
 
 

Delft University of Technology

Drag Force on a Starting Plate Scales with the Square Root of Acceleration

Reijtenbagh, J.; Tummers, M. J.; Westerweel, J.

DOI
10.1103/PhysRevLett.130.174001
Publication date
2023
Document Version
Final published version
Published in
Physical review letters

Citation (APA)
Reijtenbagh, J., Tummers, M. J., & Westerweel, J. (2023). Drag Force on a Starting Plate Scales with the
Square Root of Acceleration. Physical review letters, 130(17), Article 174001.
https://doi.org/10.1103/PhysRevLett.130.174001

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1103/PhysRevLett.130.174001
https://doi.org/10.1103/PhysRevLett.130.174001


Drag Force on a Starting Plate Scales with the Square Root of Acceleration

J. Reijtenbagh ,* M. J. Tummers, and J. Westerweel
Laboratory for Aero and Hydrodynamics, Delft University of Technology,

Mekelweg 2, 2628 CD Delft, Netherlands

(Received 18 November 2022; accepted 24 March 2023; published 24 April 2023)

We report results on the instantaneous drag force on plates that are accelerated in a direction normal to
the plate surface, which show that this force scales with the square root of the acceleration. This is
associated with the generation and advection of vorticity at the plate surface. A new scaling law is presented
for the drag force on accelerating plates, based on the history force for unsteady flow. This scaling avoids
previous inconsistencies in using added mass forces in the description of forces on accelerating plates.
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An object that is moving through a fluid is generally
studied for the case of a steady or quasisteady velocity.
However, in reality all objects must have started from rest
before reaching their target velocity. Also, objects in a
practical situation rarely move at an exact stationary
velocity, and in certain situations the motion can be strongly
instationary; for example, in biological propulsion [1–3],
flight applications [4–6], or themotion of a rowing blade [7].
We consider the drag force acting on a normal flat plate

as a function of the acceleration until it reaches a target
velocity. The conventional approach is to describe the
forces on an accelerating, or decelerating, plate at high
Reynolds number (Re ≫ 1) by considering the added
mass force combined with a quasisteady drag force, where
the added mass force is directly proportional to the
acceleration [8–10]. The inviscid nature of added mass
is a reason for doubting this approach [11–13] and recent
experiments [7,14,15] demonstrate that this description is
incomplete, and the dependence of the drag force on
acceleration, velocity, and other parameters has not been
described by a general scaling law.
In this Letter we present experimental findings on the

drag force of accelerating normal plates in a viscous fluid at
high Reynolds numbers. From these experimental data we
find a novel scaling law for the drag force on accelerating
plates. This scaling law states that the peak drag force is
proportional to the square root of the (constant) acceler-
ation, which shows that a constant added mass does not
accurately predict the measured drag and an alternative
contribution to the drag force due to acceleration needs to
be considered.
In our experiments we measure the drag force on a

circular disk, a square plate, and a 1∶2 aspect ratio
rectangular plate, all with a frontal area A ¼ 0.020 m2,
that are uniformly accelerated from rest at various rates to
given target velocities. The experiments were carried out in
a 2.0 × 2.0 × 0.5 m3 water-filled tank, where an industrial

gantry robot was used to accelerate the plates. The
acceleration a in the experiments ranges from 0.10 to
1.64 m=s2 with target velocities Va ranging from 0.30 to
1.20 m=s, which corresponds to a Reynolds number range
from 30 × 103 to 120 × 103. A six-axis force-torque
transducer is used to measure the force FðtÞ on the plate.
Planar particle image velocimetry (PIV) measurements
were done to measure the instantaneous vorticity field
and circulation. A schematic of the experiment can be
found in Fig. 1(a); further details can be found in Ref. [7].
Given the measured total force FðtÞ, the drag force FD

on an accelerating plate with mass m submerged in a fluid
with density ρ and kinematic viscosity ν, at high Reynolds
number (Re ≫ 1), can be written as [8,15]

FDðtÞ≡ FðtÞ −maðtÞ ¼ CD
1

2
ρV2ðtÞA|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

FQSðtÞ

þ FaðtÞ; ð1Þ

where CD is the drag coefficient, A is the frontal area of the
plate, VðtÞ is the instantaneous velocity of the plate, and
aðtÞ≡ _VðtÞ is the acceleration. The first term on the right-
hand side is the quasisteady drag force FQSðtÞ. This term
represents the form drag, proportional to the stagnation
pressure 1

