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Low-rank-based residual statics estimation and correction

Ali M. Alfaraj1, D. J. (Eric) Verschuur1, and Felix J. Herrmann2

ABSTRACT

Surface consistency forms the basis for short-wavelength stat-
ics estimation. When raypaths in the near surface diverge from a
normal incidence or when the normal moveout (NMO) velocity is
inaccurate, surface-consistent methods may fail to estimate accu-
rate statics. Existing nonsurface-consistent techniques can be
prone to errors due to the need to construct pilot traces or pick
horizons while imposing additional computational costs. To over-
come these limitations and correct for the surface- and nonsur-
face-consistent statics, we have developed a low-rank-based
residual statics (LR-ReS) estimation and correction framework.
The method makes use of the redundant nature of seismic data
by using its low-rank structure in the midpoint-offset-frequency
domain. Due to the near-surface effect, the low-rank structure is
destroyed. Therefore, we estimate the statics by means of low-
rank approximation and crosscorrelation. To alleviate the need
for accurate rank selection for low-rank approximation and

improved statics estimation, we implement the method in an iter-
ative andmultiscale fashion. Because the low-rank approximation
deteriorates at high frequencies, we use its better performance at
low frequencies and exploit the common statics among the differ-
ent frequency bands. The LR-ReS estimation and correction can
be applied to data without an NMO correction, which makes stat-
ics estimation independent of the NMO velocity errors. Conse-
quently, it can reduce the multiple iterations of the NMO velocity
estimation and short-wavelength statics correction commonly
needed for conventional methods to improve their performance.
Moreover, the LR-ReS estimation does not require windowing of
a noise-free area containing aligned primaries or mute to avoid
the NMO stretch effect, which enables statics correction of the
wavefield of all offsets. To evaluate the performance of our
method, we apply it to simulated data and a challenging field data
set affected by complex weathering layers and noise, which in-
dicate a substantial improvement compared with conventional
short-wavelength statics correction.

INTRODUCTION

Land seismic data sets often are challenged by near-surface
weathering layers. They can lead to wave propagation effects that
manifest themselves mostly as undesired time shifts, commonly
called “statics” (Taner et al., 1974; Yilmaz, 2001). Although statics
correction should be replaced by dynamic velocity analysis of the
near surface as has been suggested by Ronen and Claerbout (1985)
and Cox (1999), it is still a convenient way to overcome the lim-
itations in the acquisition, velocity, and image estimation engines.
Due to rapid changes in surface elevation, the base of the weath-

ering layers, and the weathering layers’ velocity, land data are af-
fected by short-wavelength (residual) statics (Yilmaz, 2001).
Conventional short-wavelength statics correction methods rely on

the surface-consistency assumption, where raypaths in the near sur-
face are assumed to be vertical (Taner et al., 1974; Ronen and
Claerbout, 1985; Marsden, 1993; Cox, 1999; Yilmaz, 2001). In this
situation, the statics depend only on the locations of sources and
receivers at the surface without considering their offsets. Sheriff
(2002) argues that the surface-consistency assumption is not strictly
correct. Cox (1999) further analyzes the assumption and concludes
that it works in practice in most cases as surface-consistent statics
are approximately equivalent to a simple near-surface model. Most
surface-consistent methods estimate residual statics using normal
moveout (NMO)-corrected common-midpoint (CMP) gathers
(Yilmaz, 2001). The NMO correction should ideally remove the dy-
namic component related to the velocity such that the residual static
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component becomes more clear. In other words, surface-consistent
methods assume that traces are aligned after NMO correction, and if
they are not, then residual statics or residual NMO are the main
causes. Moreover, it becomes easier to obtain a reference trace with
less near-surface imprint from the presumably aligned traces after
NMO correction. Other than NMO correction, surface-consistent
residual statics correction methods require windowing of a noise-
free area containing primaries because they are aligned reflec-
tions. However, short-wavelength statics also can lead to ambiguity
during NMO velocity estimation. Therefore, multiple iterations of
NMO velocity estimation and short-wavelength statics correction
are usually carried out to improve their performance (Yilmaz,
2001), which can be effort- and time-consuming. Using migrated
gathers, Xu et al. (2018) estimate surface-consistent statics. The
method also needs an accurate velocity for migration, which can
be computationally expensive. When the surface-consistency
assumption is violated, errors in the estimated statics may arise,
which calls for a nonsurface-consistent near-surface correction.
Throughout the paper, the term “residual” statics is not only limited
to surface-consistent statics but also nonsurface-consistent ones.
Henley (2012) proposes a framework that uses the common-an-

gle domain based on raypath interferometry to correct for nonsur-
face-consistent statics. The method requires horizon picking and
pilot-trace construction, which are not trivial tasks when the events
picked are not continuous or in the presence of noise. Another type
of nonsurface-consistent statics correction is trim statics, which is
based on the crosscorrelation of individual traces with a model trace
usually formed by stacking several CMP gathers (Cox, 1999).
Ursenbach and Bancroft (2005) demonstrate the danger in aligning
noise as a signal and describe it as “playing with fire.” More re-
cently, Breuer et al. (2020) use deep learning to estimate aligned
events from unaligned ones by assuming that trim statics are the
cause of unalignment. However, this approach may require accurate
velocity as well as accurate knowledge of the primaries to avoid
aligning multiples as primaries. Surface-consistent statics estima-
tion methods also can be evaluated over multiple offset windows.
This option, however, adds to the computational costs and decreases
the number of traces in each offset window, which may lead to er-
rors as a result of a low signal-to-noise ratio. The preceding methods
still need access to an NMO velocity model, which can influence
the estimated statics. In an alternative approach, one can process a
seismic data set by exploiting its redundant nature, which allows for
accurate low-rank approximation. When near-surface weathering
layers influence the data’s coherency, a rank-based solution can
be used for statics correction.
Rank-based methods have been applied in different areas of seis-

mic data processing, which date back to the 1980s (Ulrych et al.,
1988). More recent examples include denoising (Bekara and Van
der Baan, 2007; Trickett and Burroughs, 2009; Trickett et al.,
2010; Moldoveanu, 2011; Chen et al., 2017; Zhang et al., 2020), in-
terpolation (Trickett et al., 2010; Oropeza and Sacchi, 2011; Kreimer
and Sacchi, 2012; Aravkin et al., 2014; Kumar et al., 2015), deblend-
ing (Maraschini et al., 2012; Wason et al., 2014; Cheng and Sacchi,
2015), and residual statics correction (Alfaraj et al., 2018, 2019). The
common ground of these methods is that ideal seismic data in a trans-
form domain, e.g., when organized as a matrix in the midpoint-offset
domain, can be approximated by a low-rank matrix, whereas noni-
deal data, e.g., noisy or subsampled data, exhibit slowly decaying
singular values. An alternative to rank is to use sparsity to compen-

sate for short-wavelength statics. Gholami (2013) applies sparsity
maximization in the Fourier domain on synthetic data and in the cur-
velet domain on field data due to the latter’s better performance.
However, the curvelet transform (Candes et al., 2006) can be com-
putationally demanding. Stanton et al. (2013) modify projection onto
convex sets to compensate for residual statics during interpolation in
the Fourier domain. Similarly, Gholami (2014) uses phase retrieval to
interpolate data affected by residual statics but uses only the ampli-
tude spectrum and sparsity promoting regularization. To ensure spar-
sity, these methods may require data windowing, which may affect
the estimated statics. Alfaraj et al. (2018, 2019) correct the statics by
estimation of low-rank approximated data. Nonetheless, that method
may suffer from amplitude losses, particularly at high frequencies,
where the low-rank approximation is more challenging, leading to
erroneous amplitude-variation-with-offset (AVO) responses. To cir-
cumvent the amplitude losses and preserve the AVO response, we
use low-rank approximation as an intermediate step in statics estima-
tion and correction.

