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ABSTRACT
One of the manifestations of chirality-induced spin selectivity is the appearance of a magnetocurrent. Magnetocurrent is defined as the
difference between the charge currents at finite bias in a two terminal device for opposite magnetizations of one of the leads. In experiments
on chiral molecules assembled in monolayers the magnetocurrent is dominantly odd in bias voltage, while theory often yields an even one.
From theory it is known that the spin–orbit coupling and chirality of the molecule can only generate a finite magnetocurrent in the presence
of interactions, either of the electrons with vibrational modes or among themselves, through the Coulomb interaction. Here we analytically
show that the magnetocurrent in bipartite-chiral structures mediated through Coulomb interactions is exactly even in the wide band limit and
exactly odd for semi-infinite leads due to the bipartite lattice symmetry of the Green’s function. Our numerical results confirm these analytical
findings.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0148748

I. INTRODUCTION

One of the manifestations of chirality-induced spin selectiv-
ity (CISS) is the appearance of a magnetocurrent. Magnetocurrent
is defined as the difference between the charge currents at finite
bias in a two terminal device for opposite magnetizations of one
of the leads. The Onsager–Casimir reciprocity1–3 prohibits a mag-
netocurrent from being observed in two-terminal junctions in the
linear regime. In fully coherent two-terminal transport, this absence
of a magnetocurrent extends to the nonlinear regime as well; this
is called Büttiker reciprocity.4 In order to see a magnetocurrent
in the nonlinear regime, coherence must be broken; this is done
through interactions of the electrons with vibrational modes or
among themselves, through the Coulomb interaction. It should be
noted that several experiments5–9 seem to show violation of the
Onsager–Casimir reciprocity for reasons that are not yet known. In
some of these experiments, the currents for positive and negative
magnetization show a plateau of zero current around zero bias volt-
age such that the demonstration of the Onsager–Casimir reciprocity
is not really convincing.

In this paper, we focus on the symmetry of the magnetocur-
rent vs bias voltage. In two-terminal transport experiments on

chiral molecules, the magnetocurrent is dominantly odd in bias
voltage5–17 (for an extensive overview, see Ref. 18). In theory, an
even magnetocurrent is found by introducing a decoherence node19

or via the Büttiker voltage probe method.20 A model including spin-
dependent, electron–phonon coupling21 yields an odd magnetocur-
rent. However, the seemingly linear magnetocurrent found in Ref. 21
violates the Onsager–Casimir reciprocity. In our previous paper
on Coulomb interactions,22 we found that Onsager–Casimir reci-
procity is satisfied, and the odd magnetocurrent is mediated by the
strong Coulomb interactions, in combination with the next nearest-
neighbor, spin–orbit coupling, making the lattice non-bipartite.
We found, in the wide-band limit (WBL), that the magnetocurrent
was nearly perfectly odd in the bias voltage, when the Fermi level
was aligned with the energy around which the spectrum is approx-
imately particle– hole symmetric. In this paper, we study the bias
dependence of the magnetocurrent for a bipartite lattice when the
Fermi level is aligned with the energy around which the spectrum is
exactly particle–hole symmetric. We show that, close to this symme-
try point, there is a difference between the bias dependence of the
magnetocurrent for bipartite and non-bipartite lattices.

In most work done on two-terminal transport through molec-
ular junctions, the leads are modeled using the wide-band limit
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(see, e.g., Refs. 19–22); however, for some metals, semi-infinite (SIF)
leads may be more realistic. We will analyze the magnetocurrent
analytically for the WBL and SIF leads by exploiting the bipartite
lattice symmetry and the time reversal property of the Green’s func-
tion. To confirm our analytical findings, we analyze a chiral model
system with a nearest-neighbor spin–orbit coupling and Coulomb
interactions numerically.

In Sec. II, we define our model. In Sec. III, the magnetocur-
rent is analyzed analytically for the WBL and SIF leads. In Sec. III A,
we define the magnetocurrent, in Sec. III B, we define the Green’s
functions in the Hartree–Fock (HFA) and Hubbard One approxi-
mation (HIA), and in Sec. III C, it is specified how these Green’s
functions transform under bipartite lattice symmetry and the time-
reversal operator. In Secs. III D and III E, the bias dependence of the
magnetocurrent is analyzed for the WBL and SIF leads, respectively,
in Sec. IV the numerical results are presented, and we conclude our
work in Sec. V.

II. MODEL DESCRIPTION
The Hamiltonian of a molecular transport junction is given by

H = Hos +HT +HSOC +HU +Hlead−molecule +Hleads, (1)

where Hos is the on-site Hamiltonian, HT is the hopping Hamil-
tonian, HSOC is the hopping Hamiltonian due to spin–orbit cou-
pling, HU describes the Coulomb interactions, Hlead-molecule describes
the coupling of the molecule to the leads, and Hleads describes
the Hamiltonian of the leads. The onsite Hamiltonian is given by
Hos = ∑m εmn̂m; we set this to zero (εm = 0) throughout this paper.
The hopping Hamiltonian is given by HT = −∑m t ĉ†m+1ĉm + h.c.,
where t is the hopping parameter, and h.c. denotes the Hermitian
conjugate. In order to see the effect of bipartite lattice symmetry,
we consider an S-shaped structure,23 see Fig. 1. The spin-dependent
hopping Hamiltonian acting between the nearest neighbor sites is
given by

HSOC = −iλ∑
k
∑
⟨m,n⟩

ĉ†mσ ⋅ (e × dk)ĉn + h.c., (2)

with λ being the spin–orbit coupling parameter. A constant electric
field pointing in the out-of- plane direction generates this nearest-
neighbor, spin-dependent hopping, and the components of σ⃗ are the
Pauli-matrices. Here dk is the hopping vector, k indicates its direc-
tion (longitudinal and transverse), and e indicates the direction of
the electric field. This model is defined on a 2D lattice, where the

FIG. 1. Schematic of the S geometry. Blue dots are sites of the scattering region,
and the red dots are sites on the lead. The black and red links between the sites
represent hopping. Ep is the component of the electric field pointing in the out-of-
plane direction.

