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Summary 

Bioprocesses use the power and versatility of nature via microorganisms to 

make bio-products from renewable feedstocks. New opportunities lie in front 

of us, as nowadays microorganisms can very well be engineered to become 

efficient cell factories. However, the industrialization of those bioprocesses is 

often hindered by the so called ‘scale-up effect’, which is apparent as a loss of 

product yield and/or productivity after transfer to industrial-scale bioreactors 

(Wang et al., 2015, 2020). Insufficient heat and mass transfer, together with 

limited mixing, are normally causes of all kinds of gradients in those large 

bioreactors, which then result in performance loss of the producing strain 

compared to what was realized in the homogeneous environment of lab-scale 

reactors. As the first step of solving a problem is to understand it, the first step 

towards understanding the scale-up effect is to quantitatively reproduce the 

environmental/physiological heterogeneity of the large-scale bioreactor and 

study the effect on the performance of the producing strain. 

In this thesis, we target a robust and model-based simulation platform to obtain 

quantitative information on the heterogeneous conditions of the large-scale 

bioreactor, based on profound biological and physical understanding. 

Modelling, especially the integration of metabolic kinetic models into a 

computational fluid dynamics (CFD) framework, is one of the ways to ensure a 

predictive and lower risk technology transfer, by quantitatively addressing 

detailed scale-up effects. However, the design of a representative kinetic model 

for the target microorganism remains the Achilles heel of the concept because 

a compromise between on one hand sufficient model complexity to ensure 

proper performance under highly dynamic conditions and on the other hand a 

manageable computation effort, is required. We used two industrially relevant 

model strains, Penicillium chrysogenum and Saccharomyces cerevisiae as 

examples, to demonstrate the feasibility and power of the integration of 

metabolic kinetic models and CFD.  

In Chapter 2, we used P. chrysogenum as a model system and developed a 

metabolically structured kinetic model for growth and penicillin production. By 

lumping the most important intracellular metabolites in 5 pools and 

incorporating 4 intracellular enzyme pools, linked by 10 reactions, we 

succeeded in maintaining the model structure relatively simple, while providing 

informative insight into the state of the organism. The performance of this 9-

pool model was validated with a glucose feast–famine cycle experiment at a 

time scale of minutes. Comparison of this model and a reported black box 
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model for this strain showed the necessity of employing a structured model 

under feast–famine conditions. This model is highlighted by carrying a “cellular 

memory” via intracellular metabolic pools and being an ideal starting point for 

integration with a computational fluid dynamics framework. 

Continued in Chapter 3, the 9-pool model was coupled with a Euler-Lagrange 

CFD simulation of a large 54 m3 production bioreactor. The integration provided 

rich spatial information regarding the performance of the cells, including 

gradient information of glucose uptake rates and specific penicillin productivity. 

Furthermore, the couped model successfully reproduced an overall drop in 

penicillin productivity of 18-50% in the large-scale reactor, depending on the 

model setup. Based on the analysis of the simulation results we proposed and 

validated a scale-down design representing the conditions the cells experience 

in the large tank. By identifying glucose concentration gradients as the main 

cause of the productivity loss, we proposed to change the position of the 

feeding port of the large reactor to mitigate the mixing challenge. This resulted 

in a predicted 50% reduction of the penicillin yield loss. Finally, the coupled 9-

pool-CFD model was applied to simulate long-term fed-batch cultivations in the 

large bioreactor, which showed a good agreement with the available 

experimental data. 

As a summary, from Chapter 2 and Chapter 3, we demonstrated a complete, 

model-assisted development and optimization approach for industrial 

fermentations, which starts from metabolic kinetic model development, via 

coupling with Euler-Lagrange-based CFD simulations of an industrial scale 

bioreactor and developing rational scale-down systems, finally providing 

targets for improvement of the industrial-scale bioreactor. 

In Chapter 4, we investigated another industry-favored model strain, the yeast 

Saccharomyces cerevisiae. Before developing a full-scale yeast model, we first 

separately studied how the kinetics of storage carbohydrate accumulation and 

hydrolysis responded to short and long-term dynamic conditions. This was done 

by combining a kinetic model for glycogen and trehalose storage with a classical 

black-box model for cell growth, respiration, and maintenance. We clearly 

demonstrated that for a correct modeling of the formation and release of 

storage carbohydrate compounds, both gene regulation at enzyme expression 

level and metabolite regulation are needed to capture the dynamic responses 

across different time scales. This model also proved to be stable and maintained 

its dynamic features when integrated with cell lifelines from a 22 m3 pilot tank. 

We foresee that the properties of the gene regulation model make it suitable 
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for integration in a full-scale Euler-Lagrange CFD-CRD simulation or, 

alternatively, compartment-based large scale bioreactor simulation.  

It is, however, clearly not sufficient to describe only the storage response of S. 

cerevisiae. In Chapter 5, using a similar concept as for the 9-pool P. 

chrysogenum model, a 7-pool yeast model was developed, focused on 

reproducing the Crabtree and Pasteur effects which are characteristic for S. 

cerevisiae. The Crabtree effect is the phenomenon whereby the yeast produces 

ethanol under aerobic conditions at high extracellular glucose concentrations. 

Also, the effects of the dissolved oxygen concentration, which directly acts at 

the intracellular redox level, were included in this model: this is the basis of the 

Pasteur effect, which is the occurrence of ethanol production under oxygen-

limited conditions. This model was validated using published data from multiple 

glucose-limited steady state chemostat cultures, single glucose pulse 

experiments and periodic glucose oscillations and further tested against highly 

dynamic lifelines (one-way coupling) obtained from the CFD simulation of the 

22 m3 pilot scale tank. The model showed a stable performance throughout the 

highly dynamic lifelines. This gave us confidence that this model is suited to be 

integrated into a complete two-way coupled CFD framework. Nevertheless, this 

yeast model appeared to have certain shortcomings and could be further 

improved. With the aim to improve this yeast model, we redesigned the kinetics 

and present an updated model structure in Chapter 6, by taking the lessons 

learned from the 7-pool model into account, thereby carefully examining the 

functionality of each part of the metabolic network. The improvements 

proposed are: 1) insertion of two different glucose uptake mechanisms with 

gene-regulated enzyme capacities; 2) glycerol and ethanol re-consumption 

based on environmental threshold values for glucose and oxygen; 3) a lumped 

gluconeogenesis pathway to enable growth on ethanol, acetate, and glycerol, 

in the absence of glucose; 4) integration of a kinetic module for storage and re-

consumption of trehalose and glycogen. We believe that this extended model 

structure is still compact enough to allow proper parametrization and CFD 

simulation and has the capability in predicting yeast performance under various 

conditions across a wide range of growth rates and external triggers at 

timescales of seconds to hours.  

In Chapter 6, we further present an outlook on the future of bioprocess 

development taking advantage of the possibilities offered by digitalization. The 

demonstrated application of CFD-CRD, will be the pioneer of the realization and 

implementation of the so-called digital twin (DT) concept in the future. The DT 
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is defined as a virtual representation that serves as the real-time digital 

counterpart of a physical object or process. The challenge of applying the DT 

concept to a bioprocess is the definition of such a virtual representation. Life is 

complex and mankind is far from understanding the mystery of life, even for 

tiny microorganisms like yeast. Therefore, different from the digital twin of a 

man-made object, e.g. power generator or an engine, the digital twin model of 

the microorganism, or the bioprocess that involves the microorganism, has to 

come with a highly simplified and lumped structure. Here the difficulties are 

how such a simplified model (compared to reality) can be the representation of 

the process. Therefore, the mindset of “begin with the end in mind”, and 

addressing the modeling objective first, is crucial for keeping the model 

development path on the right track and preventing the addition of 

‘unnecessary’ complexities to the model. In this sense, questioning the model 

with respect to its “fitness for purpose” throughout the development phase is 

required to ensure a proper complexity and fitness to the application target, 

with still an affordable computation effort. 

This study provides several examples that not only show the power of using 

simplified metabolic kinetic models coupled with a CFD framework in 

bioprocess application but also present guidelines in how to construct a lumped 

kinetic model that is fit for its purpose. This part of work is the foundation and 

one of the cornerstones of realizing the DT concept in the bioprocess industry, 

enabling a promising future of smart biomanufacturing.  
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Samenvatting 

Bioprocessen maken gebruik van de veelzijdigheid van de natuur om producten 

te maken uit hernieuwbare grondstoffen. De hedendaagse ontwikkelingen 

betreffende het modificeren van micro-organismen tot efficiënte ‘cellulaire 

fabrieken’ bieden vele nieuwe kansen voor de bioprocestechnologie. De 

ontwikkeling van industriële bioprocessen wordt echter vaak bemoeilijkt door 

opschalingseffecten, in de vorm van een minder efficiënte conversie van 

grondstof naar product, of een lagere productiesnelheid (Wang et al., 2015, 

2020). Deze opschalingseffecten komen vaak voort uit de aanwezigheid van 

gradiënten in procescondities in industriële bioreactoren, met als 

onderliggende oorzaak limitaties in warmte- en massaoverdracht en menging 

op grote schaal. De gradiënten worden door micro-organismen ervaren als 

tijdsvariabele procescondities, die afwijken ten opzichte van de homogene 

condities waarin een micro-organisme op labschaal is getest. Om de impact van 

opschalingseffecten te begrijpen is het essentieel om de invloed van 

heterogene condities in industriële bioreactoren op het metabolisme van 

micro-organismen te begrijpen.  

De doelstelling van dit proefschrift is het ontwikkelen van een robuust, model 

gedreven simulatieplatform waarmee kwantitatieve informatie kan worden 

verkregen betreffende heterogene condities in een industriële bioreactor, 

gebaseerd op onderliggende biologische en fysische kennis. Het toepassen van 

een dergelijk simulatieplatform bij industriële procesontwikkeling kan tot een 

betrouwbaarder opschalingsproces leiden. Door gebruikt te maken van de 

combinatie van een biokinetisch model voor het micro-organisme, en 

Computational Fluid Dynamics (CFD) voor transportverschijnselen in de reactor, 

kan kwantitatief inzicht worden verschaft in opschalingseffecten. Het meest 

complexe aspect van een dergelijk model is het opstellen van een 

representatief biokinetisch model voor het micro-organisme: voor accurate 

voorspellingen van de celdynamiek in variërende omgevingen is een bepaalde 

modelcomplexiteit noodzakelijk, terwijl efficiënte integratie met CFD om een 

simpel model vraagt: een compromis tussen deze aspecten is noodzakelijk. In 

dit werk wordt voor twee micro-organismen een biokinetisch model opgesteld: 

Penicillium chrysogenum en Saccharomyces cerevisiae. Deze organismen 

dienen als voorbeeld om de haalbaarheid en potentie van de integratie van 

biokinetische modellen in CFD-simulaties aan te tonen. 

In hoofdstuk 2 wordt P. chrysogenum als modelorganisme toegepast. Voor dit 

organisme is een gestructureerd biokinetisch model opgesteld waarmee groei 
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en penicilline-productie worden beschreven. Het samenvoegen van de 

relevante intracellulaire componenten in 5 metaboliet- en 4 enzympools, 

gekoppeld door 10 reacties, zorgt voor een relatief simpele modelstructuur wat 

integratie met CFD-modellen mogelijk maakt. De kwantitatieve prestaties van 

dit 9-pool model zijn getoetst tegen experimentele ‘feast-famine’ data, waarin 

de glucoseconcentratie op een tijdsschaal van minuten werd gevarieerd. De 9 

intracellulaire pools dienen praktisch gezien als een ‘cellulair geheugen’, 

waarmee de aanpassing van de cel aan de omgevingscondities wordt 

gemodelleerd. Door de resultaten van het 9-pool model te vergelijken met een 

ongestructureerd model wordt de noodzaak van het bijhouden van dit 

geheugen aangetoond.  

Het 9-pool model wordt in hoofdstuk 3 gekoppeld aan een Euler-Lagrange CFD-

simulatie van een industriële productiereactor (54 m3). Deze koppeling geeft 

diepgaand inzicht in de interactie tussen micro-organismen en een ruimtelijk 

heterogene productieomgeving. Het gekoppelde model voorspelt een afname 

in de specifieke penicilline-productiecapaciteit van 18-50%, ten gevolge van de 

heterogene verdeling van glucose in het reactorvat. Op basis van de 

simulatiedata is een ontwerp voor een neerschaalreactor opgezet en 

gevalideerd, die de op industriële schaal door micro-organismen ervaren 

condities op labschaal nabootst. Verder wordt het model gebruikt om de 

invloed van de voedingslocatie op de glucoseverdeling penicillineproductie te 

bepalen: een gunstiger locatie leidt tot 50% minder verlies in de 

penicillineopbrengst. Tot slot is het model gebruikt voor de analyse van een fed-

batch productieproces, met goede overeenkomst tussen simulatie en gemeten 

productiedata. Samenvattend wordt in hoofdstuk 2 en 3 een compleet, model-

gedreven ontwikkelings- en optimalisatieproces voor bioprocessen 

gepresenteerd, middels koppeling van een biokinetisch model en CFD-model, 

waarmee opschaaleffecten in bioreactoren inzichtelijk worden gemaakt. 

In hoofdstuk 4 wordt de dynamische respons van een ander veelgebruikt micro-

organisme, S. cerevisiae, onderzocht. Alvorens een volwaardig biokinetisch 

model op te stellen, wordt eerst de dynamiek van de opslagmetabolieten onder 

fluctuerende extracellulaire condities bestudeerd, door een kinetisch model 

voor opname- en afbraak van trehalose en glycogeen te combineren met een 

ongestructureerd model voor celgroei, ademhaling en onderhoud. Om de 

dynamiek op alle relevante tijdsschalen te vangen is het van belang om zowel 

genetische regulatie als metabole regulatie in het model te vangen. Hoewel het 

resulterende biokinetisch model nog niet direct in CFD-simulaties is 
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geïntegreerd, is wel getoetst hoe het model reageert op variabele 

glucoseconcentraties-tijdsseries (‘lifelines’); aangezien het model een stabiele, 

realistische dynamische respons vertoonde, voorzien we geen problemen met 

integratie in CFD-simulaties (of compartimentenmodellen) van bioreactoren.   

Voor een volwaardig model van S. cerevisiae is meer nodig dan een dynamisch 

model voor opslagmetabolieten; in hoofdstuk 5 wordt op basis van de 

methodologie uit hoofdstuk 2 een 7-pool model voor S. cerevisiae ontwikkeld, 

met nadruk op de beschrijving van het Crabtree- en het Pasteureffect, 

karakteristiek voor dit organisme. Het Crabtree-effect betreft de productie van 

ethanol onder aerobe condities met een hoge glucoseconcentratie, het 

Pasteur-effect de productie van ethanol onder zuurstof-gelimiteerde condities. 

Om beide effecten mee te kunnen nemen, houdt het model rekening met 

variaties in zowel de extracellulaire glucose- als zuurstofconcentratie. Het 

model is gevalideerd met verschillende gepubliceerde datasets, die zowel 

constante als gepulseerde en oscillerende condities omvatten. Daarnaast is het 

model toegepast op ‘lifelines’ uit de CFD-simulatie van een 22m3 pilot-schaal 

fermentatieproces.  Ondanks de sterke dynamiek in deze CFD-data gaf het 

model een stabiele respons, wat de weg vrijmaakt voor toekomstige integratie 

in een CFD-simulatie. Het ontwikkelde 7-pool model bevatte nog enige 

tekortkomingen; in hoofdstuk 6 wordt de doorontwikkeling van het 7-pool 

model beschreven, waarbij de functionaliteit van de verschillende onderdelen 

van het metabole netwerk wordt onderzocht. Dit heeft tot de volgende 

modificaties geleid: 1) implementatie van twee verschillende glucose 

opnamemechanismen met gereguleerde enzymcapaciteiten, 2) heropname van 

glycerol en ethanol op basis van de extracellulaire glucose- en 

zuurstofconcentratie, 3) toevoegen van gluconeogenese om groei in 

afwezigheid van glucose te modelleren, 4) integratie van een module voor 

opslag en consumptie van trehalose en glycogeen. Hoewel de 

modelcomplexiteit hiermee toeneemt, is de verwachting dat het model nog 

steeds voldoende compact is voor integratie met CFD-simulaties, en dat het 

model in staat is de biokinetische respons van S. cerevisiae op verschillende 

tijdsschalen en onder variërende extracellulaire condities te voorspellen.  

Hoofstuk 6 bevat verder een visie betreffende de toekomst van 

bioprocesontwikkeling in een wereld van toenemende digitalisering. Het 

gebruik van CFD-simulaties met geïntegreerde biokinetiek is een eerste stap 

naar het opzetten en implementeren van een zogenoemde ‘digital twin’ van 

een bioreactor – een virtuele reactor die simultaan aan de werkelijke 
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procesvoering de staat van het proces voorspelt. Digital twins worden reeds 

toegepast voor verscheidene apparaten, zoals motoren en stroomgeneratoren. 

Voor deze processen is typisch een goede fysische modelbeschrijving 

beschikbaar. Bioprocessen zijn echter bijzonder complex, en onze 

mechanistische kennis van levensprocessen is zelfs voor ‘simpele’ micro-

organismen zeer beperkt. Dit zorgt voor unieke uitdagingen bij het opstellen 

van digital twins voor bioprocessen, waarbij een sterk versimpelde modelopzet 

nodig is om tot een effectieve procesbeschrijving te komen, die desondanks het 

procesverloop onder relevante condities voldoende accuraat moet beschrijven. 

Hiervoor wordt de filosofie “begin bij het eindpunt” toegepast; beginnen met 

heldere modeldoelstellingen is essentieel om het model in de juiste richting te 

ontwikkelen, en om toevoeging van onnodige complexiteiten te voorkomen 

waardoor de benodigde rekenkracht acceptabel blijft. 

Hiermee beschrijft dit proefschrift de mogelijkheden van versimpelde 

gestructureerde biokinetische modellen geïntegreerd binnen CFD-simulaties, 

maar worden ook richtlijnen gegeven over hoe dergelijke modellen met een 

specifieke doelstelling in gedachten kunnen worden ontwikkeld. Hiermee is dit 

werk een fundamenteel onderdeel voor het realiseren van digital twins in de 

bioprocesindustrie, en een stap richting in de richting van de veelbelovende 

toekomst van ‘smart biomanufacturing’.  



IX 

Nomenclature 
PGI phosphoglucoisomerase 
PFK phosphofructokinase 
ALDO fructose-bisphosphate aldolase 
TPI triosephosphate isomerase 
GAPDH glyceraldehyde phosphate dehydrogenase 
PGK phosphoglycerate kinase 
PGM phosphoglycerate mutase 
ENO enolase 
PK pyruvate kinase 
PDH pyruvate dehydrogenase 
CS citrate synthase 
ICDH isocitrate dehydrogenase 
α-KGDH alpha-ketoglutarate dehydrogenase 
PDC pyruvate decarboxylase 
HXT hexose transporters 
G6P glucose-6-phosphate 
F6P fructose-6-phosphate 
FBP fructose-1,6-bisphosphate 
Pyr pyruvate 
ATP adenosine triphosphate 
ADP adenosine diphosphate 
AMP adenosine monophosphate 
NADH nicotinamide adenine dinucleotide (reduced) 
NAD+ nicotinamide adenine dinucleotide (oxidized) 
ACA acetaldehyde 
ADH alcohol dehydrogenase 
TCA tricarboxylic acid cycle 
ETC electron transfer chain 
NGAM non-growth associated maintenance 
GAM growth associated maintenance 
AA amino acids pool 
ATP adenosine triphosphate 
PAA phenylacetic acid 
PP  pentose phosphate  
TCA citric acid cycle 
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Background 
Over the last decades, large-scale industrial fermentations using a wide range 

of microorganisms, plant cells, and mammalian cells have been extensively 

employed for the production of commercial products such as food ingredients, 

nutraceuticals, biomaterials, vaccines, pharmaceuticals, biofuels and pigments 

(Festel, 2010; Otero and Nielsen, 2010).  

A leading example has been the industrial penicillin manufacturing, which was 

initiated more than 70 years ago, and the productivity of the current industrial 

strain is 100,000 times higher than the original strain, by means of successive 

rounds of strain improvement, bioreactor design, and process optimization 

(Rokem et al., 2007). From a stoichiometric point of view, the maximum 

theoretical yield of penicillin on glucose (mole/mole) was calculated as 0.18 by 

VanGulik et al. (2001) and 0.5 by Jørgensen et al. (1995). However, the current 

yield of penicillin is still far away from either of those values. As an accepted 

fact, fermentation performance is largely driven by both strain characteristics 

and the environmental conditions of the cells. It is, therefore, common practice 

to engineer the strain and optimize the process together. To pinpoint potential 

targets for metabolic engineering, however, becomes at some stage the limiting 

step for getting closer to the theoretical maximum product yield (van Gulik et 

al., 2000). In this respect, it is of added value to get a thorough knowledge of 

the pathway kinetics. Pulse response experiments as of now are a very fast and 

useful instrument to gain knowledge of in vivo microbial kinetics. It also aids in 

identification of response mechanisms as well as metabolic bottlenecks for 

metabolic engineering (Spadiut et al., 2013).  

It is known that time constants of enzyme-catalyzed reactions have nothing to 

do with the vessel size with which mixing time is positively correlated. In large-

scale high-cell density fed-batch bioprocesses, environmental concentration 

gradients such as of substrate, pH, CO2, and dissolved oxygen are prone to be 

induced, as long as the mixing time of the fermentor is larger than the relevant 

cellular reaction time. As a consequence, large-scale bioprocesses are often 

characterized by strong dynamics, with which cells are forced to cope (Lara et 

al., 2006). In many cases, substrate gradients lead to the formation of undesired 

byproducts and decreased product titers, but in contrast other cases proved 

that external perturbations, such as pulsed feeding, caused a substantial 

increase of the productivity (Bhargava et al., 2003; Bylund et al., 1998; Jazini 

and Herwig, 2014).  
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To understand these scale-up effects, the scale-down method is often 

advocated to efficiently take the local information of a large-scale bioprocess 

into consideration. After studies in the lab, an optimized scheme is then 

transferred to the production scale (Noorman, 2011). Computational fluid 

dynamics (CFD) is a powerful tool to simulate the detailed flow field of the 

fermentor and has already been applied for fermentor design and process 

optimization (Yang et al., 2012; Zou et al., 2012). As an example, in a 12 m3 

cephalosporin C production case, the effect of different impeller configurations 

on the cell morphology and cephalosporin C production was simulated in detail 

using CFD. It revealed that a novel impeller combination decreased power 

consumption and enhanced mass transfer as compared to the conventional 

configuration (Yang et al., 2012). The results of CFD simulations were also 

helpful in identifying the main cause of undesired scale-up effects. By using CFD 

for real-time fluid dynamic simulations of 50L and 132 m3 fermentors applied 

for the erythromycin fermentation, it was found that the decrease of the 

oxygen transfer rate largely impaired cellular metabolism and production 

formation (Zou et al., 2012). Similar results were also observed in the 

production of glucoamylase from Aspergillus niger where extra benefits were 

gained via improved impeller settings (Tang et al., 2015).  

As a direction for future development, the insight from a proper CFD model is 

essential for people to realize that a complete prediction and detailed 

description of industrial bioprocess requires combined efforts in microbial 

kinetic and CFD modeling.  

Environmental gradients: causes and consequences 
The production of secondary metabolites, including antibiotics, is often 

repressed in the presence of excess glucose, which is called catabolite 

repression. A fed-batch mode is thus introduced as an effective way to bypass 

this obstacle and it’s also applied to avoid oxygen limitation in large-scale high-

cell density fed-batch processes. The feed nutrient, often glucose, is then 

supplied at a growth limiting rate. To minimize dilution of the broth, this feed 

solution is fed in a highly concentrated form. Scale-up at constant variables such 

as volumetric mass transfer coefficient is performed, leading to heterogeneities 

at industrial scales (Bannari et al., 2008). Alternatively, if the liquid circulation 

time at production scales is kept the same as for the bench scale, an incredible 

power input would be required(Lara et al., 2006). Therefore, it is rather difficult 

to realize successful scale-up due to limitations of power input at industrial 

scale and a lack of knowledge about cellular response mechanisms. As is shown 
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in Table 1 and Table 2, in large-scale bioprocesses, the mixing time is tens or 

even hundreds of seconds (Canelas et al., 2008; Heijnen, 2010; Jolicoeur et al., 

1992; Kiss et al., 1994; Langheinrich et al., 1998; Lara et al., 2006; Leckie et al., 

1991; Nasution et al., 2006a; Nasution et al., 2006b; Schügerl, 1993; Sweere et 

al., 1987; Taymaz-Nikerel et al., 2009; Vrabel et al., 2000). This is longer than 

the relevant cellular reaction time; especially with respect to the intermediates 

of central metabolism, having turnover times in the order of seconds (Nasution, 

2007). As a result, heterogeneities in the system inevitably occur. Previous 

studies revealed that substrate concentrations in the feed zone can reach 

values of dozens to even hundreds of times higher than in the low-

concentration zones, and this difference may increase with higher biomass 

concentration (Bylund et al., 1998; Larsson et al., 1996). In this case, cells are 

periodically forced to circulate through famine and feast regions where 

substrate availability changes lead to rapid metabolite, flux and growth rate 

responses. Amounts, qualities, and yields of biomass and products will be 

severely affected and stress responses will also be induced (Enfors et al., 2001).  

To effectively study the influence of environmental gradients, scale-down of 

industrial conditions is highly advocated for its convenience and efficiency 

(Noorman, 2011). As is shown in Table 3, a vast majority of scale-down studies 

has dealt with microbial fermentation (Amanullah et al., 2001; Baez et al., 2011; 

Junne et al., 2011; Lorantfy et al., 2013; Nienow et al., 2013; Sandoval-Basurto 

et al., 2005). Generally, scale-down of industrial practices is performed either 

through a combination of scale-down bioreactors or a special feed regime. With 

respect to scale-down devices, one-compartment (STR) and two-compartment 

systems (STR-STR/PFR, where PFR stands for plug flow reactor) are of great use 

in investigating the influence of external stimuli mimicked from those at 

production scales (Neubauer and Junne, 2010). As a case in point, using a two-

compartment system (STR-PFR), oscillating dissolved oxygen and substrate 

concentration at the production-scale fermentations with Bacillus subtilis were 

simulated (Junne et al., 2011).The results indicated that the decrease of amino 

acid synthesis was due in large part to a metabolic shift toward ethanol 

formation. Käß et al. (2014) used a two-compartment scale-down system to 

study the influence of oxygen supply and substrate oscillations on cell 

metabolism. Broth cycling from an aerobic STR to an anaerobic PFR can be 

employed to simulate oxygen feast and famine zones at large scales and the 

residence time in the PFR can be adapted to simulate circulation times of large 

fermentors. It was found that oscillations within a minute range exerted 

insignificant impact on the metabolism of Corynebacterium glutamicum. In this 
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strain, a futile cycle of side products formation and subsequent consumption 

was found to enhance its metabolic robustness against process 

inhomogeneities, which facilitated its use in large-scale fed-batch applications 

(Käß et al., 2014). Apart from scale-down devices, applying a cyclic feed regime 

is frequently used for scale-down studies of large-scale gradients. As an 

example, the influence of a substrate concentration gradient on penicillin 

formation was investigated via a 6-min on-off feed cycle in a chemostat 

cultivation system. De Jonge et al. (2011) imposed this intermittent feed regime 

to study the influence of substrate gradients on process performance and cell 

metabolism. It was found that penicillin production was almost reduced by a 

factor of 2 because of fluctuations in energy levels in response to the glucose 

perturbations as compared with constant feed cultivations.  

After all, it is the in vivo kinetics of relevant enzymes that determine which 

parameters need to be altered to obtain a desired change in a system (Teusink 

and Smid, 2006). It is, therefore, necessary to understand the mechanism of 

strain responses upon an external stimulus, in order to find potential targets for 

metabolic engineering. It is highly recommended that dynamic strategies such 

as shifts, ramps, pulses, and oscillations should be used for fast characterization 

of cell metabolism and process optimization (Spadiut et al., 2013). Pulse 

response experiments are typically carried out in a time frame of seconds to a 

few minutes. In this short time window, it can be assumed that the enzyme 

levels do not change. Therefore, changes in both intra- and extracellular 

metabolites are ascribed to rapid enzyme-metabolite interactions only. 

Carrying out pulse response experiments is thus an efficient and effective 

approach for obtaining in vivo kinetic information and estimating kinetic 

parameters for kinetic metabolic models (Visser et al., 2004). 
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Table 1. Reported mixing times in bioreactors. 