2
ρV2, with a proportionality constant CD that is

(nearly) constant over a large range in Reynolds number for
a thin flat plate [9,16]; the second term, FaðtÞ, is a
hydrodynamic force due to the acceleration.
A contemporary interpretation of Eq. (1) would separate

the drag force for an accelerating plate into circulatory and
noncirculatory contributions [17,18], where the noncircu-
latory contribution is equal to the conventional added
mass [9]. This approach requires measured velocity data,
and as such is not able to provide an a priori scaling for the
drag force with acceleration.
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FaðtÞ is usually considered as a (noncirculatory) added
mass force [¼ mvaðtÞ] that follows from potential flow
theory [9], with a constant “virtual mass” mv [19] of fluid
that is accelerated with the object. The value ofmv depends
on the object shape and direction of motion [10,20].
The ratio of the added mass force and quasisteady drag
force defines the dimensionless acceleration a� ¼ al=V2

a
[14,15,21,22], which has previously been used in attempts
to scale drag forces for accelerating objects. Furthermore,
we present results as a function of the dimensionless time
t�, defined as [23,24]

t� ¼ 1

l

Z
t

0

VðτÞdτ; ð2Þ

where l is a reference length scale; here the plate height lb,
so that t� is equal to the number of plate heights traveled.
The dimensionless duration of the acceleration t�a is equal
to ð2a�Þ−1.
Figure 1 shows the flow field in the midplane of the

rectangular plate. The flow pattern initially resembles the
flow field given by potential flow theory, but due to the no-
slip condition at the plate surface and finite fluid viscosity,
vorticity is generated near the plate edges [Fig. 1(c)]
and plate surface, and forms a thin boundary layer
[Figs. 1(d)–1(f)] resembling Hiemenz flow [25]. This
vorticity is advected into the vortex that forms near the
edges of the plate, and increases its circulation Γ. During
the acceleration the vortex near the plate edges grows over
time and the flow field diverges from the initial potential
flow field; see Fig. 1(d). This is a first indication that
conventional (noncirculatory) added mass, which origi-
nates from potential flow, is insufficient to explain the
forces that occur due to acceleration. Around t� ≅ 6, the
initial vortex near the plate edge breaks up, detaches from

the plate, and a turbulent three-dimensional wake develops;
see Fig. 1(h). We refer the reader to the video in the
Supplemental Material to see the development of the flow
around the accelerating plate [26].
Figure 2 shows the measured drag force FD on a

100 × 200 mm2 rectangular plate for accelerations between
0.10 and 1.64 m=s2 toward the same target velocity Va
[¼ ata; see Fig. 1(b)] of 0.45 m=s as a function of t�.
Toward the highest acceleration only accelerations that
increase with a factor 2 are shown for clarity. After the
acceleration ends, all lines collapse on a single curve for
sufficiently large values of t�. The circles indicate the peak
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FIG. 2. Measured drag force FD for different accelerations
toward velocity Va ¼ 0.45 m=s. Full circles indicate the end of
the acceleration. The black dashed line indicates the steady state
drag (FQS ¼ 1

2
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a). Stars indicate the sum of the steady
state drag FQS and added mass force mva. Inset: peak drag force
F̂D as a function of acceleration. Open circles: measurements not
included in main figure. Full line: fitted curve F̂a ∝ a0.5.
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FIG. 1. (a) A plate with dimensions la × lb moves through a viscous fluid at velocity VðtÞ and experiences a force FðtÞ. PIV
measurement plane (green) at the plate midplane. (b) Imposed velocity VðtÞ of the plate: V ¼ at (with constant acceleration a) for
0 < t < ta and constant Va for t > ta. (c),(d),(g),(h) Measured velocity fields and vorticity ω� for a� ¼ 0.5 (t�a ¼ 1.0) at t� ¼ 0.05 (with
streamlines), 1.0, 3.0, 6.5, respectively. (e) Detail near upstream plate surface. (f) Velocity profile along blue dashed line in (e); red line
represents the velocity profile according to Eq. (4). The plate velocity is subtracted for (e) and (h). All dimensions are normalized by lb.
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force F̂D ¼ FDðt ¼ taÞ; the star symbols indicate the
expected sum of the steady state force FQS and the added
mass force mva [20]. Evidently, using the added mass for
Fa strongly underestimates F̂D, and we would expect
F̂a ∝ aκ with κ ¼ 1. However, the inset of Fig. 2, which
presents the value F̂D as a function of acceleration, shows
that κ ¼ 0.51� 0.05. This value for κ was found from all
possible combinations of 10 accelerations and 7 target
velocities. A value of κ < 1 has been observed elsewhere
[14,24], although there are no experimental data available
over a substantial range of accelerations and velocities to
assign a numerical value to κ.
Figure 3 shows the drag force FD for an equal accel-