indices m, n label the sites. HU contains the Coulomb interactions;
we take those to be on-site:

HU = U∑
m
(n̂m↑ −

1
2
)(n̂m↓ −

1
2
). (3)

Here, U is the Coulomb interaction strength. The factors of 1
2 are

included to make the spectrum of the Hamiltonian particle–hole
symmetric around the energy ε = 0. The S-shape in Fig. 1 has a
C2 symmetry around the out-of-plane direction p, leading to a
difference between the (non-spin flip) spin-up and down trans-
missions.23 Here, Hα

lead−molecule = ∑k,m,s,s′ Vα
ms,ks′c

†
msdK

ks′ + h.c, where
Vα

ms,ks′ is the coupling parameter between electrons on the molecule
and lead α. The Hamiltonian of the non-interacting lead α is
Hα

lead = ∑k,s εα
ksd

†α
ks dα

ks.

III. THEORY
A. Magnetocurrent definition

The transmission for a two-terminal system with Coulomb
interactions depends on the bias voltage V through the elec-
tron densities: TLR(ε, m)→ TLR(ε, m, V) = TLR(ε, m, ⟨nks(m, V)⟩),
where ⟨nks(m, V)⟩ is the average electron density for site k with spin
s, given by Eq. (14), and m is the magnetization of the left lead. The
current into the left lead is then given by (see Appendix F)

I(m, V) =
e
h∫

∞

−∞

TLR(ε, m, V)( f (ε, μL) − f (ε, μR))dε, (4)

where f (ε, μα) = [exp (βα(ε − μα)) + 1]−1, μα is the chemical poten-
tial of lead α, and βα =

1
kBTα

, with Tα the temperature of lead α. We
will restrict ourselves to equal temperatures for the leads βL,R =

1
kBT

= β. The chemical potential of the left and right leads read are
given by μL = EF +

1
2 V , μR = EF −

1
2 V (assuming symmetric capaci-

tive coupling). The transmission is given by

TLR(ε, m, V) = Tr [ΓL(ε, m)G+ΓR(ε)G−(ε, ⟨nks(m, V)⟩, m)]. (5)

Note that from now on, whenever a product of operators occurs,
the arguments of the Green’s functions are written at the end of the
product; so, in Eq. (5), the retarded and advanced Green’s functions
depend on the same argument (ε, ⟨nks(m, V)⟩, m). It can be seen
that we only magnetize the left lead with magnetization m. Using
Eq. (4), we can write the magnetocurrent as

ΔI(m, V) ≡ I(m, V) − I(−m, V)

= ∫

∞

−∞

[TLR(ε, m, V) − TLR(ε,−m, V)]

× ( f (ε, μL) − f (ε, μR))dε. (6)

It is our goal to determine the bias dependence of the mag-
netocurrent ΔI(m, V). If the Coulomb interactions are absent
(U = 0), the magnetocurrent vanishes due to Büttiker’s reciprocity
theorem for two-terminal systems. Thus, we should go beyond the
non-interacting particle picture (U ≠ 0) in order to find a finite
magnetocurrent, in the presence of spin–orbit coupling.20,22,24 This
magnetocurrent can only be non-linear in the bias voltage, since
the linear terms vanish due to the Onsager–Casimir reciprocity1–3

theorem. Due to the absence of vibrational modes in our description,
only the Coulomb interactions can be responsible for the occur-
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rence of a non-zero magnetocurrent, and these interactions manifest
themselves through the electron densities. The bias dependence of
the magnetocurrent, therefore, has its origin in the bias dependence
of the electron densities. We study the bias dependence of the elec-
tron densities in detail by exploiting the bipartite lattice symmetry
and time-reversal property of the Green’s function.

B. Electron Green’s function
The retarded Green’s function of the scattering region, coupled

to leads, in the Hartree–Fock approximation is given by

G+HFA(ε, ⟨nks(m, V)⟩, m)

= [(ε +
U
2
)I −HT −HSOC −Un(⟨nks(m, V)⟩) − Σ(ε, m)]

−1
,

(7)

and, in the Hubbard One approximation, the retarded Green’s
function is given by (see, e.g., Chap. 12 of Haug and Jauho25)

G+HIA(ε, ⟨nks(m, V)⟩, m)

= [[(ε −
U
2
)I +Un(⟨nks(m, V)⟩)]

−1

× (ε −
U
2
)(ε +

U
2
)I −HT −HSOC − Σ(ε, m)]

−1

. (8)

For our analyses of the WBL and SIF leads, we will only magnetize
the left lead with magnetization m. Here the retarded self-energy
is defined as the sum of retarded self-energies for the left and
right leads Σ(ε, m) = ΣL

(ε, m) + ΣR
(ε), and the diagonal matrix

n(⟨nks(m, V)⟩) has elements nks,k′s′ = ⟨nks̄(m, V)⟩δkk′δ ss′ (where s
denotes that spin s is flipped).

In the WBL, the retarded self-energy is purely imaginary and
energy-independent; it is given by ΣWBL(ε, m) = − i

2(ΓL(m) + ΓR).
Only the diagonal matrix elements of lead α that are coupled to the
molecule are nonzero, and they are given by γα(I + pα

z σz). Here, γα is
the coupling strength, and pα

z ∈ [−1, 1] is the magnetic polarization
of lead α.