Type of reactor Cell line Mixing 
time (s) 

Reference 

Cell culture    
5-L STR CHO 2-5 (Kenty et al., 

2005) 
8.5-L STR Plant cells 3.6 (Leckie et al., 

1991) 
11-L STR Helical ribbon Plant cells  18-25 (Jolicoeur et al., 

1992) 
20-L STR CHO 20-80 (Kenty et al., 

2005) 
8m3 STR Namalwa cells 40-200 (Langheinrich et 

al., 1998) 
10m3 STR Plant cells 20-200 (Doran, 1993) 
12m3 STR Mammalian 

cells 
120-360 (Kiss et al., 1994) 

10-L STR with spin filter hydrofoil impeller, 20 rpm CHO 120 (Jem et al., 1994) 
250-L STR with spin filter Hydrofoil impeller, 80 
rpm 

CHO 120 (Jem et al., 1994) 

250-L STR with spin filter Pitched blade impeller, 
80 rpm 

CHO 1630 (Jem et al., 1994) 

1m3 STR with spin filter Hydrofoil impeller / 
mixing via spin filter 

CHO 3120 (Jem et al., 1994) 

15-L bubble column Plant roots 2400 (Curtis, 2000) 
10m3 Airlift Plant cells 200-1000 (Doran, 1993) 
    
Microbial cultures    
12m3 STR, equipped with 3 Rushton-type 
impellers 

Microorganisms 10-50 (Vrabel et al., 
2000) 

12m3 STR, equipped with 3 Scaba-type impellers Microorganisms 10-30 (Vrabel et al., 
2000) 

30m3 STR, equipped with 3 Rushton-type 
impellers 

Microorganisms 125-250 (Vrabel et al., 
2000) 

30m3 STR, equipped with 3 Scaba-type impellers Microorganisms 70-110 (Vrabel et al., 
2000) 

2m3 Bubble column Microorganisms 18 (Schügerl, 1993) 
2m3 Airlift Microorganisms 80 (Schügerl, 1993) 
4m3 Airlift tower loop Baker’s yeast 100-175 (Schügerl, 1993) 
40m3 Bubble column Microorganisms 80 (Schügerl, 1993) 
40m3 Airlift Microorganisms 101 (Schügerl, 1993) 
150m3 Bubble column Baker’s yeast 10-1000 (Sweere et al., 

1987) 
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Table 2. Intracellular metabolite concentrations and turnover time in glucose-limited aerobic cultures of 
several organism (Saccharomyces cerevisiae from (Canelas et al., 2008), Penicillium chrysogenum from 
(Nasution et al., 2006b; Nasution et al., 2006a) and Escherichia coli from (Taymaz-Nikerel et al., 2009)) 

Metabolites Intracellular level (µmol/gDW) Turnover time (s) 

 P. 
chrysogenum 

S. 
cerevisiae 

E. coli P. 
chrysogenum 

S. 
cerevisiae 

E. coli 

Central 
metabolites 

      

G6P 4.64 5.2 1.42 23.3 17 3.6 
F6P 0.71 1.4 0.38 5.7 7.3 1.2 
T6P 0.55  0.13 47.8   
M6P 1.95  0.48    
6PG 0.25 0.48 0.1 3.7 4.5 1.1 
Mannitol-1P   0.99    
G3P  0.13 0.17  57 13.1 
FBP 0.9 0.64 0.82 7.2 3.2 2.5 
F2,6bP 0.01  0.35    
2PG+3PG 0.59 2.8 1.65 2.3 6.6 2.5 
PEP 0.24 2.3 1.61 0.9 5.7 2.7 
Pyruvate 0.22 1.1 0.75 0.9 1.7 1.5 
α-
Ketoglutarate 

2.05  0.31 22.1  0.6 

Succinate 0.23 4.0 2.65 3.3 20 8.9 
Fumarate 0.65 0.85 0.22 13.0 4.1 0.7 
Malate 3.33 7.3 0.94 19.0 30 2.8 
Amino acids       
Alanine 21.7 32 1.34 269 3268 76.7 
Asparagine 1.5 4.7 0.58 459 1142 81.7 
Aspartate 16.3 21 2.57 717 577 35.0 
Glutamate 53.0 170 74.69 658 1112 229.0 
Glutamine 28.7 64 6.14 1243 2401 80.0 
Glycine 2.1 2.9 1.51 244 247 31.0 
Histidine 0.72 6.0 0.15 432 3141 53.8 
Isoleucine 0.33 1.6 0.11 111 140 12.9 
Leucine 0.73 1.0 0.36 131 125 27.1 
Methionine 0.14 0.20 0.05 58.8 66 10.5 
Phenylalanine 0.19 1.6 0.13 61.2 430 23.8 
Proline 0.95 3.9 0.66 206 925 101.4 
Serine 5.7  0.53 453  8 
Threonine 5.9 4.0 0.47 758 220 29.3 
Tryptophan 0.11 0.51 0.02 130 788 11.9 
Tyrosine 0.26 1.6 0.18 145 832 44.3 
Valine 2.1 10 0.51 243 490 40.9 
Ornithine  4.1 0.49  502 49.1 
Adenine 
nucleotides 

      

ATP 7.39 7.0 5.95  1.4 2.0 
ADP 1.03 1.3 2.31  1.4 2.0 
AMP 0.27 0.6 0.91  3.1 9.4 
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Table 3. Environmental heterogeneity in bioprocess development 

Organism Gradients of  Compartment system Reference 

Penicillium 
chrysogenum 

Substrate STR (de Jonge et al., 
2011; Zhao et al., 
2012) 

Corynebacterium 
glutamicum 

Substrate/oxygen STR-PFR (Käß et al., 2014) 

Saccharomyces 
cerevisiae 

Substrate STR/STR-PFR (Aboka et al., 2009; 
van Heerden et al., 
2014) 

Pichia pastoris Oxygen STR-STR (Lorantfy et al., 
2013) 

Escherichia coli Oxygen/carbon dioxide STR-STR (Baez et al., 2011; 
Sandoval-Basurto et 
al., 2005) 

Bacillus subtilis Substrate/oxygen/pH STR-PFR (Amanullah et al., 
2001; Junne et al., 
2011) 

CHO cells Fluid dynamic stress STR-PFR (Nienow et al., 2013) 
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Generation of in vivo kinetic properties of cellular metabolism by 

pulse response experiments 
There has been a surge of the application of models in industrial bioprocesses 

to improve the understanding of the cellular metabolism and to identify genetic 

engineering targets to reach a desired product yield. The establishment of 

kinetic models of a cell factory is the first step for the integration of fluid 

dynamics and microbial kinetics. The fundamental workflow for the 

establishment of kinetic models has been excellently reviewed by Almquist et 

al. (2014). However, the establishment of metabolic models is often hampered 

by the lack of information on the in vivo enzyme kinetic properties of the 

metabolic reactions. Toward this end, it has been well proposed that in vivo 

studies using pulse response experiments could contribute to parameter 

estimation of enzyme kinetics (Visser et al., 2004). In parallel, the number of 

kinetic parameters should be reduced as much as possible by using 

approximative kinetic formats such as the linear-logarithmic approach (Heijnen, 

2005). A successful kinetic model should be simple but yet complete enough to 

describe sufficient aspects of the dynamic reaction kinetics and also convenient 

to be integrated into CFD models. 

Pulse or stimulus-response experiments are an ideal tool to obtain 

understanding of the in vivo regulation mechanisms of organisms to cope with 

external perturbations. In general, an external stimulus is imposed on a steady 

state chemostat system whereupon the perturbed metabolome is 

quantitatively acquired via well-established fast sampling and quenching 

protocols (van Gulik et al., 2012; Mashego et al., 2004). The BioScope is a very 

helpful tool in pulse response experiments and is used as a special PFR in which 

an external perturbing agent such as the growth-limiting substrate, often 

glucose, can be pulsed. For example, in a glucose-limited chemostat cultivation 

of Saccharomyces cerevisiae, Visser et al. (2004) conducted pulse response 

experiments using the BioScope with both glucose and ethanol as the 

perturbing agents. By tracing the concentration change of intracellular and 

extracellular metabolites as well as energy and reducing equivalents, it was 

suggested that fructose-1,6-biphosphate stimulated pyruvate kinase and PEP 

did not function in the allosteric regulation of phosphofructokinase. Further, 

the ethanol pulse might perturb the metabolism in an indirect way, which may 

be caused by the ratio variation of nicotinamide adenine dinucleotide (NAD) to 

its reduced form (NADH) (Vemuri et al., 2007). Pulse experiments are very 

helpful as well in understanding the robustness of organisms. Robustness, the 

ability to maintain a balanced or functional state in coping with environmental 
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changes or perturbations is the fundamental property of life (Stelling et al., 

2004). Organisms in general have a specific robustness to survive unfavorable 

environments. Upon an external perturbation, different organisms may have 

similar but not the same responses. For instance, in the same steady state 

chemostat cultivation systems, Penicillium chrysogenum and Saccharomyces 

cerevisiae were transiently exposed to the same glucose pulse, but a more 

pronounced change of the glycolytic flux was observed in Saccharomyces 

cerevisiae (Mashego et al., 2006; Nasution et al., 2006b). 

Metabolic network modeling 
Techniques for modeling the metabolism of microorganisms have evolved over 

many decades. In general, these models can be categorized into two main 

groups: stoichiometry-based models and kinetics-based models. 

Genome-scale metabolic models (GEMs) are the most widely used 

stoichiometry-based models for studying cell physiology (Gu et al., 2019; Kim et 

al., 2017). By setting up an appropriate objective function (e.g. maximum yield 

of product on substrate) and flux constraints, the GEMs can be used to predict 

the cellular flux distribution, the pathway variability (Mahadevan and Schilling, 

2003) and can further be used to seek for potentially beneficial genome 

modifications (Burgard et al., 2003; Thiele and Palsson, 2010). Various 

computational approaches, featured by flux balance analysis and its variations, 

have been developed to characterize the steady-state flux solution space. The 

community has also developed high-quality tools to help maximize the 

applications of GEMs (Ebrahim et al., 2013; Heirendt et al., 2019; Wang et al., 

2018b). Nevertheless, the optimal solutions obtained from these GEMs can 

easily deviate from the real flux distribution. To address this issue, it is advisable 

to include extra information/constraints, such as protein concentration (Lloyd 

et al., 2018; Sánchez et al., 2017), transcriptional regulation (Lerman et al., 

2012), metabolic regulation, thermodynamics (Canelas et al., 2011; Niebel et al., 

2019; Saa and Nielsen, 2015) and enzyme kinetics, and so forth. For instance, 

Sánchez et al. (2017) presented a method which enhances a GEM with 

Enzymatic Constraints using Kinetic and Omics data (GECKO). It accounts for 

enzymes as a part of reactions in a GEM, allowing that the simulated flux of each 

reaction does not exceed its maximum capacity. This methodology has been 

tested in a GEM of Saccharomyces cerevisiae and showed better predictability 

of maximum growth rates on different carbon sources as well as a more 

accurate growth rate shift when knocking out NDI1 (mitochondrial NADH 

dehydrogenase). Recently, Niebel et al. (2019) developed a GEM for 
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Saccharomyces cerevisiae with additional upper limits on the Gibbs energy 

dissipation rate. By introducing this upper limit, the extra-constrained GEM was 

able to predict the physiology and intracellular metabolic fluxes beyond the 

critical growth rate, above which the Crabtree effect of Saccharomyces 

cerevisiae kicks in. These results also suggested that the predictability of GEM’s 

can be improved by incorporation of additional constraints. 

In contrast, kinetics-based models are often used to describe dynamic features 

that are not captured by GEMs. The history of using kinetic models for enzyme 

reactions can be referred to as early as the 1960s (Monod et al., 1963; Monod 

et al., 1965) when efforts were focused on single enzyme mechanisms. Till now, 

the feasibility and importance of detailed kinetic models of specific processes 

(Douma et al., 2010), single metabolic pathways (Deshmukh et al., 2015; 

Fujimoto et al., 2012), and large-scale kinetic models (Andreozzi et al., 2016; 

Kesten et al., 2015; Smallbone et al., 2013) have been demonstrated. The 

general feature of different model categories is shown in Figure 1. The ultimate 

goal of kinetic modeling is to build a genome-scale kinetic model which includes 

the kinetic properties of all enzyme catalyzed reactions (Smallbone et al., 2010). 

Douma et al. (2010) have built a kinetic model that specifically described the 

gene regulation process of penicillin production, which is strongly controlled by 

the extracellular glucose level. Their dynamic gene regulation model predicts 

the expression of isopenicillin-N synthase based on glucose repression, fast 

decay of mRNA encoding for this enzyme as well as the decay of the enzyme 

itself. By combining this gene-regulation model with a simple stoichiometric 

kinetic model, the biomass and penicillin production during steady state 

chemostat and fed-batch cultivations could be accurately described. 

Meanwhile, detailed large-scale kinetic models have also been developed. A 

detailed glycolysis kinetic model was presented (Smallbone et al., 2013) and 

further extended and improved by Kesten et al. (2015). This detailed kinetic 

model consists of 49 kinetic expressions with 164 parameters. The model was 

fitted to published steady-state data (Wu et al., 2006) and tested with dynamic 

experimental data obtained from glucose and ethanol pulse experiments. 

Although it was not possible to quantitatively reproduce the dynamic behavior 

of each metabolite, for example, the adenine nucleotides and total pyruvate, 

the overall predictability of this complex kinetic model was comprehensive. 

In addition, application of kinetic models enabled a much clearer and 

quantitative description of process development in scale-down simulators and 

knowledge under these downscaling scenarios was largely extended with a 
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deeper understanding of cell adaption to environmental changes. For example, 

Anane et al. (2019) studied the response of E. coli to glucose and dissolved 

oxygen oscillations via a model-based process prediction. They accelerated 

phenotype characterization for parallel scale down fed-batch cultivations in 

mini-bioreactors and most importantly, this model-based framework puts the 

scale-down/scale-up in mind at the beginning of process development. 

Among the scopes of kinetic modeling, simulation and performance prediction 

of the complete fermentation process are gathering more and more attraction 

(Noorman, 2011). A study hotspot in this area is the prediction of cellular 

performance in large-scale industrial fermentations werein the organism has to 

cope with gradients, due to insufficient mixing (Noorman, 2011; Noorman and 

Heijnen, 2017; Straathof et al., 2019; Wang et al., 2018a). Unfortunately, these 

industrial fermentation conditions are extremely difficult to capture due to the 

complexity and difficulty of measuring these gradients throughout an industrial 

scale bioreactor. Therefore, it will be highly valuable for such an industrial 

process if a proper model can describe these large-scale dynamic conditions and 

provide explicit and quantitative suggestions for strain and process 

improvement. The integration of microbial kinetics and fluid dynamics offered 

great potential in describing details in a hundred-ton fermentor (Delvigne et al., 

2017; Haringa et al., 2018). For instance, Lapin et al. (2004) and Lapin et al. 

(2006) first successfully combined a CFD framework with an E. coli kinetic model. 

In their workflow, the original E. coli model from Chassagnole et al. (2002) was 

first simplified based on the time hierarchy of the metabolism to enable the 

integration within a CFD framework and meet the computational ability. 

However, kinetic expressions with only glucose and/or oxygen uptake applied 

in the CFD models have limited value for the evaluation of a complete 

bioprocess. 

Nevertheless, such integration comes with a cost. In simple words, it requires 

the metabolic model, designed with the end mindset for hydrodynamic 

coupling, to be largely simplified while keeping the critical cell response 

properties still in (Noorman and Heijnen, 2017). Hence, there remains an urgent 

need for metabolically structured models with a minimum number of kinetic 

parameters to be estimated, which are yet complete enough to describe 

sufficient aspects of the dynamic reaction kinetics and are convenient to be 

integrated into CFD models.  



13 

 

Figure 1 The general features of different model categories. Model complexity: the number of substances, 
conversion processes, kinetics involved in the model; fitness to omics: the potential of model performance 
improvement by further integration with omics data; fitness to CFD: the extendibility within a CFD framework 
for full-scale simulation; Kinetic Identifiability: the reliability of model defined reactions and metabolites as 
well as the accuracy and physical meaning of fitted parameters; System dynamics: the ability of predicting 
the dynamic responses of the metabolic system; Standardization: the acceptance of standard format 
throughout model development, preservation, easiness of access, tool development, and so forth. CFD, 
computational fluid dynamics 

Integrating biotic and abiotic kinetic models 
In the past few decades, unstructured metabolic models have been integrated 

with CFD models for simulation. In these approaches, the fluid phase was 

treated as continuum and the biophase was represented by a single chemical 

equation such as saturation-type kinetics of sugar uptake (Larsson et al., 1996). 

With the fast development of computer science and simulation algorithms, 

more detailed CFD models have already been established where Euler-Euler 

framing and Euler-Lagrange framing are the most frequently used approaches 

to describe the multiphase flow in bioreactors. However, both approaches 

suffered from high computational burden and required weeks for a full-process 

simulation. As an alternative, compartment based gradient estimation was 

explored with guidance from detailed CFD result. The integration of biokinetics 

with compartment model largely decreases the requirement of computational 

power and enables the full-tank, full-process simulation in real time. 

Euler-Euler frame 
In the Euler-Euler approach, the fluid phase and biophase are treated as 

continuum, and described in terms of their volume fractions (Buffo et al., 2012). 
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This approach has been applied in a number of bioreactors studies and also 

found wide applications in related fields (Kerdouss et al., 2006; Kurz et al., 2012; 

Sousa and Rangel, 2014; Zhang et al., 2009). For example, using segregated 

solutions of the Euler-Euler approach for the sake of less computational effort, 

the time course of production of gluconic acid was simulated and numerical 

results showed satisfactory agreement with the experimental data. It was found 

that as the biomass density incased, the mass transfer coefficient decreased 

and the gluconic acid production rate was reduced. This allowed to better 

understand the performance of this important bioprocess at different scale 

(Elqotbi et al., 2013). Moilanen et al.(2006) investigated the xanthan 

fermentation process in aerated fermentors by coupling gas-liquid mass 

transfer, xanthan bioreaction kinetics and non-Newtonian hydrodynamics with 

CFD. Gas-liquid hydrodynamics in xanthan fermentations including the bubble 

rise velocity and bubble size distribution was thus studied in detail. In a cellulase 

procdution case, an integrated model combining both the biomass kinetics and 

multiphase Euler-Euler formulation was successfully used to predict dynamic 

profiles such as the distributions of oxygen, cellulose and the shear stress within 

the fermentor (Bannari et al., 2012). 

It is well known that population balance model (PBM), capable of illustrating 

the population heterogeneities, is often integrated with the Euler-Euler 

approach. For example, using the specific growth rate as a criterion, (Morchain 

et al., 2013) built a PBM to describe the heterogeneity of a cell population. It 

was shown that the model correctly represented the population growth rate 

dynamics. The model was used to predict the changes in the population growth 

rate as a response to the environmental change in the PFR. Scale-up effects 

have also been explained in detail by the model combining the Euler-Euler 

approach. PBM, and a kinetic model. Lab-scale and industrial-scale bioreactors 

were simulated by the model for comparison. It was confirmed that due to 

different time scales of mixing, mass transfer and chemical reactions, in 

bioreactors scale-up at a constant operating variable likely resulted in the 

formation of heterogeneities at a large scale (Morchain et al., 2014). The Euler-

Euler approach is widely used, but here are several disadvantages associated 

with it. First, the biophase is treated as continuum, and it is therefore unable to 

distinguish between individual cells. As a consequence, it is impossible to 

describe the trajectory of a single cell in the flow field, which makes this 

approach less suitable for simulating the performance of the cell population 

upon an oscillating environment. Second, the cell state cannot be described 

accurately enough by just one or two parameters that can be used to distinguish 
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cell populations in PBM. Thus, a detailed description of the intracellular reaction 

network by PBM would lead to a high dimensional distribution function that is 

computationally intractable. As a consequence, such PBM has so far never been 

implemented (Fernandes et al., 2011; Henson et al., 2002). 

Euler-Lagrange frame 
In contrast, the Euler-Lagrange approach still treats the fluid phase as a 

continuum but the dispersed biophase is then tracked by the Lagrange 

approach (Lapin et al., 2010). As the biophase is present in the Lagrange frame, 

it becomes possible to track single cells and record the intracellular state as a 

function of time. As a result, the analysis of the lifelines of individual cells in 

space and time is possible. Recently, there are more studies applying the Euler-

Lagrange approach for integration(Haringa et al., 2018; Lapin et al., 2004). By 

integrating a kinetic mode of glycolysis of yeast with the CFD model, Lapin et al. 

(2004) were the first who described temporal oscillations in glycolytic 

metabolites at the single-cell level in the presence of a spatially heterogeneous 

glucose concentration field (Wolf and Heinrich, 2000). To reduce the 

computational cost, the cell in this case represented a large collective of real 

cells. The simulation results showed that ideal mixing conditions contributed to 

synchronization of the individually autonomous oscillations at the population 

level, while in the presence of substate gradients, a dramatic loss of synchrony 

occurred. In order to further verify the integration method, a larger bioreactor 

was simulated with a more sophisticated cell kinetic model. The cell kinetic 

model contained a phosphotransferase system for the sugar uptake. The 

behavior of an Escherichia coli population in an oscillating environment was 

studied by integrating the CFD model with central carbon metabolism. 

Simulation results confirmed distinct difference in cell conditions that had been 

observed experimentally at different operation scales (Chassagnole et al., 2002; 

Lapin et al., 2006).  

Compared to the Euler-Euler approach, the Euler-Lagrange approach is believed 

to be a more accurate method to describe the interaction between discrete 

cells and their environments. Cell population heterogeneity depends on the 

environments experienced at the single-cell level (Müller et al., 2010). The 

unique trajectory of a single cell can be depicted since the Lagrangian approach 

tracks single cells along their paths in bioreactors. Meanwhile, the effect of 

temporal and spatial environmental changes along the trajectory of single cells 

can be introduced as well. 
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Compartment-based integration 
With either approach, the CFD considers detailed hydrodynamic features of a 

bioreactor. The computational burden constrains its application in real 

industrial settings. Even with considerable simplifications, weeks of simulation 

is still required for a complete fed-batch process. Compartment models form a 

middle ground between ideal reactor models and full CFD. Originally, those 

models were set up based on experimental data (Oosterhuis and Kossen, 1984; 

Vrabel et al., 1999; Vrábel et al., 2001). More recently, CFD simulation was used 

as a basis of constructing such a compartment model (Bezzo et al., 2003; Bezzo 

and Macchietto, 2004; Delafosse et al., 2014). With a significant simplification 

of the fluid field, the large-scale gradient can be estimated via integration of a 

black box model within seconds (Nadal-Rey et al., 2021b; Nadal-Rey et al., 

2021a; Spann et al., 2019a; Spann et al., 2019b; Tajsoleiman et al., 2019). 

However, the assumption of instantaneous equilibrium of the cell’s response to 

external conditions by the black box model is questionable. Similar to 

integration with CFD models, there are certain advantages of combining a 

structured kinetic model with a compartment model, via either population 

balances (Pigou et al., 2017; Pigou and Morchain, 2015) or parcel tracking 

(Delafosse et al., 2015). 

The scope of this thesis 
Bioprocesses use the power and versatility of nature via microorganisms that 

make bio-products from renewable feedstocks. Microorganisms can very well 

be engineered as efficient cell factories. However, the gap between the cell 

environment at lab and production scales is causing gross resource and asset 

utilization inefficiencies and is a barrier to fast and successful scale-up. 

Understanding the effect of environmental heterogeneities on cells in 

bioreactors is of great importance of response mechanisms upon an external 

perturbation and facilitate the establishment of pathway kinetics. A couple of 

scale-down systems have been devised to study the effect of environmental 

gradients and multiple, prolonged perturbations in large-scale practices. In 

parallel, cell kinetic models need to be designed and calibrated with a simple 

structure but yet should be efficient to describe the cell dynamics in selected 

scenarios. Still, kinetic models alone are not capable of interpreting the complex 

oscillating environment in the industrial scale bioreactor. Therefore, an 

extensive understanding of a real bioprocess needs the information of detailed 

flow field of the fermentor.  
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This thesis aims at developing a robust, model-based, simulation platform to 

speed up fermentation scale-up, driven by profound biological and physical 

understanding from series of continuous cultivations and representative scale-

down cultivations. Further, we would like to demonstrate the application of 

computational approaches for better design of scale-down simulators. All of 

those will enable faster and more successful scale-up, improve the energy and 

resource efficiency of fermentations and accelerate bringing bio-innovations to 

the market.  

The concept of using a simplified kinetic model to capture all essential dynamic 

features is demonstrated first, where a production process of penicillin with 

Penicillium chrysogenum is used as an example. The goal of Chapter 2 is to 

assess the capability of a simplified structured model by using a smart lumping 

strategy for simplification purposes, with limited compromise on predictiability, 

relying on learnings from high-quality physiological and intracellular 

metabolomics data. Beginning with the end in mind, the scope of the developed 

model is limited to the impact of potential carbon gradients in large scale and 

get quantitatively correct predictions in a well-controlled feast-famine scale-

down systems. We will combine the existing knowledge of penicillium kinetics 

(e.g. PAA transportation, penicillin pathway regulation, role of storage carbon, 

etc.) for a comprehensive cell model.  

Then, further deploying the lumped model, in Chapter 3, the goal is to integrate 

it into a CFD framework using the Euler-Lagrange approach. In such a way, one 

can clearly see the cell’s motion pattern coupled with its intracellular metabolic 

pattern. In this work package, we will compare multiple scenarios covering two 

types of kinetic models (black box and structured kinetic models) with both 

ideal-mixing scenarios and CFD at 54m3 industrial scale or 3L lab scale. For the 

computational aspect, we will explore different ways of coupling (1-way or 2-

way). Finally, we will test both kinetic models in fed-batch fermentation mode 

to verify the model prediction against real experimental data. 

In Chapter 4 and 5, we will present another important model strain, the yeast 

Saccharomyces cerevisiae. Chapter 4 will focus on the regulation of storage 

carbon metabolism as these compounds have already shown to have important 

roles in multiple organisms, including P.chrysogenum and S.cerevisiae. Because 

of the focus on storage metabolites, we will largely simplify the remaining, lean 

part of the yeast (e.g. central metabolism, growth, overflow metabolism, etc.) 

as a black-box while describing the roles of different storage compounds, such 

as trehalose and glycogen explicitly. Nevertheless, the concept of this model is 
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also to be able to provide a smooth integration into CFD for large scale 

simulation, as the content of these storage compounds are also of industrial 

interest. Therefore, the developed model will also be tested by integration with 

previously obtained particle tracks via 1-way coupling. 

In parallel with the kinetic model with a focus on storage, the goal of Chapter 5 

is to develop a lumped kinetic model with a similar structure as the model 

presented in Chapter 2, essentially a compact full cell model that is capable of 

describing the complete specific growth rate range (i.e., 0.005 1/h to 0.35 1/h). 

Instead of including a specific product pathway like in the P.chrysogenum model, 

we will focus more on describing S.cerevisiae’s ethanol formation properties 

under carbon overflow or oxygen limitation conditions, known as the Crabtree 

effect and Pasteur effects. This requires a proper description of the intracellular 

energy and redox levels by the model. The complete model will also be tested 

and validated against particle tracks obtained previously from a CFD simulation 

of a large scale S. cerevisiae fermentation process, using the Euler-Lagrange 

approach, proving its potential application in full-scale simulation. Further, this 

model can also serve as a scaffold for models wherein product formation is 

incorporated, to enable a faster and smoother modeling workflow for the 

future. 

Finally, in Chapter 6, shortcomings of the model assessed in Chapter 5 are 

addressed and possible improvements are addressed in a qualitatively manner. 
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Abstract 
A powerful approach for the optimization of industrial bioprocesses is to 

perform detailed simulations integrating large scale computational fluid 

dynamics (CFD) and cellular reaction dynamics (CRD). However, complex 

metabolic kinetic models containing a large number of equations pose 

formidable challenges in CFD-CRD coupling and computation time afterward. 

This necessitates to formulate a relatively simple but yet representative model 

structure. Such a kinetic model should be able to reproduce metabolic 

responses for short-term (mixing time scale of tens of seconds) and long-term 

(fed-batch cultivation of hours/days) dynamics in industrial bioprocesses. In this 

paper, we used Penicillium chrysogenum as a model system and developed a 

metabolically structured kinetic model for growth and production. By lumping 

the most important intracellular metabolites in 5 pools and 4 intracellular 

enzyme pools, linked by 10 reactions, we succeeded in keeping a relatively 

simple model structure, which gives informative insight in the state of the 

organism. The performance of this 9-pool model was validated with a periodic 

glucose feast-famine cycle experiment at the minute time scale. Comparison of 

this model and a reported black box model of this strain showed the necessities 

of the structured model under feast-famine conditions. This proposed model 

provides deeper insight into the in vivo kinetics and, most importantly, and can 

be easily integrated into a computational fluid dynamic framework for 

simulating complete fermentation performance and cell population dynamics 

in large scale and small scale fermentors. 

 

Keywords: structured model, black box model, feast-famine, kinetics, 

Penicillium chrysogenum 
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Abbrivations 
acell,3.1 Specific area of cell (m2/CmolX) 
Ci Extracellular concentration of compound I (moli/kg) 
ci Kinetic constant (reaction dependent) 
D Dilution rate (1/h) 
kdi Degradation rate of enzyme i (1/h) 
kperm,3.1 membrane permeability constant for PAA (m/h) 
Ki Affinity constant (moli/gDW for intracellular compounds and moli/kg for extracellular 

compounds) 
ki Kinetic constant (reaction dependent) 
m3.3 Fitted parameter for penicillin production kinetic (-) 
mATP,2.2 Cell maintenance in terms of ATP (molATP/CmolX/h) 
mPAA Cell maintenance on PAA futile cycle in terms of ATP (molATP/CmolX) 
mS Cell maintenance in terms of glucose (molglc/CmolX/h) 
pHext Extracellular pH (-) 
pHint Intracellular pH (-) 
pKPAA pK value of phenylacetic acid (-) 
qi Biomass specific uptake/consumption rate of compound I (moli/CmolX/h) 
R Sum of residual error of the cost function (-) 
vi Rate of reaction i (moli/CmolX/h) 
Xi Intracellular concentration of compound I (moli/gDW) 
YX/S,max Maximum biomass yields on glucose (molglc/CmolX) 
YP/S,max Maximum production yields on glucose (molglc/molPenG) 
α Kinetic constant (reaction dependent) 
β Kinetic constant (reaction dependent) 
γ Redox level (-) 
δ0 Basis rate in glucose transport kinetic (1/h) 
μ Specific growth rate (1/h) 
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Introduction 
The emerging fields of systems biology and synthetic biology aim at achieving a 

more fundamental understanding of biological complexity through system-level 

analysis (Kleijn et al. 2007), and enhancing fermentative productivity of desired 

compounds by pinpointing and relieving bottlenecks in the metabolic networks 

(van Gulik et al. 2000). However, a direct utilization of the observations made 

in lab-scale cultivations could be problematic due to ‘scale-up effects’ 

(Noorman 2011). In order to capture the complex dynamics of the microbial 

metabolism in large-scale bioreactors, there has been an increasing focus on 

the use of high-resolution mathematical models for a rational bioprocess design 

and optimization (Vasilakou et al. 2016; Wang et al. 2015). A proposed powerful 

approach to accomplish this is by integrating computational fluid dynamics (CFD) 

models and cellular reaction dynamics (CRD) models (Lapin et al. 2004; Tyo et 

al. 2010). In this way, lifelines for individual cells can be obtained for high-

precision scale-up/down investigation and population heterogeneity studies. 

