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Abstract
We study a Lax pair in a 2-parameter Lie algebra in various representations. The
overlap coefficients of the eigenfunctions of L and the standard basis are given in
terms of orthogonal polynomials and orthogonal functions. Eigenfunctions for the
operator L for a Lax pair for sl(d + 1,C) is studied in certain representations.

Keywords Special functions · Orthogonal polynomials · Toda lattice

Mathematics Subject Classification 33C80 · 37K10 · 17B80

1 Introduction

The link of the Toda lattice to three-term recurrence relations via the Lax pair after
the Flaschka coordinate transform is well understood, see e.g. [2,27]. We consider
a Lax pair in a specific Lie algebra, such that in irreducible ∗-representations the
Lax operator is a Jacobi operator. A Lax pair is a pair of time-dependent matrices or
operators L(t) and M(t) satisfying the Lax equation

L̇(t) = [M(t), L(t)],

where [ , ] is the commutator and the dot represents differentiation with respect to
time. The Lax operator L is isospectral, i.e. the spectrum of L is independent of time.
A famous example is the Lax pair for the Toda chain in which L is a self-adjoint Jacobi
operator,
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446 W. Groenevelt, E. Koelink

L(t)en = an(t)en+1 + bn(t)en + an−1(t)en−1,

where {en} is an orthonormal basis for the Hilbert space, and M is the skew-adjoint
operator given by

M(t)en = an(t)en+1 − an−1(t)en−1.

In this case the Lax equation describes the equations of motion (after a change of
variables) of a chain of interacting particles with nearest neighbour interactions. The
eigenvalues of L , L being isospectral, constitute integrals of motion.

In this paper we define a Lax pair in a 2-parameter Lie algebra. In the special case
of sl(2,C) we recover the Lax pair for the sl(2,C) Kostant Toda lattice, see [2, Sect.
4.6] and references given there. We give a slight generalization by allowing for a more
generalM(t).We discuss the corresponding solutions to the corresponding differential
equations in various representations of the Lie algebra. In particular, one obtains
the classical relation to the Hermite, Krawtchouk, Charlier, Meixner, Laguerre and
Meixner–Pollaczek polynomials from the Askey scheme of hypergeometric functions
[16] for which the Toda modification, see [13, Sect. 2.8], remains in the same class
of orthogonal polynomials. This corresponds to the results established by Zhedanov
[29], who investigated the situation where L , M and L̇ act as three-term recurrence
operators and close up to a Lie algebra of dimension 3 or 4. In the current paper
Zhedanov’s result is explained, starting from the other end. In Zhedanov’s approach
the condition on forming a low-dimensional Lie algebra forces a factorization of the
functions as a function of time t and place n, which is immediate from representing
the Lax pair from the Lie algebra element. The solutions of the Toda lattice arising in
this way, i.e. which are factorizable as functions of n and t , have also been obtained
by Kametaka [15] stressing the hypergeometric nature of the solutions. The link to
Lie algebras and Lie groups in Kametaka [15] is implicit, see especially [15, Part I].
The results and methods of the short paper by Kametaka [15] have been explained and
extended later by Okamoto [23]. In particular, Okamoto [23] gives the relation to the
τ -function formulation and the Bäcklund transformations.

Moreover, we extend to non-polynomial settings by considering representations of
the corresponding Lie algebras in �2(Z) corresponding to the principal unitary series
of su(1, 1) and the representations of e(2), the Lie algebra of the group of motions
of the plane. In this way we find solutions to the Toda lattice equations labelled by
Z. There is a (non-canonical) way to associate to recurrences on �2(Z) three-term
recurrences for 2 × 2-matrix valued polynomials, see e.g. [3,18]. However, this does
not lead to explicit 2 × 2-matrix valued solutions of the non-abelian Toda lattice as
introduced and studied in [4,7] in relation to matrix valued orthogonal polynomials,
see also [14] for an explicit example and the relation to the modification of the matrix
weight. The general Lax pair for the Toda lattice in finite dimensions, as studied by
Moser [22], can also be considered and slightly extended in the sameway as an element
of the Lie algebra sl(d + 1,C). This involves t-dependent finite discrete orthogonal
polynomials, and these polynomials occur in describing the action of L(t) in highest
weight representations. We restrict to representations for the symmetric powers of
the fundamental representations, then the eigenfunctions can be described in terms
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Orthogonal functions related to Lax pairs in Lie algebras 447

of multivariable Krawtchouk polynomials following Iliev [12] establishing them as
overlap coefficients between a natural basis for two different Cartan subalgebras.
Similar group theoretic interpretations of thesemultivariableKrawtchouk polynomials
have been established by Crampé et al. [5] and Genest et al. [8]. We discuss briefly
the t-dependence of the corresponding eigenvectors of L(t).

In brief, in Sect. 2 we recall the 2-parameter Lie algebra as in [20] and the Lax
pair. In Sect. 3 we discuss su(2) and its finite-dimensional representations, and in
Sect. 4 we discuss the case of su(1, 1), where we discuss both discrete series repre-
sentations and principal unitary series representations. The last leads to new solutions
of the Toda equations and the generalization in terms of orthogonal functions. The
corresponding orthogonal functions are the overlap coefficients between the standard
basis in the representations and the t-dependent eigenfunctions of the operator L . In
Sect. 5 we look at the oscillator algebra as specialization, and in Sect. 6 we consider
the Lie algebra for the group of plane motions leading to a solution in connection to
Bessel functions. In Sect. 7 we indicate how the measures for the orthogonal functions
involved have to be modified in order to give solutions of the coupled differential
equations. For the Toda case related to orthogonal polynomials, this coincides with
the Toda modification [13, Sect. 2.8]. Finally, in Sect. 8 we consider the case of finite
dimensional representations of such a Lax pair for a higher rank Lie algebra in specific
finite-dimensional representations for which all weight spaces are 1-dimensional.

A question following up on Sect. 7 is whether the modification for the weight is
of general interest, cf. [13, Sect. 2.8]. A natural question following up on Sect. 8 is
what happens in other finite-dimensional representations, and what happens in infinite
dimensional representations corresponding to non-compact real forms of sl(d +1,C)

as is done in Sect. 4 for the case d = 1. We could also ask if it is possible to associate
Racah polynomials, as the most general finite discrete orthogonal polynomials in the
Askey scheme, to the construction of Sect. 8. Moreover, the relation to the interpreta-
tion as in [19] suggests that it might be possible to extend to quantum algebra setting,
but this is quite open.

This paper is dedicated to Richard A. Askey (1933–2019) who has done an incred-
ible amount of fascinating work in the area of special functions, and who always had
an open mind, in particular concerning relations with other areas. We hope this spirit
is reflected in this paper. Moreover, through his efforts for mathematics education,
Askey’s legacy will be long-lived.

2 The Lie algebra g(a,b)

Let a, b ∈ C. The Lie algebra g(a, b) is the 4-dimensional complex Lie algebra with
basis H , E, F, N satisfying

[E, F] = aH + bN , [H , E] = 2E, [H , F] = −2F,

[H , N ] = [E, N ] = [F, N ] = 0.
(2.1)

For a, b ∈ R there are two inequivalent ∗-structures on g(a, b) defined by
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448 W. Groenevelt, E. Koelink

E∗ = εF, H∗ = H , N∗ = N ,

where ε ∈ {+,−}.
We define the following Lax pair in g(a, b).

Definition 2.1 Let r , s ∈ C1[0,∞) and u ∈ C[0,∞) be real-valued functions and let
c ∈ R. The Lax pair L, M ∈ g(a, b) is given by

L(t) = cH + s(t)(aH + bN ) + r(t)
(
E + E∗),

M(t) = u(t)
(
E − E∗).

(2.2)

Note that L∗ = L and M∗ = −M . Being a Lax pair means that L̇ = [M, L], which
leads to the following differential equations.