For SIF leads with onsite energy ε0 and nearest neighbor hop-
ping tlead, the retarded self-energy is given by Σ(ε) = Λ(ε) − i

2 Γ(ε).
Here, Λ(ε), Γ(ε) are both real and for ∣ε − ε0∣ < 2tlead, they are given

by26 Γ(ε, ε0, tlead) =

√

(2tlead)
2
− (ε − ε0)

2, Λ(ε, ε0, t) = ε−ε0
2 and for

∣ε − ε0∣ ≥ 2tlead, they are given by Γ(ε, ε0, tlead) = 0, Λ(ε, ε0, tlead)

= ε−ε0
2 − sign (ε − ε0)

1
2

√

(ε − ε0)
2
− (2tlead)

2.
For semi-infinite leads, we take the coupling para-

meter between electrons on the molecule and the lead to
be a constant real number, tc, and, as a consequence, the
retarded self-energy is given by Σ(ε, ε0, tlead)→ Σ̃(ε, ε0, tlead, tc)

= ∣ tc
tlead
∣
2
[Λ(ε, ε0, tlead) −

i
2 Γ(ε, ε0, tlead)]. When lead α is magnetically

polarized with pα
z ∈ [−1, 1], the bands for up and down spin electron

split such that for the spin-up bands, ε0 → εu = ε0 +mα, and for the
spin-down bands, ε0 → εd = ε0 −mα, where the magnetization of
lead α is defined as mα

= 2tleadpα
z . For a SIF lead, magnetized with

magnetization m and ε0 = 0, Γ and Λ satisfy

Γ(ε, m) = Γ(−ε,−m), (9)

Λ(ε, m) = −Λ(−ε,−m). (10)

Throughout our analyses for SIF leads, we take the onsite energies of
the left and right leads to be zero ε0 = 0.

C. Green’s function: Transformation under
time-reversal—And sub-lattice symmetry

The time reversal operator is given by T = iσyK, where K is the
conjugation operator. Under T, the retarded and advanced Green’s
functions (indicated with a plus and minus, respectively), transform
as follows:

TG±(ε, ⟨nks(m, V)⟩, m)T−1
= G∓(ε, ⟨nks(m, V)⟩,−m). (11)

We emphasize that in Eq. (11), the magnetization m in the argument
of the electron densities does not change sign because the real-
valued electron densities transform under T as T⟨nks(m, V)⟩T−1

= ⟨nks(m, V)⟩.
If the lattice of the system can be separated into sub-lattices A

and B such that there is only hopping possible from site A to site B
and vice versa, then the system is bipartite. In that case, the Green’s
function [HFA Eq. (7) and HIA Eq. (8)] in the wide-band limit and
for semi-infinite (SIF) leads satisfy

G±WBL(ε, ⟨nks(m, V)⟩, m) = −MG∓WBL(−ε, 1 − ⟨nks(m, V)⟩, m)M,
(12)

G±SIF(ε, ⟨nks(m, V)⟩, m) = −MG∓SIF(−ε, 1 − ⟨nks(m, V)⟩,−m)M.
(13)

Here, M is a diagonal matrix, which takes the values +1 for sites
on sublattice A and −1 for sites on sublattice B. Here, the diago-
nal matrices I, n, Σ are invariant under M, and the nearest neigh-
bor hopping matrices change sign under M: MHT,SOCM = −HT,SOC.
Note that particles and holes are interchanged: ⟨nks(m, V)⟩→ 1
− ⟨nks(m, V)⟩, and note that (contrary to WBL leads) for SIF leads,
the magnetization m changes sign under this transformation due to
properties of the self-energies in Eqs. (9) and (10) (see Appendix A).

The electron density for site k with spin s is given by

⟨nks(m, V)⟩ = ∫ (G
+Γ<(ε, m, V)G−(ε, ⟨nks(m, V)⟩, m))

ks,ks
dε
2π

,
(14)

where (with EF = 0)

Γ<(ε, m, V) = ΓL(ε, m) f (ε,
V
2
) + ΓR(ε) f (ε,−

V
2
). (15)

Note that in Eq. (14), both the retarded and advanced Green’s func-
tions depend on the same argument (ε, ⟨nks(m, V)⟩, m), written
at the end of the expression, while Γ< depends on (ε, m, V). Note
that the the Fermi level EF is precisely aligned with the energy ε = 0
around which the density of states, corresponding to these systems,
is particle– hole symmetric. This alignment forms one of the cor-
nerstones of our analyses, the other one being that the capacitive
coupling to the left and right lead is symmetric.

D. Wide band limit
The wide band limit is representative for a gold lead,

with its flat density of states around the Fermi level.27 In
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this section, we analyze the electron density in Eq. (14) and
the magnetocurrent (6) using the time-reversal and bipartite
lattice transformations of the Green’s functions in Eqs. (11)
and (12). From the time-reversal transformation of the Green’s
function (11), T⟨nks(m, V)⟩T−1

= ⟨nks(m, V)⟩ (note that m does
not change sign, since T only flips the spin index of the
matrix) follows the identity G+Γ<(ε, m, V)G−(ε, ⟨nks(m, V)⟩, m)
= T−1G−Γ<(ε,−m, V)G+(ε, ⟨nks(m, V)⟩,−m)T, which we use to
rewrite the RHS of Eq. (14). We then multiply both sides from
the left with T and from the right with T−1, which flips the spin
on the LHS and cancels the time-reversal operators on the RHS.
Equation (14) then becomes

⟨nks(m,V)⟩ =∫
∞

−∞

(G−Γ<(ε,−m, V)G+(ε, ⟨nks(m, V)⟩,−m))
ks,ks

dε
2π

.
(16)

For the WBL, we can rewrite Γ<(ε,−m, V) using the fact that
f (ε, μ) + f (−ε,−μ) = 1. The electron density in Eq. (16) can thus
be expressed as

⟨nks(m, V)⟩ = ∫
∞

−∞

(G−[ΓL(−m) + ΓR]

×G+(ε, ⟨nks(m, V)⟩,−m))
ks,ks

dε
2π

− ∫

∞

−∞

(G−Γ<WBL(−ε,−m,−V)

×G+(ε, ⟨nks(m, V),−m))
ks,ks

dε
2π

. (17)

From the properties of the HFA and HIA Green’s functions,
defined in Eqs. (7) and (8), it follows that they satisfy the identity
G−[ΓL + ΓR]G+ = G+[ΓL + ΓR]G−. This identity is used to rewrite
the first term on the RHS, which is recognized to be equal to 1,
because it can be interpreted as an electron density on site k with spin
s, where the chemical potentials of the left and right leads are at infin-
ity ( f (ε, μ→∞) = 1), yielding a filled level. Thus, this expression
can be rewritten as