There are several kinds of CRD models describing whole cell physiologies that 

could be considered for coupling with CFD. The most complex models are 

genome-scale metabolic flux models (GEMs) which contain a huge amount of 

intracellular details (Lu et al. 2016; Österlund et al. 2012). For genome/large-

scale metabolic flux models, the step towards dynamic simulation poses a major 

challenge due to the limited mechanistic in vivo kinetic knowledge of each 

reaction. On the other side, the conventional black box kinetic model is able to 

respond to the local residual glucose concentration with minimum model 

complexity, by neglecting all intracellular metabolic details. Using a black box 

model, Larsson et al. (1996) simulated the glucose concentration gradient in a 

30 m3 cultivation of Saccharomyces cerevisiae by integrating CFD and a 

hyperbolic glucose uptake model. This simple method predicted a spatial 

glucose gradient that was favorably validated with experimental data. This 

methodology guided the design of scale-down simulators and further study of 

the influence of glucose perturbation on the performance of Saccharomyces 

cerevisiae cultivation (Bylund et al. 1999). Still, the black box model has 

limitations: the cell’s individual ‘experiences’, or ‘life-lines’ are not taken into 

consideration (Haringa et al. 2016; Lapin et al. 2010; Lapin et al. 2006). 

Nowadays, structured metabolic models are being developed and Kerkhoven et 

al. (2015) reviewed several of such kinetic models for yeast. Typically, they 

feature only one particular pathway of interest, outside of the context of the 

whole network and the strongly regulated and coherent response of the key 

metabolic functions. These more detailed metabolic kinetic models have their 
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associated issues, especially in parameter estimation (Hynne et al. 2001; Rizzi 

et al. 1997; Smallbone et al. 2013; Theobald et al. 1997; van Eunen et al. 2012). 

Efforts have been made to describe these kinetics in a more reliable way rather 

than using the classical hyperbolic enzyme kinetics. Heijnen (2005) reviewed six 

approximative kinetic formats from the perspective of metabolic modeling 

efficiency. Later, the most favored lin-log approach was successfully applied in 

the kinetic modelling of P.chrysogenum (Nikerel et al. 2012). All in all, the 

selection criteria of preferred CRD models for CFD coupling is a trade-off 

between purpose, complexity, simulation time frame and the data availability 

for parameter identification (Craven et al. 2013). 

In this article, we use P.chrysogenum producing penicillin G as a model organism, 

and propose a metabolically structured model based on a published 

stoichiometric model and the concept of connecting important reactions in five 

lumped metabolite pools that are most sensitive to highly dynamic extracellular 

environment inside large-scale bioreactors. We demonstrated the applicability 

of our model in predicting the most relevant metabolic dynamics from the 

second to day timescale. Also its advantage to a classic black box model is 

addressed. With a simple enough structure to be further integrated into a CFD 

framework, this 9-pool structured kinetic model make afterward complete 

simulation of large scale fermentation possible. 

Materials and Methods 

Strain 
The high yield Penicillium chrysogenum strain DS17690 was kindly donated by 

DSM Biotechnology Center (Delft, The Netherlands). This strain has been 

previously characterized in numerous studies (Berg 2013; de Jonge et al. 2011; 

Deshmukh et al. 2015; Douma et al. 2010c; Harris et al. 2006; van Gulik et al. 

2001; van Gulik et al. 2000). 

Data source 
Steady state data (van Gulik et al. 2000): Biomass specific rates under glucose-

limited chemostat conditions, covering a wide range of dilution rates, is 

available from van Gulik et al. (2000).  

Feed ramp experiment (this study): To acquire intracellular information under 

slow dynamic conditions, a ramp experiment was performed where the dilution 

rate was linearly decreased from 0.05 1/h to 0.005 1/h in 100h (Ramp phase). 

The ramp was started after the system initially reached a steady state at 0.05 
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1/h. During the ramp phase, the fermentation settings remained the same as 

during the chemostat phase, except the air flow rate was adjusted to from 2.0 

to 0.2L/min to get a reliable offgas O2/CO2 information at low feed rate. The 

dissolved oxygen concentration remained well above 0.2 mol/m3 (80% of air 

saturation) throughout the process. 

Feast-famine experiment (de Jonge et al. 2011): The experiments were carried 

out with periodic glucose feeding, with cycles of 360 seconds. The glucose was 

feed for the first 36 seconds in each cycle resulting in glucose accumulation in 

the broth and consumption (feast phase) during the first 180 seconds and 

glucose starvation (famine phase) for the remaining 180 seconds. During the 6 

minutes cycle, datasets of online and offline measurements and extra and 

intracellular metabolites was collected. 

Both the steady-state and ramp data were used for parameter estimation and 

model validation was performed using data from feast-famine experiments. 

Medium 
The composition of the chemostat medium was designed to support a steady 

state biomass concentration of approximately 5.6g/L dry weight, containing 

15.0g/L glucose. 5.0g/L (NH4)2SO4, 1.0g/L KH2PO4, 0.5g/L MgSO4∙7H2O, 0.68g/L 

phenylacetic acid (PAA) and 2ml/L of a trace element solution (Douma et al. 

2010b). The same medium but with 0.41g/L PAA was used for the batch phase. 

For the details in medium preparation procedure, please refer to (Douma et al. 

2010b) 

Bioreactor setup  
Aerobic glucose-limited chemostat cultures (pH=6.5, 25°C) of 4L working 

volume were carried out in a 7L turbine stirred bioreactor (Applikon, Schiedam, 

The Netherlands) at a dilution rate of 0.05 1/h. The aeration rate was 2L/min 

with a headspace overpressure at 0.3 bars and the stirrer speed was 500 rpm. 

Offgas was passed through a gas analyzer (NGA2000, Rosemount, USA) for the 

O2 and CO2 concentration measurement. 

Dry weight  
Dry cell weight was measured in triplicate, using glass fiber filters (type A/E; Pall 

Corporation, East Hills, NY; 47 mm with 1 μm pore size). The filters were pre-

dried at 70°C until a constant weight was achieved and loaded with 5 g broth 

and washed with 10 mL demineralized water. The filters were then dried for 24 

h at 70°C and weighted afterwards.  
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Rapid Sampling 
Rapid sampling for extracellular glucose, penicillin and PAA was conducted 

using the cold steel-bead method described previously (Mashego et al. 2003). 

Rapid sampling for intracellular metabolites was carried out through a specially 

designed rapid sampling device (Lange et al. 2001), with the sample processing 

procedure of de Jonge et al. (2012) for quantitative metabolite analysis, using 

U-13C-labeled cell extract as internal standards (Wu et al. 2005). 

Metabolite analysis 
Intermediates of the glycolysis, TCA cycles, PP pathway and amino acids were 

measured by a GC-MS platform (Cipollina et al. 2009). Adenine nucleotides and 

penicillin pathway intermediates were analyzed by LC-MS/MS (Douma et al. 

2010a; Nasution et al. 2006; Seifar et al. 2012). Extracellular glucose is also 

measured by the GC-MS platform according to de Jonge et al. (2013). 

Simulation, parameter optimization, model validation 
Specific rates and intra-/extracellular metabolite concentrations obtained from 

previous chemostat cultivations (van Gulik et al. 2000) and the ramp feed 

experiment were used to estimate the 31 free parameters of the kinetic model. 

Parameter estimation was carried out in Matlab R2015a by minimizing the 

relative error of experimental value and predicted value (Eq.1).  

 Eq.1 

The standard error of each estimated parameter was calculated using an earlier 

reported method (Dolan et al. 2007). The parameterized model was validated 

by simulating the feast-famine experiments published by de Jonge et al. (2011). 

Theoretical Aspect 

The 9-pool structured model 
The metabolically structured model was derived from a previously published 

stoichiometric model for the same strain (van Gulik et al. 2000). Metabolites 

were lumped into five metabolite pools: glycolytic intermediates (Glyc), amino 

acids (AA), ATP, PAA and stored carbohydrates (Sto). These five pools were 

chosen: 

sim,i exp,i

i exp,i

y y
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1) To account for different response time scales: glycolytic intermediates and 

ATP pools have a time scale of seconds, amino acids have a time scale of 

minutes and Sto pool has a time scale of hours or days. 

2) To allow the deployment of internal cellular resources, such as amino acids 

and stored carbohydrates in the absence of extracellular glucose. 

3) To allow lumped reactions. For example, penicillin production is derived from 

amino acids, precursor and ATP; biomass production is based on the glycolytic 

pool, amino acids and ATP. 

Cells compartments were not included as it is not possible to differentiate 

between metabolites from different compartments in the cell. Relationships 

among these 5 intermediate pools were established by defining 10 lumped 

reactions, using hyperbolic equations for most rates. In addition, for 4 reactions 

(glucose uptake, PAA export, penicillin production and storage conversion), the 

maximum rate capacity was not constant. Therefore, 4 enzyme pools were 

defined to allow variable capacities. The 9-pool structured model contains five 

lumped intracellular metabolite pools, four enzyme (capacity) pools and ten 

extracellular components (See Table I), connected via ten intracellular reactions 

(See Figure 1).  

Detailed information on the pools’ elemental composition, model 

stoichiometry, the kinetics and the previously available metabolic parameter 

values can be found in Supplement A. To compare the model performance with 

a unstructured model, a classic black box model for this strain developed by 

(Douma et al. 2010c) is shown in Supplement B. Intracellular and extracellular 

mass balances, which are the basis of our simulation model, are included in 

Supplement C. Measured intracellular metabolite concentrations for the 

metabolites that formed the five model pools for fitting and validation purposes 

are listed in Supplement D.  
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Figure 1 Overview of the 9-pool model for P.chrysogenum. Carbon metabolism is shown in black, energy 
metabolism in red, penicillin production in green, storage carbon cycling in blue.
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Table I Intra- and extracellular pool definition, element composition, charge condition, redox level and 
approximate intracellular turnover time 

 

Pool name Expression 
Element 

compositiona 

γ-

value 

Approx. turnover 

time (s) (de Jonge 

2016; Nasution et 

al. 2008) 

Predicted 

turnover time 

at μ=0.05 1/h b 

In
tracellu

lar 

Glycolytic Glyc CH2O 4 ~5-10 7 

Amino acids AA CH2.00O0.70N0.32 3.64 ~500-3000 2800 

ATP ATP n.a. n.a.c ~3-5 3 

PAA PAA C8H7O2
- 36 ~10-20 16 

Stored 

carbohydrates 
Sto CH2.24O0.98 4.28 ~10000 12000 

En
zym

e
d 

Glucose uptake XE,1.1 n.a. n.a. n.a. n.a. 

PAA export XE,3.2 n.a. n.a. n.a. n.a. 

Penicillin 

conversion 
XE,3.3 n.a. n.a. n.a. n.a. 

Storage 

conversion 
XE,4 n.a. n.a. n.a. n.a. 

Extracellu
lar 

Glucose Glc C6H12O6 24 n.a. n.a. 

Oxygen O2 O2 0 n.a. n.a. 

Carbon dioxide CO2 CO2 0 n.a. n.a. 

Ammonia NH4 NH4
+ 0 n.a. n.a. 

Sulfuric acid SO4 SO4
2- 0 n.a. n.a. 

PAA PAA C8H7O2
- 36 n.a. n.a. 

Biomass X CH1.79O0.59N0.16 4.13 n.a. n.a. 

Penicillin G P C16H17O4N2S- 74 n.a. n.a. 

Water H2O H2O 0 n.a. n.a. 

Proton H H+ 0 n.a. n.a. 

a: please reference Supplement A for more details. 
b: Turnover time is calculated based on the pools and the influx(outflux) under steady state. 
c: not available. 
d: Capacities of reactions 
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Model extension with variable enzyme pools 
Previous literature reported that enzyme levels are not constant but depend on 

growth rate (Heijnen and Romein 1995). Experimental results from the feed-

ramp experiment also revealed an increase in both the extracellular glucose 

concentration and intracellular PAA concentration, suggesting a loss in glucose 

uptake capacity and PAA export capacity. As the 9-pool model is designed for 

describing a wide range of growth rates, it is necessary to have a variable 

maximum rate for kinetics of some reactions.  

Based on experimental information, we have designed 4 variable enzyme pools: 

glucose uptake, PAA export, penicillin production and carbohydrate 

storage/release process. All rate capacities followed the intracellular enzyme 

balance (Stephanopoulos et al. 1998): 

 Eq.2 

Where qE,syn is the specific enzyme synthesis rate in molE/CmolX/h, kdE is the 

enzyme degradation rate in 1/h and μ is the cell growth rate in 1/h. The amount 

of transporter/protein is a result of production, degradation and growth 

dilution. The enzyme synthesis rate qE,syn kinetics differ between the enzyme 

pools, according to different experimental profiles. 

Variable glucose uptake capacity 

Experimental data from steady state and feed-ramp experiments suggested a 

loss of glucose uptake capacity at low growth rate (Figure S1), in line with 

previous reports (Heijnen and Romein 1995). This reduction leads to a higher 

extracellular glucose concentration.  

Previous experimental results indicate a stable glucose affinity in either steady 

or oscillation conditions (de Jonge et al. 2011), attributing the uptake capacity 

loss to the protein synthesis. Following the same hypothesis, we propose that 

the synthesis of glucose transporter protein is a sigmoid function of the growth 

rate with a base level sufficient to provide the maintenance energy required at 

μ=0 1/h:  

 Eq.3 
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Variable PAA export capacity 

PAA export is reportedly governed by an ATP-binding cassette transporter 

(Douma et al. 2012). The enzyme synthesis rate was assumed to follow a linear 

relationship to the growth rate (Condon et al. 1995): 

 Eq.4 

Combining Eq.2 and Eq.4 yields: 

 Eq.5 

Here ‘α’ was set to zero, assuming that little to no transporter protein would be 

produced at zero growth.  

Variable penicillin production pathway capacity 

The kinetics for penicillin production are directly applied from previous research 

by Douma et al. (2010c). However, instead of the (extracellular) residual glucose 

concentration, we consider the concentration of intracellular glycolytic 

intermediates as the repression factor for synthesis of the enzyme in the 

penicillin pathway.  

Variable carbohydrates storage/release capacity 

Intracellular stored carbohydrates data from both chemostat and feed-ramp 

showed an increase in storage capacity at low growth rate, indicating that the 

cell tends to save more carbon to counter possible starvation. The Sto pool 

balance reads: 

 Eq.6 

In steady state, the Sto pool size is only a function of the net storage flux and 

growth rate: 

 Eq.7 

From the steady state data, one can easily calculate that the net storage flux 

(v4.1-v4.2) is around 0.0045 molC/CmolX/h at μ=0.05 1/h. This value is only 4% of 

the qS (0.12 molC/CmolX/h (Nasution et al. 2008)) and only 18% of the storage 

influx (0.024 molC/CmolX/h (de Jonge et al. 2013)) under that condition. 

Therefore, for a correct storage pool size, one should carefully control the fluxes 

of storage and release so that their difference drops slower than the decline in 

growth rate. We propose to model the carbohydrate storage/release at two 

,E synq  = +
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levels (Eq.S11-Eq.S13, Table S5): (1) A variable ‘enzyme’ capacity similar to 

glucose uptake, PAA export and penicillin synthesis (See above). (2) Kinetic 

relations for storage and release on ATP, storage pools and the extracellular 

glucose concentration to determine the instantaneous rates. Unfortunately, 

performing a direct flux validation for these storage/release processes was 

difficult due to the high cycle rate and low net flux. Further validation on these 

rates could be realized through 13C labelling experiments (Antoniewicz 2013; de 

Jonge et al. 2013; Tang et al. 2009).  

Results and Discussion 

Parameter estimation and model performance 
Of the 40 model parameters, the value of 9 parameters could be obtained from 

previous reports (Table S6), the remaining 31 parameters were fitting based on 

the experimental result and the fitting algorithm mentioned above. The 

estimated error in the parameter is in estimation is typically in the range of 10-

25%.  

Figure 2 shows an overview of the model performance for steady states and 

feed-ramp experiments. Herbert-Pirt parameters for substrate utilization were 

calculated based on the stoichiometry and compared to previous reports (Table 

II). The glucose/biomass ratio is the same but the glucose/penicillin ratio is 

significantly lower in the 9 pool model. However, this is compensated by an 

additional energy cost due to a futile PAA cycle. In the black box model, these 

two features are combined, yielding to a higher glucose/penicillin ratio. Except 

for this, the new model showed good stoichiometric agreement with the black 

box model. 
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Table II Calculated yields and maintenance rates between 9-pool model and black box model 

Model 
YX/S,max YP/S,max mS mPAA

a 

(molglc/CmolX) 
(molglc/CmolPenG

) 
(molglc/CmolX/h) (molglc/molPAA/h) 

9-pool 
Model 

0.249 2.484 0.00134 0.00142 

Black box 
model 

(Douma et al. 
2010c) 

0.250 5.750 0.00150 n.a.b 

a: PAA futile cycle rate was calculated based on PAA export rate at D=0.05 1/h (St.St.) with 
CPAA=0.003molPAA/kg. 
b: not available. 

Parameter Sensitivity 
The parameter sensitivity was expressed as the percentage variation of the 

predicted pool sizes and reaction rates when a single parameter was submitted 

to a change (Cloutier et al. 2008). Here the model sensitivity for the 37 

estimated parameters (pHext, pHint and pK values from Deshmukh et al. (2015) 

were excluded) was investigated for a glucose-limited steady state at a dilution 

rate of 0.05 1/h, via a 20% increase on all individual parameters. A symmetric 

response to a decrease of 20% was obtained for all parameters (data not 

shown). 

The sensitivity analysis in Figure 3 illustrates clear, but limited variations of the 

intracellular pool sizes (Xi) and/or rates (vi) with respect to parameter changes. 

It can be observed from Figure 3 that v1.1, v1.2, v1.3, v2.1 and v2.2 show little 

sensitivity towards all parameters changes, so do the the dynamic parameters 

in v1.1. The insensitivity of these rates and parameters, related to the carbon 

metabolism and energy production, is explained by their stoichiometric 

coupling when the cell growth rate (v1.3) is fixed at 0.05 1/h. As expected, the 

pools of glycolytic intermediates, amino acids and storage carbohydrates show 

corresponding responses to the parameter variation. This suggests a certain 

stability of the 9-pool model. XATP, which is supposed to be a stiff node in this 

model, was confirmed to be relatively invariant in the sensitivity analysis. The 

9-pool model was able to predict stable glucose-limited continuous cultivations 

with dilution rates no lower than 0.005 1/h as well as glucose-excess conditions 

(batch).  
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Figure 2 A: qi profiles as a function of the specific growth rate under chemostat conditions; B: extracellular Ci 
(moli/kg), intracellular Xi (μmol/gDW), specific rates qi (moli/CmolX/h) as a function of time during steady 
state (-50-0h) and ramp phases (0h-100h). Experimental data (□) and simulated result (line) predicted by the 
9-pool model. 

 

 

Figure 3 Sensitivity analysis results (+20%) on 31 model parameters for 5 intracellular pools and the 10 
reaction rates at steady state (D=0.05 1/h). Relative errors in 5 intermediate pool sizes (upper panel) and 10 
reaction rates (lower panel) are shown as percentage in the heat map (Red: +20%, Green: -20%). 
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Performance under feast-famine condition 
Feast-famine cycles were selected for the 9-pool model validation. The 

application purpose of the model is within a CFD framework for simulation of 

an industrial scale bioreactor, where feast-famine regimes are expected. The 

average cycle time through the main regimes ranges from tens of seconds to 

several minutes depending on different bioreactor scales and configuration. 

The selected feast-famine experiment had a similar window of frequency and 

amplitude of the changes. The simulation started with a batch phase followed 

by a continuous phase under D=0.05 1/h. Once a steady state is reached, the 

feed strategy changed to an intermittent feed (de Jonge et al. 2011). In the 

simulation, the fluctuating feed regime lasted100 hours to reach reproducible 

cycles. In comparison, experimental stable cycle profile was obtained after at 

most 90 hours of intermittent feed (de Jonge et al. 2011). 

Figure 4 shows the result of all intracellular pool profiles predicted by the 9-pool 

model compared to the available experimental data. It is clear that the two 

rapid pools, glycolytic intermediates and ATP, respond sufficiently quick (in 

several seconds) to the extracellular shift in glucose concentration. The Glyc 

pool accumulated a certain amount of carbon (around 40μmolC/gDW) during 

the feast phase, which was consumed almost immediately at the beginning of 

famine phase. Later in the famine phase, the carbon source was routed to the 

Sto pool. The model predicted that about 80μmolC/gDW carbon was released 

from the Sto pool so as to support the cell during starvation. These Glyc pool 

and Sto pool contribute a total 120μmolC/gDW of intracellular carbon 

supplement during the glucose depletion phase. This amount is in agreement 

with experimental results which suggested a transfer of intracellular carbon 

between feast and famine of about 113.7μmolC/gDW during the cycle (de 

Jonge et al. 2013).  

The predicted glucose profile under feast famine conditions (Figure 5A) shows 

a good agreement with measured concentrations. De Jonge have reconstructed 

the qS (de Jonge et al. 2011), growth rate(de Jonge 2016), qP (de Jonge et al. 

2011), respiratory intensity (de Jonge 2016; de Jonge et al. 2014) based on 

dynamic balance. The model output was compared to these estimated 

experimental rates (Figure 5B-G). The 9-pool model rates are close to 

experimental results in steady states (before t = 0) and showed some deviations 

during the feast famine cycles. Because of a long protein (glucose transporter) 

turnover time, the glucose uptake capacity in feast famine regime could be 

regarded at pseudo-steady state, at a value very close (0.0417 molglc/CmolX/h) 
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to reported qS,max (0.0449 molglc/CmolX/h). Consequently the uptake profile 

was in good agreement with the experimental rate calculated by de Jonge et al. 

(2011). For the growth rate and respiratory intensities, the model showed a 

more dynamic pattern than that in experimental estimates (Figure 5E, F). 

However, the estimated qO2, qCO2 and μ are relatively uncertain due to the 

limitation of the used estimation method (de Jonge 2016). Most important is 

that, the 9-pool model managed to retain a certain growth rate and respiratory 

rates during the famine phase, due to the availability of the intracellular carbon 

source. It was reported that this intracellular carbon (e.g. trehalose, mannitol 

and glycogen, etc.) acted as emergency carbon supply during short stages of 

glucose depletion (de Jonge et al. 2013). By taking a closer look at the simulated 

storage rates (Figure 6), one notices that the storage process (v4.1) was activated 

in the feast phase and inactivate during the famine phase, and vice versa for the 

carbohydrates release. This leads to a carbon flux at around 0.05 molC/CmolX/h 

towards the Glyc pool in the famine phase, which is comparable to the influx of 

extracellular glucose under at steady state conditions with D=0.016 1/h.  

 

Figure 4. Comparison of intracellular profiles predicted by the 9-pool model (black solid line) and experimental 
results (grey open square) under steady state (before time 0) and feast-famine conditions (after time 0). Local 
scale magnification are shown for XAA and XSto. Steady state: steady condition after 100 hours of continuous 
feed cultivation. Feast-famine: reproducible cycle after 100 hours of intermittent feed cultivation. 
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Figure 5 Comparison of extracellular and q-rate profiles predicted by 9-pool model (black solid Line), black 
box model (black dash line) and experimental results (grey solid line) under steady state (before time 0) and 
feast-famine condition (after time 0). Steady state: steady condition after 100 hours of continuous cultivation. 
Feast-famine: reproducible cycle after 100 hours of intermittent feed. Experimental q-rates were 
calculated/reconstructed based on de Jonge (2016) 

 

By applying the intermittent feed strategy, it was observed that there was a 

significant drop in the penicillin production rate (de Jonge et al. 2011). The 

predictions of the 9-pool model were compared with experimental data 

obtained with continuous and intermittent deed strategies (Figure 7). The 

penicillin production ability in the 9-pool model is controlled by a limiting 

enzyme (XE,3.3) whose synthesis is inhibited glycolytic intermediates. Under feast 

famine conditions, XGlyc caries significantly (Figure 4A). This impacts the 

synthesis of this limiting enzyme under feast-famine conditions. Due to a long 

turnover time of the enzyme, the simulated qP profile shows a steady (pseudo-

steady) state, but at a lower value. 
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Figure 6 Predicted carbon storage and carbon release process in one reproducible feast-famine cycle. A: v4.1 
(storage): solid line and v4.2 (release): dashed line. B: net storage rate (positive for storage, negative for 
release). 

 

Figure 7. Predicted and experimental qP profile in the first 100 h of continuous feeding cultivation (circles and 
dashed line) and intermittent feeding condition (square and solid line). t=0 represents the end of the batch 
phase. 

 

The simulation results showed the 9-pool model capacity in dealing with 

glucose oscillation conditions. Despite slight differences observed between 

simulation and reality, the model reflects the major metabolic characteristics of 

the cell dynamics, making it qualified for further integration. 

Limitations of the Black box model 
To compare the 9-pool model performance with a classic black box model, a 

published black box model of the applied strain (See Supplement B) was also 

tested. This black box model was previously designed on chemo-state results 

and has been tested under fed-batch conditions. Here, we compared its 

applicability to much more dynamic conditions, i.e. the feast-famine regime. 

One deficiency of the black box model is the direct application of the Herbert-

Pirt equation. In the black box model, the distribution of substrate uptake 



46 

always satisfies this equation (van Heerden et al. 2014) with no dynamics. This 

is a reasonable hypothesis in steady state (chemostat) or slow dynamic 

conditions (fed-batch or feed-ramp) where substrate is always available, but 

could be problematic under highly dynamic conditions where substrate is 

absent for short periods of time. In our feast-famine cases, the black box 

predicted an increase in biomass which was not observed in either the 9-pool 

model or experimental results. This 36% over-estimation in the biomass leads 

to a shorter feast phase and a longer famine phase (Figure 5).  

In addition, there was no intracellular carbon source available in the black box 

model, yielding it incapable of handling feast-famine conditions. Obvious 

consequences of the absence of glucose were a negative growth (Figure 5C) and 

production rate (Figure 5D). These two rates have to be negative in the black 

box model when substrate is absent, so as to balance the constant mS in 

Herbert-Pirt equation. Furthermore, respiration was predicted to be absent 

(Figure 5E, F). These issues of the black box model are structural deficiencies 

and cannot be overcome through parameter adjustment.  

Conclusion 
A metabolically structured 9-pool kinetic model was developed for penicillin 

fermentation. This model, characterized by five metabolite pools, four pathway 

capacity pools and ten kinetic reactions, showed sufficient accuracy in 

predicting intracellular pool sizes, extracellular concentrations, and reaction 

rates. By predicting feed-ramp and intermittent feed experiments, the kinetic 

model succeeded in reproducing dynamic processes both at minute and hour 

timescales, and the latter being representative for large scale fed-batch 

fermentations. Because of the lumped kinetics, a relatively limited 

computational power is needed and therefore this model can be further 

integrated with CFD simulations so as to realize a full, high-resolution industrial-

scale bioprocess simulation. In addition, the pool structure allows the 

calculation of individual cell lifelines, which describe the performance and 

composition of cells (or clusters of cells) during their trajectories in large 

bioreactors. This enables to study of cell population dynamics under complex 

industrial conditions. 

Further extensions can be made to this model. Depending on the model 

application, additional pools can be added. For instance, including oxygen and 

intracellular reducing agent pools (NAD+-NADH pair), enables to study local 

variations in oxygen supply and the cell redox level distribution in large-scale 

fermentations, which are commonly regarded as a key feature in aerobic 
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fermentation. However, before further improving this model, the trade-off 

between model accuracy/application and computational complexity needs to 

be carefully considered for supporting scale-up and scale-down design and 

optimization.  
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Abstract 
We assess the effect of substrate heterogeneity on the metabolic response of 

P.chrysogenum in industrial bioreactors via coupling of a 9-pool metabolic 

model with Euler-Lagrange CFD simulations. In this work, we outline how this 

coupled hydrodynamic-metabolic modeling can be utilized in 5 steps. (1) A 

model response study with a fixed spatial extra-cellular glucose concentration 

gradient, which reveals a drop in penicillin production rate qP of 18-50% for the 

simulated reactor, depending on model setup. (2) CFD-based scale-down design, 

where we design a 1-vessel scale down simulator based on the organism 

lifelines. (3) Scale-down verification, numerically comparing the model 

response in the proposed scale-down simulator with large-scale CFD response. 

(4) Reactor design optimization, reducing the drop in penicillin production by a 

change of feed location. (5) Long-term fed-batch simulation, where we verify 

model predictions against experimental data, and discuss population 

heterogeneity. Overall, these steps present a coupled hydrodynamic-metabolic 

approach towards bioreactor evaluation, scale-down and optimization 

 

Keywords: CFD, Ruler-Lagrange, Metabolic model, Scale-down, Industrial 
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Introduction 
Due to the presence of gradients in substrate concentration(Enfors et al., 2001),  

dissolved oxygen concentration (Oosterhuis & Kossen, 1984) and other process 

variables in industrial bioreactors, organisms are subject to temporal variations 

in their environment. Such variations impose stresses on these organisms (Lara 

et al., 2006; Neubauer & Junne, 2010; Wang et al., 2014), which may in turn 

affect the process yield (de Jonge et al., 2011). There are cases where extra-

cellular variations appear to be advantageous (Enfors et al., 2001), but typically 

the impact is negative as the process is driven away from the conditions set for 

yield optimization (de Jonge et al., 2011; Wang et al., 2015). Being related to 

mixing behavior, these gradients may occur in any reactor type, and are 

expected to amplify upon scale-up, which may hence come with a yield loss that 

should be considered when judging scale-up economics. Furthermore, 

knowledge on the impact of bioreactor heterogeneity can be used to guide 

design changes to the reactor and, with genetic engineering, the micro-

organism itself.  

