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Ride-pooling adoption, efficiency and level of service under
alternative demand, behavioural and pricing settings
Arjan de Ruijter , Oded Cats *, Javier Alonso-Mora and Serge Hoogendoorn

Delft University of Technology, Delft, The Netherlands

ABSTRACT
Previous studies into the potential benefits of ride pooling failed to
account for the trade-off that users likely make when considering a
shared ride. We address this shortcoming by formulating user net
benefit stemming from pooling as a compensatory function where
the additional travel time and on-board discomfort need to be
compensated by the price discount for a traveller to choose a
pooled ride over a private ride. The proposed formulation is
embedded in a method for matching travel requests and vehicles.
We conduct a series of experiments investigating how the
potential of ride-pooling services depends on demand
characteristics, user preferences and the pricing policy adopted by
the service provider. Our results suggest that the total vehicle
mileage savings found by previous studies is only attainable when
users are very willing to share their ride (i.e. attach low premium to
private rides) and are offered a 50% discount for doing so.
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1. Introduction

Recent developments in communication and information technologies have led to the
rise of real-time and on-demand ride-pooling services like UberX Share (formerly Uber-
Pool) and ViaVan. Users of those platforms consent to sharing a vehicle with travellers
heading in a similar direction, even incurring small route deviations to pick-up and drop-
off co-riders, in exchange for a cheaper fare. By utilising vehicle capacity more efficiently,
ride-pooling services can potentially lead to reduced vehicle fleets as well as reduced
vehicle mileage. Potential societal benefits associated with ride-pooling thereby include
decreased congestion levels (Martinez and Viegas, 2017, Engelhardt et al., 2019, Ke,
Yang, and Zheng, 2020), noise (Zwick et al., 2021) and air pollution (Ward, Michalek,
and Samaras, 2021), greenhouse gas emissions (Greenblatt and Saxena, 2015, Martinez
and Viegas, 2017, Dandl et al., 2021, Bilali, Fastenrath, and Bogenberger, 2022, Pengyu
Zhu and Mo, 2022), traffic incidents, road and parking space consumption (Martinez
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and Viegas, 2017), and resource and energy usage in the vehicle manufacturing process.
At the same time, ride-pooling can induce additional car traffic through deadheading, by
substituting public transport or active modes, or through induced travel demand (Per-
nestål and Kristoffersson, 2019, Schaller, 2021).

The majority of the literature investigating the prospects of substituting private rides
by pooled rides has concluded that it has major potential with respect to reducing traffic
volumes and fleet size (Wang and Yang, 2019). A study by Ma, Zheng, and Wolfson
(2013) for example stated that if the fleet of taxis in Beijing had allowed for shared
rides in 2011, with users assumed to accept a maximum extra travel time of 5 min for
their ride, 25% more users could have been served and 13% of the total vehicle
mileage could have been avoided. Cici et al. (2013) concluded that a 67% reduction in
vehicle mileage is possible if travellers are willing to incur a detour of up to 600 m.
Another study analysed ride-pooling for up to three pooled requests using a graph rep-
resentation that is denominated as a shareability graph and concluded that the total
vehicle distance of taxis in New York could have been reduced by 32% (Santi et al.,
2014). Concurring evidence is offered by Qian et al. (2017), who show that with appro-
priate incentives total taxi vehicle mileage in New York can be reduced by 47%, while a
46% and 29% mileage reduction is feasible in central areas of Wuhan and Shenzhen,
respectively. When ride-pooling is offered with high-capacity vehicles of up to 10
seats, less than one-fifth of the size of the current taxi fleet of New York City can
serve 98% of the original requests with a maximum delay of 3.5 min per passenger
(Alonso-Mora et al., 2017). While the previously mentioned studies focused on ride-
pooling in high-density metropolitan areas, Tachet et al. (2017) assert that also cities
with lower densities have the potential to obtain substantial efficiency gains by substitut-
ing private taxi rides with ride-pooling.

Nevertheless, thus far, the promising potential of ride-pooling in substituting less
efficient private rides presented in scientific literature is not observed in reality. In
New York for instance, prior to shutting down in the wake of the COVID-19 pandemic,
only 7% of Uber’s rides and 25% of Lyft’s rides were pooled (Schneider, 2022b). The low
penetration rates of shared services have been exacerbated by the COVID pandemic.
Since their redesign in 2022, limiting pooling to two passengers at a time, ride-pooling
adoption in New York has been even more marginal. In Chicago, just 4% of all ride-
hailing users requested a pooled ride in October 2022, compared to 17% before the pan-
demic (Schneider, 2022a).

One of the important deterrents for potential users that may hinder a wide-scale
adoption of ride-pooling services is inconvenience associated with sharing a vehicle
with strangers. We refer to this behavioural deterrence as the (un)willingness to
share. User inconvenience may arise from a lack of privacy (Dueker, Bair, and Levin,
1977, Teal, 1987), a feeling of dependence and a fear of having negative social inter-
actions with other users (Correia and Viegas, 2011, Morales Sarriera et al., 2017).
During the recent pandemic, virus exposure has emerged as an additional concern
for shared mobility (Hensher, 2020, Kucharski, Cats, and Sienkiewicz, 2021). It may
explain the decreased market shares of UberX Share and Lyft Share in New York, the
permanent termination of Via’s ride-pooling services in New York and Washington
D.C. (ViaVan, 2022), and the on-going suspension of ViaVan operations in
Amsterdam.
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A low propensity for sharing is especially problematic given that ride-pooling match-
ing efficiency depends on mutual compatibility of trip requests. With few users, detours
for picking up co-riders are likely to be relatively long, further hampering the attractive-
ness, feasibility and potential distance savings associated with pooled rides. In Chicago
for instance, only 38% of ride-pooling trip requests in October 2022 were actually
pooled, whereas in Toronto just 18% of individuals opting for pooling in September
2018 – which in itself accounted for just 26% of ride-hailing trip requests – were success-
fully matched to another rider (City of Toronto, 2019). That ride-pooling services may
require a critical mass (Engelhardt et al., 2019, de Ruijter, Cats, and van Lint, 2022) res-
onates with the absence of ride-pooling from many cities around the world.

A possible explanation for the large discrepancy between the societal benefits of ride-
pooling in theory and what has so far been observed in reality, is that previous ride-
pooling studies fail to account for the complex trade-off that users are likely to make
when considering a shared ride. In all of the aforementioned studies, users are
assumed to opt for the ride-pooling service as long as the expected delay, i.e. later
pick-up time and en-route detour, does not exceed a certain pre-specified threshold.
Hence, no inherent deterrence from using ride-pooling was assumed, everything else
being the same (ceteris paribus). In other words, in those studies travellers were
assumed to be intrinsically motivated to share a ride, without requiring any form of com-
pensation and while accepting a delay.

In this study, we instead explicitly account for the trade-off users can make between
the discount offered for sharing their ride and the travel impedance that it induces.
We formulate user net benefit due to sharing as a compensatory function where the
additional travel time and on-board discomfort must be compensated by the shared
ride discount for a traveller to choose a shared ride over a private one. This allows us
to assess the potential adoption of ride-pooling by considering the two key barriers for
adoption (Lavieri and Bhat, 2019). To assess service performance and level of service,
we embed our user benefit formulation in the method for matching travel requests
and vehicles introduced by Alonso-Mora et al. (2017).