Proposition 2.2 The functions r , s and u satisfy

ṡ(t) = 2εr(t)u(t), ṙ(t) = −2(as(t) + c)u(t).

Proof From the commutation relations (2.1) it follows that

[M, L] = 2εr(t)u(t)(aH + bN ) − 2(as(t) + c)u(t)(E + E∗).

Since [M, L] = L̇ = ṡ(t)(aH + bN ) + ṙ(t)(E + E∗), the results follows. ��
Corollary 2.3 The function I (r , s) = εr2 + (as + 2c)s is an invariant.

Proof Differentiating gives

d

dt
(εr(t)2 + as(t)2 + 2cs(t)) = 2εr(t)ṙ(t) + 2(as(t) + c)ṡ(t),

which equals zero by Proposition 2.2. ��
In the following sections we consider the Lax operator L in an irreducible ∗-

representation of g(a, b), and we determine explicit eigenfunctions and its spectrum.
We restrict to the following special cases of the Lie algebra g(a, b):

• g(1, 0) ∼= sl(2,C) ⊕ C,

• g(0, 1) ∼= b(1) is the generalized oscillator algebra,
• g(0, 0) ∼= e(2) ⊕ C, with e(2) the Lie algebra of the group of plane motions.

These are the only essential cases as g(a, b) is isomorphic as a Lie algebra to one of
these cases, see [20, Sect. 2-5].

3 The Lie algebra su(2)

In this section we consider the Lie algebra g(a, b) from Sect. 2 with (a, b) = (1, 0)
and ε = +, i.e. the Lie algebra su(2) ⊕ C. The basis element N plays no role in

123



Orthogonal functions related to Lax pairs in Lie algebras 449

this case, therefore we omit it. So we consider the Lie algebra with basis H , E, F
satisfying commutation relations

[H , E] = 2E, [H , F] = −2F, [E, F] = H ,

and the ∗-structure is defined by H∗ = H , E∗ = F .
The Lax pair (2.2) is given by

L(t) = s(t)H + r(t)(E + F), M(t) = u(t)(E − F),

where (without loss of generality) we set c = 0. The differential equations for r and
s from Proposition 2.2 read in this case

ṡ(t) = 2u(t)r(t), ṙ(t) = −2u(t)s(t) (3.1)

and the invariant in Corollary 2.3 is given by I (r , s) = r2 + s2.

Lemma 3.1 Assume sgn(u(t)) = sgn(r(t)) for all t > 0, s(0) > 0 and r(0) > 0.
Then sgn(s(t)) > 0 and sgn(r(t)) > 0 for all t > 0.

Proof From ṡ = 2ur it follows that s is increasing. Since (r(t), s(t)) in phase space
is a point on the invariant I (r , s) = I (r(0), s(0)), which describes a circle around the
origin, it follows that r(t) and s(t) remain positive. ��
Throughout this section we assume that the conditions of Lemma 3.1 are satisfied, so
that r(t) and s(t) are positive. Note that if we change the condition on r(0) to r(0) < 0,
then r(t) < 0 for all t > 0.

For j ∈ 1
2N let �2j be the 2 j + 1 dimensional complex Hilbert space with standard

orthonormal basis {en | n = 0, . . . , 2 j}. An irreducible ∗-representation π j of su(2)
on �2j is given by

π j (H)en = 2(n − j) en,

π j (E)en = √
(n + 1)(2 j − n)) en+1,

π j (F)en = √
n(2 j − n + 1) en−1,

where we use the notation e−1 = e2 j+1 = 0. In this representation the Lax operator
π j (L) is the Jacobi operator

π j (L(t))en = r(t)
√

(n + 1)(2 j − n) en+1

+2s(t)(n − j) en + r(t)
√
n(2 j − n + 1) en−1. (3.2)

We can diagonalize the Lax operator π j (L) using orthonormal Krawtchouk poly-
nomials [16, Sect. 9.11], which are defined by

Kn(x) = Kn(x; p, N ) =
(

p

1 − p

) n
2

√(
N

n

)

2F1

(−n,−x

−N
; 1

p

)
,
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450 W. Groenevelt, E. Koelink

where N ∈ N, 0 < p < 1 and n, x ∈ {0, 1, . . . , N }. The three-term recurrence
relation is

1
2N − x√
p(1 − p)

Kn(x) = √
(n + 1)(N − n) Kn+1(x)

+ p − 1
2√

p(1 − p)
(2n − N )Kn(x) + √

n(N − n + 1) Kn−1(x),

with the convention K−1(x) = KN+1(x) = 0. The orthogonality relations read

N∑

x=0

(
N

x

)
px (1 − p)N−x Kn(x)Kn′(x) = δn,n′ .

Theorem 3.2 Define for x ∈ {0, . . . , 2 j}

Wt (x) =
(
2 j

x

)
p(t)x (1 − p(t))2 j−x ,

where p(t) = 1
2 + s(t)

2C and C = √
s2 + r2. For t > 0 let Ut : �2j →

�2({0, . . . , 2 j},Wt ) be defined by

[Uten](x) = Kn(x; p(t), 2 j),

then Ut is unitary and Ut ◦ π j (L(t)) ◦U∗
t = M(2C( j − x)).

Here M denotes the multiplication operator given by [M( f )g](x) = f (x)g(x).

Proof From (3.2) and the recurrence relation of the Krawtchouk polynomials we
obtain

[Ut r
−1π j (L)U∗

t K·(x)](n) = j − x√
p(1 − p)

Kn(x),

where

s

r
= p − 1

2√
p(1 − p)

.

The last identity implies

p = 1

2
+ 1

2

√
s2

s2 + r2

so that

p(1 − p) = r2

4(s2 + r2)
.
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Orthogonal functions related to Lax pairs in Lie algebras 451

Then we find that the eigenvalue is

j − x√
p(1 − p)

=
√
s2 + r2

r
2( j − x).

Since s2 + r2 is constant, the result follows. ��

4 The Lie algebra su(1, 1)

In this section we consider representations of g(a, b) with (a, b) = (1, 0) and ε = −,
i.e. the Lie algebra su(1, 1)⊕C. We omit the basis element N again. The commutation
relations are the same as in the previous section. The ∗-structure in this case is defined
by H∗ = H and E∗ = −F .

The Lax pair (2.2) is given by

L(t) = s(t)H + r(t)(E − F), M(t) = u(t)(E + F),

where we set c = 0 again. The functions r and s satisfy

ṡ(t) = −2u(t)r(t), ṙ(t) = −2u(t)s(t)

and the invariant is given by I (r , s) = s2 − r2.

Lemma 4.1 Assume sgn(u(t)) = − sgn(r(t)) for all t > 0, s(0) > 0 and r(0) > 0.
Then sgn(s(t)) > 0 and sgn(r(t)) > 0 for all t > 0.

Proof The proof is similar to the proof of Lemma 3.1, where in this case I (r , s) =
I (r(0), s(0)) describes a hyperbola or a straight line. ��
Throughout this section we assume that the assumptions of Lemma 4.1 are satisfied.

We consider two families of irreducible ∗-representations of su(1, 1). The first
family is the positive discrete series representations πk , k > 0, on �2(N). The actions
of the basis elements on the standard orthonormal basis {en | n ∈ N} are given by

πk(H)en = 2(k + n) en,

πk(E)en = √
(n + 1)(2k + n) en+1,

πk(F)en = −√
n(2k + n − 1) en−1.

We use the convention e−1 = 0.
The second family of representations we consider is the principal unitary series

representation πλ,ε, λ ∈ − 1
2 + iR+, ε ∈ [0, 1) with (λ, ε) = (− 1

2 ,
1
2 ), on �2(Z). The

actions of the basis elements on the standard orthonormal basis {en | n ∈ Z} are given
by

123



452 W. Groenevelt, E. Koelink

πλ,ε(H)en = 2(ε + n) en,

πλ,ε(E)en = √
(n + ε − λ)(n + ε + λ + 1) en+1, ,

πλ,ε(F)en = −√
n + ε − λ − 1)(n + ε + λ) en−1.

