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1. Introduction

1.1. Some history

It is well known that a non-trivial free Abelian group does not admit a compact Hausdorff group topology. 
Tomita [21] showed that it does not admit even a group topology whose countable power is countably 
compact.

Tkachenko [19] showed in 1990 that the free Abelian group generated by c elements can be endowed with 
a countably compact Hausdorff group topology under CH. Tomita [21], Koszmider, Tomita and Watson [14], 
and Madariaga-Garcia and Tomita [16] obtained such examples using weaker assumptions. Boero, Castro 
Pereira and Tomita obtained such an example using a single selective ultrafilter [2]. Using 2c selective 
ultrafilters, the example in [16] showed the consistency of a countably compact group topology on the free 
Abelian group of cardinality 2c. All forcing examples obtained so far had their cardinalities bounded by 2c.

Boero and Tomita [3] showed from the existence of c selective ultrafilters that there exists a free Abelian 
group of cardinality c whose square is countably compact. Tomita [25] showed that there exists a group 
topology on the free Abelian group of cardinality c that makes all its finite powers countably compact.

E. van Douwen showed in [7] that the cardinality of a countably compact group cannot be a strong limit 
of countable cofinality.

Using the result in the abstract, we obtain the following:

Theorem 1.1. Assume GCH. Then a free Abelian group of infinite cardinality κ can be endowed with a 
countably compact group topology (without non-trivial convergent sequences) if and only if κ = κω.

The result above answers a question of Dikranjan and Shakhmatov that was posed in the survey by 
Comfort, Hoffman and Remus [5].

Because of the way our examples are constructed we can raise their weights in the same way as in the 
papers [22] or [4] and obtain the following result – the examples in these references are Boolean but the 
trick is similar.

Theorem 1.2. It is consistent that there is a proper class of cardinals of countable cofinality that can occur 
as the weight of a countably compact free Abelian group.

1.2. Basic results, notation and terminology

We recall that a topological space is countably compact if, and only if, every countable open cover of it 
has a finite subcover.

Definition 1.3. Let U be a filter on ω and let (xn : n ∈ ω) be a sequence in a topological space X. We say 
that x ∈ X is a U-limit point of (xn : n ∈ ω) if, for every neighborhood U of x, the set {n ∈ ω : xn ∈ U}
belongs to U .

If X is Hausdorff, every sequence has at most one U-limit and we write x = U-lim (xn : n ∈ ω) in that 
case.

The set of all free ultrafilters on ω is denoted by ω∗. The following proposition is a well known result on 
ultrafilter limits.

Proposition 1.4. A topological space is countably compact if and only if each sequence in it has a U-limit 
point for some U ∈ ω∗.
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The concept of almost disjoint families will be useful in our construction.

Definition 1.5. An almost disjoint family is an infinite family A of infinite subsets of ω such that distinct 
elements of A have a finite intersection.

It is well known that there exists an almost disjoint family of size continuum (see [15]).

Definition 1.6. The unit circle group T will be the metric group (R/Z, δ) where the metric δ is given by

δ(x + Z, y + Z) = min{|x− y + a| : a ∈ Z}

for every x, y ∈ R.
Given an open interval (a, b) of R with a < b, we let δ((a, b)) = b − a.
An arc of T is a set of the form I + Z = {a + Z : a ∈ I}, where I is an open interval of R. An arc is said 

to be proper if it is distinct from T.
If U is a proper arc and U = {a +Z : a ∈ I} = {b +Z : a ∈ J}, then the Euclidean length of I equals the 

Euclidean length of J , and we define the length of U as δ(U) = δ(I). We also let δ(T) = 1.

Given an arc U such that δ(U) ≤ 1
2 , it follows that diamδ U = δ(U).

Our free Abelian groups will all be represented as directs sums of copies of the group of integers Z; we fix 
some notation. The additive group of rationals will also be used, so in the following definition one should 
read Z or Q for G.

Definition 1.7. If f is a map from a set X to a group G then the support of f , denotes supp f is defined to 
be the set {x ∈ X : f(x) �= 0}.

We define G(X) = {f ∈ GX : | supp f | < ω}.
If Y is a subset of X then, as an abuse of notation, we often write G(Y ) = {x ∈ G(X) : suppx ⊆ Y }.
Given x ∈ X, we denote by χx the characteristic function of {x}, whose support is {x} and which 

value χx(x) = 1.
For a sequence ζ : ω → X in X we define χζ : ω → GX by χζ(n) = χζ(n).
Finally, for x ∈ X, we let �x : ω → X be the constant sequence with value x.

Note that then χ�x is also constant, with value χx.

Definition 1.8. Let U be a filter on ω and X a set. We say that the sequences f, g ∈ Xω are U-equivalent
and write f ≡U g iff {n ∈ ω : f(n) = g(n)} ∈ U .

It is easy to verify that ≡U is an equivalence relation. We denote the equivalence class of f ∈ Xω by 
[f ]U . We also denote the set of all equivalence classes by Xω/U .

If R is a ring and X is an R-module, then Xω/U has a natural R-module structure given by [f ]U +[g]U =
[f + g]U , [−f ]U = −[f ]U , r · [f ]U = [r · f ]U and the class of the zero function as its zero element.

If p is a free ultrafilter, then the ultrapower of the R-module X by p is the R-module Xω/p.
For the rest of this paper we will fix a cardinal number κ that satisfies κω = κ.
Throughout this article, we will work inside ultrapowers of Q(κ). These ultrapowers contain copies of 

ultrapowers of Z(κ), which will be useful for the construction. So it is useful to define some notation.

Definition 1.9. Let p be a free ultrafilter on ω. We define Ult(Q, p) as the Q-vector space (Q(κ))ω/p and 
Ult(Z, p) = {[g]p : g ∈ Zω} with the subgroup structure.
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Notice that each [g]p in Ult(Z, p) is formally an element of (Q(κ))ω/p, not of (Z(κ))ω/p. Nevertheless it 
is clear that (Z(κ))ω/p is isomorphic to Ult(Z, κ) via the obvious isomorphism that carries the equivalence 
class of a sequence g ∈ (Zκ)ω in (Z(κ))ω/p to its class in (Q(κ))ω/p.

2. Selective ultrafilters

In this section we review some basic facts about selective ultrafilters, the Rudin-Keisler order and some 
lemmas we will use in the next sections.

Definition 2.1. A selective ultrafilter (on ω), also called Ramsey ultrafilter, is a free ultrafilter p on ω with 
the property that for every partition (An : n ∈ ω) of ω, either there exists n such that An ∈ p or there 
exists B ∈ p such that |B ∩An| = 1 for every n ∈ ω.

The following proposition is well known. We provide [13] as a reference.

Proposition 2.2. Let p be a free ultrafilter on ω. Then the following are equivalent:

a) p is a selective ultrafilter,
b) for every f ∈ ωω, there exists A ∈ p such that f is either constant or one-to-one on A,
c) for every function f : [ω]2 → 2 there exists A ∈ p such that f is constant on [A]2.

The Rudin-Keisler order is defined as follows:

Definition 2.3. Let U be a filter on ω and f : ω → ω. We define f∗(U) = {A ⊆ ω : f−1[A] ∈ U}.

It is easy to verify that f∗(U) is a filter; if U is an ultrafilter then so is f∗(U); if f, g : ω → ω, then 
(f ◦ g)∗ = f∗ ◦ g∗; and (idω)∗ is the identity over the set of all filters. This implies that if f is bijective, then 
(f−1)∗ = (f∗)−1.

Definition 2.4. Let U and V be filters. We say that U ≤ V (or U ≤RK V, if we need to be clear) iff there 
exists f ∈ ω such that f∗(V) = U .

The Rudin-Keisler order is the set of all free ultrafilters over ω ordered by ≤RK. We say that two 
ultrafilters p and q are equivalent iff p ≤ q and q ≤ p.

It is easy to verify that ≤ is a preorder and that the equivalence defined above is indeed an equivalence 
relation. Moreover, the equivalence class of a fixed ultrafilter is the set of all fixed ultrafilters, so the relation 
restricts to ω∗ without modifying the equivalence classes. We refer to [13] for the following proposition:

Proposition 2.5. The following are true:

(1) If p and q are ultrafilters, then p ≤ q and q ≤ p is equivalent to the existence of a bijection f : ω → ω

such that f∗(p) = q.
(2) The selective ultrafilters are exactly the minimal elements of the Rudin-Keisler order.

This implies that if f : ω → ω and p is a selective ultrafilter, then f∗(p) is either a fixed ultrafilter or 
a selective ultrafilter. If f∗(p) is the ultrafilter generated by n, then f−1[{n}] ∈ p, so, in particular, if f is 
finite to one and p is selective, then f∗(p) is a selective ultrafilter equivalent to p.

The existence of selective ultrafilters is independent from ZFC. Martin’s Axiom for countable orders 
implies the existence of 2c pairwise incomparable selective ultrafilters in the Rudin-Keisler order.
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The lemma below appears in [23].

Lemma 2.6. Let (pk : k ∈ ω) be a family of pairwise incomparable selective ultrafilters. For each k let 
(ak,i : i ∈ ω) be a strictly increasing sequence in ω such that {ak,i : i ∈ ω} ∈ pk and i < ak,i for all i ∈ ω. 
Then there exists {Ik : k ∈ ω} such that:

a) {ak,i : i ∈ Ik} ∈ pk, for each k ∈ ω.
b) Ii ∩ Ij = ∅ whenever i, j ∈ ω and i �= j, and
c) {[i, ak,i] : i ∈ Ik and k ∈ ω} is a pairwise disjoint family.

In the course of the construction we will often use families of ultrafilters indexed by ω and finite sequences 
of infinite subsets of ω. The following definition fixes some convenient notation.

Definition 2.7. A finite tower in ω is a finite sequence (A0, . . . , Ak−1) of infinite subsets of ω such that 
At+1 ⊆ At for every t < k − 1. The set of all finite towers in ω is called T . If T = (A0, . . . , Ak−1) then 
l(T ) = Ak−1, the last term of the sequence T . For the empty sequence we write l(∅) = ω.