The potential of ride-pooling services is expected to greatly vary across markets,
depending on travel demand characteristics, road network properties and user prefer-
ences. Previous studies have analysed specifically how ride-pooling performance in a
city is affected by the density of travel demand (Tachet et al., 2017, Engelhardt et al.,
2019, Ke, Yang, and Zheng, 2020, Gurumurthy and Kockelman, 2020, Young, Farber,
and Palm, 2020, Maricic, Kucharski, and Cats, 2022), the average ride length (Young,
Farber, and Palm, 2020, Dean and Kockelman, 2021, Kucharski and Cats, 2022, Soza-
Parra, Kucharski, and Cats, 2022) and the average network traffic speed (Tachet et al.,
2017). Less attention has been devoted to studying the effect of the spatial distribution
of travel demand on ride-pooling potential. Limited preliminary evidence for this
relationship suggests that ride-pooling potential may increase with concentration of
travel destinations (Narayan et al., 2022, Soza-Parra, Kucharski, and Cats, 2022).
Research on the effect of behavioural preferences when accounting for costs and
benefits associated with a choice for ride-pooling is also scarce, limited to the works of
Kucharski and Cats (2020, 2022).

In addition to context-related attributes, service design may be a key factor influencing
ride-pooling performance indicators. Studies on ride-pooling service design have
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concentrated on the effect of pooling discount (Yang Liu et al., 2019, Ke et al., 2020,
Zheng Zhu et al., 2020, Kucharski and Cats, 2020, Maricic, Kucharski, and Cats, 2022,
Kenan Zhang and Nie, 2021), surge pricing (Yan et al., 2020), fleet size and capacity
(Alonso-Mora et al., 2017, Yang Liu et al., 2019, Ke et al., 2020, Kucharski and Cats,
2020), design of pick-up and drop-off locations (Goel, Kulik, and Ramamohanarao,
2016, Yan et al., 2020, Gurumurthy and Kockelman, 2020, Fielbaum, Bai, and Alonso-
Mora, 2021, Maricic, Kucharski, and Cats, 2022, Fielbaum, 2022), matching batch time
(Kucharski and Cats, 2020, Ke, Yang, and Zheng, 2020, Pengyu Zhu and Mo, 2022)
and allowable detours in pooled rides (Alonso-Mora et al., 2017, Ke et al., 2020,
Zheng Zhu et al., 2020, Ke et al., 2021).

The objective of this study is to analyse system performance of ride-hailing markets
that allow for pooling under various in settings hitherto underexposed in scientific
research. Specifically, we conduct a series of experiments that includes investigating
the impact of behavioural settings in terms of (a) users’ willingness to share their
ride and (b) their delay aversion on service adoption and its operational efficiency.
The proposed approach permits accounting for user preferences and their possible
variation in the analysis. The incorporation of a cost-benefit trade-off at the individual
passenger level allows us also to outline implications for the design of an effective dis-
count structure – based on vehicle occupancy – to boost ride-pooling adoption and
consequently reduce the total vehicle distance on the road. Finally, we demonstrate
how the spatial distribution of demand may affect the performance of a ride-
pooling system.

The remainder of this paper is structured into four sections. Section 2 provides a
detailed description of our methodology. This is followed by details on the design of
the numerical experiment in Section 3. The results for the experiments are presented
and discussed in Section 4. This paper is concluded by stating the main conclusions
that can be drawn in relation to the effect of users’ behavioural preferences, the spatial
distribution of demand and the pricing mechanism on the performance of a ride-
pooling service (Section 5).

2. Methodology

The assignment of passenger requests to ride-pooling vehicles over a period of time
enables the assessment of the total vehicle movement and service quality obtained by
a ride-pooling service. There are several approaches for the real-time assignment of
requests to vehicles. As a way of dealing with the large solution space in ride-pooling
assignment, in early assignment approaches, such as the one developed by Ma,
Zheng, and Wolfson (2013), incoming requests were individually allocated to vehicles
using a greedy algorithm. Santi et al. (2014) introduced the concept of shareability
graphs to systematically analyse the mutual compatibility of two requests using a
graph representation so that assignment can be performed with traditional graph-
solving optimisation methods. A follow-up study extended this graph-based approach
by introducing additional graph representations to allow for bundling requests and
therefore compose high-occupancy ride-pooling trips (Alonso-Mora et al., 2017).
Their request-group-vehicle (RGV) graph constitutes the composition of request
groups and the vehicle that may serve each request group, representing the assignment
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problem as an Integer Linear Problem (ILP). A subsequent follow-up study by Simo-
netto, Monteil, and Gambella (2019) further reduced the complexity of graph-based
assignment approaches, without a substantial loss of service performance. Agent-
based models (ABM) have also been used to study ride-pooling, whereby users and
vehicles are modelled as agents that dynamically interact (Fiedler et al., 2018, Winter
et al., 2018).

In this study, we adopt the graph-based approach of Alonso-Mora et al. (2017), which
offers the capability to model real-time ride-pooling with more than two passengers on-
board the same vehicle. Contrary to a greedy approach, in which travellers are instantly
assigned to an available vehicle when making a request, trip requests are being collected
over a small period of time – in the order of seconds or minutes – and only assigned at the
end of this interval. When given enough computation time, each assignment iteration
will yield an optimal solution for the current set of requests, meaning that although
the initial waiting time for travellers is longer, the approach can yield a shorter total
travel time.

The approach contains a few implicit assumptions about ride-pooling operations.
First, supply is assumed to be centrally controlled: drivers are fully compliant with
central instructions regarding which requests to serve, the order of pick-ups and drop-
offs in a pooled ride, and the route to follow. Private and pooled services use the same
road infrastructure, i.e. there are no high-occupancy vehicle (HOV) lanes for ride-
pooling vehicles. To limit computational complexity in the approach, it is assumed
that ride-pooling operations has no effect on the traffic conditions in the network.
Travel times in the network are fully predictable and can thus be precomputed. On
the user side, the approach assumes that requests can be subject to assignment in con-
secutive iterations. Assigned travellers that have not yet been picked-up can be reassigned
if it improves their level of service. Travellers with unsatisfied requests will be available
for assignment until a certain time threshold is reached, i.e. when they run out of
patience.

Before providing more details on our methodological contribution to the ride-pooling
assignment procedure, we will first shed more light on the graph-based assignment
process of Alonso-Mora et al. (2017), which forms the basis for our work and is
subject to adaptations as highlighted in the subsequent sections.

2.1. Framework

In the graph-based approach of Alonso-Mora et al. (2017), which is visualised in Figure 1,
requests are matched with other requests as well as with vehicles at fixed intervals. Each
assignment iteration consists of the following nine steps:

(1) Establish the status of vehicles as well as the pool of requests to be matched to a
vehicle. The latter includes new trip requests and unassigned requests from the pre-
vious iteration. Pending requests are removed when assignment is no longer feasible.

Illustration in Figure 1: two empty vehicles, three requests.
(2) Check which pairs of requests can be matched, assuming there is a vehicle located at

the origin of one of the two requests.
Requests 1 and 2, and 2 and 3 form feasible request pairs.
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(3) Check which requests can be matched to which vehicles, considering vehicles’
current location and on-board occupancy.

All requests can be served by vehicle 1, only request 2 can be served by vehicle 2.
(4) Create a request-vehicle (RV) graph: a graph with request and vehicle nodes, where

an edge indicates a feasible request pair match (as found in step 2) or a feasible
request-vehicle match (step 3).

RV-graph as shown in Figure 1.
(5) Check which groups of requests can be matched to which vehicles. To do so, first

identify potentially feasible request group – vehicle matches based on cliques in
the RV-graph, and then find whether there is a feasible route with which a vehicle
can satisfy all requests in the group as well as passengers already on-board.

From the RV-graph it follows that a group consisting of requests 1 and 2, and a
group consisting of requests 2 and 3 can potentially be served by vehicle 1. Besides,
all ‘groups’ with only one request can potentially be served by vehicle 1. Finally, a
‘group’ consisting only of request 2 can potentially be served with vehicle 2. When
checking the feasibility of these group-vehicle combinations, we find that there is no
feasible route for vehicle 1 to satisfy the group consisting of requests 1 and 2.