Contributions

In a step toward more accurate short-wavelength statics correc-
tion, we diverge from the vertical raypath assumption in the near
surface. We propose a novel low-rank-based residual statics (LR-
ReS) estimation and correction framework. The method makes
use of the redundant nature of seismic data, which allows for ac-
curate approximation by low-rank matrices in the midpoint-offset
domain. To estimate the statics, we cross-correlate a data set influ-
enced by the near-surface weathering layers with its low-rank-ap-
proximated version. Because we estimate the statics and no longer
the directly low-rank approximated data (as shown by Alfaraj et al.,
2018, 2019), we can apply these statics to the original data and,
thereby, preserve the AVO response. To mitigate the poor perfor-
mance of low-rank approximation at high frequencies, we exploit
the common statics among different frequency bands; we first use
the low-frequency bands, where low-rank approximation performs
better than high-frequency bands, to estimate the statics followed by
statics correction of the full-band data. Because these statics are not
sufficiently accurate for the total bandwidth, they are updated dur-
ing statics estimation when including the high frequencies. To im-
prove the estimated statics and to alleviate the need for accurate
rank selection for low-rank approximation, we implement the
method in an iterative and multiscale fashion.
The proposed method relaxes the surface-consistency assumption

to estimate more accurate surface- and nonsurface-consistent statics
at once. In practice, multiple steps are performed, where surface-
consistent residual statics are first estimated followed by a brute-
force nonsurface-consistent step, to account for both components.
Moreover, the proposed method does not require NMO correction
for short-wavelength statics estimation. Therefore, statics estima-
tion becomes independent of errors in the NMO velocity model.
Consequently, we can reduce the efforts- and time-consuming
multiple passes of short-wavelength statics correction and NMO
velocity estimation commonly needed for conventional methods
to improve their performance. In addition, statics estimation and
correction of the total wavefield without windowing to select
aligned primaries or to avoid the NMO stretch effect become fea-
sible. We demonstrate that the proposed method preserves the
underlying structure’s kinematic and dynamic properties while es-
timating accurate statics in a computationally efficient manner.

V216 Alfaraj et al.
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Outline

We first provide the reader with the requirements for the success
of short-wavelength statics correction with a rank-based approach.
We then describe the details of our proposed method, which we
apply to synthetic data and a noisy field data set affected by com-
plex weathering layers. We show the uplift we obtain compared
with conventional methods on the CMP gathers, NMO velocity
semblance, stack, AVO analysis, and automatic horizon picking.
After that, we discuss the results within the context of NMO veloc-
ity estimation and data windowing, the method’s practical aspects,
its computational efficiency, improvement by mitigation of the
noise effect, and further extensions and applications.

RANK-BASED PROCESSING PRINCIPLES

Rapid variations in surface elevation, the base of the weathering
layers, and the weathering layers’ velocity affect the data with short-
wavelength statics (Yilmaz, 2001). As a result, the coherency of the
data will decrease to result in slowly decaying singular values com-
pared with the statics-free situation. To exploit the data’s redun-
dancy and correct for the weathering layers’ effect, we need to
estimate a low-rank matrix given that the desired statics-free data
are of low-rank nature. With further elaboration, we define the main
principles required to correct short-wavelength statics with a low-
rank-based approach.

Simulated data

For the demonstration, we use synthetic data modeled with
acoustic finite-difference modeling (Thorbecke and Draganov,
2011). The data’s source and receiver intervals are 10 m and the
maximum offset is 4 km. Figure 1 shows the velocity model we
use to simulate the data displayed in the time and frequency do-
mains in Figures 2a, 2c, 2e, and 3a–3d, respectively. To add
short-wavelength statics, we shift each trace in each shot and
receiver gather by up to �52 ms, which is considerably larger than
the usual residual statics (Figures 2b, 2d, 2f, 4a, and 4b). To mimic a
realistic scenario, we design the statics to contain surface-consistent
elements, where all traces recorded at the same shot or receiver lo-
cation are assigned the same statics (up to�40 ms) and nonsurface-
consistent elements (up to �20 ms).

Low-rank structure

Seismic data exhibit redundancy that can be exploited through
their rank structure in the midpoint-offset (m-h) domain. Each mid-
pointm and offset h can be calculated from the source s and receiver
r coordinates as follows, respectively:

m ¼ sþ r
2

(1a)

and

h ¼ s − r: (1b)

In the midpoint-offset domain, multiple raypaths sample the same
CMPwith different offsets (Figures 2d, 2e, 3b, and 3d). Moreover, it
rotates the strong energy along the diagonal in the source-receiver
(s-r) domain to the near-offset columns (Figure 3). Therefore, we
expect the structure of statics-free data in the midpoint-offset
domain to be of low-rank nature, i.e., low-rank structure corre-

sponds to matrices that can be approximated by a low-rank matrix.
The approximation can be achieved when the singular values decay
rapidly, which enables their truncation. Given a constant frequency
slice X ∈ Cnm×nh with complex entries of midpoints and offsets,
where nm and nh correspond to the number of midpoints and offsets,
respectively, we can compute its orthogonal decomposition by sin-
gular value decomposition (SVD) (Golub and Reinsch, 1971):

Figure 1. The velocity model used for synthetic data simulation.

Figure 2. Simulated (a, c, and e) statics-free data and (b, d, and
f) data after application of up to �52 ms of surface- and nonsurface
consistent statics. (a and b) Shot gathers, (c and d) CMP gathers,
and (e and f) time slices at 1.0 s in the midpoint-offset domain.
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X ¼ USVH; (2)

where H denotes the Hermitian transpose and U ∈ Cnm×k and
V ∈ Cnh×k are the orthogonal matrices holding the left and right
singular vectors, respectively. The block diagonal matrix
S ∈ Rk×k contains the nonnegative real-valued singular values, such
that S ¼ diagðs1; s2; s3; : : : ; skÞ, where s1 ≥ s2 ≥ s3 ≥ : : : ≥ sk ≥
0 and k ¼ minfnm; nhg is the rank of the frequency slice. For the
matrix to exhibit a low-rank structure, the condition
k ≪ minfnm; nhg must be satisfied such that the singular values
decay rapidly so they can be truncated for small k.
The low-rank structure can be exploited in different domains, where

the domain of choice and subsequently the performance of the method
depend on how rapidly the singular values of statics-free data decay. In
addition to the potential midpoint-offset transform domain, we exam-
ine the acquisition (source-receiver) domain. We consider monochro-
matic frequency slices rather than time slices. The reason is that time
slices contain more variability as they encompass all of the frequency
ranges, which makes their low-rank approximation more difficult. On
the contrary, low-rank approximation of low-frequency slices can be

achieved with high accuracy. From the modeled statics-free data, we
select frequency slices spanning relatively low to high frequencies and
examine the decay of their singular values in the source-receiver and
midpoint-offset domains (Figure 3). As expected, we observe that the
singular values in the midpoint-offset domain decay more rapidly
compared with those in the acquisition domain. This makes the former
a better potential transform domain as it better satisfies the require-
ments of the first principle. Additional analysis of the singular values
behavior of data affected by the near-surface weathering layers is re-
quired to confirm the potential of this transform domain.

Structure destruction

We rely on rapid variations in the near-surface weathering layers to
destroy the low-rank structure. Due to short-wavelength statics, the
data become less coherent, which leads to slowly decaying singular
values. To analyze the resultant rank structure of data affected by the
statics, we transform the data from the source-receiver domain to the
midpoint-offset domain, where we can exploit the data’s redundancy
and compute the singular values of two frequency slices at relatively

low and high frequencies (Figure 4). We observe
that they are slower than those of statics-free data,
which are more visible at higher frequencies as
short-wavelength statics affect them more than
the low frequencies. Because we satisfy the first
and second principles using the midpoint-offset
domain, we proceed with low-rank promotion to
correct for short-wavelength statics.