Note that both representations π+
k and πλ,ε as given above define unbounded rep-

resentations. The operators π(X), X ∈ su(1, 1), are densely defined operators on
their representation space, where as a dense domain we take the set of finite linear
combinations of the standard orthonormal basis {en}.

Remark 4.2 The Lie algebra su(1, 1) has two more families of irreducible ∗-
representations: the negative discrete series and the complementary series. The
negative discrete series representation π−

k , k > 0, can be obtained from the posi-
tive discrete series representation πk by setting

π−
k (X) = πk(ϑ(X)), X ∈ su(1, 1),

where ϑ is the Lie algebra isomorphism defined by ϑ(H) = −H , ϑ(E) = F , ϑ(F) =
E .

The complementary series are defined in the samewayas theprincipal unitary series,
but the labels λ, ε satisfy ε ∈ [0, 1

2 ), λ ∈ (− 1
2 ,−ε) or ε ∈ ( 12 , 1), λ ∈ (− 1

2 , ε − 1).
The results obtained in this section about the Lax operator in the positive discrete

series and principal unitary series representations can easily be extended to these two
families of representations.

4.1 The Lax operator in the positive discrete series

The Lax operator L acts in the positive discrete series representation as a Jacobi
operator on �2(N) by

πk(L(t))en = r(t)
√

(n + 1)(n + 2k) en+1 + s(t)(2k + 2n)en

+r(t)
√
n(n + 2k − 1) en−1.

πk(L) can be diagonalized using explicit families of orthogonal polynomials.We need
to distinguish between three cases corresponding to the invariant s2−r2 being positive,
zero or negative. This corresponds to hyperbolic, parabolic and elliptic elements, and
the eigenvalues and eigenfunctions have different behaviour per class, cf. [19].

4.1.1 Case 1: s2 − r2 > 0

In this case eigenfunctions of πk(L) can be given in terms of Meixner polynomials.
The orthonormal Meixner polynomials [16, Sect. 9.10] are defined by
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Orthogonal functions related to Lax pairs in Lie algebras 453

Mn(x) = Mn(x;β, c) = (−1)n
√

(β)n

n! cn 2F1

(−n,−x

β
; 1 − 1

c

)
,

where β > 0 and 0 < c < 1. They satisfy the three-term recurrence relation

(1 − c)(x + 1
2β)√

c
Mn(x) = √

(n + 1)(n + β)Mn+1(x)

+ (c + 1)(n + 1
2β)√

c
Mn(x) + √

n(n − 1 + β)Mn−1(x).

Their orthogonality relations are given by

∑

x∈N

(β)x

x ! cx (1 − c)2βMn(x)Mn′(x) = δn,n′ .

Theorem 4.3 Let

Wt (x) = (2k)x
x ! c(t)x (1 − c(t))4k, x ∈ N, t > 0,

where c(t) ∈ (0, 1) is determined by s
r = 1+c

2
√
c
, or equivalently c(t) = e−2 arccosh( s(t)r(t) ).

Define for t > 0 the operator Ut : �2(N) → �2(N,Wt ) by

[Uten](x) = Mn(x; 2k, c(t)),

then Ut is unitary and Ut ◦ πk(L(t)) ◦U∗
t = M(2C(x + k)) where C = √

s2 − r2.

Proof The proof runs along the same lines as the proof of Theorem 3.2. The condition
s2 − r2 > 0 implies s/r > 1, so there exists a c = c(t) ∈ (0, 1) such that

s

r
= 1 + c

2
√
c

.

It follows from the three-term recurrence relation for Meixner polynomials that r−1L
has eigenvalues (1−c)(x+k)√

c
, x ∈ N. Write c = e−2a with a > 0, then 1+c

2
√
c

= cosh(a),
so that

1 − c

2
√
c

= sinh(a) =
√
cosh2(a) − 1 =

√
s2

r2
− 1 = C

r
,

where C = √
s2 − r2. ��
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454 W. Groenevelt, E. Koelink

4.2 Case 2: s2 − r2 = 0

In this case we need the orthonormal Laguerre polynomials [16, Sect. 9.12], which
are defined by

Ln(x) = Ln(x;α) = (−1)n
√

(α + 1)n
n! 1F1

( −n

α + 1
; x

)
.

They satisfy the three-term recurrence relation

xLn(x) = √
(n + α + 1)(n + 1) Ln+1(x) + (2n + α + 1)Ln(x)

+√
n(n + α) Ln−1(x),

and the orthogonality relations are

∫ ∞

0
Ln(x)Ln′(x)

xαe−x

�(α + 1)
dx = δn,n′ .

The set {Ln | n ∈ N} is an orthonormal basis for the correspondingweighted L2-space.
Using the three-term recurrence relation for the Laguerre polynomials we obtain

the following result.

Theorem 4.4 Let

Wt (x) = x2k−1r(t)−2ke− x
r(t)

�(2k)
, x ∈ [0,∞),

and let Ut : �2(N) → L2([0,∞),Wt (x)dx) be defined by

[Uten](x) = Ln

(
x

r(t)
; 2k − 1

)
,

then Ut is unitary and Ut ◦ πk(L(t)) ◦U∗
t = M(x).

4.3 Case 3: s2 − r2 < 0

In this case we need the orthonormal Meixner–Pollaczek polynomials [16, Sect. 9.7]
given by

Pn(x) = Pn(x; λ, φ) = einφ

√
(2λ)n

n! 2F1

(−n, λ + i x

2λ
; 1 − e−2iφ

)
,
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Orthogonal functions related to Lax pairs in Lie algebras 455

where λ > 0 and 0 < φ < π . The three-term recurrence relation for these polynomials
is

2x sin φ Pn(x) = √
(n + 1)(n + 2k) Pn+1(x) − 2(n + λ) cosφ Pn(x)

+√
n(n + 2k − 1) Pn−1(x),

and the orthogonality relations read

∫ ∞

−∞
Pn(x)Pn′(x) w(x; λ, φ) dx = δn,n′ ,

w(x; λ, φ) = (2 sin φ)2λ

2π �(2λ)
e(2φ−π)x |�(λ + i x)|2.

The set {Pn | n ∈ N} is an orthonormal basis for the weighted L2-space.

Theorem 4.5 For φ(t) = arccos( s(t)r(t) ) let

Wt (x) = w(x; k, φ(t)), x ∈ R,

and let Ut : �2(N) → L2(R,Wt (x)dx) be defined by

[Uten](x) = Pn(x; k, φ(t)),

then Ut is unitary and Ut ◦ πk(L(t)) ◦U∗
t = M(−2Cx), where C = √

r2 − s2.

Proof The proof is similar as before. Using the three-term recurrence relation for
the Meixner–Pollaczek polynomials it follows that the generalized eigenvalue of
r−1πk(L) is −2x sin(φ), where φ ∈ (0, π) is determined by − s

r = cosφ. Then

sin φ =
√

1 − s2

r2
= C

r
,

from which the result follows. ��

4.4 The Lax operator in the principal unitary series

The action of the Lax operator L in the principal unitary series as a Jacobi operator
on �2(Z) is given by

πλ,ε(L(t))en = r(t)
√

(n + ε + λ + 1)(n + ε − λ) en+1 + s(t)(2ε + 2n)en

+ r(t)
√

(n + ε + λ)(n + ε − λ − 1) en−1.