Figure 1. Overview of the methodology, including an example (in blue) with three requests and two
(empty) vehicles.
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(6) Create a request-group-vehicle (RGV) graph: a graph with request, group and
vehicle nodes, where an edge between a request and a group node indicates that a
request is included in a request group, and an edge between a group and a vehicle
node implying that a request group can be matched to a vehicle (as found in step
5). A label can be added to edges between group and vehicle nodes to represent
the attractiveness or ‘value’ of the match.

RGV-graph as shown in Figure 1, with request (left), group (middle) and vehicle
(right) nodes.

(7) Decide which groups are assigned to which vehicles by translating the RGV-graph
into an Integer Linear Problem. Multiple objective functions are possible, such as
a maximisation of the number of assigned requests.

The group consisting of requests 2 and 3 is assigned to vehicle 1. Vehicle 2 cannot
serve request 1 and is left unassigned.

(8) Decide whether idle vehicles will rebalance, and if so, where to.
(Unassigned) vehicle 2 moves in the direction of (unassigned) request 1.

(9) Update vehicle schedules according to the assignment (step 7) and rebalancing (step
8) result.

Vehicle 1 will pick-up requests 2 and 3, vehicle 2 will rebalance towards the origin of
request 1.

The next two sections provide a more detailed description of the method, focusing on
the steps where this study differs from previous work. In the following, we present our
version of the request-group-vehicle (RGV) matching procedure for finding all feasible
request group – vehicle combinations (Section 2.2, steps 2–6 in Figure 1), and the sub-
sequent procedure of assigning vehicles optimally to requests (Section 2.3, steps 7 and
8 in Figure 1).

2.2. RGV matching

The matching procedure involves the creation of an RGV graph to identify which group-
vehicle combinations are feasible, given vehicle capacity and travel cost constraints. The
matching process of Alonso-Mora et al. (2017) is divided into three steps to ensure that
not all group-vehicle combinations have to be enumerated and checked for feasibility,
which considerably reduces the complexity of the matching algorithm. In this section,
after we introduce the functionality of each of these three steps along with our modifi-
cations thereof, we provide a detailed formulation of the cost function and explain
how it is used in the algorithm that checks the feasibility of group-vehicle pairs.

The first amongst the matching steps (step 2 in Figure 1) establishes whether two
requests in the pool of available requests R can share a ride in the most fortunate scenario
in which there is an empty vehicle readily available at the location of one of those
requests. With this step, the set of potentially feasible request groups G can already be
substantially reduced. The next step (step 3 in Figure 1) checks whether a vehicle v in
the fleet of vehicles V can serve a single request r [ R given its current location and
residual capacity (i.e. the number of available seats). The result of both steps can be com-
bined and stored in a RV-graph (step 4) where edges indicate that two requests, or a
request and a vehicle, can be matched. Each clique in the RV-graph represents a
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potentially feasible group-vehicle combination. Step 5 checks whether there exists a feas-
ible sequence of stops Sv for a vehicle v to satisfy a group of requests g [ G, considering
capacity and user level of service constraints. The RGV-graph consists of nodes repre-
senting the set of available requests R, the set of feasible request groups G and the set
of vehicles V. Each edge between a request r [ R and a request group g [ G has a
label arg indicating whether r is included in g (arg = 1) or not (arg = 0). Moreover,
each edge connecting a request group g [ G and a vehicle v [ V has a label bgv indicat-
ing the sum of net sharing benefits of all requests in g and passengers in Pv given the
optimal sequence of stops S∗v . If a group-vehicle combination gv is not feasible, bgv is
assigned a very large penalty (a so-called big M), to ensure that this combination is
not chosen during the assignment process.

Our approach differs from the original one by Alonso-Mora et al. (2017) in that
group-vehicle edge labels in the RGV-graph contain sharing benefits instead of delay
costs. Similarly, we substitute cost-based user constraints in the matching algorithm
for benefit-based user constraints. In the remainder of this section, we describe our
modifications to the original work by Alonso-Mora et al. (2017) in more detail.

2.2.1. Net sharing benefit
We formulate and quantify the individual benefits stemming from ride-pooling to rep-
resent the trade-off that travellers encounter when choosing between a private and a
shared ride. In the following, we define the notion of net sharing benefits. Its purpose
is threefold: (i) for identifying which pending requests need to be rejected by the ride-
pooling provider (i.e. in determining the pool of unassigned requests), (ii) for identifying
which requests and vehicles can be assigned to each other (i.e. in group generation and
establishing group-vehicle pair feasibility) and (iii) in deciding which requests are to
eventually be assigned to which vehicles (i.e. in assignment), as explained in this and sub-
sequent sections.

We formulate the benefits and costs of ride-pooling relative to a private ride. The
benefit associated with ride-pooling for a traveller with request r corresponds to the
total fare discount offered by the service provider for shared rides and is thus dependent
on the discount rate pr that is applied to the ride fare cr. pr can be either set as a fixed rate
or as a function of the level of service offered by the shared ride. We examine both cases
in our experiments.

In contrast, the disbenefits of a shared ride relative to a private ride relate to extra
travel time imposed by sharing and an additional discomfort associated with sharing
a vehicle, all other things being equal. The total disbenefit of a ride thus depends on
how users perceive both attributes when expressed in monetary terms. Sharing dis-
comfort is described by reluctance to share gr, a ride-pooling alternative specific con-
stant that represents the fare reduction users require for sharing a vehicle with other
riders. To account for a different valuation of out-of-vehicle delay (i.e. waiting for
pick-up) and in-vehicle delay (i.e. detouring), we introduce separate value of time
parameters ar (waiting time) and br (in-vehicle delay). The waiting time of a
request is calculated as the difference between the pick-up time tpur and time at
which the request was made trr . The in-vehicle delay is the difference between the
actual and minimal travel time from pick-up to drop-off location. The latter is cal-
culated for an immediate pick-up and the shortest route, with travel time tor ,dr
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between origin or and destination dr. The actual in-vehicle time is the difference
between the time of drop-off tdor and the time of pick-up tpur . The total net benefit
of r is thus formulated as

br = pr · cr − (tpur − trr) · ar − (tdor − tpur − tor ,dr ) · br − gr (1)

2.2.2. Group-vehicle feasibility
The three main matching steps in the RGV approach (steps 2, 3 and 5 in Figure 1) involve
applying the same algorithm for establishing whether a specific combination of requests
and/or vehicles yields a feasible match. The steps differ only in their input:

. Pairwise request matching (step 2): two requests and a hypothetical vehicle located at
the origin of one of the requests

. Request-vehicle matching (step 3): a single request and a specific vehicle

. Group-vehicle matching (step 5): a group of requests and a specific vehicle.

The algorithm can therefore be generalised by stating that it finds whether a vehicle
v in fleet V, with passengers Pv on-board, can serve a group of unassigned requests U.
The vehicle can be either virtual or specific, and the group of requests may consist of a
single request or of multiple requests. Requests are removed from the queue when
assigned or when so much time has passed that even immediate assignment to a
request with the same origin and destination will not yield a (positive) benefit, in
accordance with Equation (1). In other words, the upper bound of passenger’s
waiting time depends on the trade-off between all the components included in the
total net benefit formulation and is therefore trip-specific rather than a constant
uniform value.

In the first step of the algorithm, the complete set of stop sequences Kv is ident-
ified with which v can potentially satisfy U. Each stop sequence Sv [ Kv is then
checked for feasibility based on vehicle and user constraints. The vehicle constraint
ensures that the vehicle capacity is not exceeded, i.e. v cannot serve U with stop
sequence Sv if the vehicle capacity κ is exceeded by the vehicle occupancy Os after
each stop s [ Sv, similar to the approach of Alonso-Mora et al. (2017). As we
assume that drivers strictly follow the shortest path between two nodes in a
network with static travel times, for each stop sequence Sv we only need to check
the feasibility constraints for a single route, i.e. the route made up of the shortest
paths between the consecutive vehicle stops.