Structure promotion

Due to the near-surface effects, the singular val-
ues become slowly decaying as they render coher-
ent energy incoherent. Owing to the inherent
redundancy of seismic data in the midpoint-off-
set-frequency domain, the largest singular values
preserve the coherent energy, whereas the lower
ones are related to the incoherency. Therefore,
the low-rank approximation is oneway to promote
the low-rank structure to obtain a coherent signal
without the near-surface imprint. Given a mid-
point-offset frequency slice Y ∈ Cnm×nh selected
from observed data, we can obtain a low-rank ap-
proximated matrixX ∈ Cnm×nh by solving the fol-
lowing rank-minimization problem:

minimize
X

kX−YkF subject torankðXÞ≤k;

(3a)
where

kXkF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xnm
i¼1

Xnh
j¼1

XðijÞ2
vuut (3b)

is the Frobenius norm that is equivalent to the l2

norm of a vector and XðijÞ is the ij-elements of X.
By imposing the constraint k ≪ minfnm; nhg, we
restrict the solution X to be of a low-rank nature,
which can be found through the SVD (Eckart and

Figure 3. Statics-free frequency slices (the real part) and their singular values decay
curves extracted from statics-free data at (a, b, and e) 18 Hz and (c, d, and f) 49 Hz
in the (a and c) source-receiver domain and (b and d) midpoint-offset domain. The
dashed lines in (e and f) the singular values decay curves indicate the source-receiver
domain, whereas the solid lines correspond to the midpoint-offset domain.
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Young, 1936). Trickett and Burroughs (2009) suppress random noise
with the eigenimage and Cadzow filtering, where the former is more
applicable to 3D stacked traces (Trickett, 2003). Moldoveanu (2011)
uses SVD to attenuate swell noise. The method proposed by Alfaraj
et al. (2018, 2019), which requires NMO velocity estimation, suggests
that, by selecting a small number of singular vectors corresponding to
the few largest singular values, one can obtain an estimate of Y with-
out the imprint of short-wavelength statics. Because we have shown
that the rank-based processing principles can be satisfied without
NMO correction, we modify that method to correct for residual statics
with a low-rank approximation (Algorithm 1).
The input to Algorithm 1 is data Dsr in the time-source-receiver

domain, where nt, ns, and nr correspond to the number of time,
source, and receiver samples, respectively (Figure 2b), and rank k
for each frequency slice. Throughout the algorithm, the subscripts
and superscripts sr, mh, lr, ~, and ^ indicate the source-receiver domain,
midpoint-offset domain, low-rank approximated
data, frequency domain, and output estimated
data, respectively. We first transform the data
Dsr from the source-receiver domain to the mid-
point-offset domain, where we can exploit the da-
ta’s redundancy to obtain Dmh (Figure 2d). We
then use fast Fourier transform (FFT) to transform
the data to the frequency domain to obtain ~Dmh

(Figure 4a and 4b) as indicated by the second step
of the algorithm. After that, there is a loop over
frequencies (step 3), where the singular values
of the frequency slices are calculated (step 4).
In the fifth step, where uðjÞ and vðjÞ correspond
to the jth columns of the matrices U and V of
equation 3, respectively, the data below the rank
threshold level k are neglected (Figure 5c and 5d).
Here, ~Dlr ∈ Cnm×nh×nf is the estimated low-rank
data from all of the frequencies in the mid-
point-offset domain, which can be transformed
by inverse fast Fourier transform (IFFT) to obtain
the low-rank approximated data in the time do-
main D̂lr as indicated by the sixth step (Figure 5a
and 5b).
At low frequencies, low-rank approximation

can reduce the effect of statics, as shown by
the time- and low-frequency slices in Figure 5b
and 5c, respectively, compared with those of data
with statics (Figures 2f and 4a). However, there is
a dimming in the data’s amplitude after low-rank
approximation. The second hurdle is that, at high
frequencies, the data contain more variability
whereas the influence of the near surface can be stronger (Figure 4).
Consequently, the performance of low-rank approximation deteri-
orates, resulting in noisy data (Figure 5a and 5d). To avoid low-rank
approximation errors at low and high frequencies, we propose the
following iterative and multiscale framework.

LR-RES ESTIMATION AND CORRECTION

Our proposed method uses the properties of the midpoint-offset
domain, where short-wavelength statics lead to slowly decaying sin-
gular values, whereas statics-free frequency slices are of low-rank
nature (Figure 4c and 4d). By imposing the low-rank constraint, we
can obtain frequency slices with less statics imprint. Although they

may contain amplitude losses due to inaccurate low-rank approxi-
mation, we can use the low-rank approximation as an intermediate
step to estimate the statics. To tackle the poor performance of low-
rank approximation at high frequencies, we use its better perfor-
mance at low frequencies and exploit the similarity in the statics’
influence among multiple frequency bands. For improved statics
estimation and to alleviate the need for accurate rank selection,
which is required for low-rank approximation, we implement the
framework in an iterative and multiscale fashion. The proposed
method uses parts of Algorithm 1 as building blocks for short-wave-
length statics estimation and correction, as detailed in Algorithm 2.
The LR-ReS estimation and correction algorithm contains the

same preprocessing steps of Algorithm 1 (steps 1 and 2). Similarly,
Algorithm 2 includes a loop over frequency slices, where fmin and
fmax are, respectively, the minimum and maximum frequencies we
loop over (step 4). As is the case for Algorithm 1, Algorithm 2

Algorithm 1. Low-rank approximation.

Input: Dsr ∈ Rnt×nr×ns and k ∈ Rnf

Output: D̂lr ∈ Rnt×nh×nm

1. Transform Dsr to Dmh ∈ Rnt×nh×nm with equation 1

2. FFT Dmh to ~Dmh ∈ Cnm×nh×nf

3. for f←1 to nf do

4. Calculate SVD for ~DðfÞ
mh with equation 2

5. ~DðfÞ
lr ←

P
kðfÞ
j¼1 s

ðjÞuðjÞvðjÞH

6. IFFT ~Dlr to D̂lr

Figure 4. Frequency slices of synthetic data affected by up to�52 ms of short-wavelength
statics at (a) 18 Hz and (b) 49 Hz in the midpoint-offset domain along with (c and d) their
singular values decay curves, respectively, in the dashed lines. They are slowly decaying
compared with those of the statics-free data (Figure 3b and 3d) repeated here in solid lines.
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involves the calculation of the singular values and the approxima-
tion of low-rank data as indicated by steps 5 and 6, respectively.
Figure 6b and 6e shows that low-rank approximation at low
frequencies is capable of reducing the imprint of statics compared
with the low-pass-filtered data affected by statics (Figure 6a and
6d). At the same time, these figures demonstrate that low-rank
approximation results in the reduction of the data’s amplitude
due to neglecting data of importance. To preserve the AVO

response, we avoid the use of the low-rank approximated data as
the final solution. We instead estimate the statics Tmh by the cross-
correlation of the data with statics Dmh (Figure 6a and 6d) and low-
rank approximated data Dlr (Figure 6b and 6e) along the time di-
mension in the midpoint-offset domain (steps 7–10). Note that Dmh