Lemma 2.8. Assume there are c incomparable selective ultrafilters. Then there is a family of incomparable 
selective ultrafilters (pT,n : T ∈ T , n ∈ ω) such that l(T ) ∈ pT,n whenever T ∈ T and n ∈ ω.

Proof. Index the c incomparable selective ultrafilters faithfully as {qT,n : T ∈ T , n ∈ ω}. For each T , let 
fT : ω → l(T ) be a bijection and define pT,n = fT ∗(qT,n). Since f is one-to-one, it follows that pT,n is a 
selective ultrafilter equivalent to qT,n. The family (pT,n : T ∈ T , n ∈ ω) is as required. �
3. Main ideas

From now on we fix a family (pT,n : n ∈ ω, T ∈ T ) of selective ultrafilters as provided by Lemma 2.8.
The idea will be to use these ultrafilters to assign p-limits to enough injective sequences in Z(κ) to 

ensure countable compactness of the resulting topology. We take some inspiration from [2] where a large 
independent family was used such that, up to a permutation every injective sequence in Z(c) was part of this 
family. Since this group has cardinality c, there were indeed enough permutations to accomplish this. For 
an arbitrarily large group, we shall consider large linearly independent pieces to make sure every sequence 
has an accumulation point.

The following definition will be used to construct a witness for linearly independence in an ultraproduct 
that does not depend on the free ultrafilter.

Definition 3.1. Let F be a subset of (Z(κ))ω and A ∈ [ω]ω. We shall call F linearly independent mod A∗ iff 
for every free ultrafilter p with A ∈ p the set

{[f ]p : f ∈ F} ∪̇ {[χ�ξ]p : ξ < κ}

is linearly independent in the Q-vector space Ult(Q, p), and if [f ]p �= [g]p whenever f and g are distinct 
elements of F .

Notice that it is implicit in our definition that {[f ]p : f ∈ F} and {[χ�ξ]p : ξ < κ} are disjoint. We will 
abbreviate “linearly independent mod A∗” to l.i. mod A∗.

An application of Zorn’s Lemma will establish the following lemma.

Lemma 3.2. Every set of sequences that is l.i. mod A∗ can be extended to a maximal linearly independent 
set mod A∗. �
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It should be clear that A ⊆ B ⊆ ω and A and B are infinite, then a set that is l.i. mod B∗ is also 
l.i. mod A∗. By using recursion, this easily implies the following corollary:

Corollary 3.3. There exists a family (ET : T ∈ T ) such that:

(1) For every T ∈ T the set ET is maximal l.i. mod l(T )∗, and
(2) For every T ∈ T , if n ≤ |T | then ET |n ⊆ ET .

We note explicitly that even though ET is only demanded to be maximal l.i. mod l(T )∗ it will, because 
of item (2), depend on all of T , not just on l(T ).

Lemma 3.4. Let g be an element of (Z(κ))ω and let E ⊆ (Z(κ))ω be maximal l.i. mod B∗. Then there exist an 
infinite subset A of B, a finite subset E of E, a finite subset D of κ, and sets {rf : f ∈ E} and {sν : ν ∈ D}
of rational numbers such that

g|A =
∑
f∈E

rf · f |A +
∑
ν∈D

sν · χ�ν |A.

Proof. If g ∈ E or g = χ�ν for some ν < κ, then we are done. Otherwise, by the maximality of E , there exists 
a free ultrafilter p with B ∈ p such that the set

{[g]p} ∪ {[h]p : h ∈ E} ∪ {[χ�ξ]p : ξ < κ}

is not linearly independent.
This means that we can find finite subsets E and D of E and κ respectively and finite sets {rf : f ∈ E}

and {sν : ν ∈ D} of rational numbers such that

[g]p =
∑
f∈E

rf · [f ]p +
∑
ν∈D

sν · [χ�ν ]p.

Now choose A ∈ p with A ⊆ B that witnesses this equality. �
Corollary 3.5. If E ⊆ (Z(κ))ω is maximal l.i. mod B∗, then |E| = κ.

Proof. First notice that |E| ≤ |(Z(κ))ω| = κω = κ. Assume |E| < κ. Then the set C =
⋃
{supp f(n) : n ∈

ω, f ∈ E} has cardinality less than κ.
Take some injective sequence 〈ξn : n ∈ ω〉 in κ \ C and define g : ω → Z(κ) by g(n) = χξn for all n. 

Clearly then 
⋃
{supp g(n) : n ∈ ω} is disjoint from C, all values of g are non-zero and the values have 

disjoint supports.
Apply Lemma 3.4 to obtain sets A, E, D, {rf : f ∈ E}, and {sν : ν ∈ D} such that

g|A =
∑
f∈E

rf · f |A +
∑
ν∈D

sν · χ�ν |A. (∗)

Since A is infinite and D is finite, there is a k ∈ A such that ξk /∈ D. Now f(k)(ξk) = 0 when f ∈ E because 
ξk /∈ C, and χ�ν(k)(ξk) = 0 when ν ∈ D because ξk /∈ D, and also g(k)(ξk) = 1, which contradicts (∗). �

Henceforth we fix a family (ET : T ∈ T ) as in Corollary 3.3 and enumerate each ET faithfully as 
ET = {fT

ξ : κ ≤ ξ < κ + κ}.
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Definition 3.6. For each T ∈ T and n ∈ ω, we denote by GT,n the intersection of Ult(Z, pT,n) and the free 
Abelian group generated by { 1

n! [f
T
ξ ]pT,n

: κ ≤ ξ < κ + κ} ∪ { 1
n! [χ�ξ]pT,n

: ξ < κ}.

For the next lemma, we are going to use the following proposition:

Proposition 3.7. If G is an abelian group and H is a subgroup of G such that G/H is an infinite cyclic 
group, then there exists a ∈ G such that G = H ⊕ 〈a〉.

A proof may be found in [8, 14.4]. This is not the statement of the theorem but it is exactly what is 
proved by the author.

The main idea of the proof of the following lemma is to mimic the well known proof of the fact that every 
subgroup of a free abelian group is free.

Lemma 3.8. The group GT,n has a basis of the form {[χ�ξ]pT,n
: ξ < κ} ∪̇ {[f ]pT,n

: f ∈ FT,n} for some subset 
FT,n of (Z(κ))ω.

Proof. Let Hμ the group generated by { 1
n! [χ�ξ]pT,n

: ξ < μ} if μ ≤ κ and by the union of { 1
n! [χ�ξ]pT,n

: ξ < κ}
and { 1

n! [f
T
ξ ]pT,n

: κ ≤ ξ < μ} when κ < μ ≤ κ + κ.
Let Gμ = Hμ ∩ Ult(Z, pT,n) for all μ.
For every μ < κ + κ we shall find hμ so that Gμ+1 = Gμ ⊕

〈
{[hμ]pT,n

}
〉
, as follows.

For μ < κ the group Gμ is generated by {[χ�ξ]pT,n
: ξ < μ}, so Gμ+1 = Gμ ⊕ 〈{[χ�μ]}〉 and we have 

hμ = χ�μ.
For μ ≥ κ observe that Gμ+1 ∩Hμ = Gμ, so:

Gμ+1

Gμ
= Gμ+1

Gμ+1 ∩Hμ
≈ Gμ+1 + Hμ

Hμ
≤ Hμ+1

Hμ
.

The group Hμ+1
Hμ

is cyclic infinite, so either Gμ+1
Gμ

is infinite and cyclic or Gμ+1 = Gμ. By Proposition 3.7
there exists aμ ∈ Gμ+1 such that Gμ+1 = Gμ ⊕ 〈{aμ}〉 (and aμ = 0 in case Gμ+1 = Gμ). Take hμ such that 
[hμ]pT,n

= aμ.
For every μ < κ + κ, it follows that Gμ+1 = Gμ ⊕

〈
{[hμ]pT,n

}
〉
. Since GT,n =

⋃
μ<κ+κ Gμ, it follows that 

GT,n =
⊕

μ<κ+κ

〈
{[hμ]pT,n

}
〉
.

The set FT,n = {hμ : κ ≤ μ < κ + κ, [hμ]pT,n
�= 0} is as required. �

For the rest of this article we fix such a set FT,n as above for each pair (T, n) in T × ω.
The next lemma makes good on the promise from the beginning of this section as it shows how to make 

our topology countably compact.

Lemma 3.9. Assume that for every pair (T, n) in T × ω every sequence f in FT,n has a pT,n-limit in Z(κ). 
Then every finite power of Z(κ) is countably compact.

Proof. A sequence in some finite power of Z(κ) is represented by finitely many members of (Z(κ))ω, say 
g0, . . . , gm. We show that there is one ultrafilter p such that p-lim gi exists for all i, namely pT,n for a 
suitable T and n.

Recursively, we define a tower T = (A0, . . . , Am) and for i ≤ m finite subsets Ei and Di of ET |i and κ
respectively together with finite sets (rif : f ∈ Ei) and (siν : ν ∈ Di) of rational numbers such that

gi|Ai
=

∑
rif · f |Ai

+
∑

siν · χ�ν |Ai
(∗)
f∈Ei ν∈Di
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For i = 0, use Lemma 3.4 applied to E∅ to obtain A0, E0, D0, (r0
f : f ∈ E0) and (s0

ν : ν ∈ D0) such that (∗)
holds with i = 0.

