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Abstract
Objective. In this work, we propose a content-based image retrieval (CBIR)method for retrieving dose
distributions of previously planned patients based on anatomical similarity. Retrieved dose
distributions from thismethod can be incorporated into automated treatment planningworkflows in
order to streamline the iterative planning process. AsCBIR has not yet been applied to treatment
planning, ourwork seeks to understandwhich currentmachine learningmodels aremost viable in
this context.Approach.Our proposedCBIRmethod trains a representationmodel that produces
latent space embeddings of a patient’s anatomical information. The latent space embeddings of new
patients are then compared against those of previous patients in a database for image retrieval of dose
distributions. All source code for this project is available on github.Main results.The retrieval
performance of various CBIRmethods is evaluated on a dataset consisting of both publicly available
image sets and clinical image sets fromour institution. This study compares various encoding
methods, ranging from simple autoencoders tomore recent Siamese networks like SimSiam, and the
best performancewas observed for themultitask Siamese network. Significance.Our current results
demonstrate that excellent image retrieval performance can be obtained through slight changes to
previously developed Siamese networks.We hope to integrate CBIR into automated planning
workflow in futureworks.

1. Introduction

1.1. Background
Theworkflow for radiotherapy treatment planning typically involves an iterative, trial-and-error process for
manually navigating trade-offs (Xing et al 1999, Sethi 2018). Treatment planning optimization containsmultiple
objectives, which are often conflicting. For this reason, no single plan can optimize performance on all objectives
at once, and treatment planning can instead be conceptualized as navigating the set of Pareto optimal,
nondominated solutions (Craft et al 2006, 2012,Huang et al 2021).

In an effort to reduce active planning times in treatment planning, there has been growing interest in
automatedmethods.Many of thesemethods (such as theMetaPlanner (MP) framework, the expedited
constrained hierarchical optimization (ECHO) system, iCycle, etc) can be interpreted as navigating the Pareto
frontwhile guided by some utility function (Breedveld et al 2012,Hussein et al 2018, Zarepisheh et al 2019,
Huang et al 2022). Such utility functions are typically designed around clinical protocols and incorporate various
dosemetrics to gauge treatment plan quality.
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At the same time, with recent advancements inmachine learning research, interest in data-driven automated
treatment planning approaches has begun to surge aswell.Many of these data-driven approaches have elected to
replace conventional utility functions entirely, instead using an end-to-end deep learningmodel that produces
predictions of dose distributions or dose volume histograms (DVHs) (Hussein et al 2018,Ma et al 2019, Shen
et al 2020, Babier et al 2021,Momin et al 2021). In principle, data-drivenmethods attempt to capture the
collective expertise of numerous treatment planners in theirmodel predictions. Yet, due to the relative data
scarcity inmedical imaging and treatment planning datasets, data-drivenmethods can havemany drawbacks in
practice. Thus, itmay not be prudent to rely entirely on end-to-endmachine learningmodels. As a compromise,
we propose a cascaded approach that first performs content-based image retrieval (CBIR) and then subsequently
automated treatment planning.

1.2. Content-based image retrieval
Content-based image retrieval refers to a category ofmethods that retrieve relevant images from a database
based on analysed content of a query image. In the context of treatment planning, the problem can be framed as
searching a database for relevant treatment plan information given a new patient’s anatomical information (i.e.
medical images, contours, etc), called the query image. During deployment of a CBIRmethod in a clinical
setting, the new patient’s treatment plan has obviously not been created yet, soCBIR involves analysis of
anatomical information tofind themost relevant previously treated patient(s). The dose information of one or
more previously treated patients that have been deemed relevant can then be used in subsequent automated
planning.

CBIR uses amachine learningmodel to create latent space representations of the query image and images
from the database (Zin et al 2018, Latif et al 2019,Dubey 2021). After computing a distance function (i.e.
Euclidean distance) between the query image representation and representations of the database images, we can
then sort by the closest distances (Nearest neighbour search) and return the k closest images to the query (Top-k
images).

Unlike end-to-endmethods that usemachine learning predictions for the entire workflow, CBIR only
utilizes deep learning for image representations and has several potential advantages. For instance, CBIR
methods can bemore easily adapted to clinical protocols beyond the ones seen during training. AdaptingCBIR
to newprotocols or guidelines simply involves filtering the database that the retrievalmethod selects from to
only include patients that follow those new desired protocols. Figure 1 provides a visualization of database
filteringwhen deployingCBIR in a clinical setting. For the evaluation or benchmarking purposes of this
manuscript, all results will be provided for an unfiltered database.