Previously, we used Euler-Lagrange computational fluid dynamics (CFD) to 

study the environmental fluctuations experienced by micro-organisms (called 

lifelines) (Haringa et al., 2016) and showed how fluctuation statistics can be 

acquired from such simulation to guide scale-down (SD) simulator design 

(Haringa, Deshmukh, et al., 2017). These works focused on simulation and 

fluctuation quantification using the substrate uptake (qS) lifeline and did not 

quantitatively consider the metabolic response. When a dynamic metabolic 

model is available for the studied organism, coupled metabolic-hydrodynamic 

simulations can be used to evaluate the expected metabolic impact (Lapin et al., 

2004, 2006). Combined with experiments in representative scale-down 

simulators, such a coupled hydrodynamic-metabolic approach can be used for: 

(1) scale-down verification: does a scale-down simulator result in the same 

metabolic response as observed in the large-scale CFD simulation? And (2) 

design optimization: what is the expected impact of reactor design changes or 

metabolic modifications based on numerical assessment? The most promising 

changes can then be experimentally tested in representative scale-down 

simulations, offering a powerful approach to rational bioreactor design and 

scale-up (Wang et al., 2014, 2015). 

We numerically study five topics, outlined in Figure 1, highlighting the different 

aspects of the CFD-based scale-down workflow. A penicillin production process 

is used as a cease-study. Part I considers the coupled hydrodynamic-metabolic 



56 

simulation of a 54m3 industrial P.chrysogenum fermentation(Haringa et al., 

2016), focusing on mixing dynamics and neglecting slow processes such a 

biomass growth. We study the impact of mixing on metabolic variations using a 

9-pool metabolic model (Tang et al., 2017). Part II focuses on the design of a 

representative lab-scale SD-simulator for the 54m3 reactor. In part III, we 

perform numerical verification of the proposed SD-simulator performance, first 

assuming ideal mixing, and second by a CFD simulation of a 3L reactor with 

dynamic feed. In part IV, we discuss process optimization and propose a simple 

reactor alteration to improve the penicillin yield. To conclude, in part V, we 

simulate 60 h of a fed-batch fermentation for comparison with industrial data. 

With this we explore various aspects of the use of coupled hydrodynamic-

metabolic modeling for process evaluation and optimization. 

 

Figure 1. Graphic outline of the 5 subjects covered in this paper. I: Metabolic response simulation. II: CFD-
guided scale-down simulator design. III: Numerical verification of scale-down reactor performance. IV: 
Numerical full-scale design optimization. V: industrial fed-batch simulation 

Methodology 
All CFD simulations were conducted in ANSYS FLUENT 15.7, MATLAB 8.6.0 was 

used for post-processing and ideal mixing simulations. 

Metabolic model 
The 9-pool metabolic model for P.chrysogenum developed by (Tang et al., 2017) 

contains 5 intra-cellular metabolite and 4 enzymatic pools, and couples to the 

extra-cellular substrate concentration CS and phenylacetic acid (PAA) 

concentration CPAA. The metabolite pools are: Glycolytic intermediates (Xgly), 

Amino acids (XAA), Storage polymers (Xsto), ATP (XATP) and intra-cellular PAA 

(XPAA), all reported in µmol/gdw with gdw being the dry biomass weight. Three 

dimensionless enzyme pools influence metabolic rates: XE,11 ( the substrate 

uptake capacity), XE,32 (PAA export capacity), and XE,4 (storage capacity). The 4th 

enzyme pool controls the biomass specific penicillin production rate qP(Douma 

et al., 2010) and is reported in molP/CmolX/h (de Jonge et al., 2011; Douma et 
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al., 2010; van Gulik et al., 2000). For brevity, the mathematical model 

formulation is provided in Supplementary material A, together with additional 

information regarding FLUENT coupling. The effect of oxygen limitation  has not 

been studied sufficiently to be included currently model (Haringa et al., 2016; 

Tang et al., 2017). Hence we currently assume sufficient oxygen supply in all 

cases; oxygen limitations will be considered in future extensions. For a model 

overview, we refer to (Tang et al., 2017). 

Model simplifications. (Tang et al., 2017) developed and validated their model 

against a range of experimental data (de Jonge et al., 2011; van Gulik et al., 2000) 

including 360s feast-famine cycles (de Jonge et al., 2011). These results provide 

confidence that the model is able to capture the impact of circulation -timescale 

substrate variations. However, instabilities in XATP were encountered in our CFD 

simulations, which resulted from the sensitivity of the storage pool fluxes to 

turbulence-induced CS fluctuations on the sub-second timescale, which were 

not accounted for in model development (for details see Supplementary 

material A). A structural solution of this issue requires deeper analysis of the 

signaling mechanism behind storage dynamics. As we currently lack the 

information to develop such improvements, we instead opted for a patch 

solution by assuming the ATP pool is in quasi-steady state, meaning the fluxes 

in- and out of the ATP pool balance, giving dXATP/dt≈0 (Nikerel et al., 2012). This 

converts the dynamic ATP-balance in an algebraic expression: 

0 = ∑ (𝑣𝑖(𝑋𝑔𝑙𝑦, 𝑋𝐴𝐴, 𝑋𝐴𝑇𝑃, … ))

𝑖

 Eq. 1 

For the current non-linear kinetics, Eq. 1 was evaluated for 100,000 randomly 

generated sets of intra-cellular pools. Subsequent correlation showed XATP can 

be modeled as 𝑋𝐴𝑇𝑃 = 8.25 ∙ 𝑋𝑔𝑙𝑦𝑐
3 (10.53 + 𝑋𝑔𝑙𝑦𝑐

3 )⁄ . The model response was 

deemed satisfactory under all tested conditions. Further details on the 

approach and verification against experimental data are reported in 

Supplementary material A. 

CFD setup 

54m3 reactor setup 

We use the 54m3 reactor simulation (Haringa et al., 2016) with simplified single-

phase hydrodynamics as the industrial base-case. We furthermore simulate the 

same case including aeration, with a superficial gas velocity of Ug = 0.05 m/s, 

measured under STP conditions. The headspace pressure in the reactor was 
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1.85 bar, which gives an air density of 2.4 kg/m3 based on the log-mean pressure; 

the gas flowrate in the vessel was adjusted accordingly. The total domain height 

Ht = 11 m to account for broth expansion upon gassing, the gas-filled headspace 

is removed during parcel tracking (Haringa, Deshmukh, et al., 2017). A discrete 

population balance (8 bins, 0.5-12.7mm) with the kernels of (Luo & Svendsen, 

1996) was employed to capture the bubble size distribution. A Sauter mean 

diameter db = 7mm was observed; we lack experimental data to verify this, 

unfortunately. Furthermore we used the standard k-ε model (dispersed 

turbulent formulation), multiple-reference frame impeller modeling, and the 

universal drag model for interphase momentum exchange. Other inter-phase 

forces were neglected (Gunyol et al., 2009; Haringa, Deshmukh, et al., 2017; 

Khopkar et al., 2003). Simulations using Casson rheology (Roels et al., 1974) 

diverged in volume fraction α. For simplicity, we hence set the broth rheology 

equal to water (Newtonian, µl = 0.001). We realize this is a strong deviation from 

reality; we defend this assumption by observing that measured air-broth 

circulation time lies in between the circulation times in pure water and air-

water (Table 1), and capturing the range suffices for the current purpose. The 

air-water surface tension σ = 0.072 N/m, the turbulent Schmidt number was set 

to Sct = 0.2. Both single-phase and aerated simulations were conducted in a 

mesh with 180° periodicity. 235,000 hexahedral grid cells were used for single-

phase cases, 923,000 hexahedral cells for aerated cases. 

The gas-flow number Fl = Qg/ND3 = 0.1 implies the fermentor operates at the 

boundary of the 3-3 cavity regime and recirculation regime, where the mixing 

time τ95 is equal to or above that single phase-flow, respectively(Van’t Riet & 

der Lans, 2011). Available industrial data on circulation time (Haringa et al., 

2016) (τcirc ≈ τ95/4, (Noorman, 2011)) suggests the later; the circulation time τcirc 

is compared to simulation results in Table 1. The single-phase and two-phase 

simulation under- and over-estimate τcirc for aerated broth with 30%, 

respectively. Note the experimental value is based on a single measurement 

and hence comes with a significant margin of error; furthermore, transient 

effect may lead to a natural variability in recorded mixing times (McClure et al., 

2015), introducing additional uncertainty. With the present industrial data, it is 

unfortunately not possible to quantify this uncertainty. We regard the single-

phase and aerated simulation as a lower and upper bound mixing time scenario, 

with the true mixing behavior in the range. This level of accuracy suffices for our 

current demonstration purposes, but we stress the need for further 

investigation into modeling true aerated, non-Newtonian fermentation broths, 

and associated with that, a wider range of large-scale validation data (gas hold-
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up, local mixing curves and preferably local DO/substrate concentrations). 

Table 1 shows the gas-holdup is over-estimated compared to both air-water 

and air-broth experiments. This is likely an effect of model approximations, such 

as omitting inter-phase forces (except drag) and the empirical nature of inter-

phase models/population balance kernels. For broth, the simplified rheology 

and effect of surfactants and anti-foam on the broth-water surface tension σ 

play an additional role. Currently we are not directly interested in gas-holdup, 

but in case oxygen dynamics are included, this aspect requires further study. 

Table 1 Validation parameters of 54m3 fermentor simulations. The holdup for air-water is averaged over 3 
experiments, while a single experiment is reported for broth. The CFD circulation time is based on 5% 
saturation of the probe signal (mixing time τ95 is based on 95% saturation). For the experimental data, the 
half-circulation time was determined by recording the time lag between H2SO4 insertion at the top and probe 
response at the bottom. 

Parameter Exp. water Exp. broth Exp. air-
water 

Exp. air-
broth 

CFD water CFD air-
water 

Gas hold-up n/a n/a 16.4±0.8 12.6 n/a 20.4 
db [mm]  n/a n/a n/m n/m n/a 7.1 
τcirc [s] 19.3 77.0 41.6 25.7 18.2 32.9 

n/a = not applicable; n/m = not measured 

3-L laboratory reactor steup 

A round-bottom vessel with a working volume of 3L (Tang et al., 2017) is 

simulated for scale-down verification (452,000 hexahedral grid cells. Geometric 

parameters are reported in Supplementary material B. The gas flowrate applied 

in prior scale-down experiment is 2L/min (0.66 VVM) (Tang et al., 2017; Wang 

et al., 2018), giving Fl = 0.009 with an agitation rate of N = 10 s-1 (600 RPM) (Tang 

et al., 2017). This value is outside of the range probed in mixing experiments 

(Van’t Riet & der Lans, 2011), but implies τ95 is similar to or slightly higher than 

for effect of gas flow and model single-phase water. All walls were no-slip while 

the top surface had a no-shear free surface condition. Computational mixing 

simulations at 600 RPM yield a dimensionless mixing time N τ95 = 22, in excellent 

agreement with experiments (Supplementary material B); the dimensionless 

circulation time τcirc ≈ τ95/4 (Noorman, 2011). 

At high CX, the high effective liquid viscosity µl may practically lead to 

transitional flow, possibly increasing θ95 significantly. Previous non-Newtonian 

simulation of aerated lab-scale reactors did not produce realistic mixing results 

due to stagnant zones (Moilanen et al., 2007), and preliminary work using a low-

Re k-ε model with µl=0.15 Pa.s led to parcel tracking issues, with parcels sticking 

in the impingement point of the impeller discharge stream. We hence opted to 

decrease the agitation rate N to 1.67 s-1 to assess the effect of mixing time on 

the performance of a lab-scale scale-down simulator, and again assume a 
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Newtonian fluid with µl=0.001. This approach suffices for our current interest in 

the qualitative effect of a significant change in τ95; we do stress that for 

predictive quantitative modeling a more realistic rheology model is required. 

For 600  and 100 RPM, τcirc  = 0.55 and 3.3s, respectively. Experimental 

evaluation of mixing behavior in real fermentation broths is required to 

comment on whether this range of τcirc represents lab-scale practice. 

Metabolic model coupling 

The 9-pool metabolic model (Tang et al., 2017) is coupled to the Lagrangian 

(parcel) phase to study the response of microorganisms to environmental 

variations (Haringa, Noorman, et al., 2017; Lapin et al., 2004, 2006). In the 9-

pool model the glucose uptake rate qS is subject to transporter control, where 

the availability of transporter (XE,11) is controlled by growth rate µ (h-1). This 

means that strictly speaking 2-way coupling is required to resolve the substrate 

environment, which requires simulating long timespans due to the long 

transporter adaptation time, and is therefore computationally expensive (see 

Supplementary material C). 

The long adaption time allows for the assumption that the average transport 

capacity 𝑋𝐸,11
̅̅ ̅̅ ̅̅ ̅ is homogeneous in the fermentor. As 𝑋𝐸,11

̅̅ ̅̅ ̅̅ ̅ = 𝑓(𝜇), its value can 

be estimated based on growth rate under ideally mixing conditions, µid. For the 

applied model, the average growth rate under dynamic conditions �̅�  was 

typically close to µid, and the estimated 𝑋𝐸,11
̅̅ ̅̅ ̅̅ ̅  was similarly close. A-priori 

estimation of 𝑋𝐸,11
̅̅ ̅̅ ̅̅ ̅  allows to use 1-way coupling, as was done in earlier 

work(Haringa, Deshmukh, et al., 2017; Haringa et al., 2016; McClure et al., 2016), 

which means the number of tracked parcels Np does not influence the substrate 

gradient and cab be freely chosen. This simplification does not hold when intra-

cellular dynamics affect qS at short timescales (≈τcirc) (Haringa, Noorman, et al., 

2017; Lapin et al., 2004, 2006), or when 𝑋𝐸,11
̅̅ ̅̅ ̅̅ ̅ under dynamic conditions differs 

strongly from the ideal-mixing assessment. 

The above 1-way coupled approach was used to study mixing timescale 

dynamics, assuming constant CX, 𝑋𝐸,11
̅̅ ̅̅ ̅̅ ̅, feed rate F and liquid-filled height H. 

This practically represents a chemostat cultivation, where the dilution rate Dr is 

equal to the mean growth rate �̅�. Parcel tracking for both 1- and 2-way coupling 

is conducted in FLUENT, but segregating the extra-cellular and intra-cellular 

reactions allows 1-way coupling to be executed after rather than during the 

FLUENT simulation, using MATLAB to perform the metabolic computations. 

Additional information regarding the practical implementation of the metabolic 

computations is provided in Supplementary material A. The (statistical) steady 
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state allows to simulate O(10) mixing times to acquire fluctuation statistics; 

lifelines of 80h are subsequently generated to study the adaptation of qP to 

mixing-time dynamics (with constant CX, 𝑋𝐸,11
̅̅ ̅̅ ̅̅ ̅  by construction) by joining 

together individual lifelines, exploiting the statistically-steady extra-cellular 

nature. 

For the fed-batch simulation we use 2-way coupling to include temporal 

changes in CX and XE,11, meaning the metabolic computations are conducted in 

FLUENT as part of the simulation. The long variation time of both parameters 

allows the assumption that CX and 𝑋𝐸,11
̅̅ ̅̅ ̅̅ ̅ are spatially homogeneous (𝑋𝐸,11

̅̅ ̅̅ ̅̅ ̅ may 

be heterogeneous within the population, but to a same degree at every spatial 

location). This means that each time step𝐶𝑋
̅̅ ̅ and 𝑋𝐸,11

̅̅ ̅̅ ̅̅ ̅ can be calculated as the 

parcel population ensemble average, and the local uptake rate can be 

computed from the Eulerian framework as  

𝑟𝑆,𝐶 = 𝐶𝑋
̅̅ ̅ ∙ 𝑘11 ∙ 𝑋𝐸,11

̅̅ ̅̅ ̅̅ ̅ ∙
𝐶𝑆

𝐾𝑆 + 𝐶𝑆
 Eq. 2 

This simplified 2-way coupling requires the parcel number to be sufficient to 

capture overall heterogeneity, for which NP=O(103) typically suffices (Haringa et 

al., 2016; McClure et al., 2016); full 2-way coupling would require NP=O(105)- 

O(106) (Haringa, Noorman, et al., 2017). 1- and 2-way coupling require similar 

computation time per hour flow-time, but 2-way coupling does require the full 

fermentation time to be simulated to account for changes in CX and XE,11. A 

comparison of assumptions between 1 and 2-way coupling is given in Table 2. 

Table 2 Comparison of the assumptions between 1-way and 2-way coupling method used in this work. 1-way 
coupling is here used for chemostat cultivation, and 2-way coupling for fed-batch cultivation. 

Method 1-way coupling 2-way coupling 

Parcel tracking FLUENT 15.7 FLUENT 15.7 
Metabolic computation MATLAB 8.6.0 (post-process) FLUENT 15.7 (in-process) 
CX Fixed Variable 
XE,11 Fixed Variable 
µ Variable, stat. steady Variable 
Dr stat. steady 𝐷𝑟 = �̅� Dr ≈ 0 (fed-batch) 

Overview of cases 
We provide an overview of all simulations (Table 3), both conducted with CFD 

(FLUENT) and with the ideal or instantaneous mixing assumption (MATLAB), 

including the made assumptions and sections where these simulations are 

conducted. There is some variability in the applied timestep size ∆t in FLUENT; 

in all cases it was ensured the particle trajectories were completed within the 

default accuracy settings. In all cases, glucose concentration CS was variable, 

and the PAA concentration was fixed at CPAA = 3mmol/kg. 
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As noted in previous section, the uptake capacity 𝑞𝑆,𝑚𝑎𝑥 = 𝑘11 ∙ 𝑋𝐸,11 in the 9-

pool model depends on the growth rate µ. In the chemostat simulations, we 

aimed at µ≈0.03 h-1. To maximize qP: at this value of µ, the 9-pool model predicts 

qS,max ≈ 1.13 mmol/gdw/h under well mixed conditions, which is marked lower 

than the qS,max = 1.6 mmol/gdw/h reported by (de Jonge et al., 2011), measured 

for µ = 0.05 h-1. The large scale simulation TU-A, TG-A, MU-A were conducted 

with 𝑞𝑆,𝑚𝑎𝑥 = 𝑘11 ∙ 𝑋𝐸,11 = 1.13  𝑚𝑚𝑜𝑙/𝑔𝑑𝑤/ℎ and KS = 9.8 µmol/kg. 

The scale-down analysis and associated lab-scale CFD simulation (part II and 

part III) were conducted before the 9-pool model was available, which meant 

we had to rely on the kinetic parameters of (de Jonge et al., 2011), as in our 

previous work where we solely considered glucose uptake (Haringa et al., 2016). 

For consistency, we hence report a set of CFD simulations (TU-B, TG-B, MU-B) 

which use the 9-pool model, but with the uptake kinetics as published by (de 

Jonge et al., 2011), KS = 7.8 µmol/kg and qS,max = 1.6 mmol/gdw/h. We note that 

the fluctuations in qS and the intra-cellular pools are too strong in these cases. 

The purpose of these simulations is to show that the intra-cellular response 

predicted between the industrial and lab-scale simulations matches; not to 

predict the metabolic response in the absolute sense. 

Part I: Model response study. Part I focuses on TU-A (1-phase hydrodynamics, 

top feed) and TG-A (2-phase hydrodyn., top feed), to study the metabolic 

response to extra-cellular variations in an industrial-scale reactor with a 

statistically steady extra-cellular environment. As in our earlier work, a late 

fermentation stage was modeled, with CX = 55 g/kg and substrate feed rate F = 

1.23 g/m3s (Haringa et al., 2016). The 1-way coupling approach means XE,11 

remains unchanged in time. All other pools were variable, and initialized based 

on ideal mixing results. For consistency with part II, III, TU-B and TG-B are also 

reported here. The results are compared with a CFD simulation coupled with 

the dynamic gene regulation model of (Douma et al., 2010) (1-phase, top feed, 

case TU-1P), and ideal-mixing simulations with both the dynamic gene 

regulation (ID-1P) and 9-pool (ID-9P) model. 

Part II: Scale-down design. In part II we show a representative single-vessel SD-

simulator with dynamic feed can be designed from the lifelines gathered in part 

I, using CFD-case TU-1B as a basis. Two designs are proposed, with biomass 

concentrations CX = 55g/kg and CX = 27.5 g/kg, respectively. As noted above, the 

uptake kinetics of (de Jonge et al., 2011) were used. AS in previous work 

(Haringa, Deshmukh, et al., 2017), the default SD protocol is based on matching 

qS-lifelines between the scales. 
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Part III: Scale-down verification. First the performance of the scale-down 

protocols from Part II is assessed assuming ideal mixing (case ID-SD-27 and ID-

SD-55). Next, CFD simulations of the 3L lab scale reactor were conducted with 

the CX = 27.5 g.kg scale-down protocol, to study the effect of non-ideal mixing 

on SD performance. Instantaneous feed pulse injection was assumed in a small 

volume near the top surface. The hydrodynamics were frozen, but the substrate 

field was updated every timestep. The feed pulse scheme was supplied to 

FLUENT via a user defined function coupled to a lookup table. The fast mixing 

required time resolutions of ∆t = 0.002 s for N = 600 RPM (case CFD-SD-600), ∆t 

= 0.01 s for N = 100 RPM (case CFD-SD-100); this limited the resolved flow-time 

to 650s, in which 42 feed pulses were applied. This number is too small for a 

proper replication of the industrial-scale fluctuation statistics; therefore, scale-

down performance was judged by comparing the model performance with the 

ideal-mixing response for the same 42 pulses.  

Part IV: Design optimization. Industrial-scale CFD simulations were conducted 

with the substrate feed directly in the top impeller discharge stream (1-phase 

hydrodynamics), referred to as MU-A and MU-B. 

Part V: Full-scale fed-batch verification. We simulated a 60 h timespan of a feed-

batch fermentation (top feed, 1-phase hydrodyn.) which was conducted in the 

current 54m3 geometry, named TU-FB, to verify model performance with 

industrial data which was kindly provided by the DSM biotechnology center. 

The simulation was started at t = 10 h after batch start CX = 14 g/L. All model 

parameters are initialized based on the ideally-mixed 9-pool model outcome for 

the given starting conditions. In the industrial fermentation the total broth mass 

increased from 36,000 to 46,000 kg over the simulated timespan. However, 

explicitly modeling the volume change is computationally costly. As an 

approximation, kept the volume constant at 54 m3, with the hydrodynamics of 

MU-1; as both impellers are submerged at all times, the change in τcirc over the 

course of the fermentation is assumed to be minor. To compensate for the 

higher volume, the provided feed profile (reported in Figure 6) was adjusted to 

ensure an equal feed in g/kg/s between the simulation and industrial 

fermentation at all times. Experimental data for qP and µ were used to evaluate 

model performance for TU-FB, as well as an ideal-mixed simulation with the 

model of (Douma et al., 2010), case ID-1P-FB.
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Table 3 Overview of all the simulations, both CFD and ideal/instantaneous-mixing based (IDM), conducted in this work. All cases were conducted as chemostats, except for 
TU/ID-FB, which are a fed-batch simulations. Naming convention: T = top feed. M = mid feed (impeller discharge stream). U = ungassed. FB = fed-batch (2-way coupied). ID = 
instantaneously mixed. SD = scale-down. 9-P indicates the 9-pool model of (Tang et al., 2017) is used for metabolic coupling, 1-P indicates the Dynamic Gene Regulation model 
of (Douma et al., 2010) is used. A and B indicate which kinetic parameter values are used. SD-100 and SD-600 indicate agitation rates of 100 and 600 RPM, respectively 

Name CFD/IDM Met. Model. Part Gassing Coupling Feed qS,max [mmol/gdw/h] KS [µmol/kg] CX [gdw/kg] NP ∆t [s] 

TU-A CFD 9-P I no 1-way top 1.13 9.8 55 4000 0.1 

TG-A CFD 9-P I yes 1-way top 1.13 9.8 55 4000 0.2 

MU-A CFD 9-P IV no 1-way imp. 1.13 9.8 55 4000 0.3 

TU-B CFD 9-P I no 1-way top 1.6 7.8 55 4000 0.03 

TG-B CFD 9-P I yes 1-way top 1.6 7.8 55 4000 0.2 

MU_B CFD 9-P IV no 1-way imp. 1.6 7.8 55 4000 0.3 

TU-1P CFD 1-P I no 1-way top 1.6 7.8 55 n/a st.st. 

ID-1P IDM 1-P I n/a n/a n/a 1.6 7.8 55 n/a st.st. 

ID-9P IDM 9-P I n/a n/a n/a 1.6 7.8 55 n/a st.st. 

ID-SD-27 IDM 9-P II/III n/a n/a n/a 1.6 7.8 27 n/a 0.03 

ID-SD-55 IDM 9-P II/III n/a n/a n/a 1.6 7.8 55 n/a 0.03 

CFD-SD-100 CFD 9-P III no 1-way top 1.6 7.8 27 5000 0.01 

CFD-SD-600 CFD 9-P III no 1-way top 1.6 7.8 27 5000 0.002 

ID-1P-FB IDM 9-P V n/a n/a n/a var. 9.8 var. n/a 1 

TU-FB CFD 9-P V no 2-way top var. 9.8 var. 2000 0.2 

n/a = not applicable; var. variable; st. st. = simulation conducted in steady state. 
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Result and discussion 

Part I: model response study 

CFD simulations 

We study the long-term adaptation of P.chrysogenum exposed to a strong 

substrate gradient. The most notable difference between TU-A/B and TG-A/B is 

the higher τcirc for the latter, as discussed previously, yielding qS fluctuations of 

longer duration. As qS is locally saturated in all cases, the fluctuation amplitude 

hardly differs. Examples of single lifelines for TU-A and TG-A are shown in Figure 

2, top panel. 

Figure 2 shows the pool dynamics over an 80 h period for TU-A, TG-A, TU-B, TG-

B. All cases show qualitatively similar behavior, but the higher XE,11 for TU/TG-B 

has a clear negative impact on qP. This illustrates the error introduced by taking 

kinetic parameters directly from literature, without accounting for the 

adaptation of qS,max to µ. 

Practically, qP is controlled by Xgly: high Xgly inhibits synthesis of penicillin 

producing enzyme, but it increases growth rate µ which enhances enzyme 

synthesis. The first effect scales with 𝑋𝑔𝑙𝑦
6  (Tang et al., 2017), meaning that high 

values of Xgly are highly repressive, but below-average values of Xgly are hardly 

influential. This explains the large difference in qP between the cases, 

eventhough all cases have a nearly equal average 𝑋𝑔𝑙𝑦𝑐
̅̅ ̅̅ ̅̅ ̅. The cases with the 

highest Xgly buildup show the biggest qP loss. For aerated cases, the higher τcirc 

translates to prolonged exposures to excess conditions, resulting in strong Xgly 

accumulation. Similarly, the higher transport capacity for TU/TG-B cases 

increased glycolytic accumulation. The effect of both kinetics and τcirc is 

summarized in the Damköhler number Da = τcirc/ τrxn, where we take 𝜏𝑟𝑥𝑛  =

 𝐾𝑆/(𝑞𝑆,𝑚𝑎𝑥 ∙ 𝐶𝑋), the limit for 𝐶𝑆 → 0. This definition for τrxn does not require 

specifying a value of CS, which makes it straightforward to evaluate for both 

experimental and CFD cases. Including the impeller-fed cases MU-A/B (part IV), 

a linear trend between the penicillin yield YSP (Table 4) and Da is observed: YSP 

= 0.3417-0.0015Da (R2 = 0.97), graphically shown in Supplementary material D. 

Within the range of fluctuations, the effect of Xgly on µ, while non-linear in 

nature (Tang et al., 2017), can be reasonable linearized. Hence, the effect of 

high and low Xgly values on µ nearly averages out: 𝜇(𝑋𝑔𝑙𝑦)̅̅ ̅̅ ̅̅ ̅̅ ≈ 𝜇(𝑋𝑔𝑙𝑦)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . Only the 

most extreme case (TG-B) deviates from this; the very lengthy exposures to 

starvation conditions leads to a lower �̅� . The data clearly shows that the 
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duration of exposures to excess- and starvation conditions strongly impacts the 

metabolic response. Since these time periods are highly distributed, there is 

considerable heterogeneity in Xgly at any given location. This feature is clearly 

visible in supplementary videos (available online with the original publication), 

and is inherently not captured by black-box models that instantaneous 

adaptions of the intra-cellular to the extra-cellular domain. 

XE,32 and XE,4 are hardly affected in case TU/TG-B where XE,11 was preconditioned 

for µ = 0.03 h-1, whereas the higher uptake for TU/TG-B causes some changes in 

these pools. XAA is hardly affected in all cases. The value of these pools is 

homogeneous within the population (Supplementary material E). 