To go from i to i + 1 apply Lemma 3.4 to E(A0,...,Ai) to obtain Ai+1, Ei+1, Di+1, (ri+1
f : f ∈ Ei+1), and 

(si+1
ν : ν ∈ Di+1) so that (∗) holds for i + 1.
Let A = Am and let n be sufficiently large so that n!rif and n!siν are integers, for all i ≤ m, f ∈ Ei, and 

ν ∈ Di. Then gi|A =
∑

f∈Ei
n! · rif · ( 1

n! · f)|A +
∑

ν∈Di
n! · siν · ( 1

n! · χ�ν)|A for all i.
As l(T ) = A ∈ pT,n and for each Ei is a subset of ET , it follows that [gi]pT,n

∈ GT,n. Therefore, each 
[gi]pT,n

is an integer combination of {[f ]pT,n
: f ∈ FT,n} ∪{[χξ]pT,n

: ξ < κ}. Then, by hypothesis, it follows 
that each gi has a pT,n-limit. This completes the proof. �
4. Constructing homomorphisms

Through this section, we let G = Z(κ) and we let {hξ : ω ≤ ξ < κ} be an enumeration of Gω such that 
supphξ(n) ⊆ ξ whenever n ∈ ω and ω ≤ ξ < κ, and so that each element of Gω appears at least c many 
times.

Lemma 4.1. There exists a family (JT,n : T ∈ T , n ∈ ω) of pairwise disjoint subsets of κ such that {hξ : ξ ∈
JT,n} = FT,n.

Proof. For each f ∈ Gω there is an injective map φf : T × ω → {ξ ∈ κ : f = hξ}. Let JT,n = {φf (T, n) :
f ∈ FT,n} and we are done. �

For the rest of this section, we fix a family (JT,n : T ∈ T , n ∈ ω) as above.
The following lemma is the key to the main result.

Lemma 4.2. Assume we have a non-zero element d of G, an injective sequence r in G, and a countably 
infinite subset D of κ such that

(1) ω ∪ supp d ∪
⋃

n∈ω supp r(n) ⊆ D,
(2) supphξ(n) ⊆ D for all n ∈ ω and ξ ∈ D \ ω.

Then there exists a homomorphism φ : Z(D) → T such that:

(1) φ(d) �= 0
(2) pT,n-limk φ(hξ(k)) = φ(χξ), whenever T ∈ T , n ∈ ω, and ξ ∈ D ∩ JT,n.
(3) φ ◦ r does not converge.

Before proving this lemma, we show how to use it to prove the main result. First, we use it to prove 
another lemma:

Lemma 4.3. Assume d is a non-zero element of G and r is an injective sequence in G. Then there exists a 
homomorphism φ : Z(κ) → T such that

(1) φ(d) �= 0
(2) pT,n-limk φ(hξ(k)) = φ(χξ), whenever T ∈ T , n ∈ ω and ξ ∈ JT,n.
(3) φ ◦ r does not converge.

Proof. Using a closing-off argument construct a countable subset D of κ that intersects infinitely many sets 
JT,n, and that contains ω, supp d, supp r(n) for all n as well as supphξ(n) whenever ξ ∈ D \ ω and n ∈ ω.
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By the previous Lemma, there exists a homomorphism φ0 : Z(D) → T such that φ0(d) �= 0, φ ◦ r does 
not converge, and pT,n-limk φ0(hξ(k)) = φ0(χξ) whenever T ∈ T , n ∈ ω and ξ ∈ D ∩ JT,n.

We let 〈αδ : δ < κ〉 be the monotone enumeration of κ \ D. For γ ≤ κ, let Dγ = D ∪ {αδ : δ < γ}. So 
D0 = D and Dκ = κ.

Recursively, we construct, for γ ≤ κ, an increasing sequence of homomorphisms φγ : Z(Dγ) → T such 
that pT,n-limk φγ(hξ(k)) = φγ(χξ) whenever T ∈ T , n ∈ ω and ξ ∈ Dγ ∩ JT,n. Our homomorphism φ will 
be φκ. The basis step 0 is already done, and for limit steps, we just unite all previous homomorphisms.

To define φγ+1 given φγ it suffices to specify the value φγ+1(χαγ
).

If αγ ∈ JT,n for some T ∈ T and n ∈ ω then we put φγ+1(χαγ
) = pT,n-limn φγ(hγ(n)). This is well defined 

because supphγ(n) ⊆ γ ⊆ Dγ for all n and because T is compact. In the other case let φγ+1(χαγ
) = 0. �

We can now prove our main result.

Theorem 4.4. Assume the existence of pairwise incompatible c selective ultrafilters and that κ is an infinite 
cardinal such that κω = κ. Then the free abelian group of cardinality κ has a Hausdorff group topology 
without nontrivial converging sequences such that all of its finite powers are countably compact.

Proof. Following the notation of the rest of the article, given d ∈ G \ {0} and an injective sequence r

in G, Lemma 4.3 provides a homomorphism φd,r : G → T such that φd(d) �= 0, such that φd,r ◦ r does not 
converge, and such that pT,n-limk φd,r(hξ(k)) = φd,r(χξ) whenever T ∈ T , n ∈ ω and ξ ∈ JT,n. We give G
the initial topology generated by the collection of homomorphisms {φd,r : d ∈ G \ {0}, r ∈ Gω is injective}
thus obtained and the natural topology of T.

Since the initial topology generated by any collection of group homomorphisms is a group topology we 
do indeed obtain a group topology. Since T is Hausdorff and for every d �= 0 there are many φd,r with 
φd,r(d) �= 0 it follows at once that our topology is Hausdorff.

To see that every finite power of G is countably compact we use Lemma 3.9.
Given T ∈ T , n ∈ ω and f ∈ FT,n, there exist ξ ∈ JT,n such that hξ = f . For every d ∈ G \ {0} and 

injective r ∈ Gω, we have pT,n-limn φd,r(hξ(n)) = φd,r(χξ). So pT,n-lim f(n) = χξ and we are done.
Since for a given injective sequence r and any d ∈ Gω the sequence φd,r ◦ r does not converge and φd,r

is continuous, it follows that r does not converge. So G has no nontrivial convergent sequences. �
Towards the proof of Lemma 4.2 we formulate a definition and a (very) technical lemma.

Definition 4.5. Let ε > 0. An ε-arc function (for Z(κ)) is a function ψ from κ into the set of open arcs of T
(including T itself) such that for all α either ψ(α) = T or the length of ψ(α) is equal to ε, and the set 
{α ∈ κ : ψ(α) �= T} is finite. We will call this finite set the support of ψ and denote it by suppψ.

Given two arc functions ψ and � we write ψ ≤ � if ψ(α) ⊆ �(α) or ψ(α) = �(α) for each α ∈ κ.

We shall obtain our homomorphisms using limits of such arc functions. The following lemmas are instru-
mental in its construction.

The following result follows from an argument implicit in the construction of [2], but it may be difficult 
to extract it from that paper. We postpone its rather technical proof to the next section.

Lemma 4.6. Let p be a selective ultrafilter and F a finite subset of Gω such that the set {[f ]p : f ∈ F} ∪{[χ�α]p :
α < κ} is linearly independent.

Then for a given ε > 0 and a finite subset E of κ there exist A ∈ p and a sequence (δn : n ∈ A) of positive 
real numbers such that
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(�) whenever {Uf : f ∈ F} is a family of arcs of length ε and � is an arc function of length at least ε with 
supp � ⊆ E there exist for each n ∈ A a δn-arc function ψn ≤ � such that suppψn =

⋃
f∈F supp f(n) ∪E, 

and 
∑

μ∈supp f(n) f(n)(μ) · ψn(μ) ⊆ Uf for each f ∈ F .

Now we proceed to prove Lemma 4.2. We will use the following lemma:

Lemma 4.7. Let (Fk : k ∈ ω) be a sequence of countable subsets of Gω and let (pk : k ∈ ω) be a sequence of 
pairwise incomparable selective ultrafilters such that for each k ∈ ω the set {[f ]pk

: f ∈ Fk} ∪̇{[χ�ξ]pk
: ξ ∈ κ}

is linearly independent and [f ]pk
�= [g]pk

whenever f �= g in Fk. Furthermore let for every k ∈ ω and f ∈ Fk

an ordinal ξf,k in κ be given. In addition let d and d′ be non-zero in G and with disjoint supports. Finally, 
let D be a countable subset of κ that contains ω ∪ supp d ∪ supp d′ and 

⋃
n supp f(n) for every f ∈

⋃
k Fk.

Then there exists a homomorphism φ : Z(D) → T such that φ(d) �= 0, φ(d′) �= 0 and pk-limn φ(f(n)) =
φ(χξf,k), whenever k ∈ ω and f ∈ Fk.

Proof. Write D as the union of an increasing sequence (Dn : n ∈ ω) of finite nonempty subsets, and take a 
similar sequence (Fk

n : n ∈ ω) for each Fk.
Take a sufficiently small positive number ε0 and an ε0-arc function �∗ such that supp d ∪supp d′ ⊆ supp �∗

and 0 /∈
∑

μ∈supp d d(μ)�∗(μ) ∪
∑

μ∈supp d′ d′(μ)�∗(μ).
Let E0 = supp �∗ ∪D0 and Bk

0 = ω for each k ∈ ω.
We will define, by recursion, for m ∈ ω: finite sequences (Bk

m : 0 ≤ k ≤ m), finite sets Em ⊆ κ, and real 
numbers εm > 0 satisfying:

(1) For all k and m in ω we have Bk
m ∈ pk,

(2) For each m ≥ 1 and k ≤ m, we have a sequence (δkm,n : n ∈ ω) of positive real numbers such that: 
if (Uf : f ∈ Fk

m) is a family of arcs of length εm−1 and � is an arc function of length εm−1 and 
supp � ⊆ Em−1 then for each n ∈ ω there exists a δkm,n-arc function ψ with ψ ≤ �, and suppψ =⋃

f∈Fk
m

supp f(n) ∪Em−1, and 
∑

μ∈supp f(n) f(n)(μ)ψ(μ) ⊆ Uf for each f ∈ Fk
m.

(3) For all k and m we have Bk
m+1 ⊆ Bk

m.
(4) εm+1 = 1

2 min({δkl,n : k ≤ l ≤ m + 1 and n ∈ (m + 2) ∩Bk
l } ∪ {εm}).