The user constraint proposed in this study is modelled with the net sharing benefit.
Stop sequence Sv satisfies the user level of service constraint only if the net benefit br
of each request in U and Pv is positive. This approach is based on three underlying
assumptions. First, all ride-hailing users are open to pooling, but only if the benefit
derived from lower fares (compared to a private ride) is larger than the costs of
pooling. Second, the operator has perfect information regarding travellers’ preferences
of ride-pooling service attributes, and matches requests according to their interests.
Third, reassignment of requests is possible, but only if a more desirable match is
found for the user. In other words, all riders, whether already picked-up or not, must
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prefer a shared ride provisioned with this specific route over a private ride, and if pre-
viously assigned, also over their current (pooled) ride.

If both types of constraints are satisfied, the benefit of the stop sequence bSv is com-
puted by summing the net benefits of all individual requests in U and Pv. If there
exists at least one feasible stop sequence Sv [ Kv to serve U, then U and v form a feasible
match. When there is more than a single feasible stop sequence, we will also need to
determine which stop sequence is most optimal. Therefore, we search for the stop
sequence in Kv with maximum benefit bSv , which we define as the total benefit of the par-
ticular group-vehicle combination bUv. However, if no feasible stop sequence exists, bUv is
set to ‘Invalid’. The complete procedure for checking the feasibility of group-vehicle com-
binations and finding the most optimal stop sequence for feasible combinations is
specified in the pseudocode shown in Algorithm 1.

Algorithm 1. Matching request group U to vehicle v: Establishing feasibility and optimality of
potential stop sequences.
1. for Sv [ Kv do
2. if maxs[Sv Os ≤ k then ⊳ Vehicle capacity constraint
3. if br ≥ 0, ∀r [ U< Pv then ⊳ User net benefit constraint
4. bSv �

∑
r[U<Pv br ⊳ Total benefit of feasible stop sequence Sv

5. else
6. bSv � -1
7. end if
8. else
9. bSv � -1
10. end if
11. end for
12. if ∃Sv [ Kv such that bSv . 0 then
13. bUv � maxSv bSv ⊳ Stop sequence with maximum benefit
14. else
15. bUv � ‘Invalid′
16. end if

2.3. Assignment and rebalancing

In this part of the method, requests are assigned to vehicles based on the RGV-graph
(corresponding to step 7 in Figure 1). The group-vehicle assignment is treated as an
Integer Linear Problem (ILP) with binary decision variables xgv indicating whether a
group-vehicle combination with total net sharing benefit bgv is chosen or not. The ILP
is defined as follows:

max
∑
g[G

∑
v[V

bgv +
���
M

√
·
∑
r[R

arg

( )
· xgv (2)

s.t.
∑
g[G

xgv ≤ 1, ∀ v [ V (3)

∑
g[G

∑
v[V

arg · xgv ≤ 1, ∀ r [ R (4)

xgv = [0, 1], ∀ g [ G, v [ V (5)
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The objective function (Equation 2) aims at maximising the total benefit for accepted
requests and passengers, while prioritising the acceptance of a maximum number
of requests by adding a very large reward for each request r in an assigned request
group g. The sum of these rewards should however not overpass the bigM penalty assigned
to infeasible group-vehicle combinations in the objective function. Therefore, the reward
per request group is set to

���
M

√
. The total benefit associated with a group-vehicle combi-

nation g−v thus consists of the summed net benefit for all requests and passengers in this
group plus a large reward

���
M

√
for each request that is a member of this group.

The Integer Linear Problem contains three types of constraints guaranteeing respect-
ively a maximum assignment of one request group g to each vehicle v (Equation 3), that
each request r is not part of multiple assigned request groups in G (Equation 4), and that
each decision variable is binary (Equation 5).

Vehicles that are not assigned to a pick-up, can still be assigned tomove in the direction
of unassigned requests, in anticipation of new requests appearing in areas that currently
are under-supplied (step 8 in Figure 1). In this study, the rebalancing procedure of
Alonso-Mora et al. (2017) is adopted. Its objective is to minimise the total empty
vehicle rebalancing distance while ensuring amaximumnumber of vehicles to be assigned
to rebalance.

After vehicles are assigned to pick-up requests, rebalance or remain idle, vehicle sche-
dules are updated and the simulation prepares for the next assignment phase (step 9 in
Figure 1).

2.4. Key performance indicators

We measure the performance of the ride-pooling service using a series of Key Perform-
ance Indicators (KPIs) designed to capture the level of service (LoS) offered to users as
well as its operational efficiency which is relevant for authorities and service providers.
If ride-pooling services are assessed by examining the same aspects that public transport
users consider to be most important (Bates et al., 2001, Edvardsson, 1998, Hensher,
Stopher, and Bullock, 2003, König and Axhausen, 2002, Friman and Gärling, 2001),
then the KPIs of shared rides LoS are reliability, comfort, travel time and fare level.
Ride fares in this case are not considered as a KPI, since they are directly dependent
on pr and are thus endogenously defined as model input. The main LoS KPIs in this
study include the acceptance rate (i.e. the percentage of fulfilled requests out of the
total demand, thereby an indicator for coverage and reliability), the delay as a percentage
of the direct travel time (indicating travel time), the average number of stops per passen-
ger (pertaining to comfort) and the share of passenger time with a specific number of co-
riders on-board (also related to comfort).

In addition to the quality of service delivered by the ride-pooling service, an authority
is also interested in the share of the vehicle distance that can be reduced through ride-
pooling. A suitable KPI to express distance efficiency is the gross effective vehicle trans-
portation distance ratio, which is defined as the sum of the shortest OD-distance of
accepted requests (= ‘effective vehicle distance’) divided by the total vehicle movement
distance (Ehsani et al., 2018). The total vehicle movement distance (or vehicle
mileage) consists of the transportation distance (the vehicle distance with at least one
passenger on-board, including detouring) and the deadheading distance (the total
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empty vehicle distance for accessing requests and rebalancing). Further, a net effective
vehicle transportation distance ratio is defined. This ratio accounts for the fact that the
summed shortest distance of accepted requests, which represents the distance needed
when sharing is not allowed, excludes deadheading. For a more fair comparison, the
deadheading distance is therefore subtracted from the total vehicle movement in the
net effective vehicle transportation distance ratio. For operators, the average vehicle
occupancy while a vehicle is transporting passengers is an important efficiency KPI.

3. Experimental design

A series of experiments is constructed to test the effect of users’ behavioural preferences,
the discounting policy and the spatial distribution of demand on ride-pooling perform-
ance in an urban context. Before specifying the scenarios that have been designed to test
the effect of these variables (Section 3.2), we introduce the general set-up of the exper-
iment in terms of road network, demand and vehicle fleet characteristics in Section
3.1. Section 3.3 concludes this section with a description of the model implementation.

3.1. Set-up

The assumed grid network consists of 121 nodes with a link distance of 500 m (Figure 2),
thereby leading to a maximum trip distance of 10 km and a surface area of 25 km2, com-
parable to the area inside the Ring Road of Amsterdam or the Inner Road Ring of Berlin
(Berliner Innenstadtring). The intermediate stop distance approximates the optimal dis-
tance proposed by Gurumurthy and Kockelman (2020), whereby we implicitly assume

Figure 2. Assumed grid network, with three unassigned requests, one passenger and three vehicles as
illustration.
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that vehicles cannot stop at all road intersections and users are willing to walk to a pick-
up location (and/or from a drop-off location) to minimise ride-pooling vehicle mileage
(Gurumurthy and Kockelman, 2020, Maricic, Kucharski, and Cats, 2022, Fielbaum, Bai,
and Alonso-Mora, 2021, Fielbaum, 2022). The assumed speed on the roads is slightly
higher than in an average European city (Kfzteile24, 2019): 36 km/h. We assume that
the time needed for pick-ups and drop-offs is negligible.