(Figure 6a and 6d) is a band-pass-filtered version of the data with
statics Dmh (Figure 2d and 2f). The estimated statics can then be
used for statics correction of the full-band data Dmh to obtain stat-
ics-corrected data D̂mh (step 11). Figure 6c and 6f displays the data
after partial statics correction with statics estimated from the low
frequencies, which is already an improvement compared with the
input (Figure 2d and 2f).
Although low-rank approximation at low frequencies is suffi-

ciently accurate for statics estimation, its performance deteriorates
at high frequencies (Figure 5). To mitigate the poor low-rank
approximation performance at high frequencies, we exploit the
common statics among multiple frequency bands fb, i.e., we use
the similarity in the statics’ influence on multiple frequencies.
To do so, we first estimate the statics from low-frequency bands
(Figure 6a, 6b, 6d, and 6e) followed by a statics correction of
the full-band data (Figure 6c and 6f). By applying the statics esti-
mated at lower frequencies to the full-band data, we already in-
crease the redundancy of higher-frequency slices because they
share common statics with lower frequencies. Consequently, the
low-rank approximation of higher frequencies are improved, which
can be observed when comparing low-rank approximation after
processing all of the frequencies (Figure 5a and 5b) to that obtained
after statics estimation and correction using two frequency bands
starting from low frequencies (Figure 7b and 7e). The latter figures
show less statics imprint, less noise, and higher-frequency content
when compared with the former. Because the statics estimated from
low- or mid-frequency bands are not sufficiently accurate for the

high frequencies (Figure 6c and 6f), they are up-
dated when estimating the statics at high-fre-
quency bands (Figure 7c and 7f). Compared
with statics estimation and correction after
processing each frequency slice, our proposed
approach makes the algorithm more stable by
avoiding spurious statics due to low-rank
approximation errors or due to missing or cor-
rupted frequencies, e.g., in the case of a low sig-
nal-to-noise ratio.
Therefore, when the loop over frequencies

reaches the desired frequency band for statics esti-
mation (step 7), we inverse Fourier transform the
data with statics ~Dmh and low-rank approximated
data ~Dlr (step 9) to the time domain (Figure 6a,
6b, 6d, and 6e, respectively). Note that fb contains
the maximum frequency of each frequency band.
To estimate the statics, we then perform a crosscor-
relation along the time dimension to find the lag
corresponding to the largest crosscorrelation
coefficient, which is indicated by the operator
C (step 10). Let dmh and dlr ∈ Rnt be traces ex-
tracted from data with staticsDmh and low-rank ap-
proximated dataDlr, respectively, and the estimated
statics tmh from these two traces can be found by

tmh ¼ argmax
t

ðdmhðtÞ⋆dlrðtÞÞ; (4)

Algorithm 2. LR-ReS estimation and correction.

Input: Dsr ∈ Rnt×nr×ns ,K ∈ Rnf×nl , fb ∈ Rnfb , fmin ∈ R, fmax ∈ R

Output: D̂mh ∈ Rnt×nh×nm×nl , Tmh ∈ Rnh×nm×nl×nfb , D̂sr ∈ Rnt×nr×ns ,
and Tsr ∈ Rnr×ns

1. Transform Dsr to Dmh ∈ Rnt×nh×nm with equation 1

2. FFT Dmh to ~Dmh ∈ Cnm×nh×nf

3. for l←1 to nl do

4. for f←fmin to fmax do

5. Calculate SVD for ~DðfÞ
mh with equation 2

6. ~DðfÞ
lr ←

P
Kðf;lÞ
j¼1 sðjÞuðjÞvðjÞH

7. if f is contained within fb then

8. i← frequency-band index

9. IFFT ~Dlr to Dlr, IFFT ~Dmh to Dmh

10. Tðl;iÞ
mh ←CðDmh;DlrÞ

11. D̂ðlÞ
mh←τðDmh;T

ðl;iÞ
mh Þ

12. Dmh←D̂ðlÞ
mh, FFT Dmh to ~Dmh

13. Transform
Pnl

l¼1

Pnfb
i¼1 T

ðl;iÞ
mh to Tsr

14. D̂sr←τðDsr;TsrÞ

Figure 5. Residual statics correction with a low-rank approximation (Algorithm 1):
(a) CMP gather and (b) time slice at 1.0 s and frequency slices at (c) 18 Hz and
(d) 49 Hz in the midpoint-offset domain.
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where ⋆ indicates a crosscorrelation. After processing each fre-
quency band, we apply equation 4 to all the traces to obtain the statics
in the midpoint-offset domain Tmh ∈ Rnm×nh . To correct for the stat-
ics, we shift each trace as indicated by the operator τ (step 11):

d̂mh ¼ dmhðtþ tmhÞ; (5)

where dmh is a trace extracted from the full-band datawith staticsDmh.
Figure 8a displays the estimated statics Tmh from all of the frequency
bands at the first iteration, which we use for statics correction to obtain
the estimated data (Figure 7c and 7f). The im-
provement also can be noticed when comparing
the low- and high-frequency slices after the LR-
ReS estimation and correction at this stage (Fig-
ure 9a and 9b) to the input frequencies (Figure 4a
and 4b). However, there are still unresolved statics.
To improve the statics estimation and correc-

tion, the proposed algorithm contains an iterative
loop over rank scales nl (step 3), i.e., multiple
ranks for the same frequency slice, which are re-
quired for a low-rank approximation (step 6). As
a result, the input rankK ∈ Rnf×nl of Algorithm 2
becomes not only a function of frequency f as it
was the case for Algorithm 1 but also rank scale l.
By using a multi rank-scale approach, whereby
we start with a relatively high rank and reduce
it further with the number of iterations, we gradu-
ally extract multiscale time shifts. The reason we
lower the rank is that the singular values decay
faster as iterations progress, which we further
elaborate on in the next paragraph. Figure 8a
shows that most of the statics are estimated at
the first rank-scale iteration, which are further
fine-tuned at the second and third iterations of
Algorithm 2 (Figure 8b and 8c, respectively).
Even though the first scale eliminates the bulk
of the statics, which leads to considerable im-
provements, it is still insufficient to account
for all the statics. After two multiscale iterations,
the frequency slices (Figure 9c–9f) and their sin-
gular values decay (Figure 10b and 10d) and
time-domain data (Figure 11e and 11f) become
similar to the statics-free ones (Figures 2c, 2e,
3b, and 3d). An additional benefit of using a
multi-rank-scale approach is to reduce the need
for accurate low-rank approximation, i.e., if the
chosen rank is inadequate to compensate for all
the statics at the first iteration, fine-tuning can be
carried out at later iterations to improve the esti-
mated statics and data.
We choose K according to the singular-value

decay relations described in the “Rank-based
processing principles” section. Because the fre-
quency slices with short-wavelength statics exhibit
low coherency, their singular values are character-
ized by slow decay (Figure 4c and 4d). Statics cor-
rection makes low-rank approximation more
accurate as it maps the incoherent energy in the
tail of the singular values to the coherent energy

captured by the first singular values. In other words, the singular-value
decay of the same frequency slice becomes more rapid after partial
statics correction due to the improved coherency, which can be seen
from the singular values decay curves after the first rank-scale itera-
tion compared with those prior to the statics correction (Figure 10a
and 10c). Because the singular values decay rapidly after applying the
partial statics correction, we can use a lower rank at the next iteration
to capture the coherent energy and neglect the incoherent one. The
further the iterations progress, the faster the singular values will decay,
which can be seen through the comparison of Figure 10a–10d.

Figure 7. (a–c) CMP gathers and (d–f) time slices at 1.0 s extracted from (a and d) band-
pass-filtered data with statics Dmh, (b and e) low-rank approximated data Dlr, and (c and
f) statics-corrected data at the third frequency-band and the first rank-scale iteration.

Figure 6. (a–c) CMP gathers and (d–f) time slices at 1.0 s extracted from (a and d) low-
pass-filtered data with statics Dmh, (b and e) low-rank approximated data Dlr, and (c and
f) statics-corrected data at the first frequency-band and first rank-scale iteration.
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Accordingly, we start the first rank-scale iteration with a relatively
higher-rank approximation and decrease it further at later iterations.
This is the opposite of other rank-based methods used, for example, in
data interpolation, which needs to fill in the missing gaps with accu-
rate amplitudes. In that case, the smaller singular values need to be
preserved as they also contain important information to obtain accu-
rate data. On the other hand, the LR-ReS estimation and correction
seek to capture coherent energy, which can be obtained from low-rank
approximated data. Since a low-rank version of the data can be in-
accurate (Algorithm 1), we avoid using it as the final solution. We
mitigate the inaccuracy of low-rank approximation with statics esti-
mation (Algorithm 2), i.e., we implicitly use low-rank approximation
to estimate the statics (time shifts), which we then apply to original
data. Therefore, we preserve the amplitudes.
When the largest singular values represent the signal of interest,

low-rank approximation preserves the predominant features of the
signal. As a result, cross-correlating a low-rank version of the data
with its full-rank one can be used to estimate the statics that enhance
the signal. On the other hand, when the data are influenced by un-
desired events, e.g., the coherent noise or residual coherent noise,
that span the largest singular values, initial rank-scale iterations can
provide better statics estimation because they still preserve the sig-
nal. Because the algorithm outputs the multiscale statics Tmh and
data D̂mh, the user can quality control (QC) the results.