1 − ⟨nks(m, V)⟩ = ∫
∞

−∞

(G−Γ<WBL(−ε,−m,−V)

×G+(ε, ⟨nks(m, V)⟩,−m))
ks,ks

dε
2π

. (18)

Next, we use the bipartite lattice symmetry. First, we multiply the
LHS and the RHS from the left and right with the matrix M. The
LHS does not change. On the RHS, we insert the identity matrix
I =MM between the matrices of the product and finally use Eq. (12)
to transform the Green’s functions. The integration variable is
changed as ε→ −ε to obtain

1 − ⟨nks(m, V)⟩ = ∫
∞

−∞

(G+Γ<WBL(ε,−m,−V)

×G−(ε, 1 − ⟨nks(m, V)⟩,−m))
ks,ks

dε
2π

. (19)

Note that Eq. (19) is, except for the density dependence of the
Green’s functions, almost the same as the expression for the densities
⟨nks(−m,−V)⟩:

⟨nks(−m,−V)⟩ = ∫
∞

−∞

(G+Γ<WBL(ε,−m,−V)

×G−(ε, ⟨nks(−m,−V)⟩,−m))
ks,ks

dε
2π

. (20)

Equations (19) and (20) describe self-consistency equations for
the respective densities. Self-consistent solutions of Eq. (20) are,
by definition, solutions of Eq. (19) and vice versa. From this we
conclude that

1 − ⟨nks̄(m, V)⟩ = ⟨nks(−m,−V)⟩. (21)

Now, we turn to the magnetocurrent. The transmission is given
by Eq. (5) and for WBL leads, the ΓL,R is energy-independent. The
time-reversal operator allows us to rewrite this expression as

TLR(ε, m, V) = Tr [ΓL(m)G−ΓRG+(ε, ⟨nks(m, V)⟩,−m)], (22)

since T⟨nks(m, V)⟩T−1
= ⟨nks(m, V)⟩. The bipartite symmetry of the

Green’s function [Eq. (12)], in combination with ⟨nks(m, V)⟩ = 1
− ⟨nks(−m,−V)⟩ [Eq. (21)], implies

TLR(ε, m, V) = Tr [ΓL(−m)G+ΓRG−(−ε, ⟨nks(−m,−V)⟩,−m)].
(23)

The expression on the RHS is recognized as the transmission for
a negative magnetization and negative bias voltage and negative
energy: TLR(−ε,−m,−V). Provided that the bias window is centered
around the symmetric point ε = 0, it follows from the definition of
the current [Eq. (4)] and this property of the transmission that

I(−m,−V) = −I(m, V). (24)

Then, the magnetocurrent satisfies ΔI(m, V) = I(m, V)
– I(−m, V) = I(m,−V) – I(−m,−V) = ΔI(m,−V). Therefore,
the magnetocurrent is a purely even function of the bias voltage
ΔIWBL(m, V) = ΔIWBL(m,−V).

E. Semi—Infinite leads
Here, we analyze the electron densities for SIF leads. First, we

rewrite Γ<(ε, m, V) using f (ε, μ) + f (−ε,−μ) = 1 and using Eq. (9)
to rewrite ΓL(ε, m) and ΓR(ε). The electron density in Eq. (16) is
then rewritten as

1 − ⟨nks(m, V)⟩ = ∫
∞

−∞

(G−Γ<SIF(−ε, m,−V)

×G+(ε, ⟨nks(m, V)⟩,−m))
ks,ks

dε
2π

. (25)

Note the opposite sign of the magnetization m in Γ<SIF in Eq. (25)
with respect to that occurring in Eq. (18). Again, we apply the matrix
M to both sides and insert the identity matrix I =MM between the
matrices of this product and use Eq. (13) to transform the Green’s
functions. Changing the integration variable as ε→ −ε gives

1 − ⟨nks(m, V)⟩ = ∫
∞

−∞

(G+Γ<SIF(ε, m,−V)

×G−(ε, 1 − ⟨nks(m, V)⟩, m))
ks,ks

dε
2π

. (26)

The RHS of this self-consistency equation has the same form as the
one for ⟨nks(+m,−V)⟩. From this we conclude that

1 − ⟨nks̄(m, V)⟩ = ⟨nks(m,−V)⟩. (27)
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We now turn to the transmission, which is given by Eq. (5).
For SIF leads, the ΓL,R is energy dependent. The Green’s functions
transform under time-reversal symmetry according to Eq. (11) and
the transformation under bipartite lattice symmetry for semi-infinite
leads according to Eq. (13). Combining these two transformations,
we obtain for the transmission,

TLR(ε, m, V) = Tr [ΓL(ε,−m)G+ΓR(ε)G−(−ε, 1 − ⟨nks(m, V)⟩, m)],

= Tr [ΓL(−ε, m)G+ΓR(−ε)G−(−ε, ⟨nks(m,−V)⟩, m)],

= TLR(−ε, m,−V). (28)

In the last step, we rewrite ΓL(ε,−m) and ΓR(ε) using Eq. (9), and
we use the assumption that the electron density satisfies Eq. (27). The
RHS of Eq. (28) is recognized as the transmission for negative bias
and negative energy. If the bias window is centered around the sym-
metric point ε = 0, then from the definition of the current Eqs. (4)
and (28), it follows that I(m, V) = −I(m,−V), and, thus, that the
magnetocurrent is an odd function of bias voltage ΔISIF(m, V)
= −ΔISIF(m,−V). In Appendix B, we show that if the onsite energies
of the left and right leads are equal to the chemical potential of the
respective leads (ε0,L → μL = EF +

V
2 and ε0,R → μR = EF −

V
2 ), then

still the magnetocurrent is an exactly odd function of bias voltage
for SIF leads.