 

Figure 2 Long-term 9-pool model response for TU-A (black) , TG-A (red), TG-B (orange). The top panel shows 
examples of extra-cellular variations experienced by a single parcel in TU-A, TG-A. For Xgly and µ, the solid lines 
represent the mean, the dashed lines represent single parcel tracks to indicate the variations. All other lines 
represent are averages of 100 parcels. Intra-cellular pools Xgly, XAA, Xsto and XPAA have units µmol/gdw. µ has 
units h-1. qP has units mol/CmolX/h. All other pools are dimensionless. 
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Table 4 Comparing yields and productivity between experimental data  (van Gulik et al., 2000), the black box 
(BB) model (Douma et al., 2010) and the 9-pool model (Tang et al., 2017) with ideal mixing assumption and 
the 9-pool (9P) of (Tang et al., 2017) 

Case F [molS/CmolX/h] µ [h-1] qP [molP/CmolX/h] YSX [CmolX/CmolS] YSP [molP/molS] Da 

Exp. 0.0118 0.029 5.33∙10-4 0.41 0.045 n/a 
ID-1P 0.0125 0.032 4.94∙10-4 0.43 0.040 0 
ID-9P 0.0125 0.033 4.40∙10-4 0.44 0.035 0 
TU-1P 0.0125 0.043 0.73∙10-4 0.57 0.006 n/a 
TU-A 0.0125 0.032 3.57∙10-4 0.44 0.029 32.1 
TG-A 0.0125 0.035 3.28∙10-4 0.47 0.026 58.0 
TU-B 0.0125 0.033 2.99∙10-4 0.44 0.024 57.0 
TG-B 0.0125 0.027 2.38∙10-4 0.36 0.019 103 

n/a = not applicable. 

Experimental data and yields 

The CFD results are compared with experimental chemostat data (van Gulik et 

al., 2000) and ideal-mixing simulations using both model of (Douma et al., 2010) 

(ID-1P) and the model of (Tang et al., 2017) (ID-9P) in Table 4. Both models are 

known to under-predict qP around µ = 0.03 h-1 compared to steady-state 

experiments. As shown in Table 4, the CFD simulations show a yield loss 

between 18% (TU-A) and 46% (TG-B) compared to the 9-pool model with ideal 

mixing. The real circulation time for the 54 m3 reactor lies in between the 

extremes simulated here; based on the Da-correlation a yield loss of 22% is 

expected for τcirc = 25.7 s, sing XE,11 value for µ = 0.03 h-1. 

For demonstration, we have also coupled the model of Douma directly to 

FLUENT (TU-1P), which yields an extreme 85% decrease in YSP and strong 

increase in YSX (discussed in detail in (Haringa et al., 2016)). These results are 

deemed unrealistic; the model of Douma was not designed to cope with rapid 

substrate concentration fluctuations, and the results show that applying the 

model in a situation where such fluctuations are present leads to extreme 

results. Returning now to the 9-pool model of (Tang et al., 2017); although the 

chemostat assumption used here introduced some simplifications, we are 

confident the overall trends hold, making the outlined method suitable for a 

quick assessment of the impact of design changes on the fermentation process. 

The most promising cases can subsequently be studied in more detail with 2-

way coupling and experimental scale-down assessment. 

Part II: Scale-down design 
A scale-down design analysis is conducted for TU-B. Feed protocols for a single-

vessel, fluctuating feed scale-down simulation with variable pulse duration 

were designed based on the arc-analysis methodology proposed in (Haringa et 

al., 2016). In contrast to earlier work, we did not divide the lifelines in regimes 

first; the arc analysis method was directly applied to the full (smoothed) lifelines, 
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using a reference value qref = 0.05 qS,max. This means the lifelines are divided in 

feast-arcs (qS/qS,max > 0.05) and famine-arcs (qS/qS,max < 0.05). The arc duration 

τarc is registered as the time between two consecutive crossings of qref, as 

graphically indicated in Figure 3A,B. The distribution in τarc is reported in Figure 

3C. For famine arcs, we can assume negligible magnitude: qS ≈ 0, regardless of 

duration. For feast arcs, the maximum qS/qS,max for each arc-trajectory, called 

ΩS,max, is recorded. This gives a correlation between magnitude ΩS,max and 

duration τarc (Figure 3D). The rationale behind qref = 0.05 qS,max follows from the 

results: the famine arcs show a complex distribution in τarc, but with negligible 

amplitude. For the feast arcs, the τarc distribution is comparatively simple, and 

a clear correlation between ΩS,max and τarc exists. Together, these statistics 

quantify qS-lifeline fluctuations and form a basis for representative scale-down 

simulation. 

Representative profiles of alternating feast-famine arcs are generated from the 

τarc distributions by inverse transform sampling; for each feast event, the 

maximum qS is retrieved from the mean τarc-ΩS,max correlation. Determining the 

feed rate F is straightforward from the mass balance, assuming an 

instantaneously mixed lab-scale reactor. During famine intervals, F = 0 and qS ≈ 

0 by construction. The most truthful approach is to feed gradually over a period 

of 0.5 τarc, such that the arc-shape is symmetric (Figure 3E); this requires the lab-

scale to operate at the industrial biomass concentration CX = 55 gdw/kg (case ID-

SD-55). Applying instantaneous feed pulse administration (Figure 3F) relaxes 

this to CX = 27.5 gdw/kg (ID-SD-27); the rate-of-change in qS is reduced as qS 

decreases over the entire period τarc. The lower CX leads to a reduced effective 

viscosity (Roels et al., 1974) which may facilitate practical operation. However, 

it must be ensured the change in rate-of-change does not result in a different 

metabolic response. Further decreasing CX inherently compromises either the 

fluctuation duration or magnitude, and thereby the representation of qS-

lifelines. 
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Figure 3 A and B: Graphical overview of the arc-analysis method for positive (feast arcs) and negative (famine 
arcs) fluctuations with respect to qref = 0.05qS,max, respectively. C: Arc-time distributions famine (gray) and 
feast (black). D: Arc magnitude ΩS,max under feast conditions as a function of arc time. Colors indicate bin 
fraction (normalized per timestep). Solid line: 𝛺𝑆,𝑚𝑎𝑥

̅̅ ̅̅ ̅̅ ̅̅  vs. τarc from CFD simulation. E: Generated lifeline, 
gradual feed pulses, CX = 55 g/L. F: Generated lifeline, instantaneous feed pulses, CX = 27.5 g/L. G: Example of 
CFD-lifeline for TU-B. 
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Table 5 Comparison of the instantaneous mixing cases ID-SD-27 and ID-SD-55 with CFD simulation TU-B. Inst. 
= instantaneous feed, Grad. = gradual feed. ∆qP is reported with respect to the ideal mixing benchmark ID-9P. 
The last three columns report the exposure (in %) to E (excess), L (limitation) and S (starvation) conditions, 
based on the definitions (Haringa et al., 2016) 

Case CX [g/kg] Feed �̅� [h-1] qP [molP/CmolX/h] ∆qP E L S 

TU-B 55.0 - 0.033 2.99∙10-4 -31.8% 6.8 36.2 57.0 

ID-SD-55 55.0 grad. 0.0386 2.90∙10-4 -33.7% 9.8 32.7 57.5 

ID-SD-27 27.5 inst. 0.0340 2.93∙10-4 -33.2% 8.0 34.2 57.8 

Part III: Scale-down verification 

In this section we assess the scale-down protocols of part II, first assuming 

instantaneous mixing and second using lab-scale CFD simulations. Note that 

instantaneous/ideal mixing in this context means the feed is immediately 

spatially distributed; due to the pulsed feed nature, there are temporal 

variations in qS. 

Instantaneous mixing 

Both for ID-SD-55 and ID-SD-27, 5 statistically representative lifelines were 

generated and analyzed. Table 5 lists the metabolic response in qP and µ 

compared to TU-B. Additionally, we conduct a regime analysis (using the 

definitions of (Haringa et al., 2016)) on the generated lifeline to determine the 

exposure to excess (E), limitation (L) and starvation (S) conditions. Case ID-SD-

55 slightly over-estimates exposure to excess conditions. This results in a higher 

�̅�, mildly lower qP and minor offsets in the intra-cellular pool sizes (reported in 

Supplementary material E), but overall we conclude that both cases excellently 

represent the large-scale simulation. The good performance of ID-SD-27 follows 

from the notion that the total uptake within a pulse of length t, ∫ 𝑞𝑆𝑑𝑡
𝑡

0
, is equal 

between the two pulse administration mothods, and the turnover time of Xgly is 

sufficiently slow to yield similar responses in Xgly (Supplementary material E). If 

the turnover time of Xgly was well below τarc, the metabolic response is expected 

to differ between the cases, and lowering CX might not be allowed. We hence 

regard the possible reduction in CX as a case-depended effect, and it should be 

evaluated as such. Furthermore, operating at industrial CX whenever is possible 

may avoid unforeseen responses, not captured by the metabolic model. In case 

no predictions regarding the metabolic response are available, a scale-down 

simulator should in any case aim to produce the best possible replication of the 

extra-cellular environment (qS-lifelines), and no compromises in CX should be 

made. 
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CFD verification 

In many cases, lab-scale fermentors can be assumed as ideally mixed. However, 

the combination of a very short τrxn (due to a low KS) and mixing issues due to 

rheological issues (Moilanen et al., 2007) could lead to spatial heterogeneity in 

lab-scale fermentors. To assess whether this impacts scale-down performance, 

CFD simulation of a SD-simulator were conducted with CX = 27.5 g/kg to probe 

the possible impact of non-instantaneous mixing. Spatial heterogeneity relates 

to the Damköhler number Da = τcir/τrxn. Here, τcirc ≈ 0.5-3.3 s (for 600 and 100 

RPM, respectively). As the CS field is now dynamic, we employ a more general 

definition of the reaction time, 𝜏𝑟𝑥𝑛̅̅ ̅̅ ̅̅ = 𝐶𝑆
̅̅ ̅ 𝑅𝑆

̅̅ ̅⁄ = (𝐶𝑆
̅̅ ̅ + 𝐾𝑆) (𝑞𝑆,𝑚𝑎𝑥 ∙ 𝐶𝑋)⁄  with 

𝐶𝑆
̅̅ ̅  the volume average substrate concentration. Right after pulse 

administration, 𝐶𝑆
̅̅ ̅ ≫ 𝐾𝑆  and 𝐷𝑎 ≪ 1 : this implies the pulse will be mixed 

before 𝐶𝑆
̅̅ ̅ and thereby τrxn drop significantly, leading to a homogeneous broth 

and equal experiences by all micro-organisms in the domain. 

This is reflected in the model response for both case CFD-SD-600 and CFD-SD-

100. The qS lifeline in Figure 4B (600 RPM) and C (100 RPM) show evidence of 

spatial heterogeneity directly following pulse administration, which for case 

CFD-SD-600 rapidly wears off, meaning the lifeline under the instantaneous 

mixing assuming is retrieved (Figure 4A). The heterogeneous period lasts longer 

for CFD-SD-100, but eventually the population synchronizes, and the metabolic 

response is hardly affected (Figure 4D). To comment on the role of non-ideal 

mixing in (aerated) SD-simulators with a high liquid viscosity µl, experimental 

measurements are required, but the results for CFD-SD-100 imply very poor 

mixing is required to yield significant heterogeneity in the population, and to 

yield a different metabolic response compared to the pulse-profile under the 

assumption of instantaneous mixing. This stems positive for practical 

application of fluctuating-feed SD-simulators. 
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Figure 4 Particle tracks in scale-down simulation CFD. A: instantaneous mixing simulation. B: CFD-SD-600, 3 
tracks. C: CFD-SD-100, 3 tracks. D: Response of intra-cellular pools in the 3L lab-scale reactor simulations. 
Black line: instantaneous mixing results. Red line: CFD-SD-600, average over 5000 tracks. Blue line: CFD-SD-
100 simulation, average over 5000 tracks. Intra-cellular pools Xgly, XAA, Xsto and XPAA have units µmol/gdw. µ has 
units h-1. qP has units mol/CmolX/h. All other pools are dimensionless. 
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Figure 5 Long-term 9-pool model response large-scale simulations for TU-A (black), MU-A (red), TU-B (gray), 
MU-B(orange). The top panel shows examples of qS-lifelines for single parcels in TU-A, MU-A. For Xgly and µ, 
the solid lines represent the average, the dashed lines represent single parcel tracks to indicate the variations. 
All other solid lines represent averages of 100 parcels. Intra-cellular pools Xgly, XAA, Xsto and XPAA have units 
µmol/gdw. µ has units h-1. qP has units mol/CmolX/h. All other pools are dimensionless. 

Part IV: Design optimization 

Part I revealed that reducing the frequency of qS variations the amplitude of Xgly 

fluctuations, which reduced inhibition of qP. (Cronin, 1992) reduced τ95 by a 

factor 2-2.5 by placing the feed point just below the top impeller (Van’t Riet & 

der Lans, 2011; Vrabel et al., 1999). We find τ95 = 23s (1-phase hydrodyn., MU-

A/B) when the feed is placed in the top-impeller discharge stream, a 2.7-fold 

reduction in τ95 compared to the top feed. This exceeds expectations and may 

be excessively low for a true penicillin fermentation when rheology and 

aeration are account for, but we accept this result for the sake of demonstration. 

The pool response for simulations MU-A and MU-B is reported in Figure 5. 

Compared to TU-A, the qS-lifelines for MU-A show a lower fluctuation amplitude, 

and strong reduction in fluctuation duration (Figure 5, top). This translates to 

much milder Xgly variations that directly relate to a higher qP for MU-A/B cases 

(Table 6). Again, 𝑋𝑔𝑙𝑦
̅̅ ̅̅ ̅̅  and hence �̅� remains virtually equal between the cases. 

The qP loss is reduced to 8.6% (with respect to ID-9P), where the top-feed case 

with equal τcirc, TU-A, showed a yield loss of 17%. The reduced exposure to 

starvation conditions furthermore is observed to yield a higher Xsto for MU-1 

cases. An alternative process improvement may be to modify increase KS by 
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modifying the glucose transporter, thereby reducing sensitivity to CS 

fluctuations. Within the current metabolic model, this also requires altering the 

sensitivity of the storage/release process to CS; we did not further pursue this 

option within the scope of this work. 

Table 6 Comparing yields and productivity between experimental data  (van Gulik et al., 2000), the black box 
(BB) model (Douma et al., 2010) and the 9-pool model (Tang et al., 2017) with ideal mixing assumption and 
the 9-pool (9P) of (Tang et al., 2017) 

Model Case F [molS/CmolX/h] µ [h-1] 
qP 
[molP/CmolX/h] 

YSX 
[CmolX/CmolS] 

YSP 
[molP/molS] 

9P ID mix 0.0125 0.033 4.40∙10-4 0.44 0.035 
9P TU-A 0.0125 0.033 2.99∙10-4 0.44 0.024 
9P TU-B 0.0125 0.032 3.57∙10-4 0.43 0.029 
9P MU-A 0.0125 0.030 4.02∙10-4 0.40 0.032 
9P MU-B 0.0125 0.030 3.83∙10-4 0.40 0.031 

Part V: Industrial-scale fed-batch simulation 

The long-term metabolic response in an industrial fed-batch reactor is 

simulated; the dynamic feed profile that was supplied to the simulation is 

reported in Figure 6A. CX and µ are well captured (Figure 6B and C, resp.), 

although an ideal-mixed simulation with model of (Douma et al., 2010) (ID-FB) 

better captures the final 20h. The 9-pool CFD simulation, however, performs 

superior in predicting the gradual reduction in qP (Figure 6D). The initial offset 

results from the lower peak qP prediction by the 9-pool model around µ = 0.03h-

1. 

The trends in intra-cellular pools (Figure 6E) reveal major temporal changes in 

the pool averages (solid lines), as well as the emergence of significant 

heterogeneity within the population; the dashed lines in Figure 6E represent 

the pool size standard deviation over 2500 tracks. The decreasing trend in all 

enzyme pools is a consequence of the reduction in �̅� to 0.01 h-1; the drop in XE,32 

reduces the PAA export capacity, giving rise to a strong PAA build-up. Similarly, 

a buildup in Xsto is observed. As before, the AA pool is least sensitive, although 

it undergoes some changes in later stages. The strong rise in population 

heterogeneity roughly coincides with the switch to a constant feed rate F ≈ 1.6 

kg/m3/h. 
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Figure 6 Response profiles of simulation TU-FB, comparing industrial data (diamonds), CFD response (black 
line) and an ideal-mixed black-box simulation (red line). A: Feed rate per unit reactor volume. B: Biomass 
concentration. C: Growth rate. D: Penicillin production. E: the response of 6 slow-responding intra-cellular 
pools, with the solid line the mean and dashed lines ±1 st. dev.  

 

For brevity, figures further detailing the onset of and degree of population 

heterogeneity are reported in Supplementary material F. The high degree of 

heterogeneity in the enzyme pools may be surprising at first glance; their 

adaption timescale strongly exceeds τcirc, and all parcels are expected to observe 

highly similar CS fluctuations during the cultivation. The link between µ and XE,11 

plays a key role; a parcel residing in famine zone (µ≈0) for a prolonged time 

undergoes a reduction in XE,11. This reduces subsequent substrate uptake qS 

with respect to the population average, further decreasing µ and hence XE,11, 

thereby amplifying the original disturbance. A deeper analysis in 
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Supplementary material F shows that parcels with a below-average XE,11 early 

on end in the bottom of the XE,11 distribution. A prolonged exposure to excess 

conditions could reverse the disturbance, but the results show that this 

practically rarely occurs. The further the deviation from the population average, 

the more unlikely recovery becomes. We do recognize that the observation that 

starving organisms lower their uptake capacity appears counter-intuitive; we 

stress this is a model prediction, that should be verified experimentally, thereby 

showing how coupled simulation may generate new targets for experimental 

investigation. The variation in all other intra-cellular pools eventually stems 

from the variations in XE,11; in the chemostat simulations of part I, where XE,11 

was necessarily fixed, no population heterogeneity was observed 

(Supplementary material E). 

The parcels with high XE,11 are the fastest growers; some acquire double the 

population average biomass over the cultivation time, whereas for the poorest 

growers µ ≈ 0 in the late process stage. As a low �̅� has a negative effect on qP, 

the fastest growers are also among the best penicillin producers, whereas the 

poor growers mostly accumulate storage material (Supplementary material F). 

Whether or not the predicted degree of heterogeneity is realistic requires an 

experimental scale-down study where population heterogeneity is probed on 

the single-cell level (Delvigne & Goffin, 2014; Zenobi, 2013). The simulations 

predict notable heterogeneity enzyme levels, which may provide suitable 

targets for fluorescent marking for experimental quantification. Besides bench-

scale scale-down, the use of microfluidic tools (Dusny & Schmid, 2015; 

Grünberger et al., 2014) with highly controllable substrate feed rates may be a 

promising route towards studying the effects of substrate variations.  

Concluding remarks 
We reported on the use of coupled hydrodynamic -metabolic simulations to 

assess large-scale fermentation processes in five parts: (1) industrial-scale 

metabolic response analysis, (II) scale-down design, (III) scale-down verification, 

(IV) design optimization and (V) industrial-scale fed-batch analysis. Combined, 

these steps provide a methodology for the analysis, scale-down and 

optimization of large-scale fermentation processes. Combing the 9-pool 

metabolic model for P.chrysogenum of (Tang et al., 2017) with CFD simulations 

of a 54 m3 fermentor (Haringa et al., 2016) (part I), we report a predicted 

penicillin yield loss of 18-45%, which correlated linearly with the Damköhler 

number, assuming a chemostat cultivation with 1-way metabolic coupling to 

simplify the simulation. The yield loss resulted from level of glycolytic 
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intermediates, relating the circulation time and substrate uptake capacity of the 

organism. These observations provide targets for reactor and metabolic 

optimization. 

The arc analysis methodology of (Haringa et al., 2016) was used to design a 

representative single-vessel, dynamic-feed scale-down simulator, based on the 

qS-lifeline (part II). Numerical evaluation to accurately reflect the metabolic 

response recorded in the industrial reactor. Capturing the rate-of-change 

experienced by micro-organisms on the industrial scale requires operating the 

lab-scale at the industrial biomass concentration CX = 55 g/kg. The 9-pool model 

response shows that it is possible to compromise the rate of change without 

changing the metabolic response to some degree, allowing for a factor 2 

reduction in CX. This would facilitate operation, but may induce metabolic 

responses for which the model does not account. Hence, we do emphasize that 

operating the scale-down simulator at industrial CX is preferred, especially when 

no metabolic response prediction is available, to ensure the best possible 

replication of qS-lifelines. CFD simulations of the proposed scale-down 

simulator with pulsed feeding showed that non-instantaneous mixing at the lab 

scale (assessed for circulation times of 0.55 and 3.3 s) did not compromise the 

metabolic response, which gives confidence in the practical application of the 

proposed simulator. This operational window may depend on the organism and 

geometry, and should be evaluated per-case. 

Changing the substrate feed location in the industrial-scale fermentor to 

improve substrate distribution reduced the ield loss from 18.4% to 8.6% (part 

IV). This showcases the prospects for in silico design optimization. To conclude, 

we present a 60 h fed-batch study (part V) with 2-way metabolic coupling, 

showing good agreement in µ and the glucose transport capacity XE,11. The 

results illustrate the importance of simulating fed-batch dynamics including 2-

way coupling to capture population heterogeneity. We do stress this does not 

imply that the 1-way coupled approach is futile; it is preferred for a rapid 

assessment of the metabolic response to design changes. We do, however, 

advise that the most promising chemostat cases are subsequently simulated 

with -way coupling (and/or experimentally assessed) to verify their 

performance when population heterogeneity is included. 

Altogether, we outlined the different roles of coupled hydrodynamic-metabolic 

modeling in the assessment and improvement of large-scale fermentor designs. 

In future work, the proposed scale-down simulators are to be tested to verify 

model predictions; the predicted yield loss and population heterogeneity 
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provide clear targets for assessment and model verification. There is room for 

improvement in both the CFD models and dynamic metabolic models, which 

would greatly benefit from a broader availability of industrial-scale data for 

verification. Such improvements act towards increasing accuracy and reliability 

of the here-shown coupled CFD approach, but will not influence the 

methodology in itself. We believe the here-presented methodology, combined 

with practical scale-down simulation, opens up a new approach towards 

rational fermentor design and scale-dup, accounting for the effect of large-scale 

reactor heterogeneity. 
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Abstract 
In industrial scale fermentation processes, microorganisms encounter a 

constantly changing environment, due to insufficient mixing in the large-scale 

bioreactors. Kinetic modelling is an ideal tool to quantitatively describe and 

predict microbial responses to these changes, in well-controlled scale-down 

systems and  at production scale, via integration in a Computational Fluid 

Dynamics (CFD) platform. In this work, we constructed two different types of 

kinetic models (Computational Reaction Dynamics - CRD) to describe the 

dynamics of trehalose and glycogen, two important cellular storage 

carbohydrates in the yeast Saccharomyces cerevisiae, under multiple steady 

states and glucose oscillation conditions. Both storage kinetic models were 

connected to a simple black box model which describes the glucose uptake, cell 

growth and respiration. The first kinetic model is a complete black box model 

using conventional Michaelis-Menten type kinetics. Despite its capability of 

describing cell phenotypes under steady state conditions, this model cannot 

predict cellular behavior during short term dynamics, such as glucose feast-

famine oscillations, due to structural limitations. The second model is a gene-

regulation model where the dynamics of the synthesis and degradation of 

storage compounds is regulated at both enzyme and metabolite level at the 

same time. Even with simple linear enzyme kinetics, the gene-regulation model 

can already precisely reproduce all steady states and qualitatively the feast-

famine scenario. This model also proves to be stable and maintains its dynamic 

features when integrated with cell lifelines in a 22 m3 pilot tank. We foresee 

that the properties of the gene regulation model make it suitable for integration 

in a full-scale Euler-Lagrange CFD-CRD simulation or compartment based large 

scale bioreactor simulation. Moreover, unlike a black box model, the presented 

gene-regulation module can be incorporated into a fully structured growth 

model of Saccharomyces cerevisiae and thus gain in predictive capacity.  

 

Keywords 
kinetic model, gene regulation, steady states, feast-famine, Saccharomyces 

cerevisiae 
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Introduction 
Microorganisms accumulate metabolites, polymers and energy carriers to cope 

with stress conditions, such as nutrient starvation, osmotic pressure, product 

inhibition, etc. Those stresses may not only be encountered in natural 

environments but could also be observed by cells in a well-controlled industrial 

scale fermentor. Among the various kinds of metabolites helping cells to 

mitigate those stresses, glycogen and trehalose have been studied most 

extensively (Choi et al., 2018; Gancedo & Flores, 2004; Nadal-Rey et al., 2021; 

Noorman, 2011; G. Wang, Zhao, et al., 2019; X. Wang et al., 2021; Wilson et al., 

2010). 

In Penicillium chrysogenum, trehalose acts as an emergency carbon source 

during short-term glucose starvation (L. de Jonge et al., 2014a). It was also 

found that the trehalose level in the cells was dynamically balanced by 

continuous fine-tuning of synthesis and degradation, which can be considered 

as an ATP consuming futile cycle. Nevertheless, the presence of such a trehalose 

synthesis and degradation cycle seems to be beneficial when we consider the 

cell’s secondary metabolism. (X. Wang et al., 2021) knocked out trehalose 

synthesis by deleting the tps1 and tps2 genes of P. chrysogenum Wisconsin 54–

1255 and observed not only morphology changes but also a significant drop in 

penicillin G production. Further, a high penicillin G producing strain featured a 

higher intracellular trehalose level compared to the reference wild type strain. 

In Saccharomyces cerevisiae, trehalose and glycogen are deployed as carbon 

source when carbon supply is limited (C. a. Suarez-Mendez, 2015; C. A. Suarez-

Mendez et al., 2014). Moreover, is has been observed that trehalose plays an 

important role in re-balancing the cell to a stable healthy status after 

experiencing a glucose pulse (C. A. Suarez-Mendez et al., 2016, 2017). In a 

trehalose storage-defective yeast transformant, a low glucose uptake capacity, 

lower respiration rate and lower energy charge status was observed (van 

Heerden et al., 2014).  

Glycogen, the other reserve compound in yeast, has its own merits in being 

used as a carbon source. This long-chain polyglucan has little effect on the 

internal osmotic pressure of the cell and is crucial for yeast to survive long-term 

nutrient deprivation (Silljé et al., 1999). (Wilson et al., 2010) comprehensively 

reviewed the regulation of glycogen metabolism for both yeasts and bacteria. 

At fundamental level, they shared certain structure similarities while the 

process of regulation could be quite distinct.   
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In practical applications of modern biotechnology, the ‘scale-up effect’ 

(Delvigne et al., 2017; Noorman, 2011; G. Wang et al., 2014) is a serious 

challenge for industrial scale bioprocesses. Caused by non-ideal mixing and 

mass transfer limitations in combination with fast metabolic uptake, 

concentration gradients of substrate, dissolved oxygen and pH could be formed 

in the reactor space.  When cells follow the liquid flow in the fermentor, they 

experience those gradients at a time scale of seconds to minutes and in many 

cases these gradients exert a negative impact on the key performance 

indicators (e.g. titer, rate and yield).  To quantitatively evaluate the impact of 

these gradients on the cell physiology in industrial scale processes, modeling 

techniques such as computational fluid dynamics (CFD) coupled with 

computational reaction dynamics (CRD) were developed and successfully 

applied to both Saccharomyces cerevisiae (Haringa, Deshmukh et al., 2017b; 

Lapin et al., 2004) and Penicillium chrysogenum (Haringa, Tang et al., 2017) 

fermentations. However, trehalose and glycogen, two key compounds for yeast 

cells to deal with stress and substrate oscillations, were not highlighted before 

as key metabolic response factors. Due to the nature of their cyclic metabolism, 

the study of the storage compounds kinetics is less straightforward due to 

difficulties in obtaining the actual fluxes towards and away from the trehalose 

and glycogen nodes. (C. A. Suarez-Mendez et al., 2016) calculated the absolute 

in-/outflux of both storage compounds by providing the carbon supply in the 

form of 13C labelled glucose during multiple steady states in chemostats. The 

absolute fluxes were calculated from the slope of increasing abundancy of 13C 

labelled glucose. Further, a dynamic 1313C-based metabolic flux analysis was 

applied in a dynamic oscillation scenario to identify the flux profiles during a 

glucose pulse condition (Aboka et al., 2009; L. de Jonge et al., 2014a; C. A. 

Suarez-Mendez et al., 2017).  

In this study, we focused on modeling the cyclic metabolism of trehalose and 

glycogen, based on quantitative 13C-labelled flux information. Two different 

kinetic models with different mechanisms of regulation were proposed, both 

capable of predicting a wide range of steady states reasonably well. However, 

when applied to a more industrially relevant scale-down system, the simple 

black-box based storage kinetics were not able to predict the dynamic storage 

responses within time scales of seconds to minutes, which appeared to be a 

structural problem. On the other hand, a gene-regulation based model, 

featuring decoupled regulation at both enzyme and metabolite levels, can 

reproduce the cell’s periodic response to the feast-famine cycle and proved to 

be suitable for CFD integration by testing it with lifelines obtained in a 22 m3 
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pilot tank. This piece of work clearly showed the necessity of incorporating gene 

regulation in the kinetic model, especially for modeling the dynamics at 

different timescales.  

Material and Methods 

Data sources  
Three published sets of experimental data have been used in this Chapter for 

model construction and validation. The summary of the data sources is given in 

Table 1.  

In short, we referred to (Canelas et al., 2011) for yeast growth in steady state 

chemostat cultures of which the dilution rates ranged from 0.02 h-1 to 0.30 h-1. 

The measured glucose uptake rates, respiration rates and residual glucose 

concentrations for various growth rates were collected. Because the core black 

box model doesn’t cover ethanol production and uptake as occurring at higher 

dilution rates, we only use data obtained below the critical dilution rate in this 

Chapter. 

For the profile of storage carbon, we used data from (C. A. Suarez-Mendez et 

al., 2016) where 13C-labelled MFA was carried out to obtain not only the 

intracellular levels of trehalose and glycogen but also the absolute in-/out-

fluxes of those storage compounds. 