eration (a ¼ 1.23 m=s2) toward different target velocities.
The dash-dotted lines show the force based on Eq. (1),
including the added mass force for Fa. Again, we see a
significant underestimation of the measured force, both
during the acceleration as well as shortly thereafter.
Furthermore, a virtual mass also cannot explain the gap
between the measured force and predicted force after the
acceleration phase has ended, since the added mass force
would vanish instantaneously when the acceleration ceases.
Similar to acceleration, we find F̂a ∝ Vκ

a, with κ ¼ 0.52�
0.04 (Fig. 3, inset).
Hence, the empirical result Fa ∝ ðaVÞ0.5 suggests the

following scaling law:

Fa ¼ Ca × ρA
ffiffiffiffiffiffiffiffiffi
νaV

p
; ð3Þ

where Ca is an instationary drag coefficient that depends on
the plate geometry (similar to a conventional drag coef-
ficient). This scaling follows from the ansatz below.
Equation (3) is directly found from the general solution

for Stokes’ first problem of the flow of a viscous fluid over
a plate in a semi-infinite domain with an imposed velocity
VðtÞ [27,28]:

VðtÞ − uðy; tÞ ¼
Z

t

−∞

yffiffiffiffiffiffiffiffi
4πν

p VðτÞ
ðt − τÞ3=2 e

−y2=4νðt−τÞdτ

¼ at

��
1þ y2

2νt

�
erfc

�
y

2
ffiffiffiffi
νt

p
�

−
yffiffiffiffiffiffiffi
πνt

p exp
�
−

y2

4νt

��
; ð4Þ

for VðtÞ ¼ at when 0 < t ≤ ta [29], which includes the
flow history, and describes the generation and diffusion of
vorticity from the plate surface. The expression for t > ta is
found by subtracting the right-hand side of Eq. (4) shifted
by ta over time from uðy; tÞ. The rate of momentum change
per unit area, i.e., the shear force Fa=A ¼ ρν∂u=∂yjy¼0, for
VðtÞ as shown in Fig. 1(b) then gives:

Fdiff
a ðtÞ ¼ C × ρAa

ffiffiffi
ν

p ½ ffiffi
t

p
−Hðt − taÞ

ffiffiffiffiffiffiffiffiffiffiffi
t − ta

p �; ð5Þ

with C ¼ 2=
ffiffiffi
π

p
, and where HðtÞ is the Heaviside step

function. This expression gives Eq. (3) for 0 < t ≤ ta, with
t ¼ V=a, but also gives asymptotically FaðtÞ ∼ t−1=2 for
t ≫ ta when the acceleration ceases. The measurements
(Fig. 1) show how vorticity is generated and advected into
the vortex at the plate edge. This advection of momentum
needs to be accounted for. We now generalize Eq. (5),
where Ca represents the ratio of the advective momentum
transfer over the diffusive momentum transfer; Ca can thus
be interpreted as a “Nusselt number” for the momentum
transfer, i.e., Ca ¼ Fa=Fdiff

a [30,31].
Figure 4(a) shows the measured hydrodynamic force

Faðt�Þ for different accelerations, corresponding to Fig. 2.
We compare this to the modeled hydrodynamic force Fa
from Eqs. (3)–(5) in Fig. 4(b), where we use Ca ¼ 291 (see
below) as the instationary drag coefficient. Note the close
correspondence of the measured and predicted forces, both
during the acceleration phase up to t� ¼ t�a, indicated by the
circles, as well as during the relaxation phase (t� > t�a) until
the dash-dotted line at t� ≅ 6. This underlines the signature
of FaðtÞ as a history force. Similarly to the measured
hydrodynamic force, the lines in Fig. 4(b) collapse on a
single curve ðt�Þ−1=2 during the relaxation phase, indicated
by the dashed line, which is the solution for an impulsively
started plate [32].
The vorticity that is advected and fed into the vortex at

the plate edges increases the circulation Γ of the vortex.
This can be directly related to the drag force, i.e.,
FDðtÞ=lb ∝ ρ _Γla [15,33,34], given that the vortex remains

0 2 4 6 8 10 12
0

5

10

15

0.0 0.5 1.0 1.5
0

2

4

6

80.30 m/s 
0.45 m/s
0.60 m/s 
0.75 m/s

t*

F D
 (

N
)