IV. NUMERICAL RESULTS
We use parameters corresponding to a molecule consisting of

sp2-hybridized carbon atoms, to resemble the condition that we have
one electron per site. The hopping parameter then is t = 2.4 eV,28

and the onsite Coulomb interaction parameter UC = 10.06 eV.29

However, due to the image-charge effect,30 the Coulomb interaction
strength will be lowered to an extent, which sensitively depends on
the molecule–lead separation. In our case, it is not known what the
exact value of U will be due to the image-charge effect; probably we
are in the regime where U/t > 1, making the HIA more appropriate.
However, to show that our analytical result is independent of the
approximation, we perform a numerical calculation for both the
HFA and the HIA. We vary U between 0.5t and 3t, where for small
values of the Coulomb interaction strength (U/t ≤ 1), the HFA is
used, and, for large values (U/t > 1), the HIA is used. Furthermore,
we take T = 300 K. The spin–orbit coupling parameter is taken to be
λ/t = 0.1; this is rather large; however, we found that symmetry of
the bias dependence of the magnetocurrent is not affected by the size
λ. The magnitude of the magnetocurrent, of course, scales directly
with λ. In the WBL, the coupling parameter to the leads is taken to
be γL,R = 0.5 eV,27 and pL

z = 0.5. For SIF leads, the hopping para-
meter of the left and right leads is taken to be tlead = 3t, the coupling
parameter tcoup =

1
2
√

tlead, the magnetic polarization of the left lead
is taken to be pL

z = 0.8, and the onsite energies of the left and right
leads are equal to the chemical potential of the respective leads (ε0,L
→ μL =

V
2 and ε0,R → μR = −

V
2 . We always take the Fermi level

EF = 0. We have implemented a non-equilibrium transport
code, which can be found in https://github.com/khhuisman/
Coulomb_Bipartite.git, and for details regarding the calculation of
the electron densities, see Appendix E.

In Figs. 2 and 3, the magnetocurrent is plotted as a function
of bias voltage for leads in the WBL and Green’s function in the

FIG. 2. The WBL magnetocurrent, ΔIWBL(m, V), is plotted as a function of bias
voltage in the HFA.

HFA and the HIA, respectively. Both figures show that the magne-
tocurrent is an even function of the bias voltage. This is explained as
follows: We have found that the electron densities in the WBL satisfy
Eq. (21), which we rewrite in the form

1 − ⟨nks(m, V)⟩ − ⟨nks(−m,−V)⟩ = 0. (29)

In our numerical calculations, we find that the LHS of this equa-
tion vanishes indeed (except for numerical errors that can be made
small), which is due to the bipartite lattice symmetry of the Green’s
functions with WBL leads. In Sec. III D, we showed the magne-
tocurrent then is an even function of the bias voltage. We varied the

FIG. 3. The WBL magnetocurrent, ΔIWBL(m, V), is plotted as a function of bias
voltage in the HIA.
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FIG. 4. The SIF magnetocurrent, ΔISIF(m, V), is plotted as a function of bias
voltage in the HFA.

value of U/t for both the HFA and HIA and found that the magne-
tocurrent remained dominantly even. When an asymmetry between
the coupling parameter to the left and right leads γL ≠ γR is intro-
duced, the magnetocurrent remains a dominantly even function of
bias voltage, as expected (see Appendix C). In Figs. 4 and 5, the mag-
netocurrent for SIF leads, ΔISIF(m, V), is plotted as a function of bias
voltage for the HFA and the HIA, respectively. In both cases, the
magnetocurrent is a dominantly odd function of bias voltage. We
have found that the electron densities for SIF leads satisfy Eq. (27),
which we rewrite in the form

1 − ⟨nks̄(m, V)⟩ − ⟨nks(m,−V)⟩ = 0. (30)

FIG. 5. The SIF magnetocurrent, ΔISIF(m, V), is plotted as a function of bias
voltage in the HIA.

Again, we find in our numerical calculations, that the LHS of this
equation vanishes. This is a consequence of the bipartite lattice sym-
metry of the Green’s function with SIF leads and it explains why we
find an odd magnetocurrent, as discussed in Sec. III E. Again, when
an asymmetry in the coupling parameter tc is introduced between
the left and the right leads, we find that the magnetocurrent, as well
as the odd function for SIF leads (see Appendix C) remains.

Finally, we demonstrate time-reversibilty for the densities in
equilibrium. As in our previous work on Coulomb interactions,22

our numerical results show that in equilibrium, the electron densities
satisfy time-reversal symmetry ⟨nks(m, V = 0)⟩ = ⟨nks(−m, V = 0)⟩,
which is attributed to the Onsager–Casimir reciprocity. In
Appendix D, we analytically show that the electron densities always
satisfy time-reversal symmetry in equilibrium. Furthermore, we find
that the magnetocurrent vanishes if the spin–orbit coupling para-
meter is set to zero and that the largest size of the effect, defined as
PC =

I(m)−I(−m)
I(m)+I(−m) , is of the order 0.1%. A more minimal model of the

S-shape (in Fig. 1), consisting of a chain with four sites and with a
“kink” present between the second and the third sites, also shows a
finite magnetocurrent that satisfies the same symmetries.

V. CONCLUSION
In this work, we studied the voltage dependence of the magne-

tocurrent for systems with Coulomb interactions (in the HFA and
HIA) and a nearest neighbor spin–orbit coupling. We showed ana-
lytically that for a Fermi level that is aligned with energy around
which the density of states is particle–hole symmetric and a capac-
itive coupling of the molecule to the lead that is symmetric, the
magnetocurrent is exactly even in the WBL and exactly odd for
SIF leads by exploiting the bipartite lattice symmetry of the Green’s
function. Our numerical calculations support this result. To test
the predicted behavior of the magnetocurrent experimentally, a gate
voltage can be used to align the energy around which the density of
states is particle–hole symmetric with the Fermi-level. The WBL is
appropriate for gold electrodes near the Fermi-level; thus, provided
that the molecule is approximately particle–hole symmetric, an even
magnetocurrent is expected. An asymmetry in the coupling from the
molecule to the right and left leads (γL ≠ γR) does not affect the sym-
metry properties either, as shown in Appendix C. In our previous
work on Coulomb interactions,22 we modeled leads in the WBL, and
we had a next-nearest neighbor spin–orbit coupling mechanism that
destroys the bipartite lattice symmetry. When the Fermi level was
aligned with the energy around which the density of states is approx-
imately particle–hole symmetric and the capacitive coupling of the
molecule to the lead that was symmetric, we found a nearly perfect
odd magnetocurrent. The absence of bipartite lattice symmetry in
our previous work is the reason why we find a behavior of the mag-
netocurrent different than that in this paper, where ΔIWBL is even in
bias voltage.
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APPENDIX A: GREEN’S FUNCTION: PARTICLE–
HOLE TRANSFORMATION