Finally, we use glucose oscillation data from (C. A. Suarez-Mendez et al., 2017) 

for model validation under dynamic conditions. In this experiment, dynamic flux 

estimation based on a consensus model for yeast (Herrgård et al., 2008) with 

significant simplification, was executed using 13C-tracing information for rapid, 

periodic 400s glucose oscillations. Both the levels of trehalose and glycogen, 

which were almost constant in one cycle due to the large turnover times of 

these pools and the absolute fluxes into and from these storage compounds 

were used for model validation. 

  



88 

Table 1. Summary of published data used in this Chapter 

No. Type Strain Experimental Setting Reference 

1 Steady 
states 

CEN.PK 113-
7D 

Steady states reached via 
upward/downward step change in 
dilution rates 

(Canelas et al., 2011) 

2 Steady 
states 

Steady states reached via downward step 
change in dilutions rates, 13C labelling 
experiment at the end phase of each step 

(C. A. Suarez-Mendez 
et al., 2016) 

3 Glucose 
oscillation 

Dilution rate at 0.01h-1; feed profile 
repeated every 400s: fast feed (feast 
phase) in the first 20s and no feed (famine 
phase) in remaining 380s 

(C. A. Suarez-Mendez 
et al., 2017) 

Data processing and calculations 
In (C. A. Suarez-Mendez et al., 2016), only the degradation rates and 

intracellular levels of trehalose and glycogen were reported. In this Chapter, the 

influx of trehalose and glycogen were also required and can be calculated from 

their respective molar balances: 

𝑑𝑋𝑖

𝑑𝑡
= 𝑣𝑖,𝑠𝑡𝑜𝑟𝑎𝑔𝑒 − 𝑣𝑖,𝑟𝑒𝑙𝑒𝑎𝑠𝑒 − 𝜇 ∙ 𝑋𝑖  Eq. 1 

where i stands for trehalose or glycogen, X is the intracellular level and µ is the 

specific growth rate. During steady state conditions, the left-hand side of Eq.1 

equals zero. For these conditions the 𝑣𝑖,𝑠𝑡𝑜𝑟𝑎𝑔𝑒 can be obtained from Eq. 2 (C. 

A. Suarez-Mendez et al., 2016): 

𝑣𝑖,𝑠𝑡𝑜𝑟𝑎𝑔𝑒 = 𝑣𝑖,𝑟𝑒𝑙𝑒𝑎𝑠𝑒 + 𝜇 ∙ 𝑋𝑖  Eq. 2 

This leads to final absolute storage and release fluxes of both trehalose and 

glycogen as shown in Figure 1. The resulting fluxes, plotted against the specific 

growth rate, show completely different patterns for trehalose and glycogen. 

This provides strong evidence and necessity to apply different kinetics to 

describe the dynamics of the levels of trehalose and glycogen, respectively.  
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Figure 1. Residual glucose concentration (A) and specific synthesis and degradation rates of trehalose and 
glycogen (B) as a function of the growth rate in S. cerevisiae CEN.PK113-7D (C. A. Suarez-Mendez et al., 2016). 
For B, Red: Trehalose, Blue: glycogen, solid lines: synthesis rates, dashed lines: degradation rates. 

Software and Script 
All simulations were executed in MATLAB 2018a using the AMIGO toolbox 

(https://sites.google.com/site/amigo2toolbox). Ordinary Differential Equations 

(ODEs) were solved via CVODES (https://computing.llnl.gov/projects/sundials) 

by compiling the MATLAB model structure into C++ via Mex. Parameter 

estimations were executed via enhanced Scatter Search (eSS) with local solver 

fmincon (MATLAB).  

https://sites.google.com/site/amigo2toolbox
https://computing.llnl.gov/projects/sundials
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Results and discussion 

Model construction 
A black box-based model for cell growth was constructed, coupled with kinetic 

equations for the synthesis and degradation rates of trehalose and glycogen. 

(Figure 2). In this model the specific glucose consumption rate is assumed to be 

a function of the residual glucose concentration according to saturation kinetics 

(Kesten et al., 2015; Lao-Martil et al., 2022; Smallbone et al., 2013). After 

consumption the glucose is assumed to be distributed between cell growth, 

maintenance and storage carbohydrate synthesis, in this case trehalose and 

glycogen. For the distribution of glucose between growth and maintenance the 

well-known Herbert-Pirt equation is used with as parameters the maximum 

biomass yield and a maintenance coefficient, which were fitted to published 

data (Canelas et al., 2011). Because we separated the storage and degradation 

process of trehalose and glycogen, we divided the maintenance parameter into 

two parts: a constant part and a variable part. The latter one represents energy 

costs, in terms of ATP, of the storage/degradation cycle, and is converted into 

glucose consumption via the calculated yield of ATP on glucose during fully 

aerobic catabolism. In this black box model, the biomass is defined as lean 

biomass, which implies that no storage compounds are included. Because the 

sum of glycogen and trehalose can vary between almost 0% to 15% of the cell 

weight (Canelas et al., 2011; Wilson et al., 2010), it is preferable to describe the 

trehalose and glycogen development separately for a better accuracy of the 

model. Therefore, we adapted the biomass formula from (Aboka et al., 2012) 

by excluding the storage compounds. The adapted lean biomass formula for our 

model was then recalculated as C1H1.761N0.176O0.541. The oxygen uptake and CO2 

production rates are calculated based on carbon and redox balancing. 

The growth model is combined with storage compound synthesis and 

degradation to show the impact of trehalose and glycogen dynamics on both 

the carbon flow into central metabolism and the cell’s macromolecular 

composition. In this research work, two different models were proposed to 

describe the observed kinetic features of both trehalose and glycogen synthesis 

and degradation. 
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Figure 2. Schematic of the yeast model in this Chapter. The storage and degradation kinetics of trehalose and 
glycogen vary with different model scenarios. The growth model, which represents carbon distribution, cell 
growth and respiration remains the same. 

Storage kinetics as a black box 
Rate equations in this modeling effort follow classic Michaelis-Menten kinetics 

for all four reactions (i.e. v_tre_sto, v_tre_deg, v_glyc_sto, and v_glyc_deg). 

Trehalose accumulation was maximal at very low specific growth rates. Both 

trehalose storage and degradation rates showed their highest values at µ = 0.1 

h-1 (Figure 1), whereas trehalose was almost depleted with very low reaction 

rates at µ > 0.2 h-1. This suggests both rates could be activated (for 0h-1 < µ < 0.1 

h-1) and inhibited (for µ > 0.1h-1). (Canelas et al., 2011) showed that before 

reaching the critical growth rate (µ = 0.25 h-1) in glucose limited chemostats 

there is a linear relation between the specific growth rate and the specific 

glucose uptake rate (Canelas et al., 2011). The latter can further be well 

described by the extracellular glucose concentration(Figure 1A). Therefore, we 

proposed using extracellular glucose as both activator and inhibitor of trehalose 

storage and degradation. Further, we added trehalose inhibition (product 

inhibition) to the storage kinetics as well as trehalose activation (substrate 

activation) to the degradation kinetics. 

𝑣𝑡𝑟𝑒,𝑠𝑡𝑜 = 𝑣𝑡𝑟𝑒,𝑠𝑡𝑜,𝑚𝑎𝑥 ∙
(𝐶𝐸𝐶,𝑔𝑙𝑐 𝐾𝑚,𝑔𝑙𝑐,𝑡𝑟𝑒𝑠𝑡𝑜⁄ )

𝑛𝑔𝑙𝑐,𝑡𝑟𝑒𝑠𝑡𝑜

((𝐶𝐸𝐶,𝑔𝑙𝑐 𝐾𝑚,𝑔𝑙𝑐,𝑡𝑟𝑒𝑠𝑡𝑜⁄ )
𝑛𝑔𝑙𝑐,𝑡𝑟𝑒𝑠𝑡𝑜

+ 1)

∙
1

((𝐾𝑖,𝑔𝑙𝑐,𝑡𝑟𝑒𝑠𝑡𝑜 𝐶𝐸𝐶,𝑔𝑙𝑐⁄ )
𝑛𝑖,𝑔𝑙𝑐,𝑡𝑟𝑒𝑠𝑡𝑜

+ 1)

∙
1

((𝐾𝑖,𝑡𝑟𝑒,𝑡𝑟𝑒𝑠𝑡𝑜 𝐶𝐼𝐶,𝑡𝑟𝑒⁄ )
𝑛𝑖,𝑡𝑟𝑒,𝑡𝑟𝑒𝑠𝑡𝑜

+ 1)
 

Eq. 3 
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𝑣𝑡𝑟𝑒,𝑑𝑒𝑔 = 𝑣𝑡𝑟𝑒,𝑑𝑒𝑔,𝑚𝑎𝑥 ∙
(𝐶𝐸𝐶,𝑔𝑙𝑐 𝐾𝑚,𝑑𝑒𝑔,𝑡𝑟𝑒𝑑𝑒𝑔⁄ )

𝑛𝑔𝑙𝑐,𝑡𝑟𝑒𝑑𝑒𝑔

((𝐶𝐸𝐶,𝑔𝑙𝑐 𝐾𝑚,𝑔𝑙𝑐,𝑡𝑟𝑒𝑑𝑒𝑔⁄ )
𝑛𝑔𝑙𝑐,𝑡𝑟𝑒𝑑𝑒𝑔

+ 1)

∙
1

((𝐾𝑖,𝑔𝑙𝑐,𝑡𝑟𝑒𝑑𝑒𝑔 𝐶𝐸𝐶,𝑔𝑙𝑐⁄ )
𝑛𝑖,𝑔𝑙𝑐,𝑡𝑟𝑒𝑑𝑒𝑔

+ 1)

∙
(𝐶𝐼𝐶,𝑡𝑟𝑒 𝐾𝑡𝑟𝑒,𝑡𝑟𝑒𝑑𝑒𝑔⁄ )

𝑛𝑡𝑟𝑒,𝑡𝑟𝑒𝑑𝑒𝑔

((𝐶𝐼𝐶,𝑡𝑟𝑒 𝐾𝑡𝑟𝑒,𝑡𝑟𝑒𝑑𝑒𝑔⁄ )
𝑛𝑡𝑟𝑒,𝑡𝑟𝑒𝑑𝑒𝑔

+ 1)
 

Eq. 4 

Different from the pattern of trehalose metabolism, glycogen storage and 

degradation rates showed a nearly linear increase along with the specific 

growth rate (Figure 1B). Therefore we used the extracellular glucose 

concentration as the trigger, but did not apply glucose inhibition on the 

synthesis nor the degradation of glycogen. Glycogen synthesis is assumed to be 

inhibited at increasing intracellular glycogen content, while glycogen 

degradation is inhibited at decreasing intracellular glycogen content. 

𝑣𝑔𝑙𝑦𝑐,𝑠𝑡𝑜 = 𝑣𝑔𝑙𝑦𝑐,𝑠𝑡𝑜,𝑚𝑎𝑥 ∙
(𝐶𝐸𝐶,𝑔𝑙𝑐 𝐾𝑚,𝑔𝑙𝑐,𝑔𝑙𝑦𝑐𝑠𝑡𝑜⁄ )

𝑛𝑔𝑙𝑐,𝑔𝑙𝑦𝑐𝑠𝑡𝑜

((𝐶𝐸𝐶,𝑔𝑙𝑐 𝐾𝑚,𝑔𝑙𝑐,𝑔𝑙𝑦𝑐𝑠𝑡𝑜⁄ )
𝑛𝑔𝑙𝑐,𝑔𝑙𝑦𝑐𝑠𝑡𝑜

+ 1)

∙
1

((𝐾𝑖,𝑔𝑙𝑦𝑐,𝑔𝑙𝑦𝑐𝑠𝑡𝑜 𝐶𝐼𝐶,𝑔𝑙𝑦𝑐⁄ )
𝑛𝑖,𝑔𝑙𝑦𝑐,𝑔𝑙𝑦𝑐𝑠𝑡𝑜

+ 1)
 

Eq. 5 

𝑣𝑔𝑙𝑦𝑐,𝑑𝑒𝑔 = 𝑣𝑔𝑙𝑦𝑐,𝑑𝑒𝑔,𝑚𝑎𝑥

∙
(𝐶𝐸𝐶,𝑔𝑙𝑐 𝐾𝑚,𝑔𝑙𝑐,𝑔𝑙𝑦𝑐𝑑𝑒𝑔⁄ )

𝑛𝑔𝑙𝑐,𝑔𝑙𝑦𝑐𝑑𝑒𝑔

((𝐶𝐸𝐶,𝑔𝑙𝑐 𝐾𝑚,𝑔𝑙𝑐,𝑔𝑙𝑦𝑐𝑑𝑒𝑔⁄ )
𝑛𝑔𝑙𝑐,𝑔𝑙𝑦𝑐𝑑𝑒𝑔

+ 1)

∙
(𝐶𝐼𝐶,𝑔𝑙𝑦𝑐 𝐾𝑔𝑙𝑦𝑐,𝑔𝑙𝑦𝑐𝑑𝑒𝑔⁄ )

𝑛𝑔𝑙𝑦𝑐,𝑔𝑙𝑦𝑐𝑑𝑒𝑔

((𝐶𝐼𝐶,𝑔𝑙𝑦𝑐 𝐾𝑔𝑙𝑦𝑐,𝑔𝑙𝑦𝑐𝑑𝑒𝑔⁄ )
𝑛𝑔𝑙𝑦𝑐,𝑔𝑙𝑦𝑐𝑑𝑒𝑔

+ 1)
 

Eq. 6 

Storage kinetics with gene regulation 
In this scenario, the storage dynamics is not only controlled at the metabolite 

level but also depends on the capacities of the synthesis and degradation 

pathways. These capacities can be interpreted as variable enzyme levels which 

follow their intracellular mass balances. Based on our understanding of the 

storage kinetics during steady state and dynamic (feast-famine) conditions, we 

proposed eight different mechanisms, four at the enzyme level and four at the 

metabolite level to reproduce the experimental observations (Figure 3).  
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Figure 3. Proposed kinetic patterns at enzyme and metabolite level of storage and degradation processes for 
trehalose and glycogen, respectively. 

 

For the synthesis of trehalose, glucose is, in general, being used as the substrate. 

The trehalose synthesis rate is proposed to depend on the residual glucose 

concentration according to saturation kinetics. Due to the observed decrease 

of trehalose synthesis for >0.1 h-1 (Figure 1), we infer that the flux capacity is 

declining as the growth rate increases. This leads to the first set of equations 

for the description of the trehalose synthesis rate: 

𝑣𝑡𝑟𝑒,𝑠𝑡𝑜 = 𝑣𝑡𝑝𝑠 ∙
(𝐶𝐸𝐶,𝑔𝑙𝑐 𝐾𝑚,𝑔𝑙𝑐,𝑡𝑟𝑒𝑠𝑡𝑜⁄ )

𝑛𝑔𝑙𝑐,𝑡𝑟𝑒𝑠𝑡𝑜

(𝐶𝐸𝐶,𝑔𝑙𝑐 𝐾𝑚,𝑔𝑙𝑐,𝑡𝑟𝑒𝑠𝑡𝑜⁄ )
𝑛𝑔𝑙𝑐,𝑡𝑟𝑒𝑠𝑡𝑜

+ 1
 Eq. 7 

𝑑(𝑣𝑡𝑝𝑠)

𝑑𝑡
= 𝑣𝑡𝑝𝑠𝑠𝑦𝑛_𝑚𝑎𝑥 ∙

1

(𝐶𝐸𝐶,𝑔𝑙𝑐 𝐾𝑖,𝑔𝑙𝑐,𝑡𝑝𝑠𝑠𝑦𝑛⁄ )
𝑛𝑡𝑝𝑠

+ 1

− (𝑣𝑔𝑟𝑜𝑤𝑡ℎ + 𝑘𝑑,𝑡𝑝𝑠) ∙ 𝑣𝑡𝑝𝑠 

Eq. 8 

where in the enzyme formation rate is inhibited by high glucose concentrations 

and the enzyme will degrade at a constant rate. 

For the trehalose degradation process, the overall reaction utilizes trehalose as 

substrate and produces two glucose molecules as product. The trehalose 

degradation rate is assumed to depend on the trehalose concentration inside 
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the cell according to saturation kinetics while it is inhibited by the product 

glucose. To reproduce the dynamic shape (Figure 1), a decreased enzyme 

capacity is assumed to be responsible for reducing the degradation rate at low 

growth rates. This can be interpreted as limited resources for the cell to 

synthesize those enzymes at low growth rates. The synthesis rate of the 

responsible enzyme is assumed to be linearly correlated with the growth rate. 

𝑣𝑡𝑟𝑒,𝑑𝑒𝑔 = 𝑣𝑛𝑡ℎ ∙
1

(𝐾𝑖,𝑔𝑙𝑐,𝑡𝑟𝑒𝑑𝑒𝑔 𝐶𝐸𝐶,𝑔𝑙𝑐⁄ )
𝑛𝑖,𝑔𝑙𝑐,𝑡𝑟𝑒𝑑𝑒𝑔

+ 1

∙
𝐶𝐼𝐶,𝑡𝑟𝑒 𝐾𝑡𝑟𝑒,𝑡𝑟𝑒𝑑𝑒𝑔⁄

𝐶𝐼𝐶,𝑡𝑟𝑒 𝐾𝑡𝑟𝑒,𝑡𝑟𝑒𝑑𝑒𝑔⁄ + 1
 

Eq. 9 

𝑑(𝑣𝑛𝑡ℎ)

𝑑𝑡
= 𝑣𝑛𝑡ℎ𝑠𝑦𝑛_𝑚𝑎𝑥 ∙ 𝑣𝑔𝑟𝑜𝑤𝑡ℎ − (𝑣𝑔𝑟𝑜𝑤𝑡ℎ + 𝑘𝑑,𝑛𝑡ℎ) ∙ 𝑣𝑛𝑡ℎ Eq. 10 

The dynamics of glycogen storage is more straightforward: from the cell’s 

response to a short-term glucose oscillation hardly any changes in the glycogen 

synthesis and degradation rates were observed during feast famine cycles (C. A. 

Suarez-Mendez et al., 2017), suggesting the storage rate is not largely affected 

by the availability of extracellular glucose. However, taking the glucose as the 

substrate of the storage reaction, we still use glucose as the activator of this 

storage process but begin with a very high affinity as initial value for the 

parameter estimation step. This also suggests that the relation between the 

glycogen storage rate and the specific growth rate is more likely to be governed 

by enzyme capacity changes than the metabolite level. Therefore, the enzyme 

synthesis rate is proposed to be linearly correlated to the growth rate. 

𝑣𝑔𝑙𝑦𝑐,𝑠𝑡𝑜 = 𝑣𝑔𝑠𝑦 ∙
𝐶𝐸𝐶,𝑔𝑙𝑐 𝐾𝑚,𝑔𝑙𝑐,𝑔𝑙𝑦𝑐𝑠𝑡𝑜⁄

𝐶𝐸𝐶,𝑔𝑙𝑐 𝐾𝑚,𝑔𝑙𝑐,𝑔𝑙𝑦𝑐𝑠𝑡𝑜⁄ + 1
 Eq. 11 

𝑑(𝑣𝑔𝑠𝑦)

𝑑𝑡
= 𝑣𝑔𝑠𝑦𝑠𝑦𝑛_𝑚𝑎𝑥 ∙ 𝑣𝑔𝑟𝑜𝑤𝑡ℎ − (𝑣𝑔𝑟𝑜𝑤𝑡ℎ + 𝑘𝑑,𝑔𝑠𝑦) ∙ 𝑣𝑔𝑠𝑦 Eq. 12 

We propose a different metabolite level kinetic for the glycogen degradation 

rate compared to the other three, because we observed inconsistent cell 

responses in long-term steady state and short-term oscillation conditions. On 

one hand, under a series of steady states, the cells showed a positive correlation 

between the glycogen degradation rate and the growth rate and/or 

extracellular glucose (Canelas et al., 2011; C. A. Suarez-Mendez et al., 2016). 

This could be interpreted as either enzyme capacity-driven development (i.e. 

higher enzyme abundancy at higher growth rate, similar to the glycogen storage) 

or the activation by glucose (i.e. a higher glucose level stimulates the 

degradation process, similar as for trehalose degradation). However, the latter 
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hypothesis makes less sense because glucose is the product of glycogen 

degradation and less likely to be an activator of the degradation.  

On the other hand, the glycogen degradation is reduced significantly during a 

short-term feast phase(C. A. Suarez-Mendez et al., 2014, 2017), that is, when 

the extracellular glucose concentration is high. This conflicts with the observed 

cellular response at high growth rates during steady state. (Wilson et al., 2010) 

found that UDP-glucose had clear regulatory effects on glycogen hydrolysis. 

From published S.cerevisiae metabolite data (Canelas et al., 2011; Nikerel et al., 

2011; C. A. Suarez-Mendez et al., 2014, 2017), we found the profile of UDP- 

glucose stabilizes at around 2.5 μmol/gDW in multiple steady states, 

independent of the specific growth rate. Nevertheless, during the short-term 

glucose oscillations (C. A. Suarez-Mendez et al., 2017), the level of UDP-glucose 

was perturbed but quickly restored to the steady level (Figure 4). This kinetic 

feature fits with our hypothesis on the glycogen degradation process: the 

degradation rate follows the capacity increase at higher growth rate but is 

inhibited in a glucose perturbation. Therefore, for the kinetics of glycogen 

degradation, we proposed to use UDP-glucose rather than glucose as the 

regulatory metabolite for this process. Because glycogen is the substrate for the 

degradation, it also limits the degradation rate at low concentration. The 

enzyme formation and degradation have the same mechanisms as glycogen 

storage. 

Because UDP-glucose is not part of the original model, and its absolute amount 

in the cell is negligible (<0.05% of the cell weight), we introduced a simple PID 

control system to mimic the UDP-glucose concentration but not include it as a 

part of the stoichiometry and mass balances. This semi-mechanistic control 

system can realize a constant level during steady state conditions and also a 

response to a short-term perturbation with only three parameters. The details 

of such PID control algorithm can be found in Supplementary information “PID 

based UDP-glucose modeling”.  

𝑣𝑔𝑙𝑦𝑐,𝑑𝑒𝑔 = 𝑣𝑔𝑠ℎ ∙
1

(𝐶𝐼𝐶,𝑢𝑑𝑝𝑔 𝐾𝑖,𝑢𝑑𝑝𝑔,𝑔𝑙𝑦𝑐𝑑𝑒𝑔⁄ )
𝑛𝑢𝑑𝑝𝑔,𝑔𝑙𝑦𝑐𝑑𝑒𝑔

+ 1

∙
𝐶𝐼𝐶,𝑔𝑙𝑦𝑐 𝐾𝑔𝑙𝑦𝑐,𝑔𝑙𝑦𝑐𝑑𝑒𝑔⁄

𝐶𝐼𝐶,𝑔𝑙𝑦𝑐 𝐾𝑔𝑙𝑦𝑐,𝑔𝑙𝑦𝑐𝑑𝑒𝑔⁄ + 1
 

Eq. 13 

𝑑(𝑣𝑔𝑠ℎ)

𝑑𝑡
= 𝑣𝑔𝑠ℎ𝑠𝑦𝑛_𝑚𝑎𝑥 ∙ 𝑣𝑔𝑟𝑜𝑤𝑡ℎ − (𝑣𝑔𝑟𝑜𝑤𝑡ℎ + 𝑘𝑑,𝑔𝑠ℎ) ∙ 𝑣𝑔𝑠ℎ Eq. 14 
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Figure 4. Reported UDP-glucose profile in steady states (A) and under glucose oscillation conditions (B). 
Dashed line for averaged UDP-glucose level in steady states and dotted line for average UDP-glucose level 
over a 400s oscillation cycle 
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Constant enzyme levels cannot reproduce both steady state and dynamic 

conditions 
To obtain a complete model which is capable of simulating the full cell 

physiology, the growth-related parameters were first fitted to multiple steady 

states (Canelas et al., 2011) while all storage conversions were set to zero. This 

involves in total 6 parameters in the growth model. Once a reasonable fitting 

was obtained, we used them as the initial value for the second round of model 

fitting where parameters for storage conversions (4 kinetic expressions in total) 

were included. The steady state values of both storage compounds as well as 

the absolute fluxes of storage and degradation (C. A. Suarez-Mendez et al., 2016) 

were used for model evaluation. The fitting results of the growth-related 

parameters are shown in Table 2. Others are collected in the Supplementary 

information “Parameter estimation routine”. The fitting performance is shown 

in Figure 5 with the experimental data.  

As shown in Eq. 1, the absolute intracellular level of both storage compounds 

are the result of the dynamic balances between storage flux and degradation 

flux, which can be extremely small when the growth rate approaches zero. This 

makes the storage compound levels very sensitive to the predicted storage and 

degradation rates. Nevertheless, the simple black box model is well capable of 

reproducing the intracellular levels of both trehalose and glycogen, showing a 

satisfactory performance of this model under steady state conditions. The 

similar model kinetic structure for the storage and degradation steps also 

makes the small but distinct differences easier to mimic.  

Table 2 Parameters estimated by AMIGO (eSS) for the growth of Saccharomyces cerevisiae 

Parameter Unit Black box model Gene-regulation model 

V_glc_upt_max molglc/CmolleanX/h 0.14 0.14 
Km_glc_upt mmolglc/kg 0.39 0.30 
Yxs_max (alpha) CmolleanX/molglc 3.4 3.4 
Maintenance molglc/CmolleanX/h 0.001 0.001 
Yos molO2/molglc 6 6 
P/O_ratio molATP/molO 0.94 0.97 
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Figure 5. Performance of the black box storage model coupled with the black box core model. Circles 
represent experimental data and lines represent model predictions. For vtre and vglyc, there are solid lines, 
while filled circles represent storage rates; dashed lines and open circles represents degradation rates 

 

Unfortunately, such a good agreement as obtained for the steady state 

experimental data is not possible for the feast-famine oscillation conditions 

(Figure 6). At a first glance, the absolute concentrations of trehalose and 

glycogen seem acceptable. Notably, although it is still overestimated, the 

reduction of the glycogen level compared to the level at steady state is still 

captured. The key problem of the prediction of this model is the description of 
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the storage kinetics under glucose oscillating conditions. It has been reported 

in both S.cerevisiae and P.chrysogenum [(L. de Jonge et al., 2014b, 2014a; C. a. 

Suarez-Mendez, 2015; C. A. Suarez-Mendez et al., 2016)] that the storage flux 

is expected to increase during the feast phase while decrease during the famine 

phase. Moreover, the degradation of storage carbon is observed to drop in the 

feast phase, whereas it is increased to a certain rate as emergency carbon 

source during the famine phase. The similar kinetic structures for storage and 

degradation (see Section “Storage kinetics as a black box”) in this black box 

model now becomes a restriction of predicting completely different responses 

during feast-famine conditions.  

The reason for this incapability when simulating fast dynamics is that this model 

structure only takes care of instant rate changes, i.e., regulation from 

metabolites/cofactors/signal agents. Although it was successfully applied to a 

wide range of steady states from 0.01 h-1 to 0.25 h-1, it doesn’t necessarily mean 

that this type of model is capable of correctly fitting those steady states. One 

key factor that was not included here is the enzyme abundancy change. This is 

also one of the key differences between long-term steady states and short-term 

oscillations: in many cases, enzyme levels will change with the growth rate (Lao-

Martil et al., 2022; van den Brink et al., 2008; van Hoek et al., 1998) and will be  

induced or repressed as a result of changes in the cellular environment (Maier 

et al., 2002; Ozcan & Johnston, 1999). We conclude that changes in enzyme 

levels also play a key role in the cellular adaptation to glucose dynamics at 

different timescales. To clarify the difference of the cell’s response, we 

compared the storage and degradation rates against different glucose uptake 

rates under long-term steady states and short-term oscillations. Figure 7 shows 

how different the correlation between storage/degradation rates and glucose 

uptake rate is. Taking the glycogen degradation rate as an example, neither the 

fold change nor the change of direction is the same under those two timescales. 

However, a similar comparison of model prediction showed very similar 

correlations under steady state and feast-famine conditions. Such manipulation 

of enzyme capacities is already beyond this black box model’s design scope, 

which only uses hyperbolic curves to numerically fit the observations of multiple 

steady states. 

In summary, it is concluded in this section that despite a good fitting 

performance of the proposed Michaelis-Menten based kinetic model on a wide 

range of steady states, it is not capable of reproducing cell responses in a short-

term dynamic setting. Even more so, due to the incomplete mechanism of 
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storage carbohydrate regulation, the model application should be strictly 

limited to only steady state conditions and the absolute values of its parameters 

don’t have a strong biological meaning, because those values implicitly cover 

changes in enzyme levels. It is still possible for such a type of model to 

reproduce short-term dynamic behavior as long as the assumption of constant 

enzyme levels is justified, e.g. as is the case for a single short term glucose 

perturbation. But the application of such model should be limited to the 

calibrated specific growth rate range. Extrapolation beyond this range will likely 

violate the assumptions during model construction and give unrealistic 

simulation results. 

  
Figure 6.. Predictions of the black-box based storage kinetic model under feast-famine oscillation conditions 
at an average dilution rate 0.1 h-1. Solid lines: the model prediction, circles with dashed lines: experimental 
data from (C. A. Suarez-Mendez et al., 2017)  
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Figure 7. Storage compounds’ rate correlation against glucose uptake rate Blue: oscillation (cycle); Red: steady 
states. This plot depicts a completely different dynamic pattern of those four steps under steady states and 
feast famine oscillations. 