Suppose we have defined Bk
l for all k as well as El and εl for all l ≤ m. As will be clear from the step below 

the set Bk
m is only non-trivial whenever k ≤ m. Therefore we let Bk

m+1 = Bk
m = ω for k > m + 1 and we 

concentrate on the case k ≤ m + 1.
Let k ≤ m + 1. By Lemma 4.6, there exist Bk

m+1 ∈ pk and (δkm+1,n : n ∈ ω) that satisfy (2) for m + 1. 
Without loss of generality we can assume that Bk

m+1 ⊆ Bk
m.

Condition (4) now specifies εm+1.
Setting Em+1 = Em ∪

⋃
{supp f(k) : k ≤ m, f ∈

⋃
k≤m+1 Fk

m+1} ∪Dm+1 completes the recursion.
For each k ∈ ω, apply the selectivity of pk, to choose an increasing sequence (ak,i : i ∈ ω) with {ak,i : i ∈

ω} ∈ pk and such that ak,i ∈ Bk
i and ak,i > i for all i.

Next apply Lemma 2.6 and let (Ik : k ∈ ω) be a sequence of pairwise disjoint subsets of ω such that 
{ak,i : i ∈ Ik} ∈ pk and the family of intervals {[i, ak,i] : k ∈ ω, i ∈ Ik} is pairwise disjoint. Without loss of 
generality we can assume that k < min Ik.

Enumerate 
⋃

k∈ω Ik in increasing order as (it : t ∈ ω). For each t ∈ ω, let kt be such that it ∈ Ikt
. Thus, 

for each t we have it ∈ Ikt
, and hence it ≥ min Ikt

> kt and akt,it > it.
By recursion we define a sequence of arc functions, (�it : t ∈ ω), such that �i0 ≤ �∗ and �it+1 ≤ �it .
We start with t = 0. Then we have k0 < i0 < ak0,i0 , and ak0,i0 ∈ Bk0

i0
, and εi0−1 ≤ ε0.

Since �∗ has length at least εi0−1, there exists an arc function �i0 of length δk0
i0,ak0,i0

such that ∑
f(ak0,i0)(μ)�i0(μ) ⊆ �∗(ξf,k0), for each f ∈ Fk0

i . We have by definition that δk0
i ,a > εi1−1.
μ∈supp f 0 0 k0,i0
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Suppose t > 0 and that �it−1 has been defined with length at least εit−1 .
Apply item (2) to the arc function �it−1 , the finite set F = Fkt

it
, the number εit−1 , the finite set Eit−1 , 

the arcs Uf = �it−1(ξf,kt
) for f ∈ Fkt

it
, and n = akt,it ∈ Bkt

it
to obtain an arc function �it ≤ �it−1 such that ∑

μ∈supp f(akt,it )
f(akt,it)(μ)�it(μ) ⊆ �it−1(ξf,kt

) for all f ∈ Fkt
it

, and �it has length δkt
it,akt,it

.
Because kt < it < akt,it ≤ it+1 − 1 and akt,it ∈ Bkt

it
we get δkt

it,akt,it
> εit+1−1.

If ξ ∈ Dit then ξ ∈ supp �it and the length of �it(ξ) is not greater than εit−1 which in turn is not larger 
than 1

2it−1 ≤ 1
2t .

It follows that for all ξ ∈ D the intersection 
⋂

t∈ω �it(ξ) consists of a unique element; we define φ(χξ) to 
be that element and extend φ to a group homomorphism.

By construction φ(f(akt,it)) is in 
∑

μ∈supp f(akt,it )
f(akt,it)(μ)�it(μ) which is a subset of �it−1(ξf,kt

) when-
ever f ∈ Fkt

it
. Therefore, the sequence (φ(f(ak,i)))i∈Ik converges to φ(χξf,k), for each k ∈ ω and f ∈ Fk.

Furthermore φ(d) ∈
∑

μ∈supp d d(μ)�∗(μ), therefore, φ(d) �= 0; and likewise φ(d′) �= 0.
It is clear that this implies the conclusion of Lemma 4.7. �
Now we are ready to prove Lemma 4.2.

Proof of Lemma 4.2. There are only countably many (and wlog infinitely many since we may increase it) 
pairs (T, n) ∈ T × ω such that JT,n ∩D �= ∅. We enumerate them faithfully as ((Tm, nm) : m ≥ 2).

For m ≥ 2 let Fm = {hξ : ξ ∈ D ∩ JTm,nm
} and pm = pTm,nm

. Let p0 and p1 be two selective ultrafilters 
that were not listed incompatible with the ones listed and with each other and let F0 = F1 = {r}. For 
each m ≥ 2 and ξ ∈ JTm,nm

∩ D, let ξhξ,nm
= ξ. Let k, k′ ∈ ω be distinct elements of ω \ supp d. Then, 

by applying Lemma 4.7 with d′ = χk − χk′ , there exist φ : Z(D) → T satisfying (1) and (2). To see it also 
satisfies (3), notice that p0-limφ ◦ r �= p1-limφ ◦ r. �
5. Proof of Lemma 4.6

In this section we present a proof of Lemma 4.6. We will need the notion of integer stack, which was 
defined in [25].

The integer stacks are collections of sequences in Z(c) that are usually associated to a selective ultrafilter. 
Given a finite set of sequences F it is possible to associate it to an integer stack which generates the same 
Q-vector space as F . The sequences in the stack have some nice properties that help us to construct well 
behaved arcs when constructing homomorphisms, and the linear relations between F and the sequences of 
the stack help us to transform these arcs into arcs that work for the functions of F . Below, we give the 
definition of integer stack.

Definition 5.1. An integer stack S on A consists of

(i) an infinite subset A of ω;
(ii) natural numbers s, t, and M ; positive integers ri for 0 ≤ i < s and positive integers ri,j for 0 ≤ i < s

and 0 ≤ j < ri;
(iii) functions fi,j,k ∈ (Z(c))A for 0 ≤ i < s, 0 ≤ j < ri and 0 ≤ k < ri,j and elements gl ∈ (Z(c))A for 

0 ≤ l < t;
(iv) sequences ξi ∈ cA for 0 ≤ i < s and μl ∈ cA for 0 ≤ l < t and
(v) real numbers θi,j,k for 0 ≤ i < s, 0 ≤ j < ri and 0 ≤ k < ri,j .

These are required to satisfy the following conditions:

(1) μl(n) ∈ supp gl(n) for each n ∈ A;
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(2) μl∗(n) /∈ supp gl(n) for each n ∈ A and 0 ≤ l∗ < l < t;
(3) the elements of {μl(n) : 0 ≤ l < t and n ∈ A} are pairwise distinct;
(4) |gl(n)| ≤ M for each n ∈ A and 0 ≤ l < t;
(5) (θi,j,k : 0 ≤ k < ri,j) is a linearly independent subset of R as a Q-vector space for each 0 ≤ i < s and 

0 ≤ j < ri;
(6) limn∈A

fi,j,k(n)(ξi(n))
fi,j,0(n)(ξi(n)) = θi,j,k for each 0 ≤ i < s, 0 ≤ j < ri and 0 ≤ k < ri,j ;

(7) the sequence 
(
|fi,j,k(n)(ξi(n))| : n ∈ A

)
diverges monotonically to ∞, for each 0 ≤ i < s, 0 ≤ j < ri

and 0 ≤ k < ri,j ;
(8) |fi,j,k(n)(ξi(n))| > |fi,j,k∗(n)(ξi(n))| for each n ∈ A, i < s, j < ri and 0 ≤ k < k∗ < ri,j ;
(9)

(
|fi,j,k(n)(ξi(n))|

|fi,j∗,k∗ (n)(ξi(n))| : n ∈ A
)

converges monotonically to 0 for each 0 ≤ i < s, 0 ≤ j∗ < j < ri, 
0 ≤ k < ri,j , and 0 ≤ k∗ < ri,j∗ ; and

(10) {fi,j,k(n)(ξi∗(n)) : n ∈ A} ⊆ [−M, M ] for each 0 ≤ i∗ < i < s, 0 ≤ j < ri and 0 ≤ k < ri,j .

It is not difficult to show that the sequences of the stack are linearly independent. Moreover, if p is a free 
ultrafilter, S is a stack over A, and A ∈ p, then it is not difficult to see that ([gl]p : l < t) ∪ ([fi,j,k]p : i <
s, j < ri, k < ri,j) is linearly independent in the Q-vector space Q(c)/p. We leave the details as an exercise 
to the reader.

As the reader might notice, integer stacks are defined for the group Z(c). However, we are working with 
Z(κ). Thus, before we begin our proof, we show that it suffices to prove Lemma 4.6 for sequences of Z(c). 
Formally, we state:

Lemma 5.2. Let p be a selective ultrafilter and F be a finite subset of (Z(c))ω such that the set {[f ]p : f ∈
F} ∪ {[χ�α]p : α < c} is linearly independent.

Then for a given ε > 0 and a finite subset E of c there exist A ∈ p and a sequence (δn : n ∈ A) of positive 
real numbers such that

(�) whenever {Uf : f ∈ F} is a family of arcs of length ε and � is an arc function for Z(c) of length at 
least ε with supp � ⊆ E there exists, for each n ∈ A, a δn-arc function for Z(c) ψn ≤ � such that 
suppψn =

⋃
f∈F supp f(n) ∪ E, and 

∑
μ∈supp f(n) f(n)(μ) · ψn(μ) ⊆ Uf for each f ∈ F .

In what follows we prove that Lemma 4.6 follows easily from Lemma 5.2. The rest of this section will be 
dedicated to proving Lemma 5.2.

Proof of Lemma 4.6 from Lemma 5.2. Fix a selective ultrafilter p and a finite subset F of Gω such that 
{[f ]p : f ∈ F} ∪ {[χ�α]p : α < c} is linearly independent. Also, let ε > 0 and E ∈ [κ]<ω be given. Let 
R =

⋃
{supp f(n) : f ∈ F , n ∈ ω} ∪E. R is countable, so let φ : R → c be injective.

