reserved.
1. Introduction

Manipulation with physical contact is essential for robotics,
here impedance control1 is often paramount to robust and safe
xecution. This is especially critical in tasks that involve physi-
al human–robot interaction (HRI), where the robot compliance
llows the human co-worker to safely affect robot motion for
eaching or online collaboration. Impedance control defines the
haracteristics of physical interaction by stiffness, damping, and
nertia parameters [1]. These parameters must be appropriately
dapted to an application, with a large number of proposed
ethods to determine appropriate impedance parameters. Nev-
rtheless, in practice, the tuning of these parameters is often done
ith ad-hoc or application-specific methods.
Some recent works propose generalizable approaches to

dapting impedance parameters based on machine learning and
uman-in-the-loop approaches. A common theme in impedance
daptation is the degree of uncertainty. From the literature, we

∗ Corresponding author.
E-mail address: kevin.haninger@ipk.fraunhofer.de (K. Haninger).

1 Impedance is used to refer to general physical interaction control, i.e., both
mpedance and admittance control.
ttps://doi.org/10.1016/j.robot.2023.104431
921-8890/© 2023 Elsevier B.V. All rights reserved.
identify five key categories related to uncertainty and impedance
control. (1) In learning from demonstration (LfD), uncertainty
derived from the variability in demonstrations of trajectories can
be used to infer lower robot stiffness, since the human demon-
strator does not seem to care about precision in that section of
motion [2,3]. (2) In LfD, the robot’s available confidence in the skill
is used, where stiffness can be reduced when entering unexplored
regions as actions might be unsafe [4]. (3) When faced with
uncertainty in environment constraints in task execution, the robot
should have lower stiffness in order not to produce dangerously
high forces when the contact is unexpected [5–7]. (4) In case
of uncertain external perturbations the robot should increase the
impedance to ensure the accuracy of position tracking task [8,9].
(5) When there is uncertainty in human goal during collaborative
tasks, the robot should be compliant to let them determine a
specific degree of freedom (DoF). For example, when the human
should lead the collaborative carrying of an object [10], or when
the human should guide a polishing machine that is carried by
the robot [11].

Nevertheless, scaling up impedance control to different tasks,
conditions, and environments while accounting for human goals
in real-time is still a major challenge in physical HRI. The exist-

ing methods typically focus on either one or a couple of these

https://doi.org/10.1016/j.robot.2023.104431
https://www.elsevier.com/locate/robot
http://www.elsevier.com/locate/robot
http://crossmark.crossref.org/dialog/?doi=10.1016/j.robot.2023.104431&domain=pdf
mailto:kevin.haninger@ipk.fraunhofer.de
https://doi.org/10.1016/j.robot.2023.104431
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ncertainty categories, although many tasks feature several of
hem. We aim to develop a framework which can account for
ultiple types of uncertainties for a unified physical HRI ap-
roach. The goal is for robots to be able to plan trajectories and
dapt impedance for semi-structured tasks in physical contact
ith humans and environments, without needing an analytical
odel of environment/human or large amounts of data.
To attain this goal, we propose a planning and optimization

ramework with probabilistic models of external force. Gaus-
ian processes are used to model force from the environment
r human, and used as input to an admittance model of the
obot to project stochastic trajectories. These trajectories can be
valuated with cost functions and constraints, to allow online
ptimization of admittance parameters and force reference tra-
ectory. This acts as an outer-loop controller, setting parameters
nd force reference to an inner-loop admittance controller which
aintains real-time responsiveness to external forces. The main
ontributions of this work are:

• A taxonomy of uncertainty in physical interaction, includ-
ing their sources, consequences for safety and performance,
and a unified problem formulation to address these with
adaptive impedance control.

• Unlike existing approaches that use GPs as direct robot
reference behavior generators (e.g., [12]), we use them as
intermediate task models which combine with the robot
impedance in a Model Predictive Control (MPC) problem,
allowing explicit objectives which depend on the trajec-
tory uncertainty , intention detection, safety constraints, and
frequency-domain costs.

• Unlike existing sampling-based approaches to adapting
impedance online (e.g., [13]), we propose the first gradient-
based optimization of impedance, which allows constraints
in the optimization problem such as maximum contact force
and contact stability.

• The approach is experimentally validated, inferring discrete
human goal online, increasing impedance damping for con-
tact stability, and reducing impedance in directions of task
variation, with 10–20 Hz MPC rates. The code2 and video3
are available.

This approach handles various types of uncertainty as seen
n Fig. 1. The uncertainty category (1) related to variability in
emonstrations can be accounted for in the proposed framework
hrough GP covariance, but we note this can produce unsafe
mpedance skills when the low demonstration variance arises
rom contact with the environment [7]. The proposed framework
lso addresses the uncertainty category (2) related to confidence
n skill by leveraging on GP model uncertainty in the cost function
nd optimization constraints. The uncertainty category (3) related
o environment constraints is handled by the increase in GP co-
ariance induced by fitting hyperparameters on data with contact
ariance. An additional frequency-domain perturbation model is
sed to resolve the uncertainty category (4) related to external
erturbations. The uncertainty category (5) related to human goal
stimation is addressed by taking the expectation over the belief
n human goal, inferred from the GPs.

A preliminary study was presented at the 2022 IEEE Interna-
ional Conference on Robotics and Automation [14]. This paper
ignificantly expands upon the previous study by an extended
heoretical formulation of the method that accounts for all iden-
ified uncertainties, adding two types of MPC constraints, a new
heoretical analysis of impedance optimization, and a new exper-
mental evaluation with three additional practical tasks involving

2 https://gitlab.cc-asp.fraunhofer.de/hanikevi/gp-mpc-impedance-control
3 https://youtu.be/Of2O3mHfM94
2

Fig. 1. Sources of uncertainty during both demonstration and execution (left),
how they are modeled (center), and how they enter the MPC framework (right).

physical HRI (collaborative rail assembly, double peg-in-the-hole,
and polishing) where we examine new aspects (task uncertainty,
goal uncertainty, and human ergonomics).