At the end of the iterations over the frequencies and rank scales,
the total midpoint-offset dependent statics Tmh (Figure 8d) can be
transformed to the source-receiver domain to obtain Tsr (Figure 8e)
as indicated by the 13th step of Algorithm 2. When compared with
the actual nonsurface-consistent statics originally applied to the data
(Figure 8f), the error of the LR-ReS displayed in Figure 8g is
minimal. The estimated statics for one shot gather is shown in
Figure 11h, where the error compared with the actual nonsur-
face-consistent statics is low. By applying Tsr to the input data
Dsr (step 14), we estimate statics-corrected data in the source-
receiver domain D̂sr (Figure 11d) that are of minimal discrepancy
compared with the statics-free data (Figure 2a). Because the only
difference between the input and output (Figures 2b and 11d, re-
spectively) is statics correction, we are certain to preserve the
AVO response. We note that if only surface-consistent statics are
desired, e.g., when raypaths in the near surface are vertical to satisfy
the surface-consistency assumption, they can be obtained by aver-
aging along rows and columns of the estimated LR-ReS in the
source-receiver domain Tsr.
With our approach, we are assuming that the estimated time

shifts are solely due to the near-surface effect. Because the dynamic
component, e.g., data moveout, tends to be preserved in the largest
singular values, it should not be affected. This can be illustrated
when comparing, respectively, the input, output, and statics-free

data displayed in the source-receiver domain
(Figures 2a, 2b, and 11d) and midpoint-offset
domain (Figures 2d, 2e, and 11e).

RESULTS

To further illustrate the potential of our pro-
posed LR-ReS estimation and correction, we
evaluate its performance in enhancing the data,
stack, NMO velocity semblance, AVO analysis,
and automatic horizons picking. We first show ad-
ditional results of the synthetic data, followed by
the application to field data. The results will be
compared with conventional residual statics cor-
rection.

Synthetic data example

One of the popular short-wavelength statics
correction methods is residuals statics correction
with stack power maximization (SPM) (Ronen
and Claerbout, 1985), which requires NMO
velocity estimation, windowing over the noise-
free area containing aligned primaries, and win-
dowing to avoid the NMO stretch effect. Recently,
Dukalski et al. (2022) use quantum annealing to
improve the convergence of SPM to a global op-
timum. When applying the residual statics esti-
mated with SPM to the synthetic data displayed
in Figure 2b, 2d, and 2f, it provides suboptimal
results because it only accounts for the surface-
consistent statics (Figure 11a–11c). Figure 11g
displays the estimated statics with SPM and their
error compared with the total nonsurface-consis-
tent statics, which is high, and only the surface-
consistent component, which is lower. This can

Figure 8. The estimated statics in the midpoint-offset domain at the (a) first, (b) second,
and (c) third rank-scale iterations. The total estimated statics in the (d) midpoint-offset
domain and (e) source-receiver domain. (f) The true statics and (g) the LR-ReS estima-
tion error. The figures are clipped to �52 ms.
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be seen from the midpoint-offset domain time
slice (Figure 11c), where the surface-consistent
statics on the diagonals at 45° have been mini-
mized compared with the time slice of the data
with statics (Figure 2f). In this case and in similar
situations in practice, where surface-consistent
short-wavelength statics correction methods fail
to resolve all the statics, an additional nonsur-
face-consistent solution is required. On the con-
trary, LR-ReS estimation and correction
(Algorithm 2), which does not require either
NMO velocity estimation or data windowing, is
capable of accounting for the surface- and nonsur-
face-consistent statics to provide improved results
(Figure 11d–11f) that resemble the statics-free
data (Figure 2a, 2c, and 2e).
In the presence of short-wavelength statics,

NMO-corrected CMP gathers result in distorted
and low-resolution subsurface structures as they
stack out of phase (Figure 12b), contrary to the
statics-free data (Figure 12a). Residual statics cor-
rection with SPM increases the stack’s resolution
compared with one of the data with statics (Fig-
ure 12d). However, because it fails to fully correct
for short-wavelength statics, the stack’s resolution
is not optimal as is evident from the computed
average amplitude spectrum (Figure 12e). Using
our proposed method, we obtain an undistorted
and a higher resolution stack that is similar to
the one obtained from the statics-free data (Fig-
ure 12c), which also is confirmed by the amplitude
spectrum (Figure 12e). For additional quantitative
analysis, we compute the average stack power p given by

p ¼ 1

nt

Xnt
t¼1

jsðtÞj2; (6)

which corresponds to the average sum of the absolute squares of a
stacked trace sðtÞ at each CMP. Relative to the statics-free stack,
the average stack power of all the CMP gathers of the data with statics
is 0.27. After residual statics correction with SPM, it becomes 0.45,
whereas it is 0.96 after our proposed method.
A QC of residual statics can be performed by an analysis of the

CMP gathers and their stacks, which shows that our proposed
method preserves the structure and its amplitudes. Additional analy-
ses are usually performed on the NMO velocity semblance (see the
next paragraph) and the stack of the receiver or shot gathers. The
latter also is used to ensure that the original structure does not
change. Figure 13 shows the results of shot-gather stacks. The con-
clusions are similar to those inferred from the CMP stacks, where
the LR-ReS does not introduce erroneous structures while account-
ing for most of the statics (Figure 13c), when compared with the
statics-free case (Figure 13a). On the other hand, the surface-con-
sistent statics estimated by SPM require an additional nonsurface-
consistent statics correction step (Figure 13d). If the used window
partly includes unaligned multiples, SPM introduces erroneous
structures (Figure 13e), which demonstrates its dependence on op-
timal window selection and accurate NMO velocity estimation.

Figure 9. Frequency slices after the LR-ReS estimation and correction at the (a and b)
first, (c and d) second, and (e and f) third rank-scale iterations of (a, c, and e) 18 Hz and
(b, d, and f) 49 Hz.

Figure 10. The largest singular values of (a and b) 18 Hz and (c and
d) 49 Hz frequency slices of data with statics (Figure 4a and 4b)
plotted in the dashed curves, statics-free data (Figure 3b and 3d)
plotted in the solid curves, and after the LR-ReS correction at
the (a and c) first (Figure 9a and 9b) and (b and d) third rank-scale
iterations (Figure 9e and 9f) plotted in the circle markers.
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Another important role for short-wavelength
statics correction is improving the NMO velocity
estimation, where both steps are usually applied
in a flip-flop mode to improve their performance
(Yilmaz, 2001). The semblance after LR-ReS es-
timation and correction, which is independent of
the NMO velocity model, leads to less ambiguity
and more confidence in picking the velocity sim-
ilar to the statics-free situation (Figure 14a and
14c, respectively). Due to the influence of the
statics, the resolution of the semblances obtained
from the data with statics and after the SPM
residual statics correction is suboptimal, which
can result in ambiguity during the velocity pick-
ing process (Figure 14b and 14d).
Due to the importance of amplitude fidelity, we

examine whether the LR-ReS estimation and cor-
rection can preserve the AVO response. Because
the only difference between the output and the in-
put is statics correction (Algorithm 2), we do not
expect to change the amplitude values. However,
the AVO analysis can be influenced when traces
are unbalanced in the presence of residual statics
(Chopra and Castagna, 2014). This can be seen in
Figure 15, where the autopicked amplitudes of the
horizon at 0.65 s from CMP gathers with statics
and after SPM suffer from erroneous picks. In
contrast, the autopicked amplitudes on the CMP
gather after LR-ReS estimation and correction re-
semble those of statics-free data. When computing
the AVO intercepts and gradients from all the
CMP gathers at the same horizon, the statics-free
data and the data after our proposed method pro-
vide a highly similar trend confined to the same
area (Figure 15f). However, the intercepts and gra-
dients computed from the CMP gathers with stat-
ics show a highly scattered trend. It becomes
slightly improved after residual statics correction
with SPM, but still unsatisfactory due to the effect
of the unresolved statics. To this extent, the LR-
ReS estimation and correction framework has
shown its potential in correcting for the surface-
and nonsurface-consistent short-wavelength stat-
ics on simulated data. To further evaluate its per-
formance, we apply it to field data.