For each f ∈ F , define f ′ ∈ (Z(c))ω so that for each n ∈ ω, supp f ′(n) = φ[supp f(n)] and (f ′(n))(φ(ξ)) =
(f(n))(ξ) for every ξ ∈ supp f(n). Also, let E′ = φ[E] and R′ = φ[R].

Claim: {[f ′]p : f ∈ F} ∪ {[χ�α]p : α < κ} is linearly independent. To see that, fix C ∈ [κ]<ω and assume 
that for some rational numbers (af : f ∈ F) and (bα : α ∈ C) we have:

∑
f∈F

af [f ′] +
∑
α∈C

bα[χ�α]p = 0.

This means that there exists Z ∈ p such that for every n ∈ Z, we have:

0 =
∑

aff
′(n) +

∑
bαχα.
f∈F α∈C
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Since for all f ∈ F , n ∈ ω and α /∈ R′ we have f ′(n)(α) = 0, by fixing any n ∈ Z and calculating the 
expression above in any such α we obtain that bα = 0.

Now fix n ∈ Z and α0 ∈ R. We have that:
∑
f∈F

af (f(n))(α0) +
∑

α∈φ−1[C]

bφ(α)χα(α0) =
∑
f∈F

af (f(n))(α0) +
∑

α∈φ−1[C]

bφ(α)χα(α0).

=
∑
f∈F

af (f ′(n))(φ(α0)) +
∑

α∈φ−1[C]

bφ(α)χφ(α)(φ(α0))

=

⎛
⎝∑

f∈F
aff

′(n) +
∑

α∈C∩R′

bαχα

⎞
⎠ (φ(α0)) =

⎛
⎝∑

f∈F
aff

′(n) +
∑
α∈C

bαχα

⎞
⎠ (φ(α0)) = 0.

Moreover, for Now fix n ∈ Z and α0 ∈ κ \ R, it easily follows that 
∑

f∈F af (f(n))(α0) +∑
α∈φ−1[C] bφ(α)χα(α0) = 0. Thus, we have that for all n ∈ Z, 

∑
f∈F aff(n) +

∑
α∈φ−1[C] bφ(α)χα = 0, 

which implies by hypothesis that af = 0 for every f ∈ F and bα = 0 for every α ∈ C ∩R′. This proves the 
claim.

Thus, by hypothesis, there exist A ∈ p and a sequence (δn : n ∈ A) of positive real numbers such that

(�) whenever (Uf : f ∈ F) is a family of arcs of length ε and � is an arc function for Z(c) of length at 
least ε with supp ρ′ ⊆ E′ there exist for each n ∈ A a δn-arc function for Z(c) ψn ≤ ρ′ such that 
suppψ′

n =
⋃

f∈F supp f ′(n) ∪ E′, and 
∑

μ∈supp f ′(n) f
′(n)(μ) · ψ′

n(μ) ⊆ Uf for each f ∈ F .

We show that A and (δn : n ∈ A) also work for F and E. Let (Uf : f ∈ F) be a family of arcs of 
length ε and ρ be an arc function for G of length at least ε with supp ρ ⊆ E. Define ρ′ an arc function 
for Z(c) so that supp ρ′ = Φ[supp ρ] and for μ ∈ supp ρ, ρ′(φ(μ)) = ρ(μ). Then supp ρ′ ⊆ E′ and ρ′ is an 
arc function of length at least ε, so there exist n ∈ A and a δn-arc function for Z(c) ψ′

n ≤ ρ′ such that 
suppψ′

n =
⋃

f∈F supp f ′(n) ∪ E′ and 
∑

μ∈supp f ′(n) f
′(n)(μ) · ψ′

n(μ) ⊆ Uf for each f ∈ F . Define an arc 
function ψn for G whose support is 

⋃
f∈F supp f(n) ∪ E and for μ ∈ suppψn, ψn(μ) = ψ′

n(φ(μ)). Then 
clearly ψn(μ) ≤ ρ(μ) and:

∑
μ∈supp f(n)

f(n)(μ) · ψn(μ) =
∑

μ∈supp f(n)

f ′(n)(φ(μ)) · ψ′
n(φ(μ)) =

∑
μ∈supp f ′(n)

f ′(n)(μ) · ψ′
n(μ) ⊆ Uf

This completes the proof. �
Now we work toward the proof of Lemma 5.2.

Definition 5.3. Given an integer stack S and a natural number N , the Nth root of S, written 1
N S, is 

obtained by keeping all the structure in S with the exception of the functions; these are divided by N . Thus 
a function fi,j,k ∈ S is replaced by 1

N fi,j,k in 1
N S for each 0 ≤ i < s, 0 ≤ j < ri and 0 ≤ k < ri,j and a 

function gl ∈ S is replaced by 1
N gl in 1

N S for each 0 ≤ l < t.
A stack is then defined to be the Nth root of an integer stack for some positive integer N .

The lemma below gives the relation between a finite sequence of sequences in Z(c) and a stack S that is 
associated to it. The first part of this lemma is proved in [25]. The second part, which we called (2) was 
stated in [2] with no proof presented there, since it follows directly from statements of several lemmas and 
constructions from [25]. In order to see that (2) holds one has to read the whole proof of Lemma 7.1. of [25]
keeping an eye on the relevant properties that imply it. The construction does not need to be changed at 
all. Since the construction is long and complicated and a few typos are present on that paper, we decided 
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to reproduce it on this paper keeping track of the important things needed to observe that (2) holds for 
the sake of the completeness. As the construction is long and no new mathematical content is present, we 
decided to put in an appendix at the end of this paper.

Lemma 5.4 (A version of Lemma 7.1. of [25]). Let h0, . . . , hm−1 be sequences in Z(c) and U ∈ ω∗ be a 
selective ultrafilter so that {[h0]U , . . . , [hm−1]U} ∪ {[χα̌]U : α < c} is linearly independent in the vector space 
Q(c)/U . Then there exists A ∈ U , N ∈ ω \ {0} and a stack 1

N S on A such that:

(1) If Z(c) is given a group topology and the elements of the stack 1
N S have a U-limit in Z(c) then hi has a 

U-limit in Z(c) for each 0 ≤ i < m.
(2) For each i < m, hi|A is an integer combination of the elements of the sequences of the stack 1

N S
restricted to A. On the other hand, each sequence of the integer stack S restricted to A is an integer 
combination of {h0, . . . , hm−1} restricted to A.

We will say in this case that the finite sequence {h0, . . . , hm−1} is associated to ( 1
N S, A, U).

Now we define some integers related to Kronecker’s Theorem that will be useful in our proof. The existence 
of these integers are a direct consequence of Kronecker’s Theorem and may be an exercise to the reader, 
however, the details may be found on Lemma 4.3. of [25]. These integers were defined and used in that 
paper.

Definition 5.5. If {θ0, . . . , θr−1} is a linearly independent subset of the Q-vector space R and ε > 0 then 
L(θ0, . . . , θr−1, ε) denotes a positive integer, L, such that {(θ0x +Z, . . . , θr−1x +Z) : x ∈ I} is ε-dense in Tr

in the usual Euclidean product metric, for any interval I of length at least L.

The last lemma we are going to need is Lemma 8.3 from [25], stated below.

Lemma 5.6. Let ε, γ and ρ be positive reals, N a positive integer and ψ be an arc function. Let S be an 
integer stack on A ∈ [ω]ω and s, t, ri, ri,j, M , fi,j,k, gl, ξi, μj and θi,j,k be as in Definition 5.1.

Let L be an integer greater or equal to max{L(θi,j,0, . . . , θi,j,ri,j−1, ε
24 ) : 0 ≤ i < s and 0 ≤ j < ri} and 

let r = max{ri,j : 0 ≤ i < s and 0 ≤ j < ri}.
Suppose that n ∈ A is such that

(a) {Vi,j,k : 0 ≤ i < s, 0 ≤ j < ri and 0 ≤ k < ri,j} ∪ {Wl : 0 ≤ l < t} is a family of open arcs of length ε;
(b) δ(ψ(β)) ≥ ε for each β ∈ suppψ;
(c) ε > 3N · ρ · max

(
{‖gl(n)‖ : 0 ≤ l < t} ∪

⋃
{‖fi,j,k(n)‖ : 0 ≤ i < s, 0 ≤ j < ri, 0 ≤ k < ri,j}

)
;

(d) 3MNsγ < ε;
(e) |fi,ri−1,0(n)(ξi(n))| · γ > 3L for each 0 ≤ i < s;
(f) |fi,j−1,0(n)(ξi(n))| · ε

6√ri,j |fi,j,0(n)| > 3L for each 0 ≤ i < s and 0 < j < ri;

(g)
∣∣∣θi,j,k − fi,j,k(n)(ξi(n))

fi,j,0(n)(ξi(n))

∣∣∣ < ε
24

√
rL

for each i < s, j < ri and k < ri,j and
(h) suppψ ∩ {μ0(n), . . . , μt−1(n)} = ∅.

Then there exists an arc function φ such that

(A) N · φ(β) ⊆ N · φ(β) ⊆ ψ(β) for each β ∈ suppψ;
(B)

∑
β∈supp gl(n) gl(n)(β)φ(β) ⊆ Wl for each l < t;

(C)
∑

β∈supp fi,j,k(n) fi,j,k(n)(β) · φ(β) ⊆ Vi,j,k for each i < s, j < ri and k < ri,j;
(D) δ(φ(β)) = ρ for each β ∈ suppφ and
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(E) suppφ can be chosen to be any finite set containing

suppψ ∪
⋃

0≤i<s,0≤j<ri,0≤k<ri,j

supp fi,j,k(n) ∪
⋃

0≤l<t

supp gl(n). �

Now we are ready to prove Lemma 5.2.

Proof of Lemma 5.2. Write F = {u0, . . . uq−1} with no repetition. Let S be an integer stack on A′ ∈ p and 
let N be a positive integer such that 

( 1
N S, A′, p

)
is associated to F .