The end-to-endmachine learningmethods used for treatment planning have the potential to reap the
benefits of amortized inference for improved efficiency as compared to conventionalmethods. However, due to
the practical limitations of acquiring large, heterogeneous datasets in treatment planning, using end-to-end
methodsmay not be advisable. CBIR provides a compromise between end-to-endmachine learningmethods
and conventional automated planningmethods. To the best of our knowledge, CBIR has not previously been
applied to treatment planning. As such, this work seeks to answer fundamental questions around selecting viable
machine learningmodels for CBIR.Here, we compare several potential image encodingmodels for CBIR and
describe theirmethodologies below.

Figure 1.Visualizes theworkflow forCBIR. Given a new patient during treatment planning (i.e. query image) themethod searches a
filtered database to retrieve similar images. The corresponding dose distributions can then be used in subsequent automated planning.
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2.Methods

2.1. Content-based image retrieval
Content-based image retrieval aims to search a database for images of similar content (i.e. anatomical
information) to a query image. Figure 1 provides the overall CBIRworkflow as applied to treatment planning. A
database of previous treatment plans isfirst created and stored. This database contains each patient’s anatomical
information, which includes their computed tomography (CT) images and relevant contours, as well as their
dose distribution. After training the image encodingmodel, the CBIRmethod is supplied a newpatient’s
anatomical information, the query image, which it encodes into a latent space embedding that is compared to
embeddings of other patients in the database. Image embeddings (i.e. one-dimensional vector representations of
each image in the latent space)with the closest Euclidean distance are then retrieved from the database (Nearest
neighbour search), and the corresponding dose distribution can be used in subsequent automated planning.
During deployment or real-world usage, the database isfirstfiltered to contain planswith the relevant institution
and clinical protocols. During all evaluations in this paper, the unfiltered database is used.

2.2. Image encodingmodels
Themain task of the image encodingmodel is to extract features from the provided images. Given images

X R ,DÎ the goal is to learn an encoding function f : R RD M that produces a continuous latent space
embedding z R .MÎ Here, X refers to amultichannel volumewhich consists of the CT and contours for each
patient, and Xi refers to an input from the branch i, numbered in ascending order for branches going from top
to bottom (i.e. i 2= refers to the second branch from the top). For themethods that utilize contrastive learning (
i.e. SimSiam and themultitask Siamese network), which are presented in later sections, the input during training
also includes a channel for the dose distribution. During deployment and evaluation, the input to allmodels only
includes theCT and contours. The embedding z refers to the one-dimensional vector representation of images
in the latent space. In this workwe evaluate the image retrieval performance offivemain categories ofmethods.
Readers looking formodel design inspirationmayfindprevious reviews of alternative image retrieval tasks to be
useful (Zin et al 2018, Latif et al 2019,Dubey 2021).

Prior to training the image encodingmodel, standard data pre-processing is applied to each patient’s images.
First, each patient’s CT volume, segmentationmask, and corresponding dose distribution are resampled to the
dimensions d 128 128 128.= ´ ´ The segmentationmasks follow a label encoding scheme (with labels
ranging from1 to 4), containing the various planning target volumes (PTVs) and relevant organs-at-risk
(OARs). After resampling, eachCT volume is then clipped to a soft-tissue window (400HUwidth and 0HU
level) and normalized. To keep consistent with common convention in Siamese networks, we interchangeably
refer to the input image as the anchor image.

This current work evaluates fivemain categories of image encodingmodels used for CBIR: (1) a vanilla
autoencoder (Goodfellow et al 2016), (2) a variational autoencoder (VAE) (Zhao et al 2018), (3) a Siamese
networkwith the tripletmargin loss (Schroff et al 2015), (4) SimSiam (Chen andHe 2020), and (5) amultitask
Siamese network (Caruana 1997, Schroff et al 2015, Chen andHe 2020). For the encoder portion of all evaluated
models, we utilize the same backbone convolutional neural network (CNN) architecture (consisting ofmultiple
convolution, GroupNorm, and LeakyReLUblocks). Similarly, the latent space embedding vector has a size that
is empirically set to 1024 for allmodels.

2.2.1. Vanilla autoencoder
The vanilla autoencoder consists of a standardCNNencoder and a transposed convolution decoder
(Goodfellow et al 2016). Figure 2(a)provides a schematic of themodel.