In this section, we will show that the Hartree–Fock Green’s
function in Eq. (7) transforms as in Eqs. (12) and (13). In Eq. (7),
the hopping matrices change sign under particle–hole transforma-
tion MHT,SOCM = −HT,SOC, while the self-energy Σ(ε, m) and the
electron density matrix n do not, because they are diagonal matri-
ces MΣ(ε, m)M = Σ(ε, m) and MnM = respectively. Therefore, in
general, the HFA Green’s function transforms as

−MG+HFA(ε, ⟨nis(m, V)⟩, m)M

= −[εI +HT +HSOC −Un +
U
2

I − Σ(ε, m)]
−1

,

= [−εI −HT −HSOC −U(I − n) +
U
2

I + Σ(ε, m)]
−1

. (A1)

In the WBL, the retarded self-energy is purely imaginary
and does not depend on energy Σ(ε, m) = − i

2 Γ(m); therefore,
Σ(ε, m) = −Σ†

(−ε, m). From this we obtain −MG+HFA,WBL
(ε, ⟨nis(m, V)⟩, m)M = G−HFA,WBL(−ε, 1 − ⟨nis(m, V)⟩, m).

For SIF leads, the retarded self-energy is given by
Σ(ε, m) = Λ(ε, m) − i

2 Γ(ε, m). In the region ∣ε −m∣ < 2tlead Λ, Γ, it
satisfies Λ(ε, m) = ε−m

2 = −
−ε−(−m)

2 = −Λ(−ε,−m) and Γ(ε, m)

=

√

(2tlead)
2
− (ε −m)2

= Γ(−ε,−m). From this it follows that
Σ(ε, m) = −[Λ(−ε,−m) + i

2 Γ(−ε,−m)] = −Σ†
(−ε,−m). In the

region ∣ε −m∣ ≥ 2tlead, Γ(ε, m) = 0; therefore, Σ(ε, m) = ε−m
2

− sign (ε −m)
√

(ε −m)2
− (2tlead)

2
= −Λ(−ε,−m)† = −Σ†

(−ε,−m).
In conclusion, for SIF leads, the reversal of the energy sign in
the retarded self-energy is accompanied by a reversal of the mag-
netization and Hermitian conjugation Σ(ε, m) = Σ†

(−ε,−m),
which leads to the relation −MG+HFA,SIF(ε, ⟨nis(m, V)⟩, m)
M = G−HFA,SIF(−ε, 1 − ⟨nis(m, V)⟩,−m). One can also show
these relations for the Green’s function in the Hubbard One
approximation.

APPENDIX B: SEMI-INFINITE LEADS: VOLTAGE
DEPENDENCE OF THE ONSITE ENERGY

In order to keep leads charge-neutral, the onsite energy of
the lead shifts with the bias voltage such that ε0,L = EF +

V
2 and

ε0,R = EF −
V
2 . The retarded Green’s function becomes explicitly volt-

age dependent via the retarded self-energy Σ(ε, m)→ Σ(ε, m, V).
Since we use the convention that EF = 0, it follows from the
properties of SIF leads (see Sec. III B) that Γ, Λ now satisfy

Γ(ε, V , m) = Γ(−ε,−V ,−m), (B1)

Λ(ε, V , m) = −Λ(−ε,−V ,−m), (B2)

where Γ(ε, V , m) =
√

(2tlead)
2
− (ε −m − V

2 )
2 and Λ(ε, V , m)

=
ε−m− V

2
2 for ∣ε −m − V

2 ∣ < 2tlead and Γ(ε, V , m) = 0, and Λ(ε, V , m)

=
ε−m− V

2
2 − 1

2 sign (ε −m − V
2 )

√

(ε −m − V
2 )

2
− (2tlead)

2 for
∣ε −m − V

2 ∣ ≥ 2tlead. Due to the properties in Eqs. (B1) and (B2), the
bipartite lattice transformation for Green’s functions now becomes

G±SIF(ε, ⟨nks(m, V)⟩, m, V)

= −MG∓SIF(−ε, 1 − ⟨nks(m, V)⟩,−m,−V)M. (B3)

Note that in Eq. (B3), we added an explicit argument for the bias
voltage V to indicate that the self-energy is voltage dependent.

The electron densities Eq. (14) are now given by

⟨nks(m, V)⟩ =∫ (G
+Γ<SIF(ε, m, V)G−(ε, ⟨nks(m, V)⟩, m, V))

ks,ks
dε
2π

,
(B4)

where (for EF = 0)

Γ<SIF(ε, m, V) = ΓL(ε, V , m) f (ε,
V
2
) + ΓR(ε, V) f (ε,−

V
2
). (B5)

Note that ΓL,R is voltage dependent quantities here. We use the time-
reversal operator to rewrite Eq. (B4) as

⟨nks(m, V)⟩ = ∫
∞

−∞

(G−Γ<(ε,−m, V)

×G+(ε, ⟨nks(m, V),−m, V))
ks,ks

dε
2π

. (B6)

Now, we rewrite Γ<(ε,−m, V) by using the fact that f (ε, μ)
+ f (−ε,−μ) = 1 and that ΓL(ε, m, V) and ΓR(ε, V) transform as in
Eq. (B1). Analogous to Sec. III E, the electron density in Eq. (B6) is
then rewritten as

1 − ⟨nks(m, V)⟩ = ∫
∞

−∞

(G−Γ<SIF(−ε, m,−V)

×G+(ε, ⟨nks(m, V)⟩,−m, V))
ks,ks

dε
2π

. (B7)