As in Definition 5.1 the components of S will be denoted s, t, M , (ri : i < s), (ri,j : i < s, j < ri), 
(fi,j,k : i < s, j < ri, k < ri,j), (gl : l < t), (ξi : i < s), (μp : i < t) and (θi,j,k : 0 ≤ i < s, 0 ≤ j < ri, k < ri,j).

We write {fi,j,k : i < sp, j < ri, k < ri,j} ∪ {gl : l < t} as {v0, . . . , vq−1}.
Let M be the q × q matrix of integer numbers such that Nui(n) =

∑
j<q Mi,jvj(n) for all n ∈ A and 

i < q.
By (2) in Lemma 5.4, each vj is an integer combination of the ui’s, therefore the inverse matrix of 1

NM, 
which we denote by N , has integer entries.

Let ε′ = ε · (
∑

i,j<l |Mi,j |)−1 and γ < ε′/(3MNs). Let L be larger than or equal to the maximum of the 
set {L(θi,j,0, . . . , θi,j,ri,j−1, ε′/24) : i < s, j < ri}.

For each n ∈ A′, let δn < 1
2 be such that:

ε′ > 3N · max
(
{‖gl(n)‖ : 0 ≤ l < t} ∪

⋃
{‖fi,j,k(n)‖ : 0 ≤ i < s, 0 ≤ j < ri, 0 ≤ k < ri,j}

)
· δn
N

We note that both N ’s above cancel but we write this way as we will use δn/N in the place of ρ in item c) 
of Lemma 5.6.

Let r = max{ri,j : 0 ≤ i < s, 0 ≤ j < ri}. Let A be the set of n’s in A′ such that:

• |fi,ri−1,0(n)(ξi(n))|γ > 3L for each 0 ≤ i < s,

• |fi,j−1,0(n)(ξi(n))| · ε′

6√ri,j |fi,j,0(n)| > 3L for each 0 ≤ i < s and 0 < j < ri,

•
∣∣∣∣θi,j,k − fi,j,k(n)(ξi(n))

fi,j,0(n)(ξi(n))

∣∣∣∣ <
ε′

24
√
rL

for each i < s, j < ri and k < ri,j , and

• E ∩ {μ0(n), . . . , μt−1(n)} = ∅.

Notice that A is cofinite in A′, therefore A ∈ p.
We claim this A and this sequence (δn : n ∈ A) work.
Fix n ∈ A.
Let (Uf : f ∈ F) be a family of arcs of length ε and let � be an arc function of length at least ε with 

supp � ⊆ E. We rewrite the family of arcs as (Ui : i < q), where Ui = Ufi for each i < q. For each i < q

let yi be a real such that yi + Z is the center of Ui. Let zj =
∑

i<q Nj,i
yi

N and, for each j let Rj be the 
arc of center zj and length ε′. Since N is a matrix of integers, zj + Z =

∑
i<q Nj,i(yi

N + Z). Then the arc ∑
j<q Mi,jRj is a subset of Ui for each i < q.
Now we aim to apply Lemma 5.6. Set ψ = �, ρ = δn/N and ε′ in the place of ε. For i < s, j < ri, k < ri,j

we put Vi,j,k = Rx if fi,j,k = vx for some x < q, and for j < t we put Wj = Rx if gj = vx for some x < q.
Then there exists an arc function ψ̃n such that

(A) Nψ̃n ⊆ Nψ̃n ⊆ �(β) for each β ∈ suppψ;
(B)

∑
β∈supp gl(n) gl(n)(β)ψ̃n(β) ⊆ Wl for each l < t;

(C)
∑

fi,j,k(n)(β) · ψ̃n(β) ⊆ Vi,j,k for each i < s, j < ri and k < ri,j ;
β∈supp fi,j,k(n)
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(D) δ(ψ̃n(β)) = δn/N for each β ∈ supp ψ̃n and
(E) supp ψ̃n is equal to

⋃
0≤i<s,0≤j<ri,0≤k<ri,j

supp fi,j,k(n) ∪
⋃

0≤l<t

supp gl(n) ∪ E =
⋃
f∈F

supp f(n) ∪ E.

Let ψn = Nψ̃n. By (A), ψn ≤ �. By (E) and (D), suppψn =
⋃

f∈F supp f(n) ∪E and for each β ∈ suppψn, 
we have δ(ψn(β)) = δn. Let S = suppψn. Now notice that given ui ∈ F we have:

∑
μ∈suppui

ui(n)(μ)ψn(μ) =
∑
μ∈S

ui(n)(μ)Nψ̃n(μ)

=
∑
μ∈S

⎛
⎝∑

j<q

Mi,jvj(n)(μ)

⎞
⎠ ψ̃n(μ)

=
∑
j<q

Mi,j

⎛
⎝∑

μ∈S

vj(n)(μ)ψ̃n(μ)

⎞
⎠

Then by (B), (C) and the definitions of the Wl’s and Vi,j,k’s:

∑
μ∈suppui

ui(n)(μ)ψn(μ) =
∑
μ∈S

ui(n)(μ)Nψ̃n(μ) ⊆
∑
j<q

Mi,jRj ⊆ Ui.

As intended. �
6. Final comments

The method to construct countably compact free Abelian groups came from the technique to construct 
countably compact groups without non-trivial convergent sequences. It is not known if there is an easier 
method to produce countably compact group topologies on free Abelian groups if we do not care if the 
resulting topology has convergent sequences.

In fact, even to produce a countably compact group topology with convergent sequences in non-torsion 
groups it is used a modification of the technique to construct countably compact groups without non-trivial 
convergent sequences, see [1] and [2].

The first examples of countably compact groups without non-trivial convergent sequences were obtained 
by Hajnal and Juhász [10] under CH. E. van Douwen [6] obtained an example from MA and asked for a 
ZFC example. Other examples were obtained using MAcountable [14], a selective ultrafilter [9] and in the 
Random real model [18]. Only recently, Hrušak, van Mill, Shelah and Ramos obtained an example in ZFC 
([12]).

This motivates the following questions in ZFC:

Question 6.1. Are there large countably compact groups without non-trivial convergent sequences in ZFC?

The example of Hrušak et al., which has size continuum, uses an almost disjoint family of cardinality c
to define c ultrafilters in ZFC that will lead to the construction. Tomita and Trianon-Fraga modified this 
example using 2c incomparable weak P -points to obtain an example of cardinality 2c [27]. Here there is a 
new limitation, since there are only 2c ultrafilters on ω. Thus, in the previous question “large” now means 
cardinality strictly greater than 2c.
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Question 6.2. Is there a countably compact free Abelian group in ZFC? A countably compact free Abelian 
group without non-trivial convergent sequences in ZFC?

It is still open if there exists a torsion-free group in ZFC that admits a countably compact group topology 
without non-trivial convergent sequences. If such example exists then there is a countably compact group 
topology without non-trivial convergent sequences in the free Abelian group of cardinality c (see [24] or 
[26]).

Question 6.3. Is there a both-sided cancellative semigroup that is not a group that admits a countably 
compact semigroup topology (a Wallace semigroup) in ZFC?

The known examples were obtained in [17] under CH, in [20] under MAcountable, in [16] from c incom-
parable selective ultrafilters and in [2] from one selective ultafilter. The last two use the known fact that a 
free Abelian group without non-trivial convergent sequences contains a Wallace semigroup, which was used 
in [17]. The example in [20] is a modification of [11].

7. Appendix: a full proof for Lemma 5.4

In this section we prove Lemma 5.4. We have decided to write it in this appendix instead of in the middle 
of the text since altought its proof is a small modification of Lemma 7.1. of [25], the proof is rather long (as 
the original is long).

Lemma 5.4 states the existence of a stack associated to a sequence of functions with the following property 
with respect to a selective ultrafilter:

Definition 7.1. Let U be an ultrafilter. We say that a finite sequence (fi : i < p) of elements of (Z(c))ω is 
admissible with respect to U iff for each c0, . . . cp−1 ∈ Z not all 0, there exists D ∈ U such that (

∑
i<p cifi(n) :

n ∈ D) is injective.

This definition is not present in [25]. We introduced it as a shorthand for property b) of Lemma 4.1. of 
that paper.

To prove the existence of a stack associated to an admissible sequence (fq : q < p), we must construct it. 
In order to do that, we “change” the fq’s into fi,j,k’s that have the properties of the stack without modifying 
the Q-vector space they generate, and leaves some modified functions g0

q that correspond to the fq’s that 
could not be modified to become an fi,j,k. This role is played by Lemma 7.2 (Lemma 5.4. of [25]). The 
“output” of this lemma has a very heavy notation that is a bit different than the one from the definition 
of stack (that is already heavy), thus we need a lemma to refine it - Lemma 7.3, which is a very small 
improvement of Lemma 5.5. of [25].

Then we need a second lemma that transforms these functions in the second half of the stack (the 
sequences gl). This is done by Lemma 7.4 (Lemma 6.1. of [25]). Again, this needs to be refined, and 
Lemma 7.5, which is a very small improvement of Lemma 6.1. of [25], does this job.

Finally, we apply Lemmas 7.3 and 7.5 conveniently to prove Lemma 5.4.
We emphasize that no new mathematical content is present in this section as the original construction for 

the stack is not modified at all, we just keep track of some features presented in that very same construction 
through the Lemmas to observe that without modifying it, (2) of Lemma 5.4 also holds. That’s why we are 
presenting these arguments in an appendix and not in a regular section.