 

Gene-regulation model shows a good match of both steady states and 

oscillations 
As shown in the previous section, one of the main differences between steady 

state and oscillation conditions is the enzyme dynamics. In steady states, the 

enzyme capacities of storage/degradation processes will change with the 

growth rate (Lao-Martil et al., 2022; van Hoek et al., 1998) and growth 

conditions while in short-term oscillations, slow enzyme dynamics are not likely 

to change within each cycle but will reach a dynamic balance after adaptation 

to the repeated oscillations. This is also the reason why the black box model is 

fundamentally not suitable for describing both long- and short-term dynamics 

(Douma et al., 2010; Tang et al., 2017; G. Wang, Haringa, et al., 2019). 

Here the gene-regulation laws were applied separately for all four kinetics. In 

most of the cases, we set up a linear correlation between growth rate and the 

enzyme synthesis rate for simplicity purposes. The enzyme degradation rate 

was assumed to always follow first-order kinetics. Details on the kinetic 
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equations used are elaborated in the previous section “Storage kinetics with 

gene regulation”. 

A similar parameter estimation procedure as for the black box model was 

followed, with as only exception the use of the initial values. The estimation of 

growth-related parameter starts with the final value determined for the black 

box model. This results in a similar but still not identical best-fit (Table 2) for the 

growth part. But still, a relatively satisfactory model performance on all steady 

states was obtained (Figure 8). It was mentioned that a good prediction of the 

absolute levels of both trehalose and glycogen relies on precisely predicted 

differences between their synthesis and degradation rates. These are significant 

challenges for adequate determination of the kinetics as we proposed because 

the rates are not only determined by different metabolites in different kinetic 

forms but also rather sensitive to the enzyme levels which are determined by 

their rates of formation and degradation. Consequently, the residual error of 

this gene-regulated model is larger than of the black box model. Especially for 

the trehalose dynamics, a slight underestimation of the maximum values is 

observed (Figure 8D).  

The extra gain from the relatively complex gene regulation model is its 

capability of predicting short term dynamics under feast-famine conditions. As 

expected, the enzymes used in this model have long turnover times and their 

levels hardly show any dynamics in one oscillation cycle. The dynamics shown 

in Figure 9 contains only the rapid metabolite level responses caused by the 

external perturbation. For trehalose, the experimental data validate the 

predictions of both storage/degradation rates and intracellular trehalose 

concentrations. For the glycogen node, the storage and degradation rates were 

predicted with correct trends, but the predicted absolute level of glycogen was 

three times higher than observed experimentally (Figure 9D). As mentioned 

before, the absolute levels of those compounds are highly sensitive to the 

difference between the rates of synthesis and degradation. In the validation of 

the feast-famine cycles, we in fact see some overestimations of the glycogen 

synthesis rate (Figure 9E) which could partially explain the large overestimation 

of the glycogen level. By comparing the enzyme capacities in steady states and 

feast-famine dynamics, we noticed that the model predicts a similar flux 

capacity (average growth rate at 0.1 h-1) for both scenarios (See supplementary 

information “Simulated storage enzyme capacity under steady states and 

oscillation condition”), which is the case for trehalose. For glycogen, the 

synthesis capacity decreased from 100 µmol.gDW-1.h-1. (Steady state, D = 0.1 h-
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1) to approximately 50 µmol.gDW-1.h-1(oscillation condition, average D = 0.1 h-

1 ). Due to the rapid changes in the extracellular environment, the cells may 

become more restricted in glycogen dynamics and have a higher overall 

maintenance energy demand due to possible futile cycles in storage 

metabolism or enzyme synthesis/degradation(L. de Jonge et al., 2014b; L. P. de 

Jonge et al., 2011; Lin & Neubauer, 2000; Reijenga et al., 2005). This type of cell 

adaptation, in some cases expressed as a higher flux distribution towards PP 

pathway for upregulated RNA synthesis for stress proteins(Li et al., 2018), is not 

covered by this gene regulation model, mainly because we used a simple black 

box model to describe the growth. To capture this kind of dynamics, a more 

detailed core growth model is required,  which covers the adaption of other 

parts of metabolism. Nevertheless, even if we artificially reduce the capacity of 

storage (by reducing the synthesis rate of Egly) in such a way that the predicted 

storage flux matches the experimental data (See supplementary information 

“Adapted gene regulated kinetic model simulating glucose oscillation 

conditions”), we still obtained an almost two times overestimated glycogen 

level from the model prediction. This reveals another issue which originates 

from either a relatively big estimation error on those rates, knowing that for 

glycogen no 13C labelled information was available(C. A. Suarez-Mendez et al., 

2014, 2017), or there are other exits from glycogen hydrolysation (Wilson et al., 

2010) which were not included in the current models. 

In summary, the gene-regulation model showed its capability in predicting both 

long-term steady states (Figure 8) and short-term oscillations (Figure 9), even 

though the enzyme synthesis is simply linearly correlated to the cell specific 

growth rate. The predicted absolute rate and compound concentrations at 

different steady states are the results of both enzyme balances and metabolite 

activation/limitation. For short term dynamics, the enzyme balance will 

gradually be adapted but for each oscillation cycle, only rapidly changing 

compounds and metabolites will trigger the enzyme kinetics, which may 

eventually consist of a ‘contradictory’ pattern against steady state observations 

(Figure 7).  
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Figure 8. Performance of the gene regulation storage model coupled with the black box core model, applied 
to steady state data. Circles represent experimental data and lines represent model predictions. For vtre and 
vglyc, solid lines and filled circles represents storage rate; dashed lines and open circles represent degradation 
rates 
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Figure 9. prediction of gene regulated storage kinetic model under feast-famine oscillation conditions at an 
average dilution rate 0.1 h-1. Solid lines: the model prediction, circles with dashed lines: experimental data 
from (C. A. Suarez-Mendez et al., 2017) 

Storage carbon acts as buffer under both feast and famine conditions 
One of the pitfalls of the classic black box model is shown by (Tang et al., 2017) 

when simulating a glucose feast-famine scenario. If a constant maintenance 

energy parameter was assigned to the Herbert-Pirt equation, one must satisfy 

a glucose uptake rate that supports at least the maintenance demand which is 

an assigned constant value regardless the physiological conditions. When the 

glucose uptake rate, determined by the level of the extracellular glucose 

concentration, is smaller than the mS value in the Herbert-Pirt equation, a 

negative growth rate will be calculated and cause issues in all other kinetics that 

rely on the growth rate as input. It may look like a cell-lysis rate or a short-term 

consumption of storage carbohydrate (which is part of the cell dry weight in 

such model assumption). But the interpretation of a ‘lysis’ rate from the 

Herbert-Pirt equation doesn’t make sense. Because the rest of the model is not 

calibrated to this ‘negative growth’, this type of model prediction is clearly 

beyond the model’s scope. In reality, cells do not start lysing immediately when 

faced with sudden starvation. (L. de Jonge et al., 2014b) has shown that 

trehalose, glycogen, and sometimes certain amino acids will be used as carbon 

source during a short period of starvation.  

(Tang et al., 2017) demonstrated that including an extra storage pool and 

assigning proper kinetics to store/release carbon in feast-famine cycles can 

solve the carbon supply problem during starvation and prevent a negative 

growth rate being calculated. Because our gene-regulation model has a proper 

structure of storage allocation under feast-famine oscillations, we confirmed 
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that this model supplies enough carbon source into the central metabolism 

even during the famine phase (Figure 10). In addition, the storage carbon also 

helps buffering the cell from the initial 20s feast phase by re-distributing part of 

the intake carbon towards storage pools.  

 

Figure 10. The predicted growth rate by the gene-regulation model with (solid line) and without (dashed line) 
storage kinetics in feast-famine conditions. The introduction of storage carbon first helps mitigating the pulse 
in the first 20 seconds by branching carbon flow from the central metabolism and supports minor “growth” 
in the famine phase. Negative growth predicted by the model without storage is a numerical result when 
simulated glucose uptake rate is smaller than the constant maintenance energy demand. 

Successful integration of storage kinetic models with cell’s lifelines from a 

22m3 tank 
It has been suggested to execute a stability and sanity check before integrating 

the model to a computationally heavy and time-consuming full-scale CFD 

simulation. Therefore, we tested both models with multiple cell lifelines from 

our previous work (Haringa, Deshmukh, et al., 2017b). A lifeline consists of a 

series of glucose concentrations registered by Lagrangian particle tracking in 

the CFD simulation. The simulation scenario ensured a 0.08mM (30% of 

dissolved oxygen saturation at 1 bar) or higher DO level and therefore limitation 

of oxygen is not expected. The original lifeline lasts for 1190s and monitors the 

experienced glucose concentration every 0.03s. Here, we connected 120 

separate original lifelines into a long, single lifeline which last for about 40 hours 

to enable the model to reach an unbiased dynamic state. Note that a slight 

adaptation of both models’ glucose uptake kinetics is applied so that the 
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monitored glucose concentrations match the model prediction. This was done 

by overwriting the glucose affinity with the one used in (Haringa, Deshmukh, et 

al., 2017b). This small adaptation should still meet the objective to evaluate the 

model’s stability and qualitative properties during glucose oscillations.  

Figure 11 shows a snapshot of our models’ responses in a short time lifeline 

window (720 s). Clear differences are visible between the two models, which 

agrees with validation of the models against feast-famine scale down conditions. 

More specifically, a proper storage profile of trehalose was observed with the 

gene-regulated model and the release of trehalose at low glucose 

concentrations (Figure 6B and Figure 9B). The black box model, however, 

showed an incorrect trend which tends to release carbon when glucose is 

abundant outside the cell. Similarly, we see a relatively dynamic glycogen 

response with this black box model, which is also aligned with what we 

observed previously (Figure 6 and Figure 9). 

A key concept of our gene regulation model is the enzyme pool that responds 

to long-term dynamics while metabolite level regulations are responsible for 

short-term dynamics. Therefore, in the 20-hour lifelines, despite the highly 

dynamic rates of trehalose and glycogen storage/release, we indeed see more 

stable profiles for those enzymes (Figure 12) lasting for 20 hours. It is also 

important to notice that for each enzyme, the capacity of the 20 lifelines is likely 

to converge to a unique solution. This also perfectly matches the expectation as 

all lifelines represent the cell experiences in the same 22m3. 

In summary, the stability and sanity checks were successfully passed by both 

kinetic models. The models remain mathematically stable during highly 

dynamic glucose concentrations and both models maintained their kinetic 

features under these conditions.  
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Figure 11 The responses of storage carbon kinetics in one cell lifeline extracted from a 22m3 pilot-scale 
fermentation. Only the extracellular glucose concentration (C_glc) was provided in the lifeline. Solid: 
prediction of gene regulated storage kinetic model; dashed: prediction of black box storage kinetic model 
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Figure 12 The predicted profiles of 4 enzyme pools with 20 lifelines. Each lifeline lasts for 20 hours, and an 
unbiased dynamic state  is assumed to be reached for all 20 cases. The enzyme pool size is expressed as the 
capacity of conversion. 
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Conclusions and outlook 
In this Chapter, we have presented two different types of storage carbohydrate 

kinetics that were coupled with the same black box growth model for S. 

cerevisiae. Trehalose and glycogen were studied separately as storage 

compounds due to their completely different dynamic features. One storage 

kinetic variant is a complete black box, using conventional Michaelis-Menten 

type kinetics. This model appeared well capable of reproducing cell growth, 

glucose uptake, storage content and storage fluxes under steady state 

conditions. However, this model was not capable of predicting cellular behavior 

during short term dynamic conditions such as feast-famine oscillations due to 

structural limitations. We therefore proposed a structured gene-regulation 

model to describe the same observations, where the dynamics of the synthesis 

and degradation of storage compounds was regulated at enzyme and 

metabolite level at the same time. By introducing simple linear enzyme kinetics, 

the gene-regulation model can already precisely reproduce all steady states and 

qualitatively also the feast-famine scenario. The properly modeled storage 

kinetics enables the black box core model to be able to simulate carbon supply 

oscillations without problems of negative growth. Finally, the gene-regulated 

model was tested against cell lifelines that were obtained previously in a 22 m3 

pilot scale reactor. This model is proved to be stable under such highly dynamic 

conditions and maintains its kinetic features in dealing with short- and long-

term dynamics. These properties of the gene-regulation model make it suitable 

for use as particle (‘parcel’) kinetics in a complete full-scale Euler-Lagrange CRD-

CFD simulation (Haringa, Deshmukh, et al., 2017a; Haringa, Noorman, et al., 

2017; Haringa, Tang, et al., 2017; G. Wang, Haringa, et al., 2019) and/or 

compartment model for industrial fermentation (Haringa et al., 2022). 

Nevertheless, the gene-regulation model can still be improved in several 

aspects: 

• The use of ‘ghost’ species UDP-glucose is not favored, and real 

measurable UDP-glucose should be included as a part of the model in a 

future version. 

• The remaining part of the model is still black box, which limits the usage 

of this model. With a more structured version, albeit with a relatively 

simple core model like the 9-pool kinetic model applied to P. 

chrysogenum (Tang et al., 2017), the model will gain in predictive 

capacity. 
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• We still see discrepancy in the prediction of the glycogen 

concentrations. The capacity of glycogen synthesis seems to be 

regulated by yet other compounds than glucose and the key 

synthesis/degradation enzymes, which is beyond the current model 

scope. 
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Supplementary information 

PID based UDP-glucose modeling 
The UDP-glucose concentration follows a dynamic balance via a production rate 

(vin) and a release rate (vout): 

𝑣𝑖𝑛 = 𝑣𝑖𝑛,𝑚𝑎𝑥 ∙
𝐶𝑆

𝐶𝑠 + 𝐾𝑆
 Eq S1 

𝑣𝑜𝑢𝑡 =  𝐾𝑃 ∙ 𝑒 + 𝐾𝐼 ∙ ∫ 𝑒 + 𝐾𝐷 ∙
𝑑𝑒

𝑑𝑡
 Eq S2 

where 𝑒 =  𝑋𝑈𝐷𝑃−𝑔𝑙𝑐 − 𝑋𝑈𝐷𝑃−𝑔𝑙𝑐,𝑠𝑡𝑠𝑡, KP, KI and KD are three PID parameters 

that determine the response of the release rate to a pulse in vin. 

We propose a simple a hyperbolic kinetic function for the formation rate of 

UDP-glucose, based on the availability of glucose. The utilization rate depends 

on the difference (e) of the current UDP-glucose level and its steady state value 

(before the critical growth rate, 2.5 µmol/gDW).  

 

Figure S1. Demonstration of the PID based system response during long- and short-term perturbations. The 
SF(target) level is kept at the steady level (1) in different long-term shifts in S(substrate) and shows a dynamic 
response to periodic short-term perturbations. In either case, the target level converges to the given steady 
value. 

 

In the application of this PID system, the 𝑣𝑜𝑢𝑡 needs to be adapted as obtaining 

the differential term of the error, 𝑑𝑒 𝑑𝑡⁄ , is not easy. Fortunately, in this specific 

case, the PID output can be algebraically solved based on given system rules: in 

flux rate law and mass balance. We first worked out the original UDP-glucose 

balancing system: 

𝑣𝑢𝑑𝑝𝑔_𝑖𝑛 = 𝑣𝑢𝑑𝑝𝑔_𝑚𝑎𝑥 ∙
𝐶𝐸𝐶_𝑔𝑙𝑐

𝐶𝐸𝐶_𝑔𝑙𝑐 + 𝐾𝑔𝑙𝑐_𝑢𝑑𝑝𝑔𝑖𝑛
 Eq S3 
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𝑢 =  𝐾𝑃 ∙ (𝐶𝐼𝐶,𝑢𝑑𝑝𝑔 − 𝐶𝐼𝐶,𝑢𝑑𝑝𝑔,𝑠𝑒𝑡) + 𝐾𝐼 ∙ 𝐼𝑛𝑡𝑒𝑟𝑟 + 𝐾𝐷 ∙
𝑑(𝐶𝐼𝐶,𝑢𝑑𝑝𝑔 − 𝐶𝐼𝐶,𝑢𝑑𝑝𝑔,𝑠𝑒𝑡)

𝑑𝑡
 Eq S4 

𝑣𝑢𝑑𝑝𝑔_𝑜𝑢𝑡 = 𝑢 ∙  
(𝐶𝐼𝐶,𝑢𝑑𝑝𝑔 𝐾𝑢𝑑𝑝𝑔,𝑢𝑑𝑝𝑔𝑜𝑢𝑡⁄ )

𝑛𝑢𝑑𝑝𝑔𝑜𝑢𝑡

(𝐶𝐼𝐶,𝑢𝑑𝑝𝑔 𝐾𝑢𝑑𝑝𝑔,𝑢𝑑𝑝𝑔𝑜𝑢𝑡⁄ )
𝑛𝑢𝑑𝑝𝑔𝑜𝑢𝑡

+ 1
 Eq S5 

Note that Eq S5 prevents negative 𝐶𝐼𝐶,𝑢𝑑𝑝𝑔  in the system. Similar to other 

metabolic species, the UDP-glucose also follows the mass balance: 

𝑑(𝐶𝐼𝐶,𝑢𝑑𝑝𝑔)

𝑑𝑡
= 𝑣𝑢𝑝𝑑𝑔𝑖𝑛 − 𝑣𝑢𝑝𝑑𝑔𝑜𝑢𝑡 

Eq S6 

And the integration of the error can be calculated in this ODE system via: 

𝑑(𝐼𝑛𝑡𝑒𝑟𝑟)

𝑑𝑡
= 𝐶𝐼𝐶,𝑢𝑑𝑝𝑔 − 𝐶𝐼𝐶,𝑢𝑑𝑝𝑔,𝑠𝑒𝑡 

Eq S7 

From Eq S4 and Eq S6, one deduces: 

𝑢 =  𝐾𝑃 ∙ (𝐶𝐼𝐶,𝑢𝑑𝑝𝑔 − 𝐶𝐼𝐶,𝑢𝑑𝑝𝑔,𝑠𝑒𝑡) + 𝐾𝐼 ∙ 𝐼𝑛𝑡𝑒𝑟𝑟 + 𝐾𝐷 ∙ (𝑣𝑢𝑝𝑑𝑔𝑖𝑛 − 𝑣𝑢𝑝𝑑𝑔𝑜𝑢𝑡) 

Combining Eq S5 gives: 

𝑢 =  𝐾𝑃 ∙ (𝐶𝐼𝐶,𝑢𝑑𝑝𝑔 − 𝐶𝐼𝐶,𝑢𝑑𝑝𝑔,𝑠𝑒𝑡) + 𝐾𝐼 ∙ 𝐼𝑛𝑡𝑒𝑟𝑟 + 𝐾𝐷

∙ (𝑣𝑢𝑝𝑑𝑔𝑖𝑛 − 𝑢 ∙  
(𝐶𝐼𝐶,𝑢𝑑𝑝𝑔 𝐾𝑢𝑑𝑝𝑔,𝑢𝑑𝑝𝑔𝑜𝑢𝑡⁄ )

𝑛𝑢𝑑𝑝𝑔𝑜𝑢𝑡

(𝐶𝐼𝐶,𝑢𝑑𝑝𝑔 𝐾𝑢𝑑𝑝𝑔,𝑢𝑑𝑝𝑔𝑜𝑢𝑡⁄ )
𝑛𝑢𝑑𝑝𝑔𝑜𝑢𝑡

+ 1
) 

After reorganizing, one will get 

𝑢 =
𝐾𝑃 ∙ (𝐶𝐼𝐶,𝑢𝑑𝑝𝑔 − 𝐶𝐼𝐶,𝑢𝑑𝑝𝑔,𝑠𝑒𝑡) + 𝐾𝐼 ∙ 𝐼𝑛𝑡𝑒𝑟𝑟 + 𝐾𝐷 ∙ 𝑣𝑢𝑝𝑑𝑔𝑖𝑛

1 + 𝐾𝐷 ∙
(𝐶𝐼𝐶,𝑢𝑑𝑝𝑔 𝐾𝑢𝑑𝑝𝑔,𝑢𝑑𝑝𝑔𝑜𝑢𝑡⁄ )

𝑛𝑢𝑑𝑝𝑔𝑜𝑢𝑡

(𝐶𝐼𝐶,𝑢𝑑𝑝𝑔 𝐾𝑢𝑑𝑝𝑔,𝑢𝑑𝑝𝑔𝑜𝑢𝑡⁄ )
𝑛𝑢𝑑𝑝𝑔𝑜𝑢𝑡

+ 1

 
Eq S8 

 

For Eq S8, all right-hand terms can be obtained in the ODE system therefore the 

Eq S4 was replaced by Eq S8 in our gene regulated model. 

The parameters used for this part of model are shown in Table S1. The 

parameters of this part of the model are mainly manually assigned due to lack 

of experimental data. The value of KP, KI and KD were obtained via parameter 

scanning together with the complete gene-regulated model, with a range of 0-

500. 
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Table S1 Parameters determined for UDP-glucose PID system 

Parameter Unit Value 

𝑣𝑢𝑑𝑝𝑔_𝑚𝑎𝑥 moludpg/CmolleanX/h 1 
𝐾𝑔𝑙𝑐_𝑢𝑑𝑝𝑔𝑖𝑛 mmolglc/kg 0.1 

𝐾𝑝 - 100 

𝐾𝑖 - 15 

𝐾𝑑 - 55 
𝐾𝑢𝑑𝑝𝑔,𝑢𝑑𝑝𝑔𝑜𝑢𝑡 molupdg/CmolX 0.0065 

𝑛𝑢𝑑𝑝𝑔𝑜𝑢𝑡  4 

𝐶𝐼𝐶,𝑢𝑑𝑝𝑔,𝑠𝑒𝑡 molupdg/CmolX 0.0065 
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Parameter estimation routine 
Table S2 Parameter list for the black box based storage model 

Parameter name Unit Value Remark 

𝑣𝑡𝑟𝑒,𝑠𝑡𝑜,𝑚𝑎𝑥 mol/CmolleanX/h 0.0036 

Trehalose storage 

𝐾𝑚,𝑔𝑙𝑐,𝑡𝑟𝑒𝑠𝑡𝑜  mmol_glc/kg(broth) 0.021 
𝑛𝑔𝑙𝑐,𝑡𝑟𝑒𝑠𝑡𝑜 - 1 

𝐾𝑖,𝑔𝑙𝑐,𝑡𝑟𝑒𝑠𝑡𝑜  mmol_glc/kg(broth) 0.015 
𝑛𝑖,𝑔𝑙𝑐,𝑡𝑟𝑒𝑠𝑡𝑜 - 5 
𝐾𝑖,𝑡𝑟𝑒,𝑡𝑟𝑒𝑠𝑡𝑜  μmol_tre/gDW 138 
𝑛𝑖,𝑡𝑟𝑒,𝑡𝑟𝑒𝑠𝑡𝑜 - 5 
𝑣𝑡𝑟𝑒,𝑑𝑒𝑔,𝑚𝑎𝑥 mol/CmolleanX/h 0.0049 

Trehalose degradation 

𝐾𝑚,𝑔𝑙𝑐,𝑡𝑟𝑒𝑑𝑒𝑔 mmol_glc/kg(broth) 0.19 
𝑛𝑔𝑙𝑐,𝑡𝑟𝑒𝑑𝑒𝑔 - 1 

𝐾𝑖,𝑔𝑙𝑐,𝑡𝑟𝑒𝑑𝑒𝑔 mmol_glc/kg(broth) 0.16 
𝑛𝑖,𝑔𝑙𝑐,𝑡𝑟𝑒𝑑𝑒𝑔  - 5 
𝐾𝑡𝑟𝑒,𝑡𝑟𝑒𝑑𝑒𝑔  μmol_tre/gDW 0.98 
𝑛𝑡𝑟𝑒,𝑡𝑟𝑒𝑑𝑒𝑔 - 1 

𝑣𝑔𝑙𝑦𝑐,𝑠𝑡𝑜,𝑚𝑎𝑥 mol/CmolleanX/h 0.0041 

Glycogen storage 

𝐾𝑚,𝑔𝑙𝑐,𝑔𝑙𝑦𝑐𝑠𝑡𝑜 mmol_glc/kg(broth) 0.0107 

𝑛𝑔𝑙𝑐,𝑔𝑙𝑦𝑐𝑠𝑡𝑜  - 2 

𝐾𝑖,𝑔𝑙𝑦𝑐,𝑔𝑙𝑦𝑐𝑠𝑡𝑜 μmol_glyc/gDW 370 

𝑛𝑖,𝑔𝑙𝑦𝑐,𝑔𝑙𝑦𝑐𝑠𝑡𝑜 - 5 

𝑣𝑔𝑙𝑦𝑐,𝑑𝑒𝑔,𝑚𝑎𝑥 mol/CmolleanX/h 0.0039 

Glycogen degradation 

𝐾𝑚,𝑔𝑙𝑐,𝑔𝑙𝑦𝑐𝑑𝑒𝑔 mmol_glc/kg(broth) 0.128 

𝑛𝑔𝑙𝑐,𝑔𝑙𝑦𝑐𝑑𝑒𝑔  - 2 

𝐾𝑔𝑙𝑦𝑐,𝑔𝑙𝑦𝑐𝑑𝑒𝑔  μmol_glyc/gDW 1.04 

𝑛𝑔𝑙𝑦𝑐,𝑔𝑙𝑦𝑐𝑑𝑒𝑔  - 1 

 
Table S3 Parameter list for the gene regulated storage kinetic model 

Parameter name Unit Value Remark 

𝐾𝑚,𝑔𝑙𝑐,𝑡𝑟𝑒𝑠𝑡𝑜 mmolglc/kg 0.12 

Trehalose storage 

𝑛𝑔𝑙𝑐,𝑡𝑟𝑒𝑠𝑡𝑜 - 2 

𝑣𝑡𝑝𝑠𝑠𝑦𝑛_𝑚𝑎𝑥 mol_tre/CmolleanX/h 0.00080 

𝐾𝑖,𝑔𝑙𝑐,𝑡𝑝𝑠𝑠𝑦𝑛 mmolglc/kg 0.11 

𝑛𝑡𝑝𝑠 - 2 

𝑘𝑑,𝑡𝑝𝑠 1/h 0.022 
𝐾𝑖,𝑔𝑙𝑐,𝑡𝑟𝑒𝑑𝑒𝑔  mmolglc/kg 0.23 

Trehalose degradation 

𝑛𝑖,𝑔𝑙𝑐,𝑡𝑟𝑒𝑑𝑒𝑔 - 4 
𝐾𝑡𝑟𝑒,𝑡𝑟𝑒𝑑𝑒𝑔 mmol_tre/CmolX 0.0054 

𝑣𝑛𝑡ℎ𝑠𝑦𝑛_𝑚𝑎𝑥 mol_tre/CmolleanX 0.03 

𝑘𝑑,𝑛𝑡ℎ 1/h 0.78 
𝐾𝑚,𝑔𝑙𝑐,𝑔𝑙𝑦𝑐𝑠𝑡𝑜 mmolglc/kg 0.0042 

Glycogen storage 𝑣𝑔𝑠𝑦𝑠𝑦𝑛_𝑚𝑎𝑥 mol_glyc/CmolleanX 0.0059 

𝑘𝑑,𝑔𝑠𝑦 1/h 0.145 

𝐾𝑖,𝑢𝑑𝑝𝑔,𝑔𝑙𝑦𝑐𝑑𝑒𝑔 mol_udpg/CmolX 0.0065 

Glycogen degradation 

𝑛𝑢𝑑𝑝𝑔,𝑔𝑙𝑦𝑐𝑑𝑒𝑔 - 7 

𝐾𝑔𝑙𝑦𝑐,𝑔𝑙𝑦𝑐𝑑𝑒𝑔  mmol_glyc/CmolX 10-7* 

𝑣𝑔𝑠ℎ𝑠𝑦𝑛_𝑚𝑎𝑥 mol_glyc/CmolleanX 0.016 

𝑘𝑑,𝑔𝑠ℎ 1/h 0.45 

* Arbitrary number to prevent glycogen degradation when glycogen was depleted 
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Simulated storage enzyme capacity under steady states and oscillation 

condition 

 

Figure S2 Four storage enzyme’s capacity change during steady states (dashed blue line) and glucose 
oscillation condition (solid red line). The oscillation condition was executed under an average dilution rate of 
0.1 h-1. It is observed that enzyme capacity under oscillation condition doesn’t deviate from the capacity of 
enzymes in steady states under the same dilution rate. This may not be true in real because of cell’s global 
regulation under oscillating conditions. In our current gene-regulated model, the enzyme formation is linearly 
correlated to growth rate and the central growth model is a simple black box model. To properly calibrate the 
enzyme capacity of different condition but the same average dilution rate, further experiment and in-vivo 
enzyme capacity need to be determined. 
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Adapted gene regulated kinetic model simulating glucose oscillation 

conditions 

 

Figure S3 Adapted gene-regulation model (reduced v_gsy_syn) predicting oscillation conditions. Despite the 
proper estimation on glycogen storage and degradation rates, the glycogen content is still being 
overestimated by almost one-fold. This suggests either the estimation of previous glycogen fluxes have a large 
uncertainty (note that glycogen does not have label information but purely interfered by highly lumped 
stoichiometry model) or both models missed other outlets of glycogen metabolism. 
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Abstract 
Saccharomyces cerevisiae is a widely used model fungus in the biotechnology 

industry, due to its well-studied strain background, robustness to harsh 

environmental conditions, and ease of strain engineering. Transferring the 

strain from lab to industrial scale is always challenging due to the so-called 

scale-up effect, that is, sub-optimal performance, mainly related to rate-limiting 

mixing, mass and heat transfer rates. The integration of computational fluid 

dynamics (CFD) based reactor models with kinetic metabolic models for cellular 

behavior is one of the most comprehensive approaches to tackle this issue at 

early phases of strain and process development. For this, the kinetic models 

should be built with the ‘end in mind’, i.e., fit for use under dynamic conditions 

prevalent in the industrial bioreactor. Here, we first present a 7-pool kinetic 

model for yeast metabolism, validated against a wide range of published steady 

state data. The NAD+/NADH ratio is described explicitly in this model and used 

as the trigger for ethanol production under glucose excess conditions (Crabtree 

effect) and oxygen limitation (Pasteur effect). With the proper built-in 

mechanism of ethanol formation, this model, with modifications on glucose 

uptake kinetics, can quantitatively capture the cellular responses to a single 

glucose pulse. When testing the model against data obtained from feast-famine 

cycles, the model showed discrepancies in some absolute intracellular 

compounds but is still able to capture the cellular responses qualitatively. These 

validations indicate that the current model is already able to display key 

physiological features of this yeast in industrial applications, but further 

improvements in model structure and additional complexity is needed for a 

more accurate description. In the last section, we further tested the model with 

simulated yeast lifelines from a 22 m3 large pilot bioreactor. The lifelines were 

featured by highly dynamic glucose concentrations observed by the cells. Unlike 

the previously published 9-pool Penicillium chrysogenum model, we did not 

experience any computation stability issues on stiff nodes and the simulation 

was successfully executed for 40-hour long lifelines. In conclusion, 1) we 

demonstrated the capability of a simple structured kinetic model predicting 

Saccharomyces cerevisiae physiology at various dilution rates, including those 

beyond the critical growth rate where overflow mechanism was triggered; 2) 

the model is capable of predicting the ethanol production in a single glucose 

pulse event; 3) the model can qualitatively reproduce cellular responses in a 

long-term glucose oscillation scenario; 4) this model is stable enough to be 

integrated with highly dynamic lifelines from the large pilot bioreactor. To 
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further improve the accuracy of this model’s prediction, we proposed an 

extension of the model in the Outlook Chapter of this thesis. 