The total demand for trips is set to 1210 (single person) requests per hour, an average
of 10 requests per hour per (demand) node. The way trips are distributed over the
network is scenario specific, since we are explicitly interested in investigating the
impact of demand distribution on system performance. In all cases trips with a ride dis-
tance of 2 km or shorter are excluded, as such rides are uncommon (T. L. K. Liu, Krish-
nakumari, and Cats, 2019) as well as undesirable in the context of a ride-pooling service.
A gravity model (Erlander and Stewart, 1990) is applied to create a list of origin–destina-
tion pairs. Demand generation is assumed to follow a random process with Poisson dis-
tribution. Each request r is assigned with a request time trr by sampling from an
exponential distribution based on the expected interval λ between two successive
requests with a specific OD-combination, which follows again from the (scenario-
specific) demand distribution.

The fleet of the investigated ride-pooling service consists of 150 vehicles with a
capacity of k = 3, that of a normal car, initially evenly distributed over the network.
Ride fares are set based on the regulated maximum taxi fares for the city of Amsterdam
in 2019: a base fee of €3 and a kilometre fee of €2 (Gemeente Amsterdam, 2019).

For computational reasons, the total duration of the simulation is limited to 2 hours,
with request groups being assigned to vehicles every minute (120 times in total). An
additional warm-up period of 15 min is applied to minimise the impact of each of the
starting conditions.

3.2. Scenarios

A total of 14 scenarios are constructed for investigating the effect of previously intro-
duced behavioural attributes, the platform’s pricing policy and the spatial distribution
of demand in the network. We limit the number of scenarios in the experiment by

Table 1. Scenario design (ar = 0.5 · br), with scenario #1 as base scenario.
# Demand distribution br (€/h) gr (€) pr (%) Acronym

1 Uniform 30 3 50 U_30_3_50
2 Uniform 18 3 50 U_18_3_50
3 Uniform 24 3 50 U_24_3_50
4 Uniform 36 3 50 U_36_3_50
5 Uniform 42 3 50 U_42_3_50
6 Uniform 30 1 50 U_30_1_50
7 Uniform 30 2 50 U_30_2_50
8 Uniform 30 4 50 U_30_4_50
9 Uniform 30 5 50 U_30_5_50
10 Uniform N (30,10) 3 50 U_H_3_50
11 Uniform 30 N (3,2) 50 U_30_H_50
12 Uniform 30 3 50 + 7.5 · npax U_30_3_D
13 Moderately directed 30 3 50 MD_30_3_50
14 Strongly directed 30 3 50 SD_30_3_50
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designing scenarios that differ only in one variable at a time from a reference scenario. In
this section, we provide the motivation for the specification of scenarios, summarised in
Table 1, based on the four experimental variables: delay aversion br, reluctance to share
gr, sharing discount pr and directionality in demand.

3.2.1. Delay aversion
Detours for picking up or dropping off additional travellers induce a cost for travellers
already on-board the vehicle. Thus a potentially crucial behavioural factor for the poten-
tial to pool rides is the amount of disbenefit that travellers allocate to a single unit of
delay, which is represented in this work by delay aversion br (Equation 1). Several
recent studies (Krueger, Rashidi, and Rose, 2016, Lavieri and Bhat, 2019, Yang Liu
et al., 2019, Alonso-González et al. “Value of Time and Reliability,”, 2020) have estimated
the value of in-vehicle time for ride-pooling, providing empirical indications for the
range of travellers’ delay aversion values. Their estimates vary considerably, ranging
from 8 to 23 €/h, which implies that the value of in-vehicle time for ride-pooling may
be highly context-specific, depending on factors like the type of vehicle (autonomous
or humanly-driven, interior configuration, etc.) and socio-economic characteristics.
Since the specification of delay aversion in ride-pooling is not yet well established, we
decide to test a relatively wide range of values to get a more complete picture of how tra-
vellers’ perception of delays can possibly affect ride-pooling potential. For the base scen-
ario, we assume a delay aversion br of €30/h, while alternative scenarios test values of 18,
24, 36 and 42 €/h (scenarios 1–5 in Table 1).

At the same time, taste variations may play an important role in determining the scal-
ability and efficiency of ride-pooling systems when users are able to choose between
private and shared rides, as modelled in this study. Alonso-González et al. “Value of
Time and Reliability,” (2020) found a substantial heterogeneity in the value of in-
vehicle time of potential ride-pooling users. We therefore introduce a scenario with
taste heterogeneity in delay aversion br. Since there is limited empirical knowledge on
the variation of delay aversion amongst the population, we need to make an assumption
about the shape of this distribution. We specify heterogeneity in delay aversion (scenario
10 in Table 1) as a normal distribution with a mean value of €30/h (the base value from
scenario 1) and a standard deviation of €10/h: N (30, 10).

In all of the experiments, the value of ar, representing the extent to which waiting time
is perceived more negatively than in-vehicle time, is set to half of br, which is in line with
the waiting time multiplier found in stated preference studies on potential ride-pooling
users (Yang Liu et al., 2019, Alonso-González et al. “Value of Time and Reliability,”,
2020) and a revealed preference study in urban public transit (Yap, Cats, and van
Arem, 2018).

3.2.2. Reluctance to share
Recently, the concept of willingness to share, also referred to as the reluctance to share or
the willingness to pay to not have to share a ride with other travellers, has started to gain
more attention in the literature. Lavieri and Bhat (2019) concluded that travellers’ reluc-
tance to share represents a fixed cost, independent on the duration of the ride. Alonso-
González et al. “What are the Determinants,” (2020) confirm this principle, yet with the
notation that it applies only to ride-pooling with one or two co-riders, and not for all
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travellers in the population. When travelling with more than two co-riders, which rep-
resents microtransit rather than ride-pooling, they find a travel time dependent willing-
ness to share. For small-scale ride-pooling however, both studies find a relatively small
fixed average reluctance to share, in the range of €0.50–€1. Alonso-González et al.
“What are the Determinants,” (2020) also observe that the willingness to share is
highly context-specific, depending on for example geographical characteristics and fam-
iliarity with ride-pooling services.

All in all, empirical research on travellers’ reluctance to share is still scarce, especially
when considering different contexts. With a first indication that the reluctance to share a
vehicle with one or two co-riders is represented by a fixed cost, we decide to test a rela-
tively large range of fixed values for reluctance to share gr in our numerical experiments:
from €1 to €5 (scenarios 1 and 6–9 in Table 1). In all of the other scenarios, we assume a
median value of gr = €3. Again, when lacking full understanding of the specification of
behavioural attributes related to sharing, covering a large range of values allows examin-
ing the implications of these attributes for the potential of ride-pooling.

As mentioned earlier, Alonso-González et al. “What are the Determinants,” (2020)
state that different classes of potential ride-pooling users have a different specification
of their reluctance to share. In fact, preferences related to fellow passengers in ride-
pooling are found to exercise more pronounced heterogeneity than preferences
towards travel time (Hongmou Zhang and Zhao, 2018). A possible explanation for
this is that some users enjoy the social interactions that come along with sharing a
ride while others are reluctant to share their ride with strangers. This implies that for
some users in fact the wilingness to share gr might be positive, or in other words that
the fact that a vehicle is shared induces an additional benefit next to a reduced ride
fare. Again, lacking empirical evidence on the distribution of preferences across the
population, a normal distribution is assumed to capture heterogeneity. Since heterogen-
eity in reluctance to share gr was found to be (likely) larger than heterogeneity in delay
aversion br (with its assumed standard deviation of one third of the mean), the standard
deviation relative to the mean to describe heterogeneity in the reluctance to share gr is
therefore set higher than for the delay aversion br in scenario 10. We specify a mean
reluctance to share of €3 and a standard deviation of €2: N (3, 2) (scenario 11).