Recall that if a ∈ Z(c), |a| = max{a(ξ) : ξ ∈ Z}.
We start by assuming, the following Lemma 5.4. of [25] as stated below.
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Lemma 7.2 (Lemma 5.4. of [25]). Let U be a selective ultrafilter, p ∈ ω and (f0, . . . , fp−1) be an admissible 

sequence with respect to U .
Suppose that there exists i < p and D∗ ∈ U such that {|fi(n)| : n ∈ D∗} is strictly increasing.
There exists:

• a positive natural number s,
• a finite sequence of positive natural numbers (ri)i<s,
• the lexicographical order of 

⋃
i<s{i} × ri, denoted by ≺,

• B ∈ U ,
• a sequence of ordinals smaller than c, (ξi)i<s,
• a family of nonempty subsets of p, (Ji,j : i < s and j < ri),
• a family of sequences into Z(c), (f i,j

q : i < s, j < ri and q ∈ p \
⋃
{Ji∗,j∗ : (i∗, j∗) ≺ (i, j)}),

• a family of sequences into Z(c), (g0
q : q ∈ p \

⋃
{Ji,j : i < s and j < ri})

• a family of real numbers, (θi,jq : i < s, j < ri and q ∈ Ji,j),
• a family of elements of Z(c), (σi,j

q : i < s, j < ri, q ∈ p \
⋃
{Ji∗,j∗ : (i∗, j∗) � (i, j)})

• a family of positive integers (N i,j
q : i < s, j < ri and q < p),

such that for every i < s and j < ri,

i) (Ji,j : i < s and j < ri) are pairwise disjoint subsets of p,
ii) f0,0

q = fq for each q < p,
iii) if (i+, j+) is the successor of (i, j) then f i+,j+

q = N i,j
q .f i,j

q − σi,j
q for each q ∈ p \

⋃
{Ji′,j′ : (i′, j′) �

(i, j)};
iv) σi,j

q is an integer combination of (f i,j
q∗ : q∗ ∈ Ji,j) for each q ∈ p \

⋃
{Ji′,j′ : (i′, j′) � (i, j)},

v) if (0, 0) ≺ (i, j) then (
∏

(i#,j#)≺(i,j) N
i#,j#

q ).fq − f i,j
q is an integer combination of (f i∗,j∗

q∗ : (i∗, j∗) ≺
(i, j) and q∗ ∈ Ji∗.j∗) for each q ∈ p \

⋃
{Ji′,j′ : (i′, j′) � (i, j)},

vi) For every q, q∗ ∈ Ji,j, if q �= q∗ then either for every n ∈ B, |f i,j
q (n)(ξi(n))| > |f i,j

q∗ (n)(ξi(n))| or for 
every n ∈ B, |f i,j

q (n)(ξi(n))| < |f i,j
q∗ (n)(ξi(n))|,

vii) (θi,jq : q ∈ Ji,j) is a linearly independent subset of R as a Q-vector space,

viii) fi,j
q (n)(ξi(n))

fi,j
q∗ (n)(ξi(n))

n∈B−→ θi,jq monotonically, where q∗ ∈ Ji,j is such that |f i,j
q∗ (n)(ξi(n))| ≥ |f i,j

q (n)(ξi(n))| for 
each n ∈ B and q ∈ Ji,j,

ix) |f i,j
q (ξi(n))| n∈B−→ +∞ for each i < s, j < ri and q ∈ Ji,j;

x) for each integer j∗ such that j < j∗ < ri, each q ∈ Ji,j and each q∗ ∈ p \
⋃
{Ji′,j′ : (i′, j′) � (i, j)}, 

(Ni,j
q∗ .f i,j

q∗ −σi,j
q∗ )(n)(ξi(n))

fi,j
q (n)(ξi(n))

n∈B−→ 0 monotonically
xi) {f i,j

q (ξi∗(n)) : n ∈ Ai,j} is bounded in Z for each 0 ≤ i∗ < i and q ∈ p \
⋃
{Ji′,j′ : i′ ≤ i∗ and j′ < ri′};

xii) g0
q = N

s−1,rs−1−1
q .f

s−1,rs−1
q − σ

s−1,rs−1−1
q for each q ∈ p \

⋃
{Ji,j : i < s and j < ri};

xiii) {|g0
q (n)| : n ∈ B} is bounded in Z for each q ∈ p \

⋃
{Ji,j : i < s and j < ri} and

xiv) (
∏

i<s,j<ri
N i,j

q .fq) − g0
q is an integer combination of (f i∗,j∗

q∗ : i∗ < s, j∗ < ri∗ and q∗ ∈ Ji∗.j∗) for each 

q ∈ p \
⋃
{Ji′,j′ : i′ < s and j′ < ri′}.

Even though the statement above is not exactly the same as in [25], we just fixed some typos and 

imprecisions that appeared there. We explain the changes below to avoid creating confusion. We explain 

the changes below:
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(1) We reordered the items in the statement in a order where they make more sense, and omitted the Ai,j’s, 
replacing them all by B, since they are not important when applying the result (only in the proof). Of 
course, all the statements in which Ai,j appeared there are still true when replaced by B since B ⊆ Ai,j .

(2) Not all N i,j
p ’s are necessary since not all of them appear on i)-xiv). In the statement that appears in 

[25] the domain of this family does not appear, which may cause some confusion, but, of course, all the 
relevant N i,j

p ’s appear in the proof. The domain we presented here is larger than necessary. Formally, 
one may let N i,j

p be their favorite number for the triples (i, j, p) that are irrelevant since they do not 
play any role.

(3) Condition xii) was wrong in [25] (it is listed as condition xiv) there). However, that was just a typo 
and the proof of this lemma that is presented there proves our current condition xii). The incorrect 
statement there did not create problems in the previous paper: it was only needed to prove Lemma 
5.5. of that paper, and we will prove a version of it below, thus assuring the reader that the incorrect 
statement was not necessary for the other statements of that paper to hold.

(4) The fact that s, the ri’s and the Ji,j ’s are nonempty/nonzero were clearly present in the proof there 
but they were only implicit in the statement. We decided to make this explicit in this paper to avoid 
making confusion.

Thus we will not reproduce its proof here as the proof would be a full copy from the one in [25].
We will use the preceding lemma to prove the following, which is a modified version of Lemma 5.5. of 

[25]. The proof is the same as in the previous one. We just add condition (E)-(G) to the statement and 
argue that it also holds by observing the properties given by the previous lemma. No new ideas are used in 
this modification.

Lemma 7.3 (A version of Lemma 5.5. of [25]). Let U be a selective ultrafilter, p ∈ ω and (f0, . . . , fp−1) be 
an admissible sequence with respect to U

Suppose that there exists i < p and D∗ ∈ U such that (|fi(n)| : n ∈ D∗) is strictly increasing.
Then there exists:

• Positive natural number s and N ′,
• A finite sequence of positive natural numbers (ri)i<s,
• A finite family of positivenatural numbers (ri,j : i < s, j < ri),
• B ∈ U ,
• a sequence of ordinals smaller than c, (ξi)i<s,
• an infinite subset of ω, B,
• a subset of p, J ,
• a family of sequences into Z(c), (fi,j,k : i < s, j < ri and k < ri,j),
• positive integers M ′ and N ′,
• a family of sequences into Z(c), (g0

q : q ∈ p \ J})
• a family of real numbers, (θi,j,k : i < s, j < ri and k < ri,j)

such that

(A) conditions (5)-(10) are satisfied in the definition of the stack for M ′ instead of M and B instead of A,
(B) N ′.fq is an integer combination of {fi,j,k : i < s, j < ri and k < ri,j} for each q ∈ J ,
(C) {|g0

q (n)| : n ∈ B} is bounded in Z for each q ∈ p \ J ,
(D) For each q ∈ p \ J there exists a positive divisor K of N ′ so that K.fq − g0

q is an integer combination 
of (fi,j,k : i < s, j < ri and k < ri,j)

(E) For every i < s, j < ri and k < ri,j, fi,j,k is an integer combination of (fq : q ∈ J).
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(F) For every q ∈ p \ J then g0
q is an integer combination of {fi : i ∈ J} ∪ {fq} whose coordinate corre-

sponding to fq is nonzero.
(G) The family (g0

q : q ∈ m \ J) is admissible with respect to U .

Proof. Apply Lemma 7.2 to obtain the objects satisfying properties i)-xiv). Set ri,j = |Ji,j | for each i < s

and j < ri.
By property iv), we can enumerate {f i,j

q : q ∈ Ji,j} as {fi,j,k : k < ri,j} for each i < s and j < ri so that
(∗) if k < k∗ then |fi,j,k(n)(ξi(n))| > |fi,j,k∗(n)(ξi(n))| for each n ∈ B.
Let J =

⋃
{Ji,j : i < s, j < ri} and N ′ =

∏
i<s,j<ri,q<p N

i,j
q .

(A):

• Condition (5) of the definition of stack follows from vii).
• Condition (6) of the definition of stack follows from viii).
• Condition (7) of the definition of stack follows from iv).
• Condition (8) of the definition of stack is satisfied by (*).
• Condition (9) of the definition of stack follows from iii) and x) if j = j∗+1. For the general case, proceed 

by finite induction and use the fact that if (an)n∈ω, (bn)n∈ω and (cn)n∈ω are sequences of positive real 
numbers such that an

bn
and bncn converge monotonically to 0, then so does an

cn
= an

bn
bn
cn

.
• Condition (10) of the definition of stack is satisfied as follows: by xi) it follows that {fi,j,k(ξi∗(n)) : i <

s, j < ri, k < ri,j and n ∈ B} is bounded. Let Mi,j,k be a positive integer such that the set above is 
contained in [−Mi,j,k, Mi,j,k] and let M ′ = max{Mi,j,k : i < s, j < ri, k < ri,j}. Then property 10) is 
satisfied.

(B):
First, if q ∈ J0,0 then fq = f0,0

q = f0,0,k for some k ∈ r0,0. So we only need to work with q /∈ J0,0, that 
is, (0, 0) ≺ (i, j).

By xii), we have that 
(∏

(i#,j#)≺(i,j) N
i#,j#

q

)
.fq − f i,j

q is an integer combination of (f i∗,j∗

q∗ : (i∗, j∗) ≺
(i, j) and q∗ ∈ Ji∗,j∗) for each q ∈ p \

⋃
{Ji′,j′ : (i′, j′) � (i, j)}.