Again we distinguish between the cases where the invariant s2 − r2 is either positive,
negative or zero.
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4.4.1 Case 1: s2 − r2 > 0

The Meixner functions [11] are defined by

mn(x) = mn(x; λ, ε, c) =
( √

c

c − 1

)n √
�(n + ε + λ + 1)�(n + ε − λ)

(1 − c)ε�(n + 1 − x)

× 2F1

(
n + ε + λ + 1, n + ε − λ

n + 1 − x
; c

c − 1

)
,

for x, n ∈ Z and c ∈ (0, 1). The parameters λ and ε are the labels from the principal
unitary series. The Meixner functions satisfy the three-term recurrence relation

(1 − c)(x + ε)√
c

mn(x) = √
(n + ε + λ + 1)(n + ε − λ)mn+1(x)

+ (c + 1)(x + ε)√
c

mn(x)

+ √
(n + ε + λ)(n + ε − λ − 1)mn−1(x),

and the orthogonality relations read

∑

x∈Z

c−x

�(x + ε + λ + 1)�(x + ε − λ)
mn(x)mn′(x) = δn,n′ .

The set {mn | n ∈ Z} is an orthonormal basis for the weighted L2-space.

Theorem 4.6 For t > 0 let

Wt (x) = c(t)−x

�(x + ε + λ + 1)�(x + ε − λ)
,

where c(t) ∈ (0, 1) is determined by s(t)
r(t) = 1+c(t)

2
√
c(t)

, or equivalently c(t) =
e−2 arccosh( s(t)r(t) ). Define Ut : �2(Z) → �2(Z,Wt ) by

[Uten](x) = mn(x; λ, ε, c),

then Ut is unitary and Ut ◦ πλ,ε(L(t)) ◦U∗
t = M(2C(x + ε)), where C = √

s2 − r2.
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4.4.2 Case 2: s2 − r2 = 0

In this case we need Laguerre functions [10] defined by

ψn(x) = ψn(x; λ, ε) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(−1)n
√

�(n + ε + λ + 1)�(n + ε − λ)

×U (n + ε + λ + 1; 2λ + 2; x) x > 0,

√
�(−n − ε − λ)�(1 − n − ε + λ)

×U (−n − ε − λ;−2λ;−x)
x < 0,

where x ∈ R, n ∈ Z, and U (a; b; z) is Tricomi’s confluent hypergeometric function,
see e.g. [25, (1.3.1)], for which we use its principal branch with branch cut along the
negative real axis. The Laguerre functions {ψn | n ∈ Z} form an orthonormal basis
for L2(R, w(x)dx) where

w(x) = w(x; ρ, ε) = 1

π2 sin (π(ε + λ + 1)) sin (π(ε − λ)) e−|x |.

The three-term recurrence relation reads

−xψn(x) = √
(n + ε + λ + 1)(n + ε − λ)ψn+1(x)

+ 2(n + ε)ψn(x) + √
(n + ε + λ)(n + ε − λ − 1) ψn−1(x).

Theorem 4.7 Let

Wt (x) = 1

r(t)
w

(
x

r(t)
; λ, ε

)
, x ∈ R,

and let Ut : �2(Z) → L2(R,Wt (x)dx) be defined by

[Uten](x) = ψn

(
x

r(t)
; λ, ε

)
,

then Ut is unitary and Ut ◦ πλ,ε(L(t)) ◦U∗
t = M(−x).

4.4.3 Case 3: s2 − r2 < 0

The Meixner–Pollaczek functions [17, Sect. 4.4] are defined by

un(x) = un(x; λ, ε, φ) = (2i sin φ)−n

√
�(n + 1 + ε + λ)�(n + ε − λ)

�(n + 1 + ε − i x)

× 2F1

(
n + 1 + ε + λ, n + ε − λ

n + 1 + ε − i x
; 1

1 − e−2iφ

)
.
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Define

W (x; λ, ε, φ) = w0(x)

(
1 −w1(x)

−w1(x) 1

)
, x ∈ R,

where f (x) = f (x) and

w1(x; λ, ε) = �(λ + 1 + i x)�(−λ + i x)

�(i x − ε)�(1 + ε − i x)
,

w0(x; ε, φ) = (2 sin φ)−2εe(2φ−π)x .

Let L2(R,W (x)dx) be the Hilbert space consisting of functions R → C
2 with inner

product

〈 f , g〉 =
∫ ∞

−∞
gt (x)W (x) f (x) dx,

where f t (x) denotes the conjugate transpose of f (x) ∈ C
2. The set {( unun ) | n ∈ Z} is

an orthonormal basis for L2(R,W (x)dx). The three-term recurrence relation for the
Meixner–Pollaczek functions is

2x sin φ un(x) = √
(n + ε + λ + 1)(n + ε − λ) un+1(x)

+ 2(n + ε) cosφ un(x) + √
(n + ε + λ)(n + ε − λ − 1) un−1(x).

The function un satisfies the same recurrence relation.

Theorem 4.8 For φ(t) = arccos( s(t)r(t) ) let

Wt (x) = W (x; λ, ε, φ(t)),

and let Ut : �2(Z) → L2(R,Wt (x; λ, ε)dx) be defined by

[Uten](x) =
(
un(x; λ, ε, φ(t))
un(x; λ, ε, φ(t))

)
,

then Ut is unitary and Ut ◦ πλ,ε(L(t)) ◦U∗
t = M(2Cx), where C = √

r2 − s2.

Note that the spectrum of πλ,ε(L(t)) has multiplicity 2.

Remark 4.9 Transferring a three-term recurrence on Z to a three term recurrence for
2× 2 matrix orthogonal polynomials, see [3, Sect. VII.3] and [18, Sect. 3.2], does not
lead to an example of the nonabelian Toda lattice [4,7,14]
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5 The oscillator algebra b(1)

b(1) is the Lie ∗-algebra g(a, b) with (a, b) = (0, 1) and ε = +. Then b(1) has a
basis E, F, H , N satisfying

[E, F] = N , [H , E] = 2E, [H , F] = −2F, [N , E] = [N , F] = [N , H ] = 0.

The ∗-structure is defined by H∗ = H , N∗ = N , E∗ = F . The Lax pair L, M is
given by

L(t) = cH + r(t)(E + F) + s(t)N , M(t) = u(t)(E − F).

The differential equations for s and r are in this case given by

ṡ = 2ru, ṙ = −2cu

and the invariant is r2 + 2cs.

Lemma 5.1 Assume sgn(u(t)) = sgn(r(t)) for all t > 0, s(0) > 0 and r(0) > 0.
Then sgn(s(t)) > 0 and sgn(r(t)) > 0 for all t > 0.

Proof The proof is similar to the proof of Lemma 4.1, where in this case I (r , s) =
I (r(0), s(0)) describes a parabola (c = 0) or a straight line (c = 0). ��
Throughout this section we assume the conditions of Lemma 5.1 are satisfied.

There is a family of irreducible ∗-representations πk,h , h > 0, k ≥ 0, on �2(N)

defined by

πk,h(N )en = −h en,

πk,h(H)en = 2(k + n) en,

πk,h(E)en = √
h(n + 1) en+1,

πk,h(F)en = √
hn en−1.

The action of the Lax operator on the basis of �2(N) is given by

πk,h(L(t))en = r(t)
√
h(n + 1) en+1 + [2c(n + k) − hs(t)] en + r(t)

√
hn en−1.

For the diagonalization of πk,h(L) we distinguish between the cases c = 0 and c = 0.

5.1 Case 1: c �= 0

In this case we need the orthonormal Charlier polynomials [16, Sect. 9.14], which are
defined by

Cn(x) = Cn(x; a) =
√
an

n! 2F0

(−n,−x

–
;−1

a

)
,
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460 W. Groenevelt, E. Koelink

where a > 0 and n, x ∈ N. The orthogonality relations are

∞∑

x=0

axe−a

x ! Cn(x)Cn′(x) = δn,n′,

and {Cn | n ∈ N} is an orthonormal basis for the corresponding L2-space. The three-
term recurrence relation reads

−xCn(x) = √
a(n + 1)Cn+1(x) − (n + a)Cn(x) + √

an Cn−1(x).