Field data example

The challenging field data set we consider for
the demonstration is affected by complex near-
surface weathering layers (Al-Ali and Verschuur,
2006). The data’s source and receiver intervals
are 30 m and the maximum offset is 3585 m.
Figure 16d shows the surface elevation variation
across the section. The topography also varies
widely and includes gravel, loose sand, fast
carbonates, and karsts. These conditions lead
to the low-quality data and stack shown in
Figures 16a and 17a, respectively. We apply min-
imal preprocessing on the data, which includes

Figure 11. The estimated (a and d) shot gathers, (b and e) CMP gathers, (c and f) time
slices in the midpoint-offset domain, and (g and h) source statics of (a and d) plotted in
black along with their error in red after (a, b, c, and g) SPM residual statics correction
and (d, e, f, and h) our proposed method. The blue line represents the error of SPM with
respect to only the surface-consistent statics.

Figure 12. CMP stacks of (a) statics-free data and (b) data affected by short-wavelength
statics and data after statics correction with (c) LR-ReS and (d) SPM. (e) The average
amplitude spectra computed from (a–d) drawn in the dotted lines with circle markers, the
dashed line, the solid line, and the dashed-dotted line, respectively.
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elevation statics correction and frequency-wavenumber (f-k) filter for
ground-roll attenuation. Figures 17a and 18a display five of the CMP
gathers after preprocessing and after NMO correction, respectively,
which clearly show the near-surface effect on the noncontinuous re-
flections. The data also contain near-offset noise, random noise,
and residual ground roll. Unfortunately, residual statics correction
with SPM results in minimal improvement (Figure 18c). The limited
performance can be attributed to the violation of the surface-consis-
tency assumption due to the complexity of the near-surface weath-
ering layers that can lead to nonvertical raypaths in the near surface.
To overcome the limitations of conventional residual statics correc-
tion, we apply our proposed method to this challenging field data set.
By using the proposed LR-ReS estimation and correction frame-

work, we avoid the assumption that requires raypaths in the near sur-
face to be vertical. This makes the method suitable for these data
given the complexity of the near surface. As pre-
viously mentioned, we use three-rank scale itera-
tions and three frequency bands within the
available frequency content (10.5–58 Hz). Fig-
ure 17b displays the CMP gathers after the LR-
ReS estimation and correction, which show im-
proved reflections with less near-surface imprint
compared with the input data (Figure 17a). The
improvement also is noticeable after the NMO
correction of the CMP gathers obtained after
the LR-ReS estimation and correction (Figure 18b)
when compared with the CMP gathers with statics
(Figure 18a) and after residual statics correction
with SPM (Figure 18c). Note that our proposed
method leads to more continuous events at the
near and far offsets in the shallow and deep parts
of the CMP gathers as it accounts for the nonsur-
face-consistent statics. The estimated LR-ReS in
the midpoint-offset domain (Figure 16e) shows
a pattern similar to the ones obtained from the syn-
thetic data (Figure 8). They are composed of sur-
face-consistent (diagonals at 45°) and nonsurface-
consistent statics. The nature of the statics across
the line also correlates well with the variations of
the elevation profile (Figure 16d).
The complexity of the near-surface weathering

layers still leads to a distorted stack after elevation
statics correction (Figure 16a). It obtains a minor
improvement after the SPM residual statics correc-
tion as it only accounts for the surface-consistent
statics (Figure 16c). Using the LR-ReS estimation
and correction, we obtain a stack section with im-
proved continuity and higher power compared
with the other two sections (Figure 16b). The im-
provement also can be quantitatively assessed us-
ing the average stack power (equation 6). The
power of the stack after residual statics correction
with SPM is 6% higher than that with the elevation
statics correction. In contrast, the stack power after
our proposed method implemented on data with-
out the NMO correction becomes 17% higher rel-
ative to that after the elevation statics correction.
Magnifying the highlighted areas in Figure 16

and autopicking the horizon between 0.55 and

0.6 s confirm the improvement attained with the LR-ReS estimation
and correction framework (Figure 19). The autopicked horizons on
the stack after the elevation and conventional residual statics cor-
rections suffer due to the imprint of the residual statics that led
to erroneous picks. On the contrary, the autopicking process is able
to easily pick the horizon after the application of our proposed
method, which can provide upgraded interpretation capabilities.
Similar to the synthetic data, the estimated LR-ReS can enhance
the NMO velocity semblance (Figure 20b), which allows for more
confident velocity picking compared with the semblances computed
after the elevation and conventional residual statics correction
shown in Figure 20a and 20c, respectively. Therefore, by estimating
the nonsurface-consistent LR-ReS, we can obtain a more accurate
near-surface correction that can lead to substantial improvements.

Figure 13. Shot gathers stacks of (a) statics-free data and (b) data affected by short-
wavelength statics and data after statics correction with (c) LR-ReS and SPM using
(d) an optimal and (e) suboptimal window.

Figure 14. NMO velocity semblances computed from (a) statics-free data and (b) data
with statics and data after statics correction with (c) our proposed method and (d) SPM.
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DISCUSSION

Using the LR-ReS estimation and correction, we are able to correct
for the surface- and nonsurface-consistent statics typically associated
with the rapid variations of surface elevation, weathering layers’
velocity, and thickness. Removing the surface-consistency
assumption can be considered dangerous for the existing nonsur-
face-consistent techniques such as trim statics (Ursenbach and
Bancroft, 2005). In contrast, our proposed method captures the intrin-
sic relationships between the different midpoints and offsets because it
operates on the whole line, i.e., we do not low-rank approximate sin-
gle gathers. Moreover, LR-ReS estimation and correction do not per-
form any sort of temporal or spatial windowing to the data, which
prevents the statics from becoming biased by certain events. This
is the opposite of what other conventional surface- and nonsur-
face-consistent techniques usually do, i.e., they are dependent on data
windowing, which can make them strongly biased (see Figure 13).
The proposed method does not require NMO-corrected gathers

for statics estimation. Therefore, short-wavelength statics correction
becomes independent of errors in the NMO velocity model. In con-
trast, the conventional residual statics correction can be affected by
errors in the NMO velocity model, which can lead to confusion
about whether statics correction, velocity refinement, or both are
necessary. The events at approximately 1.2 and 1.5 s of the field
data’s CMP gathers after the elevation and conventional residual
statics correction (Figure 18a and 18b, respectively) may indicate
that updating the velocity model is necessary. This also can be no-
ticed from the semblances in Figure 20a and 20c. On the other hand,
the CMP gathers after our proposed method, which is not biased