3.2.3. Sharing discount
An additional scenario (scenario 12 in Table 1) has been devised to test the effect of a
ride-pooling providers’ pricing mechanism. All scenarios except scenario 12 assume a
fixed 50% discount for all ride-pooling rides, independent of whether sharing actually
occurs throughout the ride. This is in line with services offered by ride-pooling platforms,
e.g. UberPool, that typically offer discounts between 25 and 60% of the fare of a private
ride (Shaheen and Cohen, 2019). We are interested in examining the impacts of an
alternative pricing mechanism that reflects the actual extent of sharing experienced by
the user. We therefore specify an alternative scenario where a similar discount of 50%
is given to the user even if he or she ends up being served privately (same as for all
other scenarios, whereby the discount is basically a compensation for the risk of
having to share), while an additional 7.5% discount is given for each co-rider npax on-
board the vehicle during the part of the ride with highest vehicle occupancy. The aim
of this additional scenario is to explore whether occupancy-dependent discounts in
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ride-pooling can be effective in reducing vehicle mileage by facilitating the matching
process, as well as at what user cost. It is not meant to give a specification of the (socially)
optimal pricing strategy, which, depending on the results of this study, may however be
an interesting topic for future research.

3.2.4. Demand distribution
The effect of directionality in demand on the performance of ride-pooling is tested using
three different scenarios. In the base scenario (1 in Table 1) demand is perfectly uniform,
with equal production and attraction in each of the nodes. In two additional scenarios (scen-
arios 13 and 14 in Table 1), we specify a demand distribution that represents an increasingly
concentrated demand pattern, with more production in the outer nodes of the network and
more attraction in the central nodes, intended to mimic a morning peak pattern.

3.3. Implementation

The simulation model is implemented in Python from scratch, using the open-source
library Numpy to enable efficient operations of large data structures in the model,
such as creating and storing the edges of RGV-graphs when many requests and vehicles
are considered. The Networkx package is used to compute the shortest path between a
pair of locations in the road network, after which the corresponding travel time is
stored in a look-up table.

We compute the complete RV- and RGV-graphs without imposing a time budget or
limits on the number of edges. An exhaustive search is performed to find the optimal stop
sequence with which a vehicle can serve one or more requests (Algorithm 1). The optim-
isation problems that are part of the group-vehicle assignment and rebalancing pro-
cedure are, for all experiments, solved to optimality using the MOSEK Optimiser API.
Consequently, each assignment iteration is guaranteed to yield an optimal result.

With these settings, the majority of scenarios could be run within 30 min on a single-
core 2.30 GHz processor. Two noticeable exceptions are the scenarios with the lowest
delay aversion br and lowest reluctance to share gr with run times of approximately 5
hours. In these scenarios, as a result of more favourable preferences towards sharing,
larger request groups are potentially feasible, hence increasing the solution space. Con-
sequently, it requires considerable computational time to test those as the set of possible
stop sequences to satisfy such groups is considerably (i.e. more than exponentially) larger
than for small request groups. Also the scenario with an occupancy-dependent additional
discount (U_30_3_D) enlarges the solution space and consequently the computational
complexity of this scenario is also relatively high compared to most other scenarios
(i.e. a run time of nearly 1h with the same processor).

Even though we investigate real-time ride-pooling, given the offline evaluation nature
of this work we do not focus on the computational efficiency of the algorithm in this
study. Notwithstanding, the approach adopted in this study is in principle suited for
simulation in real-time, as long as we manage to limit the computational load of each
assignment iteration. We can think of several changes to the current implementation
to do so, including a timeout or a constraint on the number of edges in the development
of RV- and RGV-graphs, a timeout when seeking the optimal stop sequence for a group-
vehicle combination and a timeout in the ILP assignment of vehicles to requests. As these

422 A. DE RUIJTER ET AL.



implementation directly touch upon the core of the work by Alonso-Mora et al. (2017),
we refer to their work for more details.

4. Results

In this section, we report the results of the experiment and analyse the effect of users’
preferences (Section 4.1), the variation thereof (Section 4.2), the applied discount struc-
ture (Section 4.3) and the demand distribution (Section 4.4) on the level of service and
efficiency of a ride-pooling service. The complete set of KPI values is presented in
Table 2 (level of service) and Table 3 (efficiency). In the following four sections, we
discuss the effect of each of the above mentioned aspects in detail.

4.1. Effect of (homogeneous) behavioural preferences

As can be expected, the acceptance rate (Figure 3a) increases as the reluctance to share gr
decreases. The acceptance rate rises from 25.4% when gr = €5 to nearly 100% when gr =

Figure 3. The effect of reluctance to share gr on (a) acceptance rate, (b) vehicle occupancy and
number of intermediate stops, (c) average passenger delay, (d) vehicle time spent in different
states and (e) total vehicle movement, total transportation distance and effective transportation
distance.
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Table 2. Level of service KPI values for each scenario.

Scenario
Acceptance

rate

Average total
delay per

passenger (s)

Average waiting
time per

passenger (s)

Average in-
vehicle delay per
passenger (s)

Average passenger
ratio delay/direct

travel time

Average
number of stops
per passenger

Ratio of
passenger time
with 0 co-riders

Ratio of
passenger time
with 1 co-rider

Ratio of
passenger time
with 2 co-riders

U_30_3_50 76% 126.8 92.1 34.7 30% 0.95 50% 32% 18%
U_18_3_50 88% 200.5 122.4 78.1 49% 1.56 31% 33% 36%
U_24_3_50 81% 158.5 103.6 55.0 37% 1.24 40% 35% 25%
U_36_3_50 70% 106.2 84.8 21.4 25% 0.79 58% 31% 11%
U_42_3_50 64% 93.2 77.1 16.0 21% 0.67 63% 29% 8%
U_30_1_50 99% 219.5 138.2 81.3 61% 1.83 25% 38% 37%
U_30_2_50 98% 169.6 114.0 55.6 45% 1.40 35% 37% 28%
U_30_4_50 46% 102.7 82.9 19.8 21% 0.66 64% 27% 9%
U_30_5_50 25% 88.0 74.7 13.2 15% 0.39 76% 21% 3%
U_H_3_50 76% 154.2 103.5 50.8 36% 1.08 46% 32% 22%
U_30_H_50 67% 162.8 106.4 56.4 42% 1.19 45% 34% 21%
U_30_3_D 82% 221.7 118.7 103.0 54% 1.97 23% 32% 45%
MD_30_3_50 68% 117.7 92.5 25.1 29% 0.79 56% 30% 14%
SD_30_3_50 63% 130.7 106.5 24.2 32% 0.80 53% 33% 14%
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Table 3. Efficiency KPI values for each scenario.