2.2.2. Informationmaximizing variational autoencoder
The informationmaximizing variational autoencoder (Info-VAE)model is a generativemodel which uses an
additionalmaximummean discrepancy (Gretton et al 2006) objective, as proposed by Zhao et al (2018). As the
Info-VAE is a generativemodel, the typical embedding vector z is a random variable sample using the
reparameterization trick (Kingma andWelling 2013, Zhao et al 2018). In order to get a deterministic output, we
follow the commonpractice of using the ‘m’ layer output as the latent space embedding vector instead of the
vector z.

Figure 2(b) provides a schematic of the InfoVAE architecture, and the loss function for the InfoVAEmodel is
listed in equation (1)
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[ ( ∣ )]
( ) ( ( ∣ )∣∣ ( ))
( ) ( ( ∣ )∣∣ ( )) ( )

( ∣ )
L E p x z

D q z x p z

D q z x p z

log

1

1 . 1

z qInfo VAE z x

KL

MMD

a
a l

= -
+ -
+ + -

q

q

q

-

Here, thefirst term refers to the reconstruction loss (typicallymean squared error), the second term DKL

refers to theKullback–Leibler (KL) divergence, and the third term DMMD refers to themaximummean
discrepancy (Gretton et al 2006). ( )p z refers to the prior, ( ∣ )q z xq refers to the variational posterior, ( ∣ )p x zq refers

Figure 2. (a)A schematic of the vanilla autoencodermodel architecture. (b)A schematic of the information-maximizing variational
autoencodermodel architecture.Outputs of the encoder are vectors describing themean and variance of the latent space distributions.
(c)A schematic of the Siamese networkwith a triplet loss function. (d)A schematic of the SimSiamnetwork, which uses a stop gradient
and the cosine distance.Here the transformed image refers to the dose distribution of patients duringmodel training. Only the anchor
image is required for deployment and evaluation. (e)A schematic of themultitask Siamese network, which combines tasks frommany
of the previously discussed approaches.
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to the true posterior, a and l are hyperparameters controlling the amount of regularization, and q refers to the
parameters of the network (Kingma andWelling 2013, Zhao et al 2018).

2.2.3. Siamese network with a triplet loss function
The Siamese networkwith a triplet loss (SNTL) is a classicmethod used for CBIR (Chechik et al 2010, Schroff
et al 2015). The Siamese network refers to a networkwhich contains duplicate encoders, where each shares
parameters with its duplicates. The triplet loss function is provided in equation (2). To construct triplets, we take
a sample image from the dataset (i.e. anchor image). The positive image can then be sampled by taking another
image from the same class (see theDataset section) as the anchor image, while the negative image refers to an
image of a different class than the anchor image. Figure 2(c) provides a schematic of the SNTLmodel
architecture. The triplet loss function computes a distance between the embeddings for the anchor image z1 and
positive image z ,p as well as a distance between the embeddings for the anchor image and negative image z .n The
goal is then tomake the distance between the anchor and positive embeddings at least somemargin smaller than
the distance between the anchor and negative embeddings.

( ) ( )   L z z z zmax margin, 0 2p nTriplet 1 2 1 2= - - - +

2.2.4. Simple siamese network
The simple Siamese (SimSiam)network (Chen andHe 2020) is a recent representation learningmethod that
extends on previous state of the artmethods like SimCLR (Chen et al 2020a) andBYOL (Grill et al 2020).
SimSiamuses a stop-gradient to learnmeaningful representations without the use of negative sample pairs, large
batches, ormomentum encoders. As these are usually difficult to obtain, utilizing an approach like SimSiam can
bemore practical than other recent representation learningmethods. Figure 2(d) provides a schematic of the
SimSiammodel, and the loss function is listed in equation (3). In order to incorporate information from the
dose distributions duringmodel training, we set the transformed image as amultichannel input that uses the
dose distribution and contour information. This training scheme is also used by themultitask approach
described below

· ( )
   

L
p

p

z

z
. 3SimSiam

1

12

2

2 2

= -

Here, ( ( ))p h f x1 1= refers to the output of the predictor ( )h , z1 refers to the embedding of the anchor image,
and z2 refers to the embedding of the transformed image.