Therefore, the function (
∏

(i#,j#)≺(i,j) N
i#,j#

q ).fq is an integer combination of {f i∗,j∗

q∗ : (i∗, j∗) �
(i, j) and q∗ ∈ Ji∗,j∗}. Rewriting this, it follows that the function (

∏
(i#,j#)≺(i,j) Ni#,j#,k).fq is an inte-

ger combination of {fi∗,j∗,k∗ : (i∗, j∗) � (i, j) and k∗ ∈ ri∗,j∗}.
It follows that N ′.fq is an integer combination of {fi∗,j∗,k∗ : i < s, j < ri and k < ri,j} since ∏
(i#,j#)≺(i,j) Ni#,j#,k divides N ′.
Conditions (C) and (D) follows from xiii) and xvi) respectively.
(E) follows by induction on pairs (i, j) using the relation ≺ by proving this for every k < ri,j at the same 

time at each inductive step by using ii), iii) and iv).
(F ) if s = 1 and r0 = 1, then by xii) g0

q = N0,0
q f0,0

q = N0,0
q fq. Otherwise, the thesis follows from xii), iv), 

v) and (E).
(G):
Assume by contradiction that this family is not admissible. Then by the selectiveness of U there exists 

Z ∈ U with Z ⊆ B and (cq : q ∈ m \ J) not all 0 such that 
∑

q∈m\J cqg
0
q is constant when restricted to Z. 

By (F), this sum can be rewritten as 
∑

q∈m\J Kqcqfq + δ, where δ is an integer combination of (fq : q ∈ J)
and the Kq’s are nonzero integers. Thus, by the admissibility of the original family and the positivity of the 
N ′s, for every q ∈ m \ J we have cq = 0, a contradiction. �

Now we start to treat the construction of the second part of the stack. We will need Lemma 6.1. of [25].
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Lemma 7.4 (Lemma 6.1. of [25]). Let U be a selective ultrafilter, p ∈ ω and (f0, . . . , fm−1) be an admissible 
sequence with respect to U . Let D ∈ U .

If {|fj(n)| : n ∈ D and j < m} is a bounded subset of N then there exists:

• A family (N i
j : 0 ≤ i ≤ j < m) of natural numbers,

• A family (gij : 0 ≤ i ≤ j < m) of sequences into Z(c),
• C ∈ U ,
• μi : C −→ c,
• A family (σi

j : 0 ≤ i ≤ j < m) of elements of Z(c),

satisfying that, for every i, j < m with i ≤ j:

a) μi(n) ∈ supp gii(n) for each and n ∈ C,
b) gij(n)(μi(n)) = N i

j for each n ∈ C,
c) If i < j, gi+1

j = N i
i .g

i
j −N i

j .g
i
i,

d) If i < j, μi(n) /∈ supp(gi+1
j )(n),

e) (μi(n) : n ∈ C and i < m) is pairwise distinct family (injective family),
f) The finite sequence (g0

0, . . . , g
i−1
i−1 , g

i
i , g

i
i+1, g

i
i+2, . . . , g

i
m−1) is admissible with respect to U ,

g) g0
j = fj and if i > 0 then 

∏
i∗<i N

i∗

i∗ .fj − gij is an integer combination of (g0
0 , . . . g

i−1
i−1).

In the statement above we have addressed some imprecisions and typos found in the original statement, 
but it is the original Lemma 6.1. of [25].

Now we modify Lemma 6.2. of [25] to keep track of the important content of Lemma 6.1. of [25] needed 
to prove (2) of Lemma 5.4.

Lemma 7.5 (A version of Lemma 6.2. of [25]). Let U be a selective ultrafilter, p ∈ ω and (f0, . . . , fm−1) be 
an admissible sequence with respect to U . Let D ∈ U .

If {|fj(n)| : n ∈ D and j < m} is bounded, then there exist:

• positive natural numbers N ′′ and M ′′,
• A family (gi : i < m) of sequences into Z(c),
• C ∈ U , and
• μi : C −→ c,

such that:

A) Conditions (1) − (3) in the definition of the stack are satisfied,
B) For every i < m, gi is a integer combination of (fi : i < m).
C) |gi(n)| ≤ M ′′ for each i < m and n ∈ C,
D) N ′′.fj is an integer combination of {g0, . . . gm−1} for each 0 ≤ i < j < m, and

Proof. Apply Lemma 7.4. Using the same notation, let gi = gii for each i < m and N ′′ =
∏

i<m N i
i .

A) Conditions (1) and (3) in the definition of the stack follows from Properties 7.4 a) and 7.4 e). We 
verify (2) inductively by showing that:

∀i < m (i′ < i =⇒ ∀j < m (i ≤ j =⇒ ∀n ∈ C gji (μi′(m) = 0)).

Thus assume i < m with i′ < i.
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Case 1 (base cases) i′ + 1 = i. In this case, given j such that i ≤ j < m and given n ∈ C, it follows from 
c) that gij(μi′(n)) = gi

′+1
j (μi′(n)) = N i′

i′ g
i′

j (μi′(n)) −N i′

j gi
′

i′ (μi′(n)) which is, by b), N i′

i′ N
i′

j −N i′

j N i′

i′ = 0.
Case 2 (induction step) i′ + 1 < i. In this case, given j such that i ≤ j < m and given n ∈ C, it follows 

from c) that gij(μi′(n)) = g
(i−1)+1
j (μi′(n)) = N i−1

i−1 g
i−1
j (μi′(n)) − N i−1

j gi−1
i−1(μi′(n)) which is, by induction 

hypothesis, N i−1
i−1 · 0 −N i−1

j · 0 = 0.
B) By induction, we show that:

∀i < m ∀j < m (i ≤ j =⇒ gij is a linear combination of (f0, . . . , fp)) = 0.

This follows easily from the first part of g) and c).
C) The function gi is a combination of (f0, . . . , fm−1) by B), therefore, since C ⊆ D, {gi(n) : n ∈ C} is 

bounded for each i < m. Let M ′′ be a positive integer such that |gi(n)| ≤ M ′′ for each i < m and n ∈ C. 
Then condition B) is satisfied.

D) By the first part of g), f0 = g0. Given i > 0, by the second part of g) applied to j = i it follows that ∏
i∗<i N

i∗

i∗ fi is an integer combination of (g0, . . . , gi). Thus so is N ′fi as 
∏

i∗<i N
i∗

i∗ divides N ′. �
Now we are ready to prove the modified version of Lemma 7.1. of [25] that is used in this paper. The 

proof is about the same as for the original one.

Lemma 7.6 (A version of Lemma 7.1. of [25]). Let h0, . . . , hm−1 be sequences in Z(c) and U ∈ ω∗ be a 
selective ultrafilter so that {[h0]U , . . . , [hm−1]U} ∪ {[χ�α]U : α < c} is linearly independent in the vector space 
Q(c)/U . Then there exists A ∈ U , N ∈ ω \ {0} and a stack 1

N S on A such that:

(1) If Z(c) is given a group topology and the elements of the stack 1
N S have a U-limit in Z(c) then hi has a 

U-limit in Z(c) for each 0 ≤ i < m.
(2) For each i < m, hi|A is an integer combination of the elements of the sequences of the stack 1

N S
restricted to A. On the other hand, each sequence of the integer stack S restricted to A is an integer 
combination of {h0, . . . , hm−1} restricted to A.

We will say in this case that the finite sequence {h0, . . . , hm−1} is associated to ( 1
N S, A, U).

Proof. First we show that for each c0, . . . cm−1 ∈ Z not all 0, there exists D ∈ U such that (
∑

i<p cihi(n) :
n ∈ D) is injective. By the selectivity of U , we know that there exists a D which makes (

∑
i<p cihi(n) : n ∈

D) either constant or injective. However it cannot be constant since {[h0]U , . . . , [hm−1]U} ∪ {[χα̌]U : α < c}
is linearly independent.

Case 1. There exists i < p and D∗ ∈ U such that {|hi(n)| : n ∈ D∗} is strictly increasing. In this case, 
apply Lemma 7.3 on {h0, . . . , hm−1} and D to obtain s, r0, . . . , rs−1, {ri,j : i < s and j < ri}, ξ0, . . . , ξs−1, 
B, J , (fi,j,k : i < s, j < ri and k < ri,j), (θi,j,k : i < s, j < ri and k < ri,j), (g0

q : q ∈ p \
⋃
{J : i <

s and j < ri}), M ′ and N ′ satisfying properties (A)-(G) of Lemma 7.3.
Subcase 1.a. If p \ J = ∅, let M = M ′ and N = N ′. Then {fi,j,k : i < s, j < ri and k < ri,j}, M , 

(ξi : i < s), (θi,j,k : i < s, j < ri and k < ri,j) form an integer stack S on A = B with t = 0 and 
(gi : i < t) = ∅.

Subcase 1.b. Not subcase 1.a. Enumerate p \ J as q0, . . . , qt−1. Apply Lemma 7.5 on the family 
(g0

q0 , . . . , g
0
qt−1

) and B to obtain a set C ∈ U , N ′′, M ′′, (gi : i < t) and μi : C −→ c for each i < t

satisfying properties (A)-(C) of Lemma 7.5.
Let M = max{M ′, M ′′} and N = N ′.N ′′.
Then (fi,j,k : i < s, j < ri and k < ri,j), (gi : i < t), M , (ξi : i < s), (θi,j,k : i < s, j < ri and k < ri,j)

and (μl : l < t) form an integer stack S on A = C.
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Case 2. Not Case 1. Then s = 0 and (fi,j,k : i < s, j < ri, k < ri,j) = ∅. We follow use the enumeration 
of p and proceed as in subcase 1.b.

Then these with (gi : i < t), M ′′, (ξi : i < s), (μl : l < t) form an integer stack S on A = C.
In any case, for every i < m, hi|C is an integer combination of the stack 1

N .S on A (due to Lemma 7.3
(B), (D) and Lemma 7.5 D)). Therefore, if this stack has U-limits in Z(c) then {f0, . . . , fp−1} also has a 
U-limit. Moreover, every element of the stack is an integer combination of the original sequence due to 
Lemma 7.3 (E), (F) and Lemma 7.5 B). This concludes the proof. �
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