by the NMO velocity model as it was applied to the data without
the NMO correction, are much less affected by the surface- and
nonsurface-consistent statics (Figure 18c). As a result, the NMO
velocity model appears to be sufficiently accurate. Moreover, the
velocity semblance after the LR-ReS correction is much less af-
fected by the weathering layers compared with that after conven-
tional residual statics correction (Figure 20). In addition, in the
presence of a high-velocity layer followed by a lower one, the
NMO velocity picking of primaries can be challenged by multiples.
In certain situations, the NMO velocity estimation may need to be
guided by an interpreter acquainted with the geology. When the
velocity semblance is affected by multiples and short-wavelength
statics, the NMO velocity estimation can be one of the most efforts-
and time-consuming processes in the land seismic data processing.
On the contrary, the LR-ReS estimation is independent of the NMO
velocity model, which can reduce the multiple iterations of the
NMO velocity estimation and short-wavelength statics correction.
Therefore, it can increase the overall efficiency of data processing.
Unlike conventional methods that need access to multiple- and

noise-free data with aligned primaries after the NMO correction
(Cox, 1999; Yilmaz, 2001), which may not always be feasible, the
proposed method can be carried out using the total wavefield.
If multiples are present in the data even though the selected window
for the conventional residual statics correction only contains primar-
ies, the multiples may inadvertently be removed, which can limit the
imaging and inversion using primaries and multiples (Verschuur,
2013). Similarly, if the selected window partly contains unaligned
multiples, erroneous structures may be introduced (Figure 13e). With
the LR-ReS estimation and correction, theprimaries and multiples can
be improved as demonstrated by the stacks in the “Results” section.
Moreover, the proposed method does not require horizon picking or
pilot trace construction, which can be necessary for nonsurface-con-
sistent methods. In the presence of noise or noncontinuous events,
these tasks become nontrivial (see Figure 19a and 19c). In contrast,
the LR-ReS estimation and correction shows it can correct for the
short-wavelength statics on the field data in the presence of noise.
Nevertheless, Algorithm 2 requires the selection of two main param-
eters, which are the ranks K and frequency bands fb that we further
elaborate on next.

Practical aspects

We demonstrate the benefits of frequency-band-dependent and
multi-rank-scale statics estimation and correction in the “LR-ReS es-
timation and correction” section. We further clarify some of the prac-
tical aspects. For the synthetic and real data, it is sufficient to estimate
the statics at three frequency bands spanning low to high frequencies
such that we cover the total frequency bandwidth. One way to decide
on the frequency bands is to estimate the statics after processing each
third of the frequency slices. In practice, the frequency bands at
which the statics are estimated will depend on the frequency content
of the data set and its quality. For example, the signal-to-noise ratio of
the field data below 10.5 Hz and greater than 58 Hz is low. Therefore,
we estimate the statics at 25, 40, and 58 Hz.
To select the rank for Algorithms 1 and 2, we linearly increase it

with increasing frequency content. This is because higher frequen-
cies contain more variability and therefore require a higher rank for
a better low-rank approximation compared with the low frequencies
(Figure 4). We note that the rank selection also depends on the
complexity of the data, which requires the user’s analysis. In

Figure 15. Autopicked AVO responses in the blue lines corre-
sponding to the horizon at 0.65 s for one NMO-corrected CMP
gather: (a) statics-free and (b) with statics and after statics correction
with (c) LR-ReS and (d) SPM. (e) The AVO responses from the four
CMP gathers and (f) intercepts and gradients computed from all
CMP gathers at the same horizon that corresponds to the statics-free
data (the blue), data with statics (the red), and data after statics cor-
rection with LR-ReS (the magenta) and SPM (the yellow).
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Algorithm 2, the role of the low-rank approximation is to mitigate
the near-surface effect, which we then use in the crosscorrelation for
statics estimation. Because we estimate the statics after processing
each frequency band rather than each frequency slice, we avoid er-
rors due to low-rank approximation or poor signal-to-noise ratio.
Therefore, an error due to the rank selection has less influence
on the LR-ReS estimation compared with other rank-based methods
that use the rank for explicit output estimation, e.g., Algorithm 1 or
rank-minimization problems (equation 3a) usually used for denois-
ing or interpolation. Moreover, using the proposed multi-rank-scale
approach alleviates the requirements for accurate low-rank approxi-
mation. The strategy of starting with high-rank approximation

followed by lower-rank approximation at later iterations results
in improved statics estimation as explained in the “LR-ReS estima-
tion and correction” section, which we demonstrate by means of
synthetic and field data.
Using more rank scales to estimate the statics at additional fre-

quency bands can add further improvements, e.g., 1–2 dB at cer-
tain frequencies of the stack’s amplitude spectrum in the shown
examples. However, the computational efficiency also depends
on these two factors, namely the number of rank scales and fre-
quency bands. The number of rank scales determines the number
of SVD computes, whereas the frequency bands determine
the number of crosscorrelations. Therefore, the computational

Figure 16. Stack sections of the field data after (a) elevation statics correction, (b) LR-ReS estimation and correction, and (c) residual statics
correction with SPM. (d) The average surface elevation profile and (e) the total LR-ReS in the midpoint-offset domain after three rank-scale
iterations clipped to �20 ms.
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complexity of the method is determined by the SVD
Oðminfn2m × nh; nm × n2hgÞ, which becomes Oðnm × n2hÞ, as nh
is almost always less than nm, and crosscorrelations Oðnt × ngÞ,
where ng corresponds to the number of crosscorrelation lags.
For field and synthetic data, we only compute the SVD three times
for each frequency slice. We also estimate the statics at three fre-
quency bands, which requires three crosscorrelations at each rank-
scale iteration. The proposed method turns out to be more com-
putationally efficient compared with the residual statics correction
with SPM, while at the same time providing better results. More-
over, the efforts- and time-consuming NMO velocity estimation
required for conventional methods make our proposed method
even more attractive. The computational efficiency of Algorithm 2

can be increased by running it on multiple processors along fre-
quency slices. For large-scale matrices, e.g., in the case of 3D seis-
mic data, SVD can be computationally demanding. Therefore,
computation of only a subset of singular vectors along with their
corresponding singular values may increase computational effi-
ciency. To further improve the performance of the proposed frame-
work, we mitigate the effect of noise.

Mitigation of the noise effect

We assume that the low-rank structure destruction is due to the
effect of the weathering layers, whereas the largest singular values
preserve the signal of interest. In reality, more factors may influence

the singular values such as the residual ground
roll, near-offset noise, and random noise of the
field data (Figures 17a and 18a). The singular val-
ues of these undesired events become muddled
with the larger singular values of the reflections,
which influence the performance of low-rank
approximation. Consequently, parts of the esti-
mated statics contain the imprint of noise, as
shown in Figure 16e. In this case, there is a need
for improved preprocessing for ground-roll and
noise attenuation, especially because we only ap-
ply a simple f-k filter and elevation statics correc-
tion as pre-processing steps to this challenging
field data.
An alternative approach to mitigate the noise ef-

fect is to apply an NMO correction, which Trickett
and Burroughs (2009) use to minimize the number

Figure 19. Auto picked horizons (the dotted lines) on the magnification of the field data’s stacks at the highlighted areas of Figure 16: (a) before
residual statics correction, (b) after LR-ReS correction, and (c) after SPM residual statics correction.

Figure 18. Part of the field data’s NMO-corrected CMP gathers after (a) elevation statics correction, (b) LR-ReS correction, and (c) SPM
residual statics correction.