Scenario

Total
vehicle

movement
distance
(km)

Total vehicle
transportation
distance (km)

Total
deadheading
distance (km)

Total
rebalancing
distance
(km)

Gross effective
vehicle

transportation
distance ratio

Net effective
vehicle

transportation
distance ratio

Empty
vehicle

rebalancing
distance
ratio

Average
vehicle

occupancy

Ratio of
non-empty
vehicle

time with
occupancy

1

Ratio of
non-empty
vehicle

time with
occupancy

2

Ratio of
non-empty
vehicle

time with
occupancy

3

U_30_3_50 6488 5588 900 156 1.15 1.34 0.173 1.38 70% 22% 8%
U_18_3_50 6357 5690 667 78 1.27 1.42 0.117 1.68 52% 28% 20%
U_24_3_50 6456 5657 799 133 1.21 1.38 0.166 1.52 61% 26% 13%
U_36_3_50 6350 5453 898 156 1.12 1.30 0.174 1.30 75% 20% 5%
U_42_3_50 6142 5218 925 187 1.09 1.28 0.202 1.24 79% 18% 3%
U_30_1_50 6389 5867 522 9 1.36 1.48 0.017 1.78 44% 34% 22%
U_30_2_50 6853 6133 720 56 1.26 1.41 0.077 1.59 56% 30% 15%
U_30_4_50 4966 4330 636 106 1.10 1.26 0.167 1.24 79% 17% 4%
U_30_5_50 3321 2958 364 37 1.05 1.18 0.102 1.14 87% 12% 1%
U_H_3_50 6389 5556 833 152 1.16 1.33 0.182 1.45 66% 23% 11%
U_30_H_50 5570 4949 621 84 1.17 1.32 0.135 1.45 65% 25% 10%
U_30_3_D 5687 5186 501 125 1.35 1.48 0.249 1.85 43% 29% 28%
MD_30_3_50 6000 4829 1171 393 1.06 1.31 0.335 1.32 74% 20% 6%
SD_30_3_50 6288 4552 1736 910 0.95 1.31 0.524 1.35 72% 22% 6%
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€1. The increase is approximately linear until the great majority of requests is accepted.
Interestingly, the average vehicle occupancy (Figure 3b) increases more than linearly
when gr decreases, as well as passengers’ waiting time and in-vehicle delay (Figure 3c).
It is found that hardly any rides are shared (i.e. the average vehicle occupancy is 1.14,
implying that not much sharing takes place) if users are highly sensitive to sharing
with other passengers (Figure 3d), resulting in an average in-vehicle delay close to
zero. In such a scenario, the operational efficiency in terms of the number of effective
passenger kilometres per vehicle kilometre is as low as 1.05. This ratio is found to
increase approximately linearly with an increase in the willingness to share. It can be
explained by the finding that the total effective vehicle distance (due to more requests
served) increases more than the total vehicle movement distance when users are more
flexible (Figure 3e), as a result of a more efficient assignment of vehicles to requests.
Also, deadheading is found to be relatively uncommon when users’ sharing tolerance
is high (Figure 3d), as new requests can be picked-up by vehicles on their way to drop
off other passengers. If gr = €1 for example, the average effective passenger distance
per total vehicle kilometre in the system (including transportation and deadheading)
rises to 1.36 km.

When considering the effect of delay aversion br instead of reluctance to share gr,
similar, albeit less pronounced, results are found. The acceptance rate, for example,
does not exceed 90% in any of the scenarios. Evidently, the level of service and oper-
ational efficiency are more sensitive to the tested values of the willingness to share, gr,
than to those of the delay aversion, br.

4.2. Effect of taste heterogeneity

Substantially fewer requests are accepted when reluctance to share varies amongst the
user population (with an unchanged mean): 66.8% versus 76.0% of all requests (Figure
4a). As can be seen in Figure 4b, the acceptance rate varies considerably amongst user
groups that are characterised by different degrees of reluctance to share. Heterogeneity
in the delay tolerance on the other hand barely has an impact on the acceptance rate:
75.9%. An explanation for this difference could be that users with a high delay aversion
can often still be satisfied (Figure 4b) by serving them with the shortest or a relatively
short path so that their delay costs are minimised. This happens at the cost of more
flexible passengers that will get served with a delayed pick-up and/or a less direct
route. In other words, a level of service is offered that discriminates amongst users
based on their delay aversion. With the majority of accepted requests having an
above average delay tolerance (since it is easier to find a ride for those requests),
the average delay experienced by users in the system, 36.4% of the direct travel
time, is higher than when the delay tolerance is assumed homogeneous (29.5%,
Figure 4c).

When considering a scenario with varying willingness to share, it is found that users
with a below average willingness to share are much more likely to reject a ride-pooling
service (Figure 4b) even when offered a direct ride, leading to a lower overall acceptance
rate (Figure 4a). The total rebalancing distance is limited (Figure 4d) since there are rela-
tively many requests around unassigned vehicles that cannot be served even with a direct
route. The effective transportation distance ratio, an indicator for distance savings
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(Figure 4e), ranges between 1.15 and 1.17 for the three scenarios in this set of exper-
iments, and thus does not seem to be substantially dependent on whether heterogeneity
in ride-pooling tolerances is considered. Based on this, we can say that the operational
efficiency in terms of the vehicle-km travelled that a ride-pooling system can save is
not very sensitive to the variation of sharing preferences over the population.

4.3. Effect of discount mechanism

As expected, when users receive an additional 7.5% discount per co-rider they share the
highest occupancy part of their ride with, the average vehicle occupancy increases dra-
matically (from 1.38 to 1.85, as can be seen in Figure 5a), and a similar increase is
found in the share of time passengers spend in a full vehicle (from 17.7% to 45.1% of
the total passenger time). By utilising the available vehicle capacity more efficiently
(Figure 5c), the acceptance rate (also Figure 5a) increases from 76.0% to 82.1%, although
at the cost of a higher average delay (Figure 5b). A higher vehicle occupancy will burden
passengers with longer detours and consequently an in-vehicle delay of more than three
times as high as when no additional discount is offered (25.1% vs 8.1% of the direct travel

Figure 4. The effect of heterogeneity in delay aversion br and reluctance to share gr on (a) average
vehicle occupancy, (b) acceptance rate, (c) average passenger delay, (d) vehicle time spent in different
states and (e) total vehicle movement distance and effective transportation distance (the difference
between those indicating distance savings).
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time). Also, the average waiting time for pick-up is marginally longer in the scenario with
an occupancy-dependent discount, with pick-ups being complicated by the fact that
many vehicles are driving around fully occupied.

The (gross) effective vehicle transportation distance ratio increases from 1.15 to 1.35
when an additional 7.5% discount is awarded per co-rider. In combination with a
higher acceptance rate, relatively large distance savings (Figure 5d) are achieved with
the introduction of an additional occupancy-dependent discount. Passengers,
however, may be reluctant to choose a service for which they know the maximum
cost but not the exact cost a-priori. The distance that a ride-pooling service can save
(when compared to private rides) stems not only from the more efficient transportation
of requests (the transportation distance drops from 5588 to 4829 km) but also from a
reduction in the deadheading distance to access new requests (from 900 to 501 km),
as requests are being picked-up by non-empty vehicles on their way to drop off
other passengers.

4.4. Effect of demand distribution

More directionality in demand leads to more requests being rejected by the ride-pooling
service, namely 37.1% when demand is strongly directed versus 24.0% when demand is
perfectly uniform, as shown by Figure 6a. If demand is perfectly uniform, the average
vehicle occupancy of vehicles in revenue mode (also Figure 6a) is 1.38 and the average
passenger delay (Figure 6b) is 29.5% of the direct travel time. The drop in the number
of accepted requests when there is a moderate level of direction in demand leads to a
drop in the vehicle occupancy (1.32) and average delay (29.1% of direct travel time).
Interestingly, when the level of direction increases further however, the vehicle

Figure 5. The effect of discount structure on (a) acceptance rate and average vehicle occupancy, (b)
average passenger delay, (c) vehicle time spent in different states and (d) total vehicle movement dis-
tance and effective transportation distance (the difference between those indicating distance savings).
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occupancy (1.35) and the average delay (31.9% of the direct travel time) bounce back.
With a larger spatial inequality in pick-ups and drop-offs, average waiting times are rela-
tively short in the center, where attraction exceeds production (Figure 6c), compared to
the nodes in the periphery of the network. Since only the minority of requests originates
in the center in this case, the average waiting time is mainly determined by requests orig-
inating outside of the centre, where production exceeds attraction. In these nodes, the
average waiting time is nearly twice as high (27.1% vs 14.1%).