Theorem 5.2 For t > 0 define

Wt (x) =
(
hr2(t)

c

)x

e
− hr2(t)

c2

and let Ut : �2(N) → L2(N,Wt ) be defined by

Uten(x) = (− sgn(r/c))n Cn

(
x; hr

2(t)

c2

)
, x ∈ N.

Then Ut is unitary and Ut ◦ L(t) ◦U∗
t = M(2c(x + k) + Ch), where C = 1

2c r
2 + s.

Proof The action of L can be written in the following form:

πk,h

( 1

2c
L + hr2

4c2
+ hs

2c
− k

)
en

= sgn(r/c)

√
hr2(n + 1)

4c2
en+1 +

(
n + hr2

4c2

)
en + sgn(r/c)

√
hr2n

4c2
en−1

and recall that 1
2c r

2 + s is constant. The result then follows from comparing with the
three-term recurrence relation for the Charlier polynomials. ��

5.2 Case 2: c = 0

In this case ṙ = 0, so r is a constant function. We use the orthonormal Hermite
polynomials [16, Sect. 9.15], which are given by

Hn(x) = (
√
2 x)n√
n! 2F0

(
− n

2 ,− n−1
2

–
;− 1

x2

)

.

They satisfy the orthogonality relations

1√
π

∫

R

Hn(x)Hn′(x)e−x2 dx = δn,n′,
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and {Hn | n ∈ N} is an orthonormal basis for L2(R, e−x2dx/
√

π). The three-term
recurrence relation is given by

√
2 xHn(x) = √

n + 1 Hn+1(x) + √
nHn−1(x).

Theorem 5.3 For t > 0 define

Wt (x) = 1

r
√
2hπ

e
− (x−hs(t))2

2hr2 ,

and let Ut : �2(N) → L2(R;wt (x; h) dx) be defined by

Uten(x) = Hn

(
x − hs(t)

r
√
2h

)
,

then Ut is unitary and Ut ◦ πk,h(L(t)) ◦U∗
t = M(x).

Proof We have

πk,h

(
1

r
√
h

(L + sh)

)
en = √

n + 1 en+1 + √
n en−1,

which corresponds to the three-term recurrence relation for the Hermite polynomials.
��

6 The Lie algebra e(2)

We consider the Lie algebra g(a, b) with a = b = 0 and ε = +. Similar as in the case
of sl(2,C), we omit the basis element N again. The remaining Lie algebra is e(2)with
basis H , E, F satisfying

[E, F] = 0, [H , E] = 2E, [H , F] = −2F,

and the ∗-structure is determined by E∗ = F, H∗ = H .
The Lax pair is given by

L(t) = cH + r(t)(E + F), M(t) = u(t)(E − F),

with ṙ = −2cu.
e(2) has a family of irreducible ∗-representations πk , k > 0, on �2(Z) given by

πk(H)en = 2n en,

πk(E)en = ken+1,

πk(F)en = ken−1.

123



462 W. Groenevelt, E. Koelink

This defines an unbounded representation. As a dense domain we use the set of finite
linear combinations of the basis elements.

Assume c = 0. The Lax operator πk(L(t)) is a Jacobi operator on �2(Z) given by

πk(L(t))en = kr(t)en+1 + 2cnen + kr(t)en−1.

For the diagonalization of πk(L) we use the Bessel functions Jn [1,28] given by

Jn(z) = zn

2n�(n + 1)
1F0

(
–

n + 1
;− z2

4

)
,

with z ∈ R and n ∈ Z. They satisfy the Hansen-Lommel type orthogonality relations,
which follow from [1, (4.9.15), (4.9.16)]

∑

m∈Z
Jm−n(z)Jm−n′(z) = δn,n′ .

and the set {J·−n(z) | n ∈ Z} is an orthonormal basis for �2(Z). A well-known
recurrence relation for Jn is

Jn−1(z) + Jn+1(z) = 2n

z
Jn(z),

which is equivalent to

z Jm−n−1(z) + 2nJm−n(z) + z Jm−n+1(z) = 2mJm−n(z).

Theorem 6.1 For t > 0 define Ut : �2(Z) → �2(Z) by

Uten(m) = Jm−n

(
kr(t)

c

)
,

then Ut is unitary and Ut ◦ πk(L(t)) ◦U∗
t = M(2cm).

Finally, let us consider the completely degenerate case c = 0. In this case r is
also a constant function, so there are no differential equations to solve. We can still
diagonalize the (degenerate) Lax operator, which is now independent of time.

Theorem 6.2 Define U : �2(Z) → L2[0, 2π ] by

[Uen](x) = einx√
2π

,

then U is unitary and U ◦ πk(L) ◦U∗ = M(2kr cos(x)).
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7 Modification of orthogonality measures

In this section we briefly investigate the orthogonality measures from the previous
sections in case the Lax operator L(t) acts as a finite or semi-infinite Jacobi matrix.
In these cases the functionsUten are t-dependent orthogonal polynomials and we see
that the weight function Wt of the orthogonality measure for Uten is a modification
of the weight function W0 in the sense that

Wt (x) = KtW0(x)m(t)x ,

where Kt is independent of x . Themodification functionm(t) depends on the functions
s or r , which (implicitly) depend on the function u.We showhow the choice of u effects
the modification function m.

Theorem 7.1 There exists a constant K such that

m(t) = exp

(
K

∫ t

0

u(τ )

r(τ )
dτ

)
, t ≥ 0.

Remark 7.2 In the Toda-lattice case, u(t) = r(t), this gives back the well-known
modification function m(t) = eK t , see e.g. [13, Theorem 2.8.1].

Theorem 7.1 can be checked for each case by a straightforward calculation: we
express m as a function of s and r ,

m(t) = A0F(s(t), r(t)),

where A0 is a normalizing constant such thatm(0) = 1. Then differentiating and using
the differential equations for r and s we can express ṁ/m in terms of u and r .

7.1 su(2)

From Theorem 3.2 we see that

m(t) = A0
p(t)

1 − p(t)
= A0

C + s(t)

C − s(t)

with C = √
s2 + r2. Differentiating to t and using the relation ṡ(t) = 2u(t)r(t) then

gives

ṁ(t)

m(t)
= 4Cu(t)r(t)

C2 − s(t)2
= 4C

u(t)

r(t)
.
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7.2 su(1, 1)

For s2 − r2 > 0 Theorem 4.3 shows that

m(t) = A0e
−2 arccosh

(
s(t)
r(t)

)

.

Then from ṡ(t) = −2u(t)r(t) and ṙ(t) = −2u(t)s(t) it follows that

ṁ(t)

m(t)
= −2

√
s(t)2

r(t)2
− 1

r(t)ṡ(t) − s(t)ṙ(t)

r(t)2
= −4C

u(t)

r(t)
,

where C = √
s2 − r2.

For s2 − r2 = 0 Theorem 4.4 shows that

m(t) = A0e
− 1

r(t) .

Then using ṙ(t) = 2u(t)r(t) it follows that

ṁ(t)

m(t)
= −u(t)

r(t)
.

For s2 − r2 < 0 it follows from Theorem 4.5 that

m(t) = A0e
2 arccos

(
s(t)
r(t)

)

.

Then from ṡ(t) = −2u(t)r(t) and ṙ(t) = −2u(t)s(t) it follows that

ṁ(t)

m(t)
= 2

√
1 − s(t)2

r(t)2

r(t)ṡ(t) − s(t)ṙ(t)

r(t)2
= −4C

u(t)

r(t)
,

where C = √
r2 − s2.

7.3 b(1)

For c = 0 we see from Theorem 5.2 that

m(t) = A0r(t)
2.