The remainder of the paper is structured as follows; also see
Fig. 2 for an overview. The related work is given in Section 2. The
modeling using GP is described in Section 3. The MPC problem
formulation is provided in Section 4. This is followed by a the-
oretical analysis in Section 5. Finally, experimental validation on
practical tasks is described in Section 6.

2. Related work

Here we examine the proposed method with respect to related
work in the literature. We first outline the work done in physical
human–robot interaction where human intention modeling plays
a critical role in seamless collaboration. Then we proceed to robot
impedance adaptation, which is a fundamental part of the robot’s
low-level actions as a result of the inferred intention. Finally, we
review planning in contact tasks.

2.1. Physical human–robot interaction

An important challenge in physical HRI is the ability of robots
to infer human co-worker’s goals and states. To address this
challenge, several recent works have proposed inference tech-
niques and applications. The study in [15] showed that robot
adaptation to the human task execution can improve task-related
performance. Robot adaption to the human state can also improve
ergonomics [11]. Finally, user satisfaction can also be improved
by robot adaptation [16]. Nevertheless, to adapt to these different
aspects, the robot should be able to infer the human state, which
often requires complex sensory setups [17,18]. However, complex
measurement systems are not always available or feasible for
practical applications, thus some specific states can be modeled,
such as the desired motion of the robot/payload [19–22], human
actions [23], preferences [24,25], human physical fatigue [11],
cognitive stress [26], and suitability of shared workspace [27–30].

For seamless collaboration, the adaption of the robot to the
human should be prompt, and thus the human intent or goal
must be inferred during the task execution [11,31]. Human intent
is often considered as a continuous variable [15,22], however, it
can also reflect discrete changes in the task [32], e.g., a collection
of possible goals. Discrete human state has been considered for
virtual fixtures [33], Dynamic Movement Primitives (DMPs) [32],
and impedance control [34].

When the robot has the knowledge of the human state and
intent, it must respond promptly with appropriate actions to fa-
cilitate the collaborative task execution. This typically means gen-
eration of motion trajectories and often simultaneous impedance

https://gitlab.cc-asp.fraunhofer.de/hanikevi/gp-mpc-impedance-control
https://youtu.be/Of2O3mHfM94
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Table 1
Selected prior work in adaptation of impedance, organized according to motivating principle. Robotic applications to co-manipulation
and contact are shown, as well as the targeted degree of robot autonomy.

Principle Robot impedance should: Co-manip. Env. Contact Autonomy

Dynamics
Complementarity [46] Be inverse of environment – – –

Stability [9,47] Stabilize unstable dyn [8] [48] Full

Well-damped [39] Reduce oscillation or jerk [10,39] [49] Interact, full

Optimal
Control

Min intervention [2] stiff where low variance [43,50,51] [51] safetya [7] Interact, full

game theory [52] Min coupled cost function [53] – Interact

Reinf. learning Min cost function [36] [54,55] Full

Transfer
Hum Imp

Human hand imp [3] Match human impedance – [56,57] Full

Co-contraction [58] Prop or inv to co-contraction – [58] Interact

Demo dynamics [34] Which explains demos [34] – Interact

aThis relates to the robot being stiff while being rigidly constrained by a potentially high-stiffness environment, which can cause
contact instability.
adaptation. The trajectories can be chosen to optimize task-
related objectives: reducing trajectory jerk [35,36], minimize
positioning error [8,37,38], or render appropriate velocity re-
sponse [39,40]. In addition, human operator-related objectives
can be optimized as well, such as minimizing interaction forces
[41] or metabolic cost [42]. A common rule is that the robot
can take over aspects of the task that require precision, while
the human can handle adaption to variations. The ‘minimum
intervention principle’ [43] follows this rule, where uncertain DOF
should have a lower stiffness [44,45], which can also be inter-
preted as a risk-sensitive control. Nevertheless, such an approach
is not reasonable for all interactive tasks that involve physical
constraints [7].

The literature can address the human-related properties (e.g.,
actions, preferences, ergonomics, etc.), real-time intention pro-
cessing, and uncertainty in an isolated manner. However, a uni-
fied framework that can effectively combine all these aspects for
practical manufacturing tasks is still missing.

2.2. Impedance adaptation

Physical HRI requires a safe and robust low-level control ap-
proach to account for the uncertainty of practical tasks [58].
Classic position or force controllers often fail to perform well
in such complex settings since they only focus on controlling
either one of the variables, but not the characteristics of the inter-
action that define their relationship, i.e., impedance. Impedance
adaption is empirically important for safety and robustness in
manipulation, and has been shown to improve sample efficiency
of higher-level learning control [59]. Accordingly, a wide range
of techniques has been proposed for adjusting impedance pa-
rameters. Recent surveys provide a thorough overview of this
field [60,61], so we present only an abbreviated summary in
Table 1.

Dynamics-based objectives are often based on continuous-
time dynamic models, considering factors like stability and damp-
ing of the coupled system. A challenge is that environment dy-
namics (e.g., stiffness) are application-specific. In some cases, the
environment dynamics are known or controlled [47], in other
cases properties of the dynamics (e.g., damping) can be found
from trajectories [62].

Other approaches plan to minimize a general cost function,
which may include the human or environment state [53]. Such
approaches allow consideration of uncertainty, but typically also
require models of humans or the environment, which are typ-
ically simplified such as assuming human force is a PD con-
troller [43]. Data-driven methods such as reinforcement learning
can be applied [54,55], but often require lots of trial and error.
3

An approach in [4] uses GP models to encode demonstrated
desired robot movements and then leverages on the measure of
uncertainty in the modeled skill to modulate the stiffness through
a direct expression. If the robot experiences unexpected external
perturbations, the impedance controller forces the motion into
the regions of higher certainty to be more confident in the given
skill. If the robot still ends up in a region of high uncertainty, the
stiffness is reduced as there might be insufficient confidence in
the skill to safely perform the movements there. Nevertheless,
there was no higher-level planner (e.g., MPC) to exploit given
learned trajectories to generate new ones.