2.2.5.Multitask siamese network
Following the typicalmultitask learning scheme (Caruana 1997), themultitask Siamese network (MSN)
combinesmany of the previouslymentioned approaches. Due to the small dataset size of this study, theMSN
attempts to improve generalization by utilizing information from the reconstruction task, SimSiam embedding
task, and the triplet loss task. Figure 2(e)provides a schematic of theMSNmodel,

( )L L L L 4multitask recon SimSiam Tripletb g= + +

and the loss function is provided in equation (4).
In this study, b and g were empirically set to values of e1 2- and e1 1,- respectively.

2.3.Dataset
The dataset used in this study contains 405 cases composed of public data (OpenKBP) (Babier et al 2021) and
institutional data, whichwere collected as part of clinical workflow. The body sites included in this dataset are
prostate and head and neck, with either volumetricmodulated arc therapy (VMAT) or intensitymodulated
radiation therapy (IMRT) used for treatment.

For evaluation, all cases in the dataset weremanually classified according to the following four criteria for a
total of 32 classes:

1. Which body site does the case belong to (i.e. prostate or head and neck)?

2. Howmany target levels are there?

3. Is the primary PTV small or large?

4. How is the primary PTV located (i.e. left, right, center, or bilateral)?

Figure 3 provides a visualization of theworkflow taken to classify patients in the dataset. Cases were split into
235 in the training phase, 43 in the validation phase, and 127 in the testing phase. Small or large labels were
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assigned to cases if their primary PTVwas smaller or larger than themedian volumemeasurement for the
dataset. All source code for this project has beenmade available on github https://github.com/chh105/
MetaPlanner/tree/main/cbir.

2.4. Evaluation
Performance of the included image retrievalmethodswas evaluated for three aspects: retrieval performance,
clustering performance, and qualitative performance.We begin by retrieving k images from the database that
have embeddings closest to that of the query image. Retrieval performance can then be evaluated using standard
metrics like the classification accuracy, precision, recall, and F1-score of the top-k retrieved images
(Mogotsi 2010). In this study, we show results for k ranging from1 to 5, though other ranges of k may also be
used. The definitions for these evaluationmetrics are listed in table 1.Moreover, clustering performance is then
evaluated using standardmetrics like the cluster homogeneity, completeness,V-measure, adjusted Rand index,
and adjustedmutual information(Hubert andArabie 1985, Strehl andGhosh 2003, Steinley 2004, Rosenberg
andHirschberg 2007). Lastly, qualitative performance is evaluated by visually inspecting the retrieval results for
example query patients.

Cluster homogeneity (Rosenberg andHirschberg 2007) assesses the ability to create clusters that contain
onlymembers of a single class. Cluster homogeneity is bounded between [ ]0, 1 , and performance of an ideal
method approaches a cluster homogeneity of 1. Cluster completeness (Rosenberg andHirschberg 2007) assesses
the ability to assign allmembers of a class to the same cluster. Cluster completeness is bounded between [ ]0, 1 ,
and performance of an idealmethod approaches a cluster completeness of 1.V-measure (Rosenberg and
Hirschberg 2007) is computed as the harmonicmean of cluster homogeneity and completeness.V-measure is
bounded between [ ]0, 1 , and performance of an idealmethod also approaches a value of 1. The adjusted Rand
index (Hubert andArabie 1985)measures the similarity between ground truth class assignments and those of the

Figure 3.Visualizes theworkflow for classifying an example patient for benchmark evaluation purposes.

Table 1.Definitions for various retrieval (multiclass) evaluation
metrics. Eachmetric is computed for the top-k images returned by the
retrieval systems.

Definition

kAccuracy@ ( )f k
N

i

N
tp tn

tp fp fn tn

1

1
classes

classes

å=
=

+
+ + +

kPrecision@ ( )f k
N

i

N
tp

tp fp

1

1
classes

classes

å=
=

+

kRecall@ ( )f k
N

i

N
tp

tp fn

1

1
classes

classes

å=
=

+

F kscore@1 - ( ) · ·f k 2 Precision Recall

Precision Recall
=

+

Retrieval score ( )( ) ·s f k
k

n
k

1

1

2å=
=

tp: true positives, tn: true negatives= =
fp: false positives, fn: false negatives= =

6

Phys.Med. Biol. 68 (2023) 095025 CHuang et al

https://github.com/chh105/MetaPlanner/tree/main/cbir
https://github.com/chh105/MetaPlanner/tree/main/cbir


clusteringmethod, adjusted for chance groupings. The adjusted Rand index is bounded between [ ]1, 1 ,- and
performance of an idealmethod approaches a value of 1. Finally, the adjustedmutual information (Strehl and
Ghosh 2003)measures the agreement between ground truth class assignments and those of the clustering
method, adjusted for chance groupings. The adjustedmutual information is bounded between [ ]0, 1 , and
performance of an idealmethod approaches a value of 1.