The relation ṙ(t) = −2cu(t) then leads to

ṁ(t)

m(t)
= −4c

u(t)

r(t)
.
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For c = 0 Theorem 5.3 shows that

m(t) = A0e
s(t)
r .

Note that r = r(t) is constant in this case. Then ṡ(t) = 2ru(t) leads to

ṁ(t)

m(t)
= 2u(t) = 2r

u(t)

r
.

Remark 7.3 The result from Theorem 7.1 is also valid for the orthogonal functions
from Theorems 4.6 and 4.8, i.e. for L(t) acting as a Jacobi operator on �2(Z) in the
principal unitary series for su(1, 1) in cases r2 − s2 = 0. However, there is no similar
modification function in the other cases where L(t) acts as a Jacobi operator on �2(Z).
Furthermore, the corresponding recurrence relations for the functions on Z can be
rewritten to recurrence relations for 2× 2 matrix orthogonal polynomials, but in none
of the cases the modification of the weight function is as in Theorem 7.1.

8 The case of sl(d + 1,C )

We generalize the situation of the Lax pair for the finite-dimensional representation of
sl(2,C) to the higher rank case of sl(d+1,C). Let Ei, j be thematrix entries forming a
basis for the gl(d+1,C). We label i, j ∈ {0, 1, . . . , d}. We put Hi = Ei−1,i−1−Ei,i ,
i ∈ {1, . . . , d}, for the elements spanning the Cartan subalgebra of sl(d + 1,C).

8.1 The Lax pair

Proposition 8.1 Let

L(t) =
d∑

i=1

si (t)Hi +
d∑

i=1

ri (t)
(
Ei−1,i + Ei,i−1

)
,

M(t) =
d∑

i=1

ui (t)
(
Ei−1,i − Ei,i−1

)

and assume that the functions ui and ri are non-zero for all i and

ri−1(t)

ri (t)
= ui−1(t)

ui (t)
, i ∈ {2, . . . , d},
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then the Lax pair condition L̇(t) = [L(t), M(t)] is equivalent to

ṡi (t) = 2ri (t)ui (t), i ∈ {1, . . . , d},
ṙi (t) = ui (t)

(
si−1(t) − 2si (t) + si+1(t)

)
, i ∈ {2, . . . , d − 1},

ṙ1(t) = u1(t)
(
s2(t) − 2s1(t)

)
,

ṙd(t) = ud(t)
(
sd−1(t) − 2sd(t)

)
.

Note that we can write it uniformly

ṙi (t) = ui (t)
(
si−1(t) − 2si (t) + si+1(t)

)
, i ∈ {1, . . . , d},

assuming the convention that s0(t) = sd+1(t) = 0, which we adapt for the remainder
of this section. The Toda case follows by taking ui = ri for all i , see [2,22].

Proof The proof essentially follows as in [2, Sect. 4.6], but since the situation is slightly
more general we present the proof, see also [22, Sect. 5]. A calculation in sl(d +1,C)

gives

[M(t), L(t)] =
d∑

i=1

2ri (t)ui (t)Hi +
d∑

i=1

ui (t)
(
si−1(t) − 2si (t) + si+1(t)

)

×(Ei−1,i + Ei,i−1)

+
d−1∑

i=1

(
ri+1(t)ui (t) − ri (t)ui+1(t)

)
(Ei−2,i + Ei,i−2)

and the last term needs to vanish, since this term does not occur in L(t) and in its
derivative L̇(t). Now the stated coupled differential equations correspond to L̇ =
[M, L]. ��
Remark 8.2 Taking the representation of the Lax pair for the su(2) case in the d + 1-
dimensional representation as in Sect. 6, we get, with d = 2 j , as an example

si (t) = s(t)i(i − 1 − d), ri (t) = r(t)
√
i(d + 1 − i), ui (t) = u(t)

√
i(d + 1 − i).

Then the coupled differential equations of Proposition 8.1 are equivalent to (3.1).

Let {en}dn=0 be the standard orthonormal basis for Cd+1, the natural representation
of sl(d + 1,C). Then L(t) is a t-dependent tridiagonal matrix. Moreover, we assume
that ri and si are real-valued functions for all i , so that L(t) is self-adjoint in the natural
representation.

Lemma 8.3 Assume that the conditions of Proposition 8.1 hold. Let the polynomials
pn(·; t) of degree n ∈ {0, 1, . . . , d} in λ be generated by the initial value p0(λ; t) = 1
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and the recursion

λpn(λ; t) =

⎧
⎪⎨

⎪⎩

r1(t)p1(λ; t) + s1(t)p0(λ; t), n = 0

rn+1(t)pn+1(λ; t) + (sn+1(t) − sn(t))pn(λ; t)
+rn(t)pn−1(t), 1 ≤ n < d.

Let the set {λ0, . . . , λd} be the zeroes of

λpd(λ; t) = −sd(t)pd(λ; t) + rd(t)pd−1(t).

In the natural representation L(t) has simple spectrum σ(L(t)) = {λ0, . . . , λd}which
is independent of t , and

∑d
r=0 λr = 0 and

L(t)
d∑

n=0

pn(λr ; t)en = λr

d∑

n=0

pn(λr ; t)en, r ∈ {0, 1 . . . , d}.

Note that with the choice of Remark 8.2, the polynomials in Lemma 8.3 are
Krawtchouk polynomials, see Theorem 3.2. Explicitly,

pn(C(d−2r); t) =
(

p(t)

1 − p(t)

) 1
2 n

(
d

n

)1/2

2F1

(−n,−r

−d
; 1

p(t)

)
= Kn(r; p(t), d),

(8.1)
where C = √

r2(t) + s2(t) is invariant, see Theorem 3.2 and its proof.

Proof In the natural representation we have

L(t)en =

⎧
⎪⎨

⎪⎩

r1(t)e1 + s1(t)e0, n = 0,

rn+1(t)en+1 + (sn+1(t) − sn(t))en + rn−1(t)en−1, 1 ≤ n < d,

−sd(t)ed + rd(t)ed−1, n = d

as a Jacobi operator. So the spectrum of L(t) is simple, and the spectrum is time
independent, since (L(t), M(t)) is a Lax pair. We can generate the corresponding
eigenvectors as

∑d
n=0 pn(λ; t)en , where the recursion follows from the expression

of the Lemma. The eigenvalues are then determined by the final equation, and since
Tr(L(t)) = 0 we have

∑d
i=0 λi = 0. ��

Let P(t) = (
pi (λ j ; t)

)d
i, j=0 be the corresponding matrix of eigenvectors, so that

L(t)P(t) = P(t)�, � = diag(λ0, λ1, . . . , λd).

Since L(t) is self-adjoint in the natural representation, we find

d∑

n=0

pn(λr ; t)pn(λs; t) = δr ,s

wr (t)
, wr (t) > 0, (8.2)
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and the matrix Q(t) = (
pi (λ j ; t)

√
w j (t)

)d
i, j=0 is unitary. As ri and si are real-valued,

we have pn(λs; t) = pn(λs; t), so that Q(t) is a real matrix, hence orthogonal. So the
dual orthogonality relations to (8.2) hold as well. We will assume moreover that ri are
positive functions. The dual orthogonality relations to (8.2) hold;

d∑

r=0

pn(λr ; t)pm(λr ; t)wr (t) = δn,m . (8.3)

Note that thewr (t) are essentially time-dependent Christoffel numbers [26, Sect. 3.4].
By [22, Sect. 2], see also [6, Thm. 2], the eigenvalues and the wr (t)’s determine the
operator L(t), and in case of the Toda lattice, i.e. ui (t) = ri (t), the time evolution
corresponds to linear first order differential equations for the Christoffel numbers [22,
§3].