From this, we conclude that there is a wide range of objectives
and models—it seems unlikely that a single principle would be
suited for all or a large majority of these areas. Accordingly,
we propose a framework for optimizing impedance, capable of
accommodating a range of models and objectives.

2.3. Planning in contact tasks

Intention modeling and low-level impedance control alone
can work well for simplified tasks. However, for a more flex-
ible robot behavior, a higher-level planner is required. MPC is
becoming increasingly popular for manipulation [13,63], and is
already a standard tool for locomotion and whole-body control,
capable of planning through contact models with either linear
complementarity [64] or switching dynamic modes [65]. Contact
can be considered as fully rigid constraints, using time-stepping
approaches to resolve the contact impulse over an integrator time
step [66], avoiding the issue of unbounded contact forces in rigid
contact. A dynamic model for the environment has also been pro-
posed for manipulation [67], relaxing kinematic constraints into
a stiffness. In most contact planning situations, signed distance
functions are needed—typically, this requires geometry informa-
tion typically given by CAD, although it has been learned on
simplified objects [68].

We make two observations from the perspective of manipula-
tion: (1) signed distance functions are difficult with the complex
geometries typical in assembly and manipulation tasks, and (2)
compliance is both common and critical—be it physical or by con-
trol. To address this, we use a compliant contact model here (re-
gressing contact force over robot position) which does not require
a signed distance function, and we consider the optimization of
impedance parameters in the MPC problem.

3. Models

This section presents the models used: GP models of external
force (from the environment or human), human kinematics, robot
admittance, and force disturbance. This aspect is highlighted by
with orange in Fig. 2.
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Fig. 2. Overview of the proposed approach, with corresponding paper sections in
red. Initially, human demonstrations are used to model human and task forces
with Gaussian Processes. These models are then used in a model predictive
controller that accounts for robot impedance and trajectories, and includes costs
and constraints related to the task and human. The MPC controller runs online,
updating trajectory and impedance parameters for a lower-level impedance
controller.

3.1. Force models

External forces, arising from contact with the human or en-
ironment, are modeled as Gaussian processes over robot pose.
hese models are used to capture two types of uncertainty:
ontinuous uncertainty in force via the covariance of the GP, and
iscrete variation by having a discrete collection of GPs. Discrete
ariation arises from, e.g., having multiple discrete goals in a
ask, where the human forces will depend on the current goal.
oncretely, for a robot with a tool-center point (TCP) pose x, we
onsider three types of external forces:
uman forces f h(x, n) are a function of robot state and human
ode n, where n ∈ [1 . . .N] indexes discrete possible human
ehavior such as goals.
ontact forces f c(x, xe) depend on an environment configura-

tion xe which is typically unmeasured and may vary between
iterations, such as a contact or constraint position.
Disturbance forces f d(t) such as polishing, cutting, or other
process forces which should not affect robot position. We assume
they can be represented in a frequency-domain model F d(jω),
e.g., they are predominantly high-frequency.

We use one force/torque (F/T) sensor, such that demonstra-
tions measure total force f = f h + f c + f d. While multiple F/T
sensors can separate human and environment forces [55,56], a
single F/T sensor reduces complexity. A disadvantage of a single
F/T sensor is that in co-manipulation with contact, contact may be
more difficult to identify, although this can be partly addressed
by how the data is collected. Another disadvantage of this ap-
proach is that forces are regressed over position, which may be
challenging in stiff contact. We validate both these aspects in
Section 5.4 and Fig. 6. Velocity-dependent terms of human forces
are not captured with this method, and human force may vary
between data collection and online execution, due to factors such
as the human adapting their impedance. We show the proposed
method is still capable of inferring human goal from online forces
in Section 6.4.
4

3.1.1. GP models
GPs are used to regress force over pose for each mode n,

based on a dataset of measured pose and force D = {{x1, f 1}
. . . , {xM , f M}}. We fit a GP model [69, p13] that gives a Gaussian
variable f̂ (x) ∼ N (µf (x),Σf (x)) for a pose x, given a mean func-
ion m(x) ∈ R6, kernel function k(x, x′) ∈ R, and observed data D.
he GP models for each dimension of f are fit independently and
he covariance Σf is therefore diagonal. As a result, correlations
etween the force dimensions are not modeled, which could arise
rom, e.g., changes in contact plane orientation or in the direction
f desired motion from the operator.
In the sequel, we consider the fitting of a single dimension of
with corresponding scalars f , µf , Σf . Here, we use a squared
xponential kernel of the form

(x, x′) = σ 2
n exp(−

1
2
(x − x′)Tdiag(l−2)(x − x′)), (1)

ith hyperparameters σ 2
n for the noise variance and l ∈ R6 as the

ength scale. The GP then defines a marginal Gaussian distribution
or a test point x as

(f |x,D, n, k) ∼ N (µf , Σ f ), (2)

where mean µf
= m(x) + kT

∗
(K + σ 2

n I)
−1

[f1, . . . , fM ]
T , covariance

Σ f
= σ 2

n − kT
∗
(K + σ 2

n I)
−1k∗ are built from kernel matrices

k∗ = [k(x1, x), . . . , k(xM , x)]T ) ∈ RM and K ∈ RM×M , where the
i, jth element is k(xi, xj).

A straightforward way to incorporate prior knowledge is a
mean function. A common mean function is the zero function,
m(x) = 0. To better model contact forces f c , a hinge function is
also used for the mean:

m(x) =

{
c1, if x ≦ c3
c1 + c2x, otherwise

(3)

where x is the element of x which matches the dimension of the
force being fit f , and constants c1,2,3 ∈ R6 are hyperparameters
which are fit from data.

The data for these models are collected from initial demon-
strations where the robot is manually guided by the human.
These models are built and the hyperparameters are fit (according
to negative log-likelihood) independently for each mode n and
dimension of f . By implementing them in an automatic differen-
tiation framework, the gradient of the mean and covariance with
respect to pose can be efficiently calculated for the MPC problem.