Figure 17. Part of the field data’s CMP gathers after (a) elevation statics correction and
(b) LR-ReS correction.
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of dipping events and consequently use a smaller rank during denois-
ing with Cadzow filtering. After the NMO correction, aligned reflec-
tions in the CMP gathers form most of the events (Figure 18a), which
leads the undesired events to be less coherent and consequently
exhibit the smaller singular values space. Therefore, the singular val-
ues become more rapidly decaying after the NMO correction com-
pared with those without the NMO correction (Figure 21a). As a
result, the application of our proposed method on the NMO-corrected
data allows for an improved low-rank approximation, which mitigates
the effect of noise on the estimated statics and stacks displayed in
Figure 22 when compared with those shown in Figures 16b, 16e,
and 19b. The obtained stack section and autopicked horizon (Fig-
ure 22) show a higher degree of improvement compared with those
after the elevation statics and conventional residual statics corrections
(Figures 16a, 16c, 19a, and 19c, respectively). The stack power after
the residual statics correction with our proposed
method becomes 42% higher than that of the data
with an elevation statics correction, whereas the
improvement with SPM is only 6%. Note that,
to achieve the same LR-ReS estimation and cor-
rection performance of the data with and without
the NMO correction (Figures 16b, 19b, and 22) on
these challenging field data, improved preprocess-
ing becomes essential. Even though the data’s con-
dition and transform domain without the NMO
correction are not optimal, the estimated LR-
ReS provides reflections with improved continuity
(Figures 17 and 18). Moreover, its stack section
(Figure 16b) shows a better performance com-
pared with conventional residual statics correction
(Figure 16c), which requires NMO velocity esti-
mation and correction.
In contrast to the field data, the synthetic data

set is ideal, except for the added short-wave-
length statics. Therefore, removing the direct
wavefield and part of the reflected wavefield im-
posed by the NMO correction can decrease the
redundancy of the data and influence the singular
values decay. To observe that, we examine the
singular values decay prior to the LR-ReS cor-
rection on the data with and without the NMO
correction (Figure 21b). We notice that the
NMO correction results in a slower singular values decay compared
with the data without the NMO correction due to the applied mute.
In this case, the midpoint-offset domain without the NMO correc-
tion is the better one for statics estimation.
We indicate that the conventional surface- and nonsurface-consis-

tent residual statics estimation methods can be influenced by noise. In
this case, surface-consistent statics can provide a more stable solution
compared with nonsurface-consistent ones. For the shown field data
set, which is contaminated with noise, it is not necessary to enforce
surface consistency. However, if a surface-consistent solution is de-
sired, it can be computed by averaging the estimated statics along the
rows and columns in the source-receiver domain.

Further extensions and applications

Residual statics correction usually compensates for the short-
wavelength component of the statics. Therefore, we assume
that the data can be redatumed to a flat surface (roughly) using

long-wavelength statics correction methods, after which the
residual statics correction can be applied. To apply the LR-ReS es-
timation and correction to the field data with varying topography
prior to the long-wavelength statics correction, further tests need
to be carried out. We envision that if the near surface renders
the coherent energy incoherent and the largest singular values pre-
serve the coherent energy, LR-ReS estimation and correction can
still be applicable.
As evident from the field data stack (Figure 16a), the data set is

affected by various near-surface conditions. Between 15 and
18.5 km as well as between 43 and 52 km, there is a minor distortion
due to the near surface. As a result, only the small LR-ReS is esti-
mated (Figures 16e and 22a). Most of the improvement is obtained
between 18.5 and 40 km (Figures 16b and 22b). On the other hand,
between 40 and 43 km, the data set is heavily distorted and exhibits

Figure 20. NMOvelocity semblances computed fromCMP gathers of the field data (a) be-
fore residual statics (ReS) correction, (b) after LR-ReS correction, and (c) after SPM
residual statics correction. The dashed lines show the originally picked NMO velocity.

Figure 21. The largest singular values computed from the fre-
quency slices in the midpoint-offset domain of (a) field data and
(b) synthetic data without NMO correction (the dashed curves),
with NMO correction (the dashed-dotted curves), and after LR-
ReS estimation and correction of data without (the dotted
curves) and with (the solid curves) NMO correction.

LR-ReS estimation and correction V229

D
ow

nl
oa

de
d 

05
/2

2/
23

 to
 1

54
.5

9.
12

4.
11

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

S
E

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/p

ag
e/

po
lic

ie
s/

te
rm

s
D

O
I:1

0.
11

90
/g

eo
20

22
-0

41
5.

1



no coherency due to the near-surface conditions and the 3D effects
not captured by the 2D data. In this case, a 3D wave-equation-based
solution is necessary to overcome the limitations of the elevation
statics correction, which can be followed by the LR-ReS estimation
and correction.
The proposed LR-ReS estimation and correction framework

is currently implemented on 2D data. However, it can be easily ex-
tended to three dimensions, where the 5D data volume becomes
parameterized by midpoints and offsets along the x- and y-dimen-
sions (mx;my and hx; hy), respectively. Other tensor- or matrix-
based transform-revealing parameterizations also can be used.
The inclusion of multidimensional data can further benefit
LR-ReS estimation by increasing the redundancy of the data, which
can lead to better performance compared with processing separate
2D lines. However, poor sampling with coarse sources and receivers
may prevent that if the few largest singular values do not capture the
coherent energy. We note that there can be a difference between the
field data grid and the computational grid. In the shown field data
example, we place the CMP gathers at the grid points nearest to the
actual field positions. After statics estimation and correction, the
traces can be sorted back to the original domain. Therefore, a further
point of research can be related to the binning of off-the-grid data.
Currently, the estimated LR-ReS is offset-variant, which can be the
case when raypaths in the near surface diverge from the normal in-
cidence. The statics also may become time variant, which requires
additional analysis to implement the LR-ReS estimation and correc-
tion in this situation.
A potential application of the LR-ReS estimation and correction

is S-wave short-wavelength statics correction, as the proposed
method can estimate large statics with the frequency-band-depen-
dent approach. In addition to using residual statics correction in
conventional processing workflows, it also can be used as a prepro-
cessing step prior to full wavefield imaging and inversions such as
full-waveform inversion and joint migration inversion (Tarantola,

1984; Virieux and Operto, 2009; Berkhout, 2014) as residual statics
can be beyond the resolution of these methods. Or even better,
residual statics correction should be combined together with these
dynamic processes to explain the whole data and obtain more com-
plete near- and subsurface models. Alfaraj and Verschuur (2020)
show initial steps in this direction. Not requiring an NMO velocity
model and being able to correct for the surface- and nonsurface-con-
sistent short-wavelength statics make the LR-Res estimation and
correction more favorable compared with the existing methods.

CONCLUSION

The surface-consistency assumption commonly used in short-
wavelength statics correction can be successful on many occasions.
However, when raypaths in the near surface diverge from the nor-
mal incidence, residual statics correction with SPM can be shown to
fail to fully correct for short-wavelength statics. In this case, an
additional nonsurface-consistent statics correction process is re-
quired, which adds to the computational costs and can be prone
to errors in the presence of noise or when picking noncontinuous
horizons. To overcome these limitations, we propose an LR-ReS
estimation and correction framework that can simultaneously cor-
rect for the surface- and nonsurface-consistent statics. The method
uses the redundant nature of midpoint-offset frequency slices to iter-
atively estimate the multi-rank-scale and frequency-band-dependent
statics. The proposed LR-ReS estimation and correction can esti-
mate short-wavelength statics without the need for the NMO cor-
rection, which can reduce the efforts- and time-consuming multiple
passes of the NMO velocity estimation and residual statics correc-
tion. Consequently, it also does not require windowing over a noise-
free area containing primaries or windowing to avoid the NMO
stretch effect. Results on synthetic and field data show significant
improvements that conventional residual statics correction could
not achieve. Because the method can be directly applied to the total

Figure 22. (a) The total estimated statics in the midpoint-offset domain clipped to�20 ms, (b) stack, and (c) magnified at the highlighted area
of (b) with the autopicked horizon after the LR-ReS correction of NMO-corrected data.
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wavefield without extensive preprocessing, e.g., multiple removal
and NMO velocity estimation, residual statics correction becomes
feasible prior to the other processing steps to improve their perfor-
mance. Further potential applications include short-wavelength stat-
ics correction prior to first-breaks picking, traveltime inversion, or
full wavefield imaging and inversion techniques. These findings
make the proposed method preferable to correct for short-wave-
length statics compared with the conventional methods.
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