3. Results

3.1. Image retrieval performance
Wefirst evaluate the image retrieval performance of the candidate image encodingmodels using themetrics in
table 1. Figure 4 plots accuracy, precision, recall, and F-score as functions of k.Ground-truth labels for each
patient are provided by following the procedure described in section 2.3. For eachmetric, we can compute a
simple retrieval scoring function by applying an exponential weighting to each retrievalmetric. Here, greater
emphasis is placed on small values of k, as only themost relevant retrieved planswould be used to inform
subsequent treatment planning. Values of the retrieval scoring functions are listed in table 2.

For all retrieval scores,MSN achieves the best performance. The second-best performance for all retrieval
scores is achieved by the SNTLmethod, followed by themore recent SimSiammethod. Performances for the
vanilla autoencoder and Info-VAEwere comparable, suggesting that the variational loss componentmay not be
entirely useful for our image retrieval task.

3.2. Clustering performance
Weadditionally evaluate clustering performance usingmetrics listed in the last 5 columns of table 2 (Hubert and
Arabie 1985, Strehl andGhosh 2003, Steinley 2004, Rosenberg andHirschberg 2007). Each score is computed on
the latent space embeddings produced by the candidatemethods, where ground truth labels are provided
following the procedure detailed in section 2.3 and prediction labels are computed for k 1.= Of the
benchmarked encoders, the top three performers for cluster homogeneity, cluster completeness,V-measure,
adjusted Rand index, and adjustedmutual informationwere theMSN, SNTL, and InfoVAEmodels (table 2).
Figure 5 shows a TSNEplot of the latent space embeddings for the query set, with the evaluation class labels
provided for visualization purposes (ground truth labels for all evaluations are computed following section 2.3).
Here, embeddings for theMSNare substantiallymore distinct and grouped than those of the other candidate
models.

3.3.Qualitative performance
Aqualitative comparison of retrieved images for an example query image is provided infigure S1 of the
supplementalmaterials. This example query image is a head and neck case, hasmultiple PTV levels, and has a
large primary PTV located on the right-side of the patient. Both theMSNand SNTLmodels retrieve patients of
the same classification.Moreover, the retrieved patient for theMSNmodel ismore anatomically similar to the
query than that of the SNTLmodel. The remainingmodels did not retrieve patients of the same classification as

Figure 4.Plot of the retrievalmetrics for the top-k images. For all retrievalmetrics, best performancewas achieved using themultitask
Siamese network.
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Table 2.Performance of the candidate encodingmodels is evaluated in regards to retrieval and clustering. Retrieval scores are computed using an exponential weighting of eachmetric as a function of k.Clustermetrics are computed using
standard formulas, where k = 1.

Image retrieval performance Clustering performance

Accuracy retrieval

score

Precision retrieval

score

Recall retrieval

score

F1 retrieval

score Homogeneity Completeness V-measure

Adjusted Rand

index

Adjusted

mutual info.

Multitask SiameseNetwork 1.23 1.04 1.03 1.02 0.683 0.679 0.681 0.516 0.593

InfoVAE 0.70 0.58 0.57 0.52 0.438 0.427 0.432 0.275 0.278

Siamese network (Tri-
plet loss)

1.11 0.96 0.97 0.95 0.671 0.653 0.662 0.437 0.571

SimSiam (Cosine similarity) 0.78 0.80 0.59 0.60 0.412 0.422 0.417 0.247 0.265

Vanilla autoencoder 0.72 0.62 0.56 0.56 0.372 0.375 0.374 0.194 0.204
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the query image. For all evaluations in this current work, retrieval is performed on the unfiltered database.
However, during practical deployment, the databasewillfirst befiltered by the relevant classification.

4.Discussion

Here, a CBIR framework is used to retrieve images relevant to treatment planning (i.e. CT, contours, dose
distribution, etc) from a database. These retrieved images can be subsequently used in automated treatment
planning pipelines to automate the iterative adjustments of optimization hyperparameters. An example of one
such automated planningmethod is theMetaPlanner framework (Huang et al 2022), andwe provide an example
workflow incorporating thosemethods infigure 6. The proposedCBIR framework compares the latent space
embeddings of a query image to those of images in a database for the purpose of image retrieval. To produce
latent space embeddings, we evaluate various encodingmodels in regards to retrieval performance, clustering
performance, and visual quality.