3.2. Robot admittance dynamics

This subsection develops the dynamics of a robot with a Carte-
sian admittance controller. An admittance is used as the hard-
ware implementation here uses a position-controlled industrial
robot. As impedance and admittance are just inverse mathemat-
ical viewpoints of the interactive dynamics, the dynamics here
can be readily adapted to impedance-controlled robots. The
admittance dynamics are used to model how the external forces
affect the distribution of robot trajectories, to allow the optimiza-
tion problem to consider how admittance and nominal trajectory
affect the trajectory distribution.

Consider a rendered admittance in the TCP frame which ap-
proximates the continuous-time dynamics of

f − f r = Mẍ + Dẋ + K (x − x0), (4)

with pose x ∈ R6, velocity ẋ ∈ R6, acceleration ẍ ∈ R6, measured
force f ∈ R6 and force reference f r . The impedance parameters
are inertia M ∈ R6×6, damping D ∈ R6×6, and stiffness K ∈ R6×6

matrices, which are here all diagonal, and x0 which is the rest
position of the spring. The rotational elements of x and f are
the angles and torques, respectively, about the three axes of the
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Fig. 3. At time step t , the stochastic dynamics are rolled out from ξt = [xt , ẋt ],
ith a trajectory for each mode n . Here, two modes are shown, resulting in
he green and red trajectories of mean and covariance.

CP frame. In the sequel, K and x0 are dropped as it was found
mpirically that the quasi-static tracking can be handled by the
PC adjusting f r .

.2.1. Integrator
To formulate an MPC problem, the dynamics in (4) have to be

iscretized. Let Ts be the sample time, subscript t denote the value
t time t0 + tTs, and state vector ξ = [xT , ẋT ]T .
A first-order explicit Euler integrator of (4) has oscillation

hen 1− TsDiM−1
i < 0 [14], where •i denotes the i, i-th element

f a matrix. Instead, we use the semi-implicit integration of [66]
n (4) to find

t+1 =

[
I TsI
0 M (M + TsD)−1

]
ξt

+

[
0

TsM−1

]
(f t − f rt ),

(5)

where I ∈ R6×6 and 0 ∈ R6×6 are the identity and zero matrix,
espectively.

.2.2. Stochastic dynamics
The robot’s admittance affects the sensitivity to force, and

hus the covariance of future trajectories when the forces are
tochastic. To calculate the trajectory distribution for a single
ode and dropping the argument n for compactness, we can

ewrite (5) in the form of

t+1 = Aφξt + Bφ

(
f t − f rt

)
, (6)

here system matrices Aφ , Bφ depend on impedance parameters
= {M,D}. Consider a Gaussian distribution over state ξt ∼

(µt ,Σt ), we find

µ+
= Aφµ + Bφ

(
µf (µ) − f r

)
(7)

+
= AφΣAT

φ + BφΣ
f (µ)BT

φ, (8)

here •
+ denotes the value of • at time step t + 1. Let the

ectorization of the covariance matrix be denoted σ+
= vec(Σ+)

nd similarly σ f
= vec(Σf ). Vectorizing (8) gives [70, (520)]

+
= Aφ ⊗ AT

φσ + Bφ ⊗ BT
φσ f , (9)

here ⊗ is the Kronecker product.
As there is a GP force model for each mode, the trajectory is

olled out for each mode by applying the corresponding µf (µ, n)
nd σ f (µ, n) from the current state ξt , as illustrated in Fig. 3.
hese trajectories use the same admittance parameters and f rt ,
ut result in trajectories ξnt+1 and Σn

t+1.

.3. Human kinematics

Ergonomic costs are more naturally expressed in terms of
uman joint torques [18,30], so we also consider a 4-DOF kine-

atic model of the human arm with three rotational DOF at the

5

shoulder and one rotational joint for the elbow extension. This
model has parameters of l1 and l2, for the length of the upper and
lower arm, and xsh ∈ R3 for the spatial position of the human
shoulder. Using these parameters and the human joint angles
q ∈ R4, we can calculate the human hand position xH ∈ R3 with
forward kinematics as

xH = FK(q, xsh), (10)

Forces measured at the end-effector can be translated into human
joint torques τH as

τH = J TH (q)f H , (11)

here f H ∈ R3 are linear forces at the human hand, and JH (q) ∈

R3×4 is the standard Jacobian matrix of (10) with respect to q.
Task-specific knowledge can be used to model xH or q. In

most cases, we simplify the human kinematics by assuming the
internal/external rotation of the arm is zero, q3 = 0, and that
xH = x, i.e., the human hand is at the robot TCP, allowing us to
write closed-form inverse kinematics and evaluate (11).

3.4. Inference of mode n

For tasks which have discrete variation in human goal, denote
the current goal n ∈ [1, . . . ,N]. When a GP is fit for each mode,
then n can be inferred online by Bayesian estimation. Let the be-
lief in mode n at time t be denoted bt ∈ RN , bt [n] = p(n|f 1:t , x1:t ),
and •1:t = [•1, . . . , •t ]. This belief is updated recursively as

bt+1[n] ∝ bt [n] det
(
2πΣf

n

)
exp

(
(f t − µf

n)
T (Σf

n)
−1(f t − µf

n)
)
,

(12)

here µ
f
n and Σ

f
n are the mean and covariance of the GP model

n mode n evaluated at xt , and bt is normalized after the update
uch that

∑
bt [n] = 1.

. MPC problem

This section presents the MPC optimization problem: the con-
traints, cost functions, and multiple shooting formulation. This
spect is highlighted by the green part in Fig. 2.