We then use the bipartite lattice symmetry. First, we multi-
ply the LHS and the RHS from the left and right with the matrix
M, respectively. The LHS does not change. On the RHS, we insert the
identity matrix I =MM between the matrices of this product and use
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Eq. (B3) to transform the Green’s functions. The integration variable
changes as ε→ −ε to obtain

1 − ⟨nks(m, V)⟩ = ∫
∞

−∞

(G+Γ<SIF(ε, m,−V)

×G−(ε, 1 − ⟨nks(m, V)⟩, m,−V))
ks,ks

dε
2π

. (B8)

Equation (B8) is identical to the self-consistency equation of
⟨nks(+m,−V)⟩. From this we conclude that

1 − ⟨nks̄(m, V)⟩ = ⟨nks(m,−V)⟩. (B9)

We now turn to the transmission, which is given by Eq. (5)
and for SIF leads, ΓL,R is energy dependent. The Green’s func-
tions transform under time-reversal symmetry, as in Eq. (11), and
the transformation under particle hole–symmetry for semi-infinite
leads, as in Eq. (13). Combining these two transformations on the
transmission, we obtain

TLR(ε, m, V) = Tr [ΓL(ε,−m, V)G+ΓR(ε, V)

×G−(−ε, 1 − ⟨nks(m, V)⟩, m,−V)]. (B10)

We then use Eq. (B1) to rewrite ΓL(ε,−m, V) and ΓR(ε, V)
and find that the electron density satisfies Eq. (B9), to obtain
Tr [ΓL(−ε, m,−V)G+ΓR(−ε,−V)G−(−ε, ⟨nks(m,−V)⟩, m,−V)],
which is recognized as the transmission for negative bias negative
energy. Thus, we conclude that

TLR(ε, m, V) = TLR(−ε, m,−V). (B11)

If the bias window is centered around the energy ε = 0, from the
definition of the current, Eqs. (4) and (B11), it follows that I(m, V)
= −I(m,−V), and, thus, that the magnetocurrent is an odd function
of bias voltage ΔISIF(m, V) = −ΔISIF(m,−V).

APPENDIX C: ASYMMETRIC COUPLING

In the molecular junction, there is often an asymmetry in the
coupling of the molecule to the left and right leads i.e., γL ≠ γR.
In the wide-band limit, we quantify this asymmetry by introduc-
ing the dimensionless parameter χ = γL−γR

γL+γR
. In Fig. 6, the wide-band

limit magnetocurrent is plotted as a function of bias voltage for
different values of this parameter χ = −0.6, 0, 0.6 [corresponding to
(γL, γR) = (0.5, 2), (0.5, 0.5), (2, 0.5), respectively], in the HFA for
U = 2t, pz = 0.5. It clearly shows that the magnetocurrent is an even
function of bias voltage, independent of the value of χ.

For SIF leads, we quantify this asymmetry by introducing the
dimensionless parameter χ2 =

tL
c−tR

c
tL
c+tR

c
, where tα

c is the coupling para-
meter for electrons on the molecule on electrons on lead α. In Fig. 7,
the SIF magnetocurrent is plotted as a function of bias voltage for

pz = 0.8, tL,R
lead = 2t, tR

c =
1
2

√

tR
lead, tL

c = 2
√

tL
lead and U

t = 0.5, 1 in the
HFA. The figure shows that the magnetocurrent remains an odd
function of voltage. For the HIA, the magnetocurrent remains an
even function of bias voltage in the WBL and an odd function of bias
voltage for SIF leads, when an asymmetry in the coupling constant
is introduced.

FIG. 6. The magnetocurrent in the HFA is plotted as a function of bias voltage
when an asymmetry between the coupling in the left and right leads is introduced
for WBL leads.

FIG. 7. The magnetocurrent in the HFA is plotted as a function of bias voltage
when an asymmetry between the coupling in the left and right leads is introduced
for SIF leads.

APPENDIX D: TIME-REVERSAL SYMMETRY
IN EQUILIBRIUM

Here, we show analytically that in equilibrium, the electron
densities satisfy time-reversal symmetry. To be unambiguous, we
define equilibrium as V = 0 (i.e., μL = μR) and take equal tempera-
tures for both leads (i.e., TL = TR); if one of these conditions is vio-
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lated, we say that the system is out of equilibrium.31 In equilibrium,
the electron density [Eq. (14)] is given by

⟨nks(m, V = 0)⟩ = ∫
∞

−∞

f 0(G+[ΓL + ΓR]

×G−(ε, ⟨nks(m, V = 0)⟩, m))
ks,ks

dε
2π

, (D1)

where we define f 0 = f L,R(E)∣V=0 = [exp (β(E − EF)) + 1]−1.
From the time-reversal property of the Green’s func-
tion Eq. (11) and T⟨nks(m, V = 0)⟩T−1

= ⟨nks(m, V = 0)⟩,
follows the identity G+[ΓL + ΓR]G−(ε, ns(m, V = 0), m)
= T−1G−[ΓL + ΓR]G+(ε, ns(m, V = 0),−m)T, which we use to
rewrite the RHS of Eq. (D1). We then multiply both sides from the
left with T and from the right with T−1, which flips the spin on the
LHS and cancels the time-reversal operators on the RHS. We then
use the identity G−[ΓL + ΓR]G+ = G+[ΓL + ΓR]G−, which follows
from the definition of the Green’s functions in Eqs. (7) and (8), to
rewrite the RHS, and we obtain

⟨nks(m, V = 0)⟩ = ∫
∞

−∞

f 0(G+[ΓL + ΓR]

×G−(ε, ⟨nks(m, V = 0)⟩,−m))
ks,ks

dε
2π

. (D2)

The self-consistency equation above in Eq. (D2) is the same as the
self-consistency equation of ⟨nks(−m, V = 0)⟩. Therefore, we obtain
the relation

⟨nks(m, V = 0)⟩ = ⟨nks(−m, V = 0)⟩. (D3)

which is recognized as the time-reversal symmetry in equilibrium
since both spin and magnetization change sign. In our previous work
on Coulomb interactions,22 we showed that time-reversal symme-
try in equilibrium leads to the fulfillment of the Onsager–Casimir
reciprocity. Note that this conclusion holds for bipartite and
non-bipartite lattices and also holds for any value of Fermi
level EF.