The effective passenger kilometres per ride-pooling vehicle kilometre is 0.95 when
there is strong directionality in demand. This alarming result suggests that the total
vehicle distance can be longer than the effective transportation distance even for ride-
pooling services (Figure 6e). In addition, contrary to what might be expected, it shows
that directionality in demand may jeopardise ride-pooling efficiency. Our results point
to two explanations. First, directed demand (towards the centre) requires considerable
deadheading from centre to periphery to solve supply deficits in the periphery (Figure
6d). Deadheading for instance accounts for 27.6% of all vehicle kilometres in a scenario
in which demand is strongly directed, compared to only 13.9% of the mileage when

Figure 6. The effect of directionality in demand on (a) acceptance rate and average vehicle occu-
pancy, (b) average passenger delay, (c) location-based average waiting time, (d) vehicle time spent
in different states and (e) total vehicle movement distance and effective transportation distance
(the difference between those indicating distance savings).
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demand is uniform. Second, directionality in demand does not induce a considerable
increase in vehicle sharing, as shown by Figure 6(a,d). Likely, incompatibility in trip
origins – which are distributed across the periphery – compensates for clustering in
trip destinations. When demand is uniform, it is more likely that a passenger can be
picked up along the way of serving another passenger.

5. Discussion and conclusion

This work is the first study to consider ride-pooling potential while accounting for the
trade-off that users encounter when presented with the option of ride-pooling. Previous
studies, such as Santi et al. (2014) and Alonso-Mora et al. (2017), assumed that all users
are potentially willing to ride-share as long as their waiting time and total delay do not
exceed a certain non-compensatory threshold. This is not very realistic as taxi users have
no reason to share their ride (and accept a delay) unless attaining a benefit in return.
Therefore, in this study we formulate a compensatory user cost formulation where the
disbenefits associated with sharing one’s ride need to be at least compensated by the
fare reduction offered for the user to substitute a private ride with ride-pooling.
Hence, the assumption is that users will only switch to a ride-pooling service if such a
choice yields a net positive benefit over a conventional taxi or ride-hailing service.
Also, this work accounts for the fact that sharing a vehicle with strangers, which in the
literature is considered to be one of the main potential barriers for a successful
implementation of ride-pooling services, induces a disutility.

Our compensatory formulation is embedded in the matching framework proposed in
Alonso-Mora et al. (2017). A group of requests is considered feasible only if all the indi-
viduals included in the shared ride evaluate it as superior to the private ride alternative, as
well as satisfying vehicle-related constraints.

When representing the choice whether to ride-share or not as a compensatory func-
tion between travel attributes (travel time, ride fare and the presence of co-riders), we
find that the distance savings from ride-pooling reported by previous studies are only
attainable when users have favourable preferences to sharing rides. For example, when
users have a relatively high willingness to share, or more specifically when they are
willing to pay no more than 1 euro to upgrade a shared ride to an individual one, assum-
ing no change in travel time, 32% of the transportation vehicle kilometres in the network
can be removed. This compares to a 40% reduction found by Santi et al. (2014) in their
study on ride-pooling in New York. However, our work shows that if users are found to
be less willing to share – or in other words, users are willing to pay high premium (i.e. a
higher fare) for a private ride –we can expect distance savings that are considerably lower
than reported in previous work. We find for example that, in the scenario where travellers
are least willing to share, the total vehicle transportation distance can be reduced by just
15% when allowing for shared rides. This scenario assumes that ride-pooling users
demand a compensation of 5 euro for the fact that they have to share their vehicle
with other passengers. Furthermore, it should be noted that in this scenario, and in
most others, ride-pooling users get rewarded with a discount rate of 50%, relatively
high compared to discounts currently offered by ride-pooling services. It is thus plausible
that ride-pooling distance savings in reality are even lower than those found in our
analysis.
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In addition, our results show that besides the expected distance savings also the level of
service that a ride-pooling system offers depends considerably on users’ tolerance to
delays and willingness to share a vehicle with co-riders. When we vary both attributes,
we find the acceptance rate of a ride-pooling service to range between 25% and 99%
of all incoming requests, and the average delay of accepted requests to range between
15% and 61% of the direct travel time. In conclusion, our results highlight that any com-
parison of ride-pooling model outputs has to carefully account for the behavioural
specifications.

Although heterogeneity in user preferences seems to have only a limited impact on
potential distance savings, it is found to have negative consequences for the level of
service with more rejected requests and a larger average delay. Moreover, this results
in striving to serve few users with a below average sharing tolerance at the expense
that many of the accepted requests with an above average tolerance get assigned a less
efficient ride. This calls for the development of discriminative pricing or service provision
mechanisms, including the possibility for the service provider to choose to decline travel
requests.

Furthermore, this study has shown that the design of a ride-pooling service, such as its
pricing structure, may substantially affect the expected societal benefits and service
quality. A relatively small additional discount of 7.5% per co-rider with whom a user
shares their ride at maximum occupancy, on top of the standard 50% discount
assumed in all experiments, can for example more than double the total reduction in
vehicle kilometres. At the same time, the percentage of rejected requests drops from
24% to 18% if such a discount policy is implemented. Instead of offering a flat subsidy
per pooled ride or charging a tax on private rides, policy makers looking to minimise
road traffic externalities may thus be better off subsidising ride-pooling based on
vehicle occupancy.

This study also shows that the potential of a ride-pooling system can be greatly depen-
dent on external variables, such as the spatial distribution of demand. Demand patterns
are likely to be at least somewhat concentrated due to spatial clustering of activities like
work, leisure, residence and shopping. Notably, our results demonstrate that when most
requests are directed towards the center of the network, typical for a morning peak, a
ride-pooling system performs worse than when demand is uniform, both in terms of
level of service and efficiency. This is a direct result of (i) the spatial imbalance in
demand and supply, which requires vehicles to deadhead from drop-off locations in
low demand areas to pick-up locations in high demand areas, leading to increased
vehicle mileage and longer waiting times for pick-up and (ii) limited pooling due to dis-
persion of trip origins over the periphery. To be specific, the (gross) effective vehicle
transportation distance ratio can even drop below 1 when the directionality of
demand is high, while the average user delay can amount to 32% of the direct travel
time in such a scenario. In summary, we found that directionality in demand negatively
affects both level of service and operational efficiency of ride-pooling services.

Our results highlight the importance of gaining more empirical underpinning for the
willingness to pool to facilitate demand forecasts concerning the future role of ride-
pooling in our cities. In addition, future research can investigate the impact of additional
aspects on ride-pooling performance. This includes exploration of more complex dis-
counting mechanisms and demand distributions (both spatially and temporally) than
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the one assumed here. Also, it might be interesting to find whether ride-pooling
efficiency can be improved by strategic rejection of requests that negatively affect ride-
pooling performance on a system level, even when assignment is feasible, such as requests
that are destined for a location far away from where new demand is expected. Moreover,
the validity of ride-pooling studies can be improved by accounting for vehicle idle time at
stops, as well as by the incorporation of mode choice, such as in Zheng Zhu et al. (2020),
whereby passengers can choose travel modes other than private ride-hailing and ride-
pooling. Furthermore, adopting a probabilistic choice modelling framework will
enable the consideration of link travel time variability and thereby the associated passen-
ger in-vehicle time uncertainty. Finally, future research can address the equity aspects of
a ride-pooling system, including the spatial disparity of service accessibility.
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