.1. Optimization problem

The MPC problem is formulated using multiple-shooting tran-
cription with a generic problem statement of

ut:t+H = Section 4.1
argminu

∑t+H
t

∑N
n=1 bt [n]cn(ξ

n
t , ut ) Section 4.2

s.t. ∀n ∈ [1, . . . ,N], τ ∈ [t, . . . , t + H − 1] :

µn
t = ξt , Σn

t = 0
|µn

τ+1 − f (µn
τ , uτ )| ≤ ϱ (7)

|Στ+1 − g(µn
τ ,Σ

n
τ , uτ )| ≤ ϱ (9)

h
(
ξt , ut

)
≥ 0 Section 4.3

u ∈ U

(13)

here H is the planning horizon, U is the range of allowed
inputs, ϱ the slack for the continuity constraints (the inequality
is applied element-wise), f is from (7), g following (9), and h are
inequality constraints to be presented in 4.3. The cost function cn
is shown with its parameter argument ξt and decision variable u,
the detailed cost function provided in (4.2.1). Initial covariance is
here simplified by setting Σt = 0 as it is assumed that the robot
state is fully observed , but this can be initialized with, e.g. the

covariance from an observer.
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The constraints in (13) are nonlinear, so an interior-point non-
linear optimization solver is used. While nonlinear, the problem
is written in an automatic differentiation framework, allowing
calculation of the gradient and Hessian of the objective and
constraints, significantly improving convergence.

The MPC framework here allows for different choices of deci-
sion variable u, which can include any of the following:

f rt:t+H Robot trajectory

∆M
t ,∆D

t Change in robot impedance

where ∆M
t and ∆D

t are a change in the impedance parameters M
and D.

4.2. Costs

4.2.1. Stage cost function cn
The general stage cost function is defined as

cn(µ,Σ, µf ,n,Σf ,n, τH , u) =

µTQ µµ + Tr(QΣΣ)+

(µf ,n)TQ f µ
f ,n

+ Tr(QΣ,fΣ
f ,n)

+ τT
HQ ττH + uTQ uu,

(14)

where µ and Σ are mean and covariance for the predicted state
ξ in mode n, µf ,n and Σf ,n are the mean and covariance of the
GP forces in mode n, τH are the human joint torques from (11),
u are control inputs, and Q · are the related weight-matrices for
each cost factor. State cost Q µ includes only a small penalty
on velocity (position terms are 0), the trajectory following is
implicit in GP mean and covariance. In some applications (e.g. the
rail assembly in Fig. 6), replacing

(
µf ,n

)T Q Hµf ,n with (µf ,n
+

f rt )TQ H (µf ,n
+ f rt ) is used to match the human demonstrations.

4.2.2. Human joint torque cost
Human arm manipulability plays a key role in ergonomics

[28,30], as it relays the information about how well the joint
torques can be transferred into the end-effector force where the
task is produced. Therefore, we defined the ergonomic cost as

τT
HQ ττH = f TH JH (q)Q τ JH (q)

T f H , (15)

where, when Q τ = I , JH J
T
H defines the standard manipulability

ellipsoid. This is a general formulation and the composition of
the human end-effector force f H can be specified based on the
task. For example, in the case of a polishing task, the structure to
be polished itself supports the gravity force, which thus does not
play a key role. Here, the dominant force component is related
to the movement of the robot along a path, therefore we use
the damping forces of the robot f H = Dẋ, where ẋ provides a
weighting according to the direction of the expected forces. This
term explicitly includes the impedance parameter, allowing the
damping to be optimized to direction of expected motion and
ergonomics. Nevertheless, the proposed formulation is general
and f H can include gravity force and other static forces for tasks
such as carrying and drilling.

4.2.3. Disturbance rejection
In many tasks, certain forces are external perturbations and

should not influence the robot position, e.g., forces arising from
the rotation of a polishing disk in a polishing task. In some cases,
these forces may be more easily distinguished in the frequency
domain, where typical human forces are low-frequency, and dis-
turbance forces may be medium- to high-frequency. Frequency-
dependent costs can be considered through an augmented state
model [71], but this increases state dimension (and thus compu-

tational complexity) and requires the cost can be expressed from

6

the inputs or state. Here, measured force is not an input to the
MPC problem, thus a new approach is taken.

We consider a disturbance force model in Laplace domain as
F d(s) =

αs
s+ωp

, where α and ωp adjust the magnitude and cut-off
frequency. This model is a simple high-pass filter, distinguishing
from lower-frequency human input. This disturbance results in
robot position deviation according to the admittance dynamics
Xd(s) = A(s)F d(s), where A(s) = (Mis2 + Dis + Ki)−1. Recall
the equivalency of the two-norm in time and Laplace domain,
∥xd(t)∥2

2 = ∥Xd(s)∥2
2 by Parseval’s theorem [72], and that ∥Xd(s)∥2

2
can be found by the observability grammian as

∥Xd(s)∥2
2 = BT

dXoBd, (16)

where AdXo + XoAT
d = CT

d Cd, (17)

where Ad, Bd, Cd are a state-space realization of Xd(s) [72]. The
Lyapunov equation in (17) is differentiable [73] with respect to
admittance parameters Mi,Di, Ki, allowing the efficient calcula-
tion of the Jacobian and Hessian of this objective for the optimiza-
tion problem. Note that the naïve solution of (17), by vectorizing
and a linear solve may have numerical issues when the matrices
are poorly conditioned, in such case using specialized solvers like
Bartels–Stewart can improve performance.

4.3. Constraints

Impedance parameters affect contact safety. To improve con-
tact safety, constraints for well-damped contact and force limit
are formulated.

4.3.1. Force limit chance constraint
A fundamental concern in contact is avoiding excessive force;

with a model of force over robot pose, this constraint can be di-
rectly transcribed. This force model may have uncertainty arising
from:

1. Variation in environment constraint location
2. Exploration of a new region or confidence in the skill

Both these uncertainties are captured in the GP regression here.
For (1), the GP will fit hyperparameters which increase the uncer-
tainty in the force model (validated in Section 5.4). For (2), when
farther from the training data, the GP will revert to a baseline
variance given by hyperparameter σ 2

n .
A chance constraint is a constraint applied to a random vari-

able which holds for a specified degree of certainty. For a scalar
Gaussian variable f ∼ N (µf , Σ f ), a chance constraint can be
re-written over mean and covariance as

Prob{f ≤ f } > 1 − ϵ ⇐⇒ µf < f − erf−1(1 − ϵ)∥
√

Σ f ∥, (18)

where f is an upper bound on the force, erf−1 is the inverse of
the error function and ϵ is a tuning parameter for the confidence
that the chance constraint should hold [74].