Since the spectrum is time-independent, the invariants for the system of Proposition
8.1 are given by the coefficients of the characteristic polynomial of L(t) in the natural
representation. Since the characteristic polynomial is obtained by switching to the
three-term recurrence for the corresponding monic polynomials, see [13, Sect. 2.2]
and [22, §2], this gives the same computation. For a Lax pair, Tr(L(t)k) are invariants,
and in this case the invariant for k = 1 is trivial since L(t) is traceless. In this way we
have d invariants, Tr(L(t)k), k ∈ {2, . . . , d + 1}.
Lemma 8.4 With the convention that rn and sn are zero for n /∈ {1, . . . , d} we have
the invariants

Tr(L(t)2) =
d∑

n=0

(sn+1(t) − sn(t))
2 +

d∑

n=1

rn(t)
2,

Tr(L(t)3) =
d∑

n=0

(sn+1(t) − sn(t))
3 + 3

d∑

n=0

(sn+1(t) − sn(t))r
2
n (t)

+ 3
d∑

n=0

(sn(t) − sn−1(t))r
2
n (t).

Proof Write L(t) = DS+D0+S∗Dwith D = diag(r0(t), r1(t), . . . , rd(t)), S : en �→
en+1 the shift operator and S∗ : en �→ en−1 its adjoint (with the convention e−1 =
ed+1 = 0 and r0(t) = 0). And D0 is the diagonal part of L(t). Then

Tr(L(t)k) = Tr((DS + D0 + S∗D)k)

and we need to collect the terms that have the same number of S and S∗ in the
expansion. The trace property then allows to collect terms, and we get

Tr(L(t)2) = Tr(D2
0) + 2Tr(D2),

Tr(L(t)3) = Tr(D3
0) + 3Tr(D0D

2) + 3Tr(SD0S
∗D2)
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and this gives the result, since (SD0S∗)n,n = (D0)n−1,n−1. ��
Wedonot useLemma8.4, andwehave included it to indicate the analogofCorollary

2.3.
We can continue this and find e.g.

Tr(L(t)4) = Tr(D4
0) + 2Tr(D4) + 4Tr(D2

0D
2) + 4Tr(SD0S

∗D0D
2)

+ 4Tr(SD2
0S

∗D2) + 4Tr(SD2S∗D2).

8.2 Action of L(t) in representations

We relate the eigenvectors of L(t) in some explicit representations of sl(d + 1) to
multivariable Krawtchouk polynomials, and we follow Iliev’s paper [12].

Let N ∈ N, and let CN [x] = CN [x0, . . . , xd ] be the space of homogeneous
polynomials of degree N in d + 1-variables, then CN [x] is an irreducible repre-
sentation of sl(d + 1) and gl(d + 1) given by Ei, j �→ xi

∂
∂x j

. CN [x] is a highest
weight representation corresponding to Nω1, ω1 being the first fundamental weight
for type Ad . Then xρ = xρ0

0 · · · xρd
d , |ρ| = ∑d

i=0 ρi = N , is an eigenvector of Hi ;
Hi · xρ = (ρi−1 − ρi )xρ , and so we have a basis of joint eigenvectors of the Cartan
subalgebra spanned by H1, . . . , Hd and the joint eigenspace, i.e. the weight space, is
1-dimensional. It is a unitary representation for the inner product

〈xρ, xσ 〉 = δρ,σ

(
N

ρ

)−1

= δρ,σ

ρ0! · · · ρd !
N !

and it gives a unitary representation of SU (d + 1) as well.
Then the eigenfunctions of L(t) in CN [x] are x̃ρ , where

(x̃0, . . . , x̃d) = (x0, . . . , xd)Q(t)

since Q(t) changes from eigenvectors for the Cartan subalgebra to eigenvectors for
the operator L(t), cf. [12, Sect. 3]. It corresponds to the action of SU (d + 1) (and of
U (d + 1)) on CN [x]. Since Q(t) is unitary, we have

〈x̃ρ, x̃σ 〉 = 〈xρ, xσ 〉 = δρ,σ

(
N

ρ

)−1

. (8.4)

We recall the generating function for the multivariable Krawtchouk polynomials as
introduced by Griffiths [9], see [12, §1]:

d∏

i=0

(
z0 +

d∑

j=1

ui, j z j
)ρi =

∑

|σ |=N

(
N

σ

)
P(σ ′, ρ′)zσ00 · · · zσdd , (8.5)

where ρ′ = (ρ1, . . . , ρd) ∈ N
d , and similarly for σ ′. We consider P(ρ′, σ ′) as poly-

nomials in σ ′ ∈ N
d of degree ρ′ depending on U = (ui, j )di, j=1, see [12, §1].
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Lemma 8.5 The eigenvectors of L(t) in CN [x] are

x̃ρ =
d∏

i=0

(
wi (t)

) 1
2ρi

∑

|σ |=N

(
N

σ

)
P(σ ′, ρ′)xσ

for ui, j = Q(t) j,i
Q(t)0,i

= p j (λi ; t), 1 ≤ i, j ≤ d in (8.5), and L(t)x̃ρ = (
∑d

i=0 λiρi )x̃ρ .
The eigenvalue follows from the conjugation with the diagonal element �.

From now on we assume this value for ui, j , 1 ≤ i, j ≤ d. Explicit expressions for
P(σ ′, ρ′) in terms of Gelfand hypergeometric series are due to Mizukawa and Tanaka
[21], see [12, (1.3)]. See also Iliev [12] for an overview of special and related cases of
the multivariable cases.

Proof Observe that

x̃i =
d∑

j=0

x j Q(t) j,i = Q(t)0,i
(
x0 +

d∑

j=1

Q(t) j,i
Q(t)0,i

x j
)

and Q(t)0,i = √
wi (t) is non-zero. Now expand x̃ρ using (8.5) and Q(t)i, j =

pi (λ j ; t)
√

w j (t) gives the result. ��
By the orthogonality (8.4) of the eigenvectors of L(t) we find

∑

|σ |=N

(
N

σ

)
P(σ ′, ρ′)P(σ ′, η′) = δρ,η

(N
ρ

) ∏d
i=0 wi (t)ρi

,

∑

|ρ|=N

(
N

ρ

)( d∏

i=0

wi (t)
ρi

)
P(σ ′, ρ′)P(τ ′, ρ′) = δσ,τ

(N
σ

) ,

where we use that all entries of Q(t) are real. The second orthogonality follows by
duality, and the orthogonality corresponds to [12, Cor. 5.3].

In case N = 1 we find P( f ′
i , f ′

j ) = pi (λ j ; t), where fi ∈ N
d+1 is given by

(0, . . . , 0, 1, 0 . . . , 0) with the 1 on the i-th spot.

Lemma 8.6 For all ρ, τ ∈ N
d+1 with |ρ| = |τ | we have for the P from Lemma 8.5

the recurrence

( d∑

i=0

λiρi

)
P(τ ′, ρ′) =

( d∑

i=0

si (t)(τi−1 − τi )
)
P(τ ′, ρ′)

+
d∑

i=0

ri (t)
(
τi−1P((τ − fi−1 + fi )

′, ρ′)

+τi P((τ + fi−1 − fi )
′, ρ′)

)
.
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Note that Lemma 8.6 does not follow from [12, Theorem 6.1].

Proof Apply Lemma 8.5 to expand x̃ρ in L(t)x̃ρ = (
∑d

i=0 λiρi )x̃ρ , and use the
explicit expression of L(t) and the corresponding action. Compare the coefficient of
xτ on both sides to obtain the result. ��
Remark 8.7 In the context of Remark 8.2 and (8.1) we have that the ui, j are
Krawtchouk polynomials. Then the left hand side in (8.5) is related to the generating
function for the Krawtchouk polynomials, see [16, (9.11.11)], i.e. the case d = 1 of

(8.5). Putting z j = (
p

1−p )− 1
2 j

(d
j

) 1
2 w j , we see that in this situation

∑d
j=0 ui, j z j corre-

sponds to (1+w)d−i (1− 1−p(t)
p(t) w)i . Using this in the generating function, the left hand

side of (8.5) gives a generating function for Krawtchouk polynomials. Comparing the
powers of wk on both sides gives

(
p

1 − p

) 1
2 k

(
dN

k

)

2F1

(
−∑d

i=0 iρi ,−k

−dN
; 1

p

)

=
∑

|σ |=N ,
∑d

j=0 jσ j=k

⎛

⎝
d∏

j=0

(
d

j

) 1
2 σ j

⎞

⎠
(
N

σ

)
P(σ ′, ρ′).