Perhaps it seems like a circular argument presented here since
we use the time-reversal operator to prove that time-reversal sym-
metry is satisfied in equilibrium. However, no such circular argu-
ment is presented. If the temperatures in the left and right leads
are unequal (i.e., out of equilibrium), the electron densities, after
applying the time-reversal operator left and right, become

⟨nks(m, V = 0)⟩ =∫
∞

−∞

(G−[ΓL f L + ΓR f R]

×G+(ε, ⟨nks(m, V = 0)⟩,−m))
ks,ks

dε
2π

. (D4)

Note that the Green’s functions here are reversed with
respect to the ones in Eq. (D1). Before, we could use the
identity G−[ΓL + ΓR]G+ = G+[ΓL + ΓR]G−. However, in
this case, we cannot reverse the Green’s functions since
G−[ΓL f L + ΓR f R]G+ ≠ G+[ΓL f L + ΓR f R]G− and, therefore,
⟨nks(m, V = 0)⟩ ≠ ⟨nks(−m, V = 0)⟩. Therefore, we conclude that
for unequal temperatures in the left and right leads (i.e., “out
of equilibrium”). the electron densities do not satisfy this time
reversal property, consistent with our numerical calculations, which
show a very small deviation from TRS in that case and a linear
magnetocurrent in that case.

APPENDIX E: SELF-CONSISTENT DETERMINATION
OF THE ELECTRON DENSITIES

In our transport code, we determine the electron density as
follows: Suppose we want to calculate the electron density for
the decreasing or increasing bias voltages {0, V1, V2, . . .}, (∣V i+1∣

> ∣V i∣). First of all, we start our self-consistent calculation at zero
bias voltage, where we expect that every site is approximately half-
filled; therefore, we take this as an initial guess (⟨nin,m=0

ks (V = 0)⟩
= 1

2). Then, we self-consistently determine the electron densities for
V = 0 and obtain the converged result ⟨nconverged

ks (V = 0)⟩. We then
use these values as an initial guess for the next bias voltage V1,
⟨nin,m=0

ks (V = V1)⟩ = ⟨n
converged
ks (V = 0)⟩. We always use the output of

a self-consistent calculation as the initial guess for the next bias volt-
age ⟨nin,m=0

ks (V = Vi+1)⟩ = ⟨n
converged
ks (V = Vi)⟩ to adiabatically con-

nect the two solutions. This procedure is done separately for positive
and negative biases and both times we start in V = 0. Now follows
a description of a self-consistent loop for bias voltage V i. Given
an initial guess for bias voltage V i we iterate over Eq. (14), mmax
times. Every iteration m has an input and an output electron density
and as convergence criterion for the mth iteration, we use ∣⟨nin,m

ks ⟩

− ⟨nout,m
ks ⟩∣ < 10−4. If a density did not converge within the maximum

number of iterations mmax, we discard it. Furthermore, we employ
linear mixing of the electron densities, meaning that the input for
iteration m + 1 is a linear combination of the input and output
of iteration m, ⟨nin,m+1

ks (Vi)⟩ = (1 − α)⟨nout,m
ks (Vi)⟩ + α⟨nin,m

ks (Vi)⟩,
characterized by the parameter α ∈ [0, 1).

The Hamiltonian of the isolated molecule, without interactions
(U = 0), is defined as H0 = HT +HSOC and is constructed with the
Kwant code32 and the Qsymm code.33

APPENDIX F: FORMULA FOR THE CURRENT

In the work of Meir and Wingreen,34 the current into the left
lead is given by their Eq. (5):

IL =
ie
h ∫

Tr [ΓL(ε)[ f (ε, μL)(G+(ε) −G−(ε)) +G<(ε)]]dε. (F1)

We now show that G+(ε) −G−(ε) = −iG+(ε)
(ΓL(ε) + ΓR(ε))G−(ε) in the HIA. Let us first rewrite G±(ε)
in Eq. (8):

G+(ε) =
1

g0(ε)
−1
− Σ(ε)

, G−(ε) =
1

(g0(ε)
†
)
−1
− Σ†
(ε)

, (F2)

where we define: g0(ε)
−1
= [(ε − U

2 )I +Un]−1
(ε − U

2 )(ε +
U
2 )

I −HT −HSOC, where the matrix n has ele-
ments nks,k′s′ = ⟨nks̄⟩δkk′δss′ (where s̄ denotes that
spin s is flipped). Consequently, G+(ε) −G−(ε)
= G+(ε)(Σ(ε) − Σ†

(ε) + (g0(ε)
†
)
−1
− g0(ε)

−1
)G−(ε). Since

g0(ε) contains no anti-Hermitian parts, g0(ε) is a Hermitian
matrix. Here, Σ(ε) = ΣL(ε) + ΣR(ε) is the usual retarded self-energy
of the leads, and ΓL,R(ε) = −i(ΣL,R(ε) − ΣL,R(ε)†). Consequently,
G+(ε) −G−(ε) = −iG+(ε)(ΓL(ε) + ΓR(ε))G−(ε) in the HIA.

Equation (F1) reduces to the Landaur–Büttiker formula in
the case that the lesser Green’s function is given by G<(ε)
= iG+(ε)(ΓL(ε) f (ε, μL) + ΓR(ε) f (ε, μR))G−(ε) and the retarded
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and advanced Green’s functions are related as G+(ε) −G−(ε)
= −iG+(ε)(ΓL(ε) + ΓR(ε))G−(ε). We always assume this expres-
sion for the lesser Green’s function. The latter expression holds
for the HFA and HIA, justifying the use of the Landauer–Büttiker
formula.

In the analysis of the electron–phonon coupling, the
Lang–Firsov transformation is usually applied.35 This induces a
coupling between the vibrational system on the molecule and the
leads, preventing us from requiring the leads to be in equilibrium,
which is necessary for writing Eq. (F1).
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