It can be seen that the uncertainty adds a conservatism to
the force bound; as Σ f gets larger, the mean force µf must be
kept smaller. This constraint is applied element-wise on the linear
forces, evaluating the GP at the final MPC trajectory point ξt+H to
educe computational complexity.

.3.2. Well-damped contact constraint
One challenge in admittance control is contact stability with

nvironment constraints, where a higher-stiffness environment
ypically requires higher virtual damping [75]. Ad hoc methods
an increase damping near contact [76], but make assumptions
uch as the robot is slowing down before contact.
If we assume that the forces in demonstration were locally

ominated by a stiffness of f = K (x − x ), where x is the rest
e 0 0
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osition of the environmental stiffness (i.e. contact position), and
urther assume that this function is well-modeled by the posterior
P mean function µf (x), we can find

e,i(xt ) ≈
dµf

i (x)
dxi

⏐⏐⏐⏐⏐
x=xt

, (19)

here Ke,i is the estimated environment stiffness in the ith di-
rection at pose xt . With this estimated stiffness, the dynamic
parameters can be directly constrained using the condition for
well-damped 2nd order systems

Di ≥ 2ζ
√
MiKe,i(xt ), (20)

here ζ = 1 is critically-damped, and ζ > 1 introduces a safety
margin which can help account for the non-idealized admittance
dynamics. This constraint is applied to the entire MPC trajectory
ξt+1:t+H .

5. Analysis

This section, shown in purple in Fig. 2 shows some properties
of the MPC problem: how trajectory and impedance optimization
differ, necessary conditions for convexity, and investigates the
ability to model contact with GPs.

5.1. Optimization of impedance vs trajectory

Why should we optimize impedance parameters φ instead
of just the trajectory µ•? Taking the differential of the linear-
Gaussian dynamics (7) and (9),[

dµ+

dσ+

]
=

[
Bφ dφAφµ + dφBφµf

0 dφ(Aφ ⊗ AT
φ)σ + dφ(Bφ ⊗ BT

φ)σ
f

][
df r
dφ

]
,

(21)

where prefix d indicates total differential and d• the partial
derivative with respect to •. We note two properties: (i) input f r
does not affect the covariance σ+, and (ii) state µ+ is determined
by both control input f r and impedance parameters φ, i.e., differ-
ent combinations of force and impedance parameters can realize
a certain change in µ+, as previously noted in [54].

When the robot changes admittance, the mean and variance of
the robot’s trajectory are affected. However, changing the robot’s
force reference only affects the mean trajectory. Additionally, a
change in trajectory can be realized by a combination of force
and admittance, thus the optimization of trajectory alone is un-
derdetermined. Empirically, this leads to variation in optimized
admittance parameters, requiring additional regularization. Thus,
explicit consideration of trajectory covariance is important for
impedance, and the MPC trajectories should be stochastic when
optimizing impedance.

5.2. Convexity over impedance parameters φ

For the optimization problem to be efficient, the objective
should be convex with respect to the decision variables [77].
As optimizing with respect to parameters of the dynamics (e.g.,
impedance parameters) is not studied, we check the convexity
of a toy cost function with respect to impedance parameters,
denoted φ = [M,D]. As impedance parameters φ mostly affect
covariance, we consider a simplified objective in a single step
shooting problem of minφ Tr(QΣ+), where by results from [70],

Tr(QΣ+) = Tr(QAφΣAT
φ + QBφΣ

f BT
φ) (22)

= σTvec(ATQA) + (σ f )Tvec(BTQB)
=

(
σT (AT

⊗AT )+(σ f )T (BT
⊗BT )

)
vec(Q ).
7

Fig. 4. Minimum eigenvalue of the Hessian ∇
2TrΣ+ and ∇

2 ln detΣ+ with
respect to impedance parameters as Σf varies, where the minimum eigenvalue
must be positive for this objective to be convex. The integrator schemes
(Euler/implicit/exponential) and objective (Tr vs ln det) affect the convexity,
where the implicit and exponential integrator with trace performs best over
a range of force uncertainty.

The convexity of this objective will depend on the impedance
parameter values, the choice of the integrator (which affects
A and B), and the relative magnitude of σ and σF . Note that
BT

⊗ BT
= [0, 0, 0, TsM−2

], which gives ∇
2
MBT

⊗ BT
⪰ 0.

Thus increasing Σf can increase the minimum eigenvalue of the
Hessian of the objective (22). The terms for damping are more
complex, thus numerical analysis is carried out.

These results are validated numerically to see what matrix cost
and integrator have better convexity. The minimum eigenvalue
of the Hessian ∇

2
φTr(QΣ+) and ∇

2
φ ln det(QΣ+) are compared for

three different integrator schemes: explicit Euler ẋ+
= (1 +

TsD/M)ẋ, implicit ẋ+
= M(M + TsD)−1ẋ, and exponential ẋ+

=

exp(−TsD/M)ẋ. We can see in Fig. 4 that the minimum eigenvalue
generally increases as |Σf

| increases. Using a Tr(QΣ+) is unilater-
ally better than ln det(QΣ+), and is thus used in the cost function
here. The implicit integrator has better average performance over
the range of Σf—notably, the performance of the explicit Euler
integrator is poor; the Hessian is indefinite for typical param-
eter values. Thus, here we use the trace of matrix costs with
an implicit integrator. Also note that convexity improves as Σf

increases, as suggested in the above analysis.

5.3. Computational costs

One limitation of the GP approach is the higher online com-
putational costs. The direct evaluation of a GP with a squared
exponential kernel has computational complexity of M2, where
M is the number of data points used in the dataset [69]. However,
the overall computational efficiency of an optimization problem
also depends on the gradient evaluation efficiency, in addition to
the effects of the GP on the loss landscape, a high complexity
which requires empirical analysis [74].