F a
 (

N
)

Va  (m/s)

^
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attached to the plate edge. Figure 4(c) represents the
measured circulation of the vortex at the plate edge as a
function of dimensionless time for various rates of accel-
eration a. The dimensionless circulation Γ� is computed as
Γ� ¼ R

S� ω
�dS�, where ω� ¼ ωlb=Va and S� ¼ S=l2

b is
the integration area in the top half of our field of view,
indicated in Fig. 1(h).
We compare this with modeled circulation ΓM in

Fig. 4(d), which is found from integrating the vorticity
generated at the plate surface in Eq. (4): ΓM ∝R
tð∂u=∂yÞjy¼0dt [35]. The resemblance between the experi-
ments and the model is striking, with ΓM scaled to match
Fig. 4(c). Note that the experimental data appear to diverge
for t� > 6. This coincides with the breakup of the initial
vortex into smaller vortices, that subsequently develop into
a three-dimensional separated turbulent wake behind the
plate [36,37]. Both the measured and modeled circulations
merge into a single curve for t� > t�a. This curve, shown by
the black dashed line, is the asymptote for an impulsively
started plate that follows from Eq. (4) with C ¼ Ca for
ta → 0 with constant Va ¼ ata.
What remains is to present Ca as a function of a� for

various plate geometries. Figure 5 shows Ca that is found
from the measured peak force F̂a divided by ρA

ffiffiffiffiffiffiffiffiffiffiffi
νaVa

p
,

according to Eq. (3), for all imposed accelerations and all
target velocities, for the circular disk and both square and
rectangular plates. Nearly uniform values of Ca across all
values of a� and Va are found, equal to Ca ¼ 291 with a
standard deviation of 20 for the rectangular plate, and
slightly higher values for the square plate (Ca ¼ 308� 36)
and circular disk (Ca ¼ 311� 26); see Fig. 5. These values

do not appear to depend on either the magnitude of the
acceleration or Reynolds number, but on plate geometry
only. A variation of Ca with plate geometry is not
unexpected, as stationary drag coefficients also differ
slightly for plates with different shapes [38,39]. The inset
of Fig. 5 shows the result for the scaling applied in previous
studies [14,15] using CD ¼ F̂a=ð12 ρAV2

aÞ. It is clear that the
data do not collapse on a single curve, but rather organize
on different curves that follow ða�Þ0.5 for different target
velocities Va. Evidently, scaling with CD [14,15] leaves a
dependency on both a� and Va, which is resolved by using
the scaling of Eq. (3) to obtain a uniform value for Ca.
Finally, we include in Fig. 3 the total drag force FDðtÞ

from Eq. (1) with the history force FaðtÞ from Eqs. (3)–(5).
The scaling in Eq. (3) now accurately predicts the drag
force during the acceleration phase of the plate. After
reaching the peak drag force (at t�a, indicated by the full
circles in Fig. 3), the history force also describes the
relaxation of the drag force, up to t� ≅ 6, where the vortex
near the plate edges detaches and breaks up, and a turbulent
wake is formed. After this we see a faster decay of the
measured Fa, which is also seen in previous experi-
ments [7] and could be similar to the decay of history
forces on spherical particles at larger times [40]. An
analytical expression for the history force exists for a
sphere, which appears in the equation of motion for a small
sphere in nonuniform flow at low Reynolds number
(Re ≪ 1) [41,42], but the contribution of the history force
is often neglected or found to be insignificant compared to
other forces [43–45]. The concept of noncirculatory and
circulatory added mass [18,46] could provide a further
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generalization to other accelerating objects. The present
scaling for the generation of vorticity and transport into
vortices that form near the object could provide a physical
basis for vorticity estimations close to the object, when
vorticity cannot be measured directly.
In summary, our experiments show that, contrary to what

is generally accepted, the unsteady drag force is better
described by a history force that scales as Fa ∝

ffiffiffi
a

p
, rather

than a noncirculatory added mass force (with Fa ∝ a), for
an accelerating normal plate at high Reynolds number. We
conjecture that the added mass force becomes dominant for
very large and short-duration accelerations (a� ≫ 1,
t�a ≪ 1

2
), i.e., where the velocity changes almost discontin-

uously [47]. The present Letter demonstrates the signifi-
cance of the history force for plates with finite-duration
accelerations.

This work is part of the “ImpulsiveFlows” project that
has received funding from the European Research Council
(ERC) under the EU Horizon 2020 program (Grant
No. 884778).
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