The left hand side is, up to a normalization, the overlap coefficient of L(t) in the
sl(2,C) case for the representation of dimension Nd + 1, see Sect. 3. Indeed, the
representation sl(2,C) to sl(2,C) to End(CN [x]) yields a reducible representation of
sl(2,C), and the vector x (0,...,0,N ) is a highest weight vector of sl(2,C) for the highest
weight dN . Restricting to this space then gives the above connection.

8.3 t-Dependence of multivariable Krawtchouk polynomials

Let L(t)v(t) = λv(t), then taking the t-derivatives gives L̇(t)v(t)+L(t)v̇(t) = λv̇(t),
since λ is independent of t , and using the Lax pair L̇ = [M, L] gives

(λ − L(t))(M(t)v(t) − v̇(t)) = 0.

Since L(t) has simple spectrum, we conclude that

M(t)v(t) = v̇(t) + c(t, λ)v(t)

for some constant c depending on the eigenvalue λ and t . Note that this differs from
[24, Lemma 2].

For the case N = 1 we get

M(t)vλr (t) =
d∑

n=0

(
pn−1(λr ; t)un(t) − pn+1(λr ; t)un+1(t)

)
xn
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with the convention that u0(t) = ud+1(t) = 0, p−1(λr ; t) = 0. So

(M(t) − c(t, λr ))vλr (t) = v̇λr (t) =
d∑

n=0

ṗn(λr ; t) xn

and comparing the coefficient of x0, we find c(t, λr ) = −p1(λr ; t)u1(t). So we have
obtained the following proposition.

Proposition 8.8 The polynomials satisfy

ṗn(λr ; t) = un(t)pn−1(λr ; t) − un+1(t)pn+1(λr ; t) + u1(t)p1(λr ; t)pn(λr ; t),
1 ≤ n < d,

ṗd(λr ; t) = ud(t)pd−1(λr ; t) + u1(t)p1(λr ; t)pd(λr ; t)

for all eigenvalues λr of L(t), r ∈ {0, . . . , d}.
Note that for 0 ≤ n < d we have

ṗn(λ; t) = un(t)pn−1(λ; t) − un+1(t)pn+1(λ; t) + u1(t)p1(λ; t)pn(λ; t) (8.6)

as polynomial identity. Indeed, for n = 0 this is trivially satisfied, and for 1 ≤ n < d,
this is a polynomial identity of degree n due to the condition in Proposition 8.1, which
holds for all λr and hence is a polynomial identity. Note that the right hand side is a
polynomial of degree n, and not of degree n + 1 since the coefficient of λn+1 is zero
because of the relation on ui and ri in Proposition 8.1.

Writingout the identity for theKrawtchoukpolynomialsweobtain after simplifying

n 2F1

(−n,−r

−d
; 1

p(t)

)
+ 2nr(1 − p(t))

dp(t)
2F1

(
1 − n, 1 − r

1 − d
; 1

p(t)

)

= n(1 − p(t)) 2F1

(
1 − n,−r

−d
; 1

p(t)

)
− p(t)(d − n) 2F1

(−1 − n,−r

−d
; 1

p(t)

)

+(dp(t) − r) 2F1

(−n,−r

−d
; 1

p(t)

)
,

where the left hand side is related to the derivative. Note that the derivative of p cancels
with factors u, see Theorem 3.2 and its proof and Sect. 7.

In order to obtain a similar expression for themultivariable t-dependentKrawtchouk
polynomials we need to assume that the spectrum of L(t) is simple, i.e. we assume
that for ρ, ρ̃ ∈ N

d+1 with |ρ| = |ρ̃| we have that
∑d

i=0 λi (ρi − ρ̃i ) = 0 implies
ρ = ρ̃. Assuming this we calculate, using Proposition 8.1,

M(t)x̃ρ = Wρ(t)
∑

|σ |=N

(
N

σ

)
P(σ ′, ρ′)

d∑

r=1

ur (t)(σr x
σ+ fr−1− fr − σr−1x

σ− fr−1+ fr )
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using the notation Wρ(t) = ∏d
i=0 wi (t)

1
2ρi and fi = (0, . . . , 0, 1, 0, . . . , 0) ∈ N

d+1,
with the 1 at the i-th spot. Now the t-derivative of x̃ρ is

Ẇρ(t)
∑

|σ |=N

(
N

σ

)
P(σ ′, ρ′)xσ + Wρ(t)

∑

|σ |=N

(
N

σ

)
Ṗ(σ ′, ρ′)xσ

and it leaves to determine the constant in M(t)x̃ρ − Cx̃ρ = ∂
∂t x̃

ρ . We determine C
by looking at the coefficient of xN0 using P(0, ρ′) = P((N , 0, . . . , 0)′, ρ′) = 1. This
gives C = Nu1(t)Wρ(t)−1 − ∂

∂t lnWρ(t). Comparing the coefficients of xτ on both
sides gives the following result.

Theorem 8.9 Assume that L(t) acting inCN [x] has simple spectrum. The t-derivative
of the multivariable Krawtchouk polynomials satisfies

Ẇρ(t)P(τ ′, ρ′) + Wρ(t)Ṗ(τ ′, ρ′)

= (
Ẇρ(t) − Nu1(t)

)
P(τ ′, ρ′) + Wρ(t)

d∑

r=1

ur (t)
(
τr−1P((τ − fr−1 + fr )

′, ρ′)

−τr P((τ + fr−1 − fr )
′, ρ′)

)

for all ρ, τ ∈ N
d+1, |τ | = |ρ| = N.
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26. Szegő, G.: Orthogonal Polynomials, vol. 23, 4th ed. Colloquium Publ. AMS (1975)
27. Teschl, G.: Almost everything you alwayswanted to know about the Toda equation. Jahresber. Deutsch.

Math.-Verein. 103, 149–162 (2001)
28. Watson, G.N.: ATreatise on the Theory of Bessel Functions. CambridgeUniv Press, Cambridge (1944)
29. Zhedanov,A.S.: Toda lattice: solutionswith dynamical symmetry and classical orthogonal polynomials.

Theor. Math. Phys. 82, 6–11 (1990)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Orthogonal functions related to Lax pairs in Lie algebras
	Abstract
	1 Introduction
	2 The Lie algebra mathfrakg(a,b)
	3 The Lie algebra mathfraksu(2)
	4 The Lie algebra mathfraksu(1,1)
	4.1 The Lax operator in the positive discrete series
	4.1.1 Case 1: s2-r2>0

	4.2 Case 2: s2-r2=0
	4.3 Case 3: s2-r2<0
	4.4 The Lax operator in the principal unitary series
	4.4.1 Case 1: s2-r2>0
	4.4.2 Case 2: s2-r2=0
	4.4.3 Case 3: s2-r2<0


	5 The oscillator algebra mathfrakb(1)
	5.1 Case 1: c neq0
	5.2 Case 2: c=0

	6 The Lie algebra mathfrake(2)
	7 Modification of orthogonality measures
	7.1 mathfraksu(2)
	7.2 mathfraksu(1,1)
	7.3 mathfrakb(1)

	8 The case of mathfraksl(d+1,mathbbC)
	8.1 The Lax pair
	8.2 Action of L(t) in representations
	8.3 t-Dependence of multivariable Krawtchouk polynomials

	Acknowledgements
	References