To do this empirical analysis, we consider a fixed MPC prob-
lem, using the parameters used in Section 6.2, to compare the
effect of the number of GP points M and the number of modes
N on the average solve time, evaluated offline over a replay
of the same trajectory. The results can be seen in Fig. 5, along
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Fig. 5. Computational cost as number of GP points M or number of modes N
aries, with default parameters from Section 6.2 and baseline M = 50, N = 1.
he fit is approximately quadratic and linear, respectively.

ith a polynomial fit. As the number of GP points increases,
he average MPC solve time increases quadratically. Furthermore,
s the number of modes increases, the average MPC solve time
ncreases linearly. This suggests that the number of GP points is
ritical, and the number of points needed to describe a task may
ary on its complexity and size within the state space.

.4. Contact modeling

We investigated the ability of the GPs to model contact by
erifying (1) that GPs can identify the contact in human-guided
ontact scenarios, (2) the impact of variation in the contact po-
ition, and (3) the impact of environment stiffness on the ability
o regress the models. These together allow the direct modeling
f environment constraint uncertainty in realistic contact. The hy-
erparameters in the following were all fit to minimize negative
og-likelihood from the same initial values.

When the human guides the robot into contact, the sum of
uman and environmental forces is measured. We collect human-
uided contact and autonomous contact data (i.e. the robot makes
ontact without human forces), and compare the GPs which are
it to both of them. In Fig. 6(a), we see that both models identify

he contact location with the hinge mean function, but the human

8

data identifies a lower stiffness and a contact position 1 cm too
high. In the applications here, this error was acceptable, but this
is application-specific.

Next, the contact position was varied between trials, with a
total variation of 2 cm over three trials. The result can be seen in
Fig. 6(b), where the three contact positions can be seen and the
higher covariance in the fit GP (green) can be seen compared to
the constant contact position (blue).

Finally, contact with environments of various stiffnesses was
made, with corresponding stiffness of [15, 45, 126] N/mm. The
resulting quality of the fit can be seen in Fig. 6(c), where the hinge
function can readily identify the changes in contact position and
stiffness.

6. Validation

This section presents four sets of experiments to validate the
various features of the proposed framework. These validation
experiments should provide useful pointers for the application
of the proposed method in real-world scenarios (the blue part
in Fig. 2). Videos are attached as multimedia and can be found
at https://youtu.be/Of2O3mHfM94. MPC and GP parameters used
for each experiment can be found at the repository https://gitlab.
cc-asp.fraunhofer.de/hanikevi/gp-mpc-impedance-control.

6.1. Contact uncertainty and stiffness

We first used a contact task to validate safe contact with
the environment. In particular, we examined the effects of force
chance constraint and well-damped constraint as contact vari-
ance or stiffness increases. The robot was taught a task moving
from free space into contact, which resulted in GP models as seen
in Section 5.4. The contact location could be varied by adding
blocks (Fig. 6(b)), and the environment made stiff by locking
out a compliant element (Fig. 6(c)). For each contact condition
– soft, high variance, and stiff – the corresponding model from
Section 5.4 was used, and only the MPC parameters relating
to the chance constraint (f = 12, ϵ = 0.5, chosen by hand
tuning) and well-damped constraint (ξ = 1.2) are changed. The
low impedance test condition kept the minimum mass 5 Kg and
damping 500 Ns/m.

The force trajectories during contact are shown in Fig. 7,

averaged over three trials, where variance is indicated by the
Fig. 6. Mean and covariance of GP models for various contact situations where contact occurs on the right side at −0.34 m, real data in dots and corresponding
odel in matching color. Learning from human-guided contact (a) introduces acceptable error in contact location and stiffness, (b) variation in contact location

nduces higher variance GP models, and (c) the hinge function can represent a range of environment stiffnesses.

https://youtu.be/Of2O3mHfM94
https://gitlab.cc-asp.fraunhofer.de/hanikevi/gp-mpc-impedance-control
https://gitlab.cc-asp.fraunhofer.de/hanikevi/gp-mpc-impedance-control
https://gitlab.cc-asp.fraunhofer.de/hanikevi/gp-mpc-impedance-control


K. Haninger, C. Hegeler and L. Peternel Robotics and Autonomous Systems 165 (2023) 104431
Table 2
Objectives and constraints of the MPC framework, with definition, validation, and average MPC loop rate as evaluated by playing
back the data recorded from the rail assembly problem.

Feature Functionality Defined Experiment Rate (Hz)

Baseline – 26.2

Human
Discrete modes Human goal estimation Dual peg-in-hole Section 6.1 10.6

Human joint torque Human ergonomics (11) Polishing Section 6.3 16.6

Model variance Repeatable task DOF (1) Rail Section 6.2 24.2

Task

Constraint uncertainty (1) Contact Section 6.1

Disturbance reject Task performance (16) Polishing Section 6.3 14.6

Well-damped Contact stability (20) contact Section 6.1 22.2

Chance constraint Safety (18) Contact Section 6.1 13.0
Fig. 7. Contact forces under contact conditions of soft (top, 45 N/mm), higher
variance (middle, ±1 cm) and stiff (bottom, 126 N/mm). The two contact con-
straints are compared, chance constraint (18) and well-damped (20). When the
contact location has higher variance, the chance constraint is more conservative
(middle). The well-damped constraint stabilizes contact with the high-stiffness
environment by increasing damping (bottom), but does not interfere with the
low-stiffness contact where increased damping is not needed (top).

shaded area. In the soft contact condition, the difference is small
as the constraints were not violated. As the variance in the
environment increased, the low impedance MPC had a higher
contact force, but both constraints reduced this peak force. The
chance constraint had more oscillation, but the well-damped
constraint was smoother. As the stiffness of the environment
increased, the low impepdance MPC had a higher peak contact
force, and had unstable contact (i.e., lost contact due to oscilla-
tion). The well-damped constraint had more stable contact with
fewer oscillations, compared to the chance-constrained MPC.

In the supplementary video, it can be seen that these con-
straints also affected the behavior approaching contact. Once the
chance constraint was activated, the robot pulled back from the
contact approach. This was typically accompanied by infeasible
optimization problems (i.e., no solution meeting constraints could
be found). This problem was empirically more pronounced when
using a GP with a hinge function, thus the poor conditioning of
stiff contact was identified as a contributing cause. Alternatively,
the well-damped constraint paused to allow the damping to
increase before making contact. Also, the well-damped constraint
was found empirically to have lower computational cost, with
an average MPC rate of 22 compared with 13 for the chance
constraint (Table 2).
9

Fig. 8. Rail assembly and polishing tasks, where the DOF which the human
should determine are shown in green.