The proposedCBIR frameworkwill retrieve treatment plans from a database and can be utilized in any
pipeline that would otherwise incorporate end-to-end knowledge-based planning. Specifically, the retrieved

Figure 5.T-SNE plot visualization of the latent space embeddings of the query images computed by each of the candidate encoding
models.

Figure 6.Visualization of theworkflow for deploying CBIR in automated planning using theMetaPlanner framework. The proposed
CBIRmethod can be potentially used as a drop-in replacement for conventional utility functions, such as themeta-scoring function.
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dose distributions can be used inmethodswhich directly optimizemachine parameters through dose
mimicking (McIntosh et al 2017,Mahmood et al 2018, Eriksson andZhang 2022). They can be alternatively used
inmodularmethods like theMetaPlanner framework (Huang et al 2022), which optimize treatment planning
hyperparameters and can bemore robust than direct dosemimicking.

In this work, various candidate encodermodels were evaluated to determine viable CBIR options. Of the
evaluatedmethods, themultitask Siamese network consistently performed the best in regards to retrieval
performance, clustering performance, and visual quality. The dataset used in this study includes a total of 405
cases. Though thismay be considered sizeable in the context ofmedical data, it certainly cannot compare to
datasets used routinely in computer vision (Lecun et al 1998,Deng et al 2009). Given the relatively small dataset
size used in the current study, themultitaskmodelmanages to outperform its alternatives by incorporating
additional loss function terms to reduce overfitting. This is evident when observing the performance ofmethods
like SNTL, SimSiam, or the vanilla autoencoder, which individually do not perform aswell as themultitask
model.

In future work, we plan to incorporate the proposed image retrievalmethod into automated planning
workflow. To clarify the various components for such a process, we describe an example implementation using
image retrieval to create a data-driven utility function for automated planning (figure 6). In this example, a CBIR
system is deployed to retrieve a reference plan (i.e. dose distribution, DVHs, etc) from the database based on
similarity to the query patient.We can then compute a distancemetric (utility function) between the reference
plan and the query patient’s plan that is undergoing optimization in order to guide automated planning.
Currently,many automated planningmethodsmodel the treatment planning process as onewhere planners
navigate the trade-offs of Pareto optimal solutions using a hand-crafted utility function.However, incorporating
the retrieved dose distributions from an image retrieval approach enables the use of data-driven utility functions
for automated planning, potentially providing a bettermodel of the decision-making process.

This study is additionally subject to some limitations. First, while several candidatemethods for encoding
imageswere evaluated here, theremay certainly exist better performing encodingmodels that were not tested.
Second, due to data availability, wewere not able to evaluate other body sites such as lung data, liver data, etc.

External beam radiation therapy is a highly popular treatmentmodality (Bilimoria et al 2008). Recently,
there has been growing interest in developing automatedmethods for the radiotherapy pipeline. Deep learning
has generally been successful in performing radiotherapy tasks like segmentation, outcome prediction, etc
(Boldrini et al 2019, Yuan et al 2019,Dong andXing 2020,Nomura et al 2020, Chen et al 2020b, Liang et al 2021,
Pastor-Serrano and Perkó 2021, 2022), and applying learning basedmethods to treatment planning also has
potential. In future works, we hope to apply the proposedCBIRmethod directly to automated planning,
potentially through frameworks likeMetaPlanner (Huang et al 2022). Similarly, we plan to address some of the
mentioned limitations of the current study by evaluating alternative CBIR encodingmodels and utilizing data
from additional body sites.

5. Conclusion

In this work, we introduced aCBIRmethod to inform subsequent treatment planning. The proposedworkflow
addresses some key limitations present in traditional end-to-end knowledge-based planningmethods, including
generalizability, deliverability, and protocol compliance of predicted dose distributions. To determine a viable
encodingmodel for CBIR,we evaluated severalmethods ranging from the Info-VAE to Siamese networkswith
various loss functions to amultitask network that combines tasks fromother candidate approaches. Our results
indicate that themultitask encodingmodel consistently provides the best performancewhen evaluatedwith
regards to retrieval performance, clustering performance, and visual quality.
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