Fig. 9. Impedance values in the rail assembly task, showing principle axes of
damping and mass in task space along three trajectories. The DOF with task
variation (green arrow) has consistently lower damping values, allowing easier
human manipulation along this axis.

6.2. Rail assembly

Here we present a rail assembly task, where the location of the
switch along the rail may vary according to factors not known to
the robot, such as existing parts. However, the rail mounting itself
is repeatable. This task was taught in three demonstrations from
various initial conditions, with varying goal locations along the
rail. The desired behavior is that this division of repeatable task
DOF and variation can be automatically extracted from data, such
that the robot allows the human to more easily manipulate this
DOF, i.e., has a lower impedance in the DOF that varies.
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Fig. 10. Impedance values in the polishing task, showing that (b) frequency disturbance increases the mass across from the path, and (c) the human joint torque
cost reduces impedance when farther from human, where more joint torque would be required. In (d) impedance over time is shown, where dotted is y-axis, solid
. The transition at 31 seconds corresponds to the corner in the trajectory.
Table 3
RMS velocity below and above 15 Hz, approximating the intentional motion
and vibration, respectively. The high impedance and disturbance term suppress
high-frequency vibration, but the high impedance results in a slow system.
MPC type High imp. Baseline Dist. Dist. + Jt.

High-freq RMS 5.4e−6 7.3e−6 6.5e−6 7.6e−6
Low-freq RMS 0.8e−4 4.2e−4 4.2e−4 4.1e−4

The results can be seen in Fig. 9, which shows the linear
mpedance parameters of mass and damping over space in three
alidation experiments. It can be seen that the impedance initial-
zed at low values, but as the rail was approached, the impedance
n the repeatable DOF was increased substantially, while kept low
n the DOF which varied. The supplementary video shows that
his results in a human easily intervening to adjust position along
he rail. The task could also be achieved autonomously after the
emonstrations when a cost was added to keep a positive force
eference in the approach direction ∥15 − f r2∥.

.3. Polishing

We also examined a polishing task where the human had
o guide a robot-supported polishing spindle along a path. In
his case, the human was determining speed along the path,
hile polishing vibration should not affect the robot’s trajectory.
o balance the rejection of polishing force disturbance against
he need for the human to easily manipulate the robot, a force
isturbance cost was added to the MPC problem. An ergonomic
ost is also added, based on the assumed human arm geometry,
nd tested. The supplementary video shows polishing on a flat
urface, corresponding to Fig. 8(b), and a round object to show
he ability to handle orientation.

As seen in Fig. 10, the different cost function terms affected
he rendered impedance along the polishing path. When the
requency-domain disturbance was added, the directionality of
he impedance was significantly affected, resulting in a higher
mpedance cross to the direction of motion, reducing oscillation
ross from the direction of motion. This resulted in a reduction
f high-frequency velocity, as seen in Fig. 11 and Table 3. Adding
10
Fig. 11. Velocity realized in polishing experiments, colors match coordinate
system in Fig. 8(b). The standard cost function is compared with adding
disturbance cost. It can be seen that the disturbance result decreases the
high-frequency (> 10 Hz) velocity of the robot.

a penalty on human joint torques reduced the impedance when
farther from the human, as an equivalent force at a greater
distance requires more shoulder joint torques due to poor force
manipulability. However, the human joint cost did not improve
the vibration suppression as significantly as the disturbance cost
as seen in Table 3.

6.4. Double peg-in-hole

This task involved multiple possible goals from the human,
with the two goals indicated in Fig. 12(a). While the human
objective was not known in advance, the belief was updated
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Fig. 12. Dual peg-in-hole task.
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nline as seen in Fig. 12(b). This update in the belief resulted
n different force trajectories, as seen in Fig. 12(c). This allowed
he planned robot trajectory to respond online to changes in the
uman intent, providing 6-DOF assistance to the human.

. Conclusion

This paper presented an MPC framework for impedance con-
rol in contact with humans and the environment. The use of
aussian Processes to model external force allows explicit consid-
ration of variability in demonstrations (rail assembly), confidence
n the skill (higher covariance outside demonstrations), and un-
ertain environment constraints (Fig. 6(b)). By using a GP model
er human goal, a discrete goal can be estimated online to han-
le uncertainty in human goal. This approach can also consider
requency-domain disturbance models for external perturbations.
y using stochastic trajectories, the impedance parameters can
e directly optimized. Furthermore, it is empirically found that
rajectory covariance in the cost function is helpful for admittance
arameters to converge.
While flexible, the approach has some limitations, many aris-

ng from contact. Learning contact forces from human-led demon-
trations is limited as human forces are not distinguished from
he environment—autonomous data collection is also needed.
hile the hinge function in GPs allows better modeling of stiff

ontact, the integration over these stiff contact models requires a
mall step size, even with implicit integrators. Without suitable
ntegrator parameters, the contact may be lost in the future
rajectory and constraints such as chance or well-damped lose
ffectiveness. These inequality constraints are effectively solved
n an interior-point method, but care must be taken to keep the
roblem feasible, e.g., allowing fast changes in damping to react
o fast changes in projected environment stiffness.

Further limitations arise from the GP models, which cannot
odel certain types of uncertainty—this includes variation in
oise over the state space, variation in human behavior due
o changes in the robot policy, or correlations between DOF in
he force signals. Variation in demonstrations is only captured
hrough optimization of the hyperparameters, which can only
ffect the GP covariance per DOF, not locally. Heteroscedastic GPs,
r fitting non-diagonal elements can address these issues, but
omputationally-efficient methods are needed. Optimization of
he GP parameters needs strong regularization, especially to keep
omparable between DOF or different GP models. Additionally,
Ps as implemented here cannot capture frequency-domain in-
ormation, so adapting to suppress vibration required a separate

odel.
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