 

Keywords: lumped kinetic model, metabolic network, Crabtree effect, Pasteur 

effect, Saccharomyces cerevisiae 
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Introduction 
Saccharomyces cerevisiae is the best-known yeast species and has been applied 

to produce fermented products for more than 10,000 years. More recently it 

also has become a very popular eukaryotic species for scientific research and 

commercial deployment in the biotechnology industry (Otero & Nielsen, 2010; 

Parapouli et al., 2020). The ease of introducing novel pathways and 

optimization of native cellular processes by metabolic engineering are rapidly 

expanding its range of applications as a cell factory. For example, S. cerevisiae 

has been successfully engineered for the production of bioethanol, succinic acid, 

farnesene, insulin and aroma compounds (Buijs et al., 2013; Nielsen et al., 2013; 

Parapouli et al., 2020). To successfully implement such bioprocesses in industry, 

a proper scale-up approach is required. 

In addition to its versatility as production host, S. cerevisiae is well capable of 

growing on various carbon sources and is able to grow both aerobically and 

anaerobically (Verduyn et al., 1990). Further it has the characteristic feature of 

fermenting glucose to ethanol under aerobic conditions at elevated glucose 

concentrations (Crabtree effect) or oxygen-limiting conditions (Pasteur effect). 

These effects have been explained by various mechanisms, e.g. via an upper 

limit of ATP production through oxidative phosphorylation possibly due to 

spatial constraints for membrane proteins involved in oxidative 

phosphorylation (Pfeiffer & Morley, 2014; Schumacher, 2018), key 

intermediates’ cross membrane shuttling (Xie et al., 2022), limited capacity of 

NADH recycling due to enzyme constraints (Hackett et al., 2016) or an upper 

limit in Gibbs free energy dissipation (Niebel et al., 2019). From an evolutionary 

perspective aerobic ethanol production can be an advantage as it provides a 

way to compete with other microorganisms in glucose-rich environments. 

Furthermore, successful efforts have been made to create a Crabtree-negative 

Saccharomyces cerevisiae via rational strain engineering combined with 

adaptive laboratory evolution (ALE) (Dai et al., 2018). No matter what the actual 

mechanisms are, these changes in fermentation mode bring challenges to 

precise industrial scale process control, especially considering the existence of 

carbon source and oxygen concentration gradients due to insufficient mixing 

and mass transfer (Haringa et al., 2018; Jem et al., 1994; Noorman, 2011; Wang 

et al., 2015). 

One of the approaches to tackle these challenges is taking the microorganism’s 

view via integration of a cellular metabolic kinetic model and computational 

fluid dynamics (CFD) (Haringa et al., 2018, 2022; Haringa, Tang, et al., 2017; 
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Nadal-Rey et al., 2021; Wang et al., 2019). The kinetic metabolic model 

describes the microbial response when facing dynamic environments, taking 

the history of individual cells into account, while the CFD model describes the 

details of the local cellular environment within the large-scale bioreactor. A 

successful application of the integration of biokinetics with CFD was first shown 

by Lapin and coworkers (Lapin et al., 2004) where the glucose uptake in E. coli 

(via the phosphotransferase system, PTS) was integrated into CFD with the 

Euler-Lagrange approach. Later, (Haringa, Tang, et al., 2017)a successful 

integration of simple yeast glucose uptake kinetics in an industrial scale stirred 

tank reactor was applied and based on the simulation results a representative 

scale-down simulator set-up in the lab was proposed (Haringa, Tang, et al., 

2017). Shortly thereafter a structured kinetic model of Penicillin 

chrysogenum(Tang et al., 2017), validated against both long- and short- term 

dynamics, was integrated into a CFD framework (Tang et al., 2017). It was 

concluded from these works that an appropriate cellular kinetic model is very 

often the bottleneck for obtaining meaningful simulation results. This is not only 

caused by our limited knowledge of the mechanisms of long-term cellular 

adaptation and short-term perturbation responses, but also by the fact that 

such cellular kinetic models, when combined with a CFD model, are not 

mathematically stable and simple enough to avoid computational challenges 

(Haluk Resat, Linda Petzold, 2010; Miskovic et al., 2019; Wang et al., 2015, 2020). 

Kinetic models describing yeast performance in various applications have 

already been subject of study for decades. As early as 1986,a black box based 

kinetic model that was capable of reproducing ethanol formation at high 

specific growth rates was developed, where an upper limit of the non-

fermentative pathways was hypothesized to mimic overflow metabolism 

(Sonnleitner & Käppeli, 1986). Since then, various kinds of kinetic models for S. 

cerevisiae have been developed which were comprehensively reviewed (Lao-

Martil et al., 2022). Among these models, many aimed for a better 

understanding of the physiology and dynamic behavior of the cells at a basic 

mechanistic level, where most efforts were put on central carbon metabolism 

(Hynne et al., 2001; Rizzi et al., 1997; Smallbone et al., 2013; van Heerden et al., 

2014). These models were usually equipped with hundred or more parameters, 

required to explicitly describe each reaction of the metabolic network, which is 

too complicated for CFD integration purposes. Nikerel and coworkers (Nikerel 

et al., 2009) proposed the use of a lin-log type of approximation of the 

mechanistic kinetics, such that with much less computational effort, similar 

dynamics could be predicted. This approach was successfully implemented in 
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describing glycolysis in yeast. Later, the same authors proposed a systematic 

approach to further reduce the number of model reactions via lumping of 

reactions operating close to equilibrium, thereby increasing the parameter 

identifiability (Nikerel et al., 2011). However, due to the requirement of a 

reference state in the lin-log approach, it is difficult to directly apply those 

models to the millions of Lagrangian parcels during model integration. Recently, 

(La et al., 2020)a simplified dynamic yeast model where conserved moieties like 

ATP/ADP and NAD+/NADH were included was published (La et al., 2020). The 

model was highlighted by using energy (ATP) and/or electron carriers (NADH) 

to trigger the different metabolic pathways and it showed a promising 

predictive capacity when applied to a batch process. However, due to a lack of 

model validation on intracellular compounds and short-term dynamics, e.g. 

glucose pulse or oscillation, it is difficult to evaluate the accuracy of such models 

within a CFD framework, where the parcels (representing microbial cells) 

experience a highly dynamic environment for up to hundreds of hours. To be 

able to guide the control and optimization of industrial bioprocesses using high-

resolution CFD or a lower resolution compartment-based fluid dynamic model, 

a structured kinetic model is required that is built with the end of the final 

application in mind (Wang et al., 2020). 

In this chapter, we present a structured kinetic model for S.cerevisiae, featured 

with intracellular energy (ATP-ADP) and redox carriers (NADH-NAD+) and 

ethanol formation during excess glucose supply and/or oxygen limitation. We 

demonstrate the capability of the model in describing long-term Crabtree and 

Pasteur effects triggered by intracellular NADH accumulation (NAD+ limitation). 

By adapting the glucose uptake capacity, this model can reproduce the ethanol 

production in a short-term glucose pulse event and, in a qualitative way, the 

cellular responses under glucose oscillation conditions. We also proved its 

suitability for CFD integration by testing it in a highly dynamic, glucose 

concentration profile simulated for a 22m3 pilot tank (Haringa, Deshmukh, et al., 

2017a).   
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Data sources 
All experimental data used for model fitting have been collected from 

publications. The type of data and their sources are detailed in Table 1. For 

experiment No.2, we only refer to the extracellular glucose and ethanol 

concentrations but not concentrations of intracellular intermediates. Because 

those intermediates were measured using a different sample quenching 

method, which might have led to a systematic deviation, we decided not to use 

these data (van Gulik et al., 2012).  

Table 1 Experimental data used in this Chapter 

No. Type Strain Experimental Setting Reference 

1 Steady 
states 

CEN.PK 
113-7D 

Steady states reached via 
Upward/downward step changes in dilution 
rate 

(Canelas et al., 2011) 

2 Glucose 
pulses 

Glucose pulse experiment based on steady 
state cultivation with D= 0.05 h-1. The 
glucose perturbation was executed by 
injection of concentrated glucose solution. 
Broth glucose concentration jumps from 
0.11 to 2.8mM. 

(Mashego et al., 2006) 

3 Glucose 
oscillations 

Chemostat with dilution rate of 0.1h-1; feast 
famine cycles of 400s: fast feed (feast phase) 
in the first 20s and no feed (famine phase) in 
the remaining 380s 

(Suarez-Mendez et al., 
2014) 
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A 7-pool yeast kinetic model 

 

Figure 1. Schematic representation of the 7-pool yeast kinetic model. The 7 intracellular pools are: intC 
(C6H12O6), midC(C3H6O3), Pyr(C3H4O3), Acetaldehyde (C2H4O), Ethanol (C2H6O) and two conserved moieties 
(ATP and NADH). 

 

The simplified structured kinetic model is designed for integration with the 

computational fluid dynamics (CFD) approach and to provide a complete 

picture of the cell’s lifelines under the dynamic conditions inside the large-scale 

bioreactor (Haringa et al., 2016). To begin with the end in mind, we applied the 

same philosophy as in case of an earlier published 9-pool model for Penicillium 

chrysogenum (Tang et al., 2017). We have lumped the glycolysis into three 

reactions and the TCA cycle into one single reaction. To cover the capability of 

S. cerevisiae’s to produce ethanol during carbon overflow (Crabtree effect 

(Pfeiffer & Morley, 2014)) or oxygen limited conditions (Pasteur effect (Krebs, 

1972)), we describe the redox moiety (NADH/NAD) explicitly, thereby including 

the oxidation of NADH via the electron transfer chain. For its application 

(Noorman, 2011; Sarkizi Shams Hajian et al., 2020), the model further needs to 

be capable of using ethanol as carbon source. The detailed kinetics, 

stoichiometry and parameterization can be found in Supplementary: Model 

details. Figure 1 shows a schematic representation of the model. For simplicity 

purpose, we did not include storage in this model. However, the model 

structure is designed in such a way that the storage kinetics developed in the 
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Chapter 4 can be integrated. The ATP consumptions due to futile storage 

carbohydrates cycles are inherent in maintenance. 

Glycolysis 
The glycolysis pathway starts from the uptake of glucose and ends at cytosolic 

pyruvate. The whole glycolysis is split into the uptake of glucose, the upper 

glycolysis, and the lower glycolysis. The uptake of glucose also includes the first 

phosphorylation step by hexose kinase - therefore 1 ATP is consumed per 

glucose. The upper part of glycolysis describes the conversion of 6 carbon 

glycolytic intermediates (intC) to 3 carbon units (midC), as a result of lumping 

PGI, PFK and ALDO. Similarly, the lower part of glycolysis describes the 

conversion from those 3 carbon units (midC) to pyruvate, by lumping TPI, 

GAPDH, PGK, PGM, ENO, and PK. The stoichiometric coefficients of NADH and 

ATP are also summarized for both lumped reactions.  

There have been several reports on the allosteric regulations for the control of 

central carbon metabolism of yeast (Banaszak et al., 2011; Cornish-Bowden, 

2014; Hackett et al., 2016; Xu et al., 2012). Here, we highlighted two key 

allosteric regulations that fit our model’s structure. The upper emp pathway 

representing PGI, PFK and ALDO, where ALDO is inhibited by ADP or AMP and 

PFK can be inhibited by ATP and citrate (Banaszak et al., 2011; Hackett et al., 

2016). ATP has the roles of both activator (as a substrate) and inhibitor. As the 

ATP level in the cell is, in most conditions, rather stable, we only applied the 

ATP activation term with high affinity (i.e. low Km) to prevent ATP draining 

when the concentration is too low. Citrate is not an explicitly described species 

in this model, so we use midC, which has a similar pattern as citrate (decrease 

at higher growth rate) across different growth rates, to mimic the effect of 

citrate. This leads to an inhibition term of midC on v_emp_up. A well-known 

allosteric effector for the lumped lower emp pathway is the activation of PK by 

FBP (Jurica et al., 1998; Xu et al., 2012). This effect is included via the activation 

of v_emp_low by intC.  

Biomass formation 
For simplicity purposes, we implemented one single lumped reaction for 

biomass formation, derived from the central carbon intermediate pyruvate. We 

used the general biomass elemental composition CH1.8O0.5N0.2 resulting in the 

following biomass formation reaction from pyruvate: 

0.42 C3H4O3(pyruvate) + 0.2 NH4
+ + 1.82 ATP-> 1 CH1.8O0.5N0.2(biomass) + 0.2 H+ 

+ 0.26 CO2 + 0.24 H2O 
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This is a highly lumped conversion without consumption/production of 

NAD(P)H. Its kinetic rate equation involves limitation by pyruvate, ATP and the 

6C unit (intC) in the model. The presence of intC indicates the availability of the 

5C unit which is for nucleic acid formation. Ammonia is considered to be never 

limited and not involved in any kinetics.  

The initial guess of growth-associated energy requirement (GAM) and the non-

growth associated maintenance energy requirement (NGAM) were 69 

mmolATP/gDW (~1.82 molATP/CmolX) and 1 mmol/gDW/h, respectively 

(Famili et al., 2003). Both values were subjected to further parameterization for 

a better fit. 

TCA cycle 
The tricarboxylic acid cycle (TCA) describes the full oxidation of pyruvate to 

carbon dioxide, with the production of energy (ATP) and electrons (NADH). In 

this model, one molecule of pyruvate will produce 5 NADH and 1 ATP, assuming 

FADH2 is equivalent to NADH and GTP is equivalent to ATP.  

In the alternative scenario, when the cells use ethanol as carbon source under 

aerobic conditions, ethanol is first oxidized to acetaldehyde (ACA) via alcohol 

dehydrogenase (ADH) and then eventually enters the TCA cycle. The ethanol is 

believed to freely diffuse across the cell membrane, and its consumption rate is 

limited by the reversible ADH of which the kinetics were referred to in (Kesten 

et al., 2015; Smallbone et al., 2013). 

The flux of TCA is limited by the availability of substrates of this lumped reaction, 

namely pyruvate, acetaldehyde, and NAD+. We are aware of the inhibitory 

effect of NADH on PDH, CS, ICDH and α-KGDH but as NAD+ and NADH serve as 

conserved moieties, a similar effect can also be realized from the substrate 

limitation of NAD+. Therefore no additional product (NADH) inhibition applied 

to the kinetic of this lumped reaction. 

Electron transfer chain (ETC) and NADH balance 
Different from the previously published 9-pool kinetic model which describes 

growth and penicillin production of Penicillium chrysogenum (Tang et al., 2017), 

the current yeast model includes NADH and NAD as additional conserved 

moiety. It was designed as the signal of overflow metabolism and anaerobic 

metabolism (Pfeiffer & Morley, 2014). Under aerobic conditions, the majority 

of NADH is recycled via the electron transfer chain (ETC) and energy is produced 

according to an actual P/O ratio. The value of the P/O ratio was initially set at 

1.04 (Famili et al., 2003). The dynamic behavior of the ETC depends on the 
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availability of NADH, ADP and O2. Therefore, the effects of the concentrations 

of these species on the reaction rate were incorporated as Michaelis-Menten 

type activation terms.  

Mechanism of triggering Crabtree and Pasteur effect 
Different mechanisms have been proposed as triggers of aerobic ethanol 

production from fermentable substrates in S.cerevisiae. For convenience 

purposes, we used a high level of NADH to trigger aerobic ethanol formation. 

The accumulation of NADH, or more precisely, the limitation of NAD+ will limit 

the TCA cycle flux, thus preventing full combustion of the substrate and forcing 

the cells to select an alternative, NADH-neutral catabolic pathway, i.e. 

fermentation to ethanol, at the expense of a lower energy efficiency. The 

accumulation of NADH could be caused by an overflow from the glycolysis that 

exceeds the capacity of NADH oxidization (ETC), or via a limitation of oxygen 

supply which reduces the ETC capacity. The accumulation of NADH will limit the 

availability of NAD+ for the TCA cycle, leading to accumulation of pyruvate. In 

either possibility, the surplus of pyruvate is converted to acetaldehyde (ACA) by 

pyruvate decarboxylase (PDC). This pushes the reversible ADH towards ethanol 

production and the surplus of NADH is used to reduce ACA. Both ACA and 

ethanol passively diffuse across the cell membrane based on the concentration 

gradient. To calculate the intracellular ethanol concentration a cell volume of 

2.5ml/gDW was assumed. The above-described mechanism appeared suitable 

to cover both the Crabtree and Pasteur effects. The current model is yet too 

simple to consider protein localization limitation or dynamic protein regulation 

which may also trigger the Crabtree/Pasteur effect (Xia et al., 2022; Zhang et al., 

2022). 
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Predictivity of 7-pool model on multiple steady states  
The constructed yeast kinetic model was first parameterized using published 

experimental data (Canelas et al., 2011), where specific rates and intracellular 

compound levels of 16 aerobic glucose limited steady state chemostat 

cultivations were collected at different dilution rates, ranging from D=0.05 h-1 

to 0.35h-1.  

Figure 2 shows the predictivity of the 7-pool model across a wide range of 

growth rates with a clear shift on two distinct cell responses below and above 

the critical value. More specifically, the model successfully reproduced the 

reduced biomass yield on glucose above the critical growth rate which is 

apparent from the accelerated increase of the specific glucose consumption 

rate (steeper slope shown in Figure 2B), decreased specific O2 consumption 

(Figure 2E) increased specific CO2 production (Figure 2D) and most importantly, 

ethanol production (Figure 2E). Furthermore, the model predicted a steep 

increase of the specific glycerol production rate above a growth rate of 0.18 h-1 

which did not match the experimental data. This indicates that above this 

growth rate additional NADH is produced via v_emp_low and v_tca_pyr, which 

can only be removed via glycerol formation after the limit of the ETC has been 

reached. Therefore glycerol is produced to balance the extra produced NADH 

for the partial of growth. The glycerol pattern doesn’t match the experimental 

data probably because the incomplete byproduct profile due to simplicity. 

We noticed that the residual glucose concentration at specific growth rates 

below the critical value was slightly underestimated (Figure 2A), indicating 

there is an overestimation of either the glucose uptake capacity or the glucose 

affinity. The best-fit of the Km for glucose transport appeared to be 1.06 mM in 

the model, which is in good agreement with a previous report (Canelas, 2010). 

However, the Vmax for glucose uptake was fitted to 818 mmol.CmolX-1.h-1 which 

is almost three times higher than the previously reported 279 mmol.CmolX-1.h-

1 for the same host (Suarez-Mendez et al., 2014). Although the kinetics of this 

lumped glucose uptake and glucose phosphorylation step also involves the 

limitation by the intracellular ATP availability and feedback inhibition from its 

product IntC_c, we believe this fitted value is overestimated. Maier and 

coworkers summarized the kinetic features of multiple types of hexose 

transporters (HXT) that are present in the yeast cell and their expression profiles 

as a function of the specific growth rate (Maier et al., 2002). When the 

extracellular glucose concentration is low, the cell expresses high affinity 

transporters (e.g. HXT6, HXT7) of which’s the Km value is around 1 mM. On the 
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other side, when the cell experiences high glucose concentrations and grows at 

a higher rate, low glucose affinity transporters (e.g. HXT1) are induced. HXT1 

has a Km for glucose of around 107 mM but in contrast has a 5-time higher Kcat 

than previous high-affinity transporters (Maier et al., 2002).This feature enables 

yeast cells to transport more glucose with the same amount of protein at high 

glucose concentrations, in spite of the lower affinity. However, the expression 

of different hexose transporters based on the residual glucose concentration 

was not covered by this model. The fitting algorism tends to fit the model to an 

overestimated glucose uptake Vmax to satisfy sufficient glucose uptake rate at 

high growth rates, with as consequence an underestimated glucose 

concentration at low growth rates. Our observation suggests that for 

adequately predicting the glucose uptake behavior of yeast across a wide range 

of growth rates, multiple glucose uptake kinetics (high and low affinity) is 

needed. Moreover, dynamic enzyme balances should be considered for a 

smooth shift from one to another. The details of such glucose uptake 

mechanism will be explained in the “OUTLOOK” chapter of this thesis. 

Looking into the capability of the model to describe levels of intermediates of 

central carbon metabolism, we noticed a clear deviation on the prediction of 

the 6-carbon unit pool at higher growth rates (Figure 3A). This lumped pool 

consists of glucose-6-phosphate(G6P), fructose-6-phosphate(F6P) and fructose-

1,6-bisphosphate(FBP). The relation between the intracellular levels of these 

metabolites and the growth rate have been shown to be different (Canelas et 

al., 2011): Both the levels of G6P and F6P initially increase at increasing growth 

rate but show a decline when the growth rate increases beyond the critical level. 

In contrast to this the level of FBP increases with increasing growth rate until 

the maximum growth rate is reached. FBP plays an important role in activating 

PK via allosteric regulation and this feature is also captured by this model for 

triggering overflow of pyruvate resulting in ethanol formation at high growth 

rates. An important role of this lumped 6-carbon pool is thus the activation of 

PK (included in v_emp_low) and therefore it shows a different profile compared 

to the lumped pool of the three measured metabolites. This discrepancy also 

suggests that lumping metabolites based on structure is not suitable here and 

an improvement of metabolite lumping can be made for this model based on 

functionality. For example, metabolites involved in allosteric regulation, such as 

FBP, should be modeled in a more dedicated way. 

Besides the predicted profiles for the glucose uptake rate and the 6-carbon unit 

pool, the intracellular ATP level also showed slightly larger fluctuations 
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compared to the experimental data (Figure 3D). Canelas and coworkers 

(Canelas et al., 2011) showed that the adenylate energy charge of S. cerevisiae 

was around 0.85 with a standard deviation of 0.023 independent of the specific 

growth rate, suggesting a strong regulation of the intracellular energy 

availability. The measured decline of the ATP level at higher growth rates (>0.25 

h-1) was also observed for ADP and AMP, thus pointing at a slight decrease of 

the total adenine nucleotide pool for growth rates above the critical value. This 

observed decline of the total adenine nucleotides is not covered by the model 

because we fixed the size of the total adenine nucleotide pool and defined ATP 

and ADP as conserved moieties. By design, ATP and ADP are involved in certain 

reactions and supposed to play critical roles in the ability of the cells to respond 

rapidly to perturbations at a time scale of seconds but under (pseudo-)steady 

state conditions they shall remain at a ‘normal’ value independent of the 

growth condition. However, the current model showed a bigger change on the 

predicted ATP level at different growth rates. This indicates that some ATP 

dependent reactions in the 7-pool model lack some control factors (due to 

lumping of the network) and need to use ATP as a replacement. We believe that 

the current description of the dynamics of ATP is still acceptable, as a 

compromise of model structure simplification and the assumption of a fixed 

total adenine nucleotide pool. Nevertheless, the predictivity of ATP can be 

further improved by using the other moiety, ADP, as activator or inhibitor in the 

relevant kinetic expressions. As ADP represents around 20% of the total adenine 

nucleotide pool, the relative change of ADP is more significant than that of ATP 

and therefore able to reach the same dynamic effect with an even smoother 

ATP profile (Explanation in Supplementary: conserved moieties).  

NADH and NAD+ is the second conserved moiety pair in this model. From Figure 

3E, we see a clear phase shift when the growth rate increases above the critical 

value. It is also one of the hypotheses for the Crabtree effect that the 

accumulation of NADH, caused by a capacity limit of either the TCA cycle or the 

electron transfer chain is, the trigger for ethanol production (Pfeiffer & Morley, 

2014). As designed, the simplified model successfully used NADH as trigger for 

ethanol and glycerol production, although the glycerol produce profile is 

overestimated and should be improved. 

In summary, successful simulation of various steady states across a wide range 

of specific growth rates proved the predictivity of this model for steady state 

conditions. The production of ethanol accompanied with glycerol production 

make this model suitable for describing the overflow conditions (Crabtree 
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effect). The trigger of ethanol production, namely NADH accumulation, gives 

confidence in predicting ethanol formation under oxygen limited conditions 

(Pasteur effect), in which v_etc will likely be limited by oxygen availability and 

causes NADH accumulation even when the glucose uptake rate does not exceed 

the critical rate. What’s more, the analysis of the model prediction also pointed 

out several suggestions for further improvements: 1) A proper glucose uptake 

prediction requires at least two glucose uptake routes, whereby one relies on a 

high-affinity low-capacity enzyme and the other on a low-affinity but high-

capacity enzyme. Both enzymes need to be regulated at expression level so that 

a smooth shift from low glucose concentration to high glucose concentration 

can be realized; 2) The lumping of G6P, F6P with FBP is not appropriate because 

of their different regulatory roles; 3) The assumption of a fixed total adenine 

nucleotide pool may not be appropriate if the model needs to cover a wide 

range of growth rates. For reaching a more stable ATP profile, using ADP as 

activator/inhibitor is suggested; 4) the glycerol production is triggered at the 

right timing but improvements is required for a quantitative matching to 

experimental data. 
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Figure 2. Structured yeast kinetic model validation on multiple steady sates. Glucose concentration and 
specific production/consumption rate against specific growth rates (solid lines) were plotted on top of 
experimental data (circle) 
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Figure 3. Structured yeast kinetic model validation on multiple steady sates. Intracellular compounds against 
growth rates (solid lines) were plotted on top of experimental data (circle). Intracellular NADH level is not 
available for this experiment (Canelas et al., 2011) but the trend matches the cytosolic free NADH/NAD+ ratio 
at high glucose concentration (Canelas et al., 2008) 
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Predictivity of a single glucose pulse with glucose uptake capacity 

adapted to chemostat steady state 
After the calibration of the 7-pool model to describe steady state conditions, 

we tested the model against short-term dynamic conditions. The model was 

first subjected to a glucose pulse after the system reached a steady state. We 

compared the response of the model to published data from (Mashego et al., 

2006), wherein glucose pulse experiments were executed in both the BioScope 

(a mini plug flow reactor coupled to a steady state chemostat) and directly in 

the chemostat for validating the representativeness of the BioScope. We 

selected the dataset obtained from a direct fermentor pulse for comparison 

because it fits best to our simulation setting. However, it is good to mention 

that in the original publications, it is concluded that there are no significant 

deviations between the response of the cells to a glucose pulse in the BioScope 

and to a direct pulse in the chemostat.  

When applying the original 7-pool model to the pulse conditions, a significant 

overestimation of glucose consumption and ethanol production is observed 

(Figure 4, solid line). The pulse of glucose increases the glucose concentration 

from a limiting level (glucose-limited steady state, D=0.05 h-1) to a sufficiently 

high, excess level (>>20 Km). Therefore, the predicted glucose uptake rate 

immediately reached its maximum capacity. However, the cells were first 

adapted to a glucose-limited low growth rate and therefore the expressed 

glucose transporter should be mainly of the high-affinity, low-capacity type 

(Maier et al., 2002). A sudden high glucose concentration may trigger the cell 

to start expressing the low affinity transporter (e.g. HXT1) but the turnover time 

for expressing a protein is much longer than the 400s observation window. 

Therefore, because of the adaptation to a glucose-limited steady state before 

the pulse, the cell is still only ‘equipped’ with the high-affinity low-capacity 

transporter (e.g. HXT6 and/or HXT7) and the response of the cells should reflect 

the features of those transporters. To validate our hypothesis, we reduced the 

glucose uptake capacity of the 7-pool model from 818 mMol.gDW-1.h-1 to 279 

mMol.gDW-1.h-1, a reported value (Suarez-Mendez et al., 2014) which is in 

agreement with previous reports ((van Dijken et al., 1993). The Km value was 

kept the same as it agrees well with the previous reports. This adaptation 

resulted in a satisfactory description of the experimentally observed glucose 

and ethanol profiles (Figure 4, dashed lines), which confirmed our hypothesis 

about the impact of the glucose uptake capacity. Based on this, we would 

assume that if the pulse experiment would have been carried out after a steady 

state at a sufficiently high dilution rate or, alternatively, at the end of a batch 



 139 

cultivation, the dynamics of the same pulse should be closer to the solid line 

from Figure 4. 

Retrospectively, we also compared the model with adapted glucose uptake 

capacity against the steady state data (Canelas et al., 2011) shown in the 

previous section. We observed that after this adaptation the model still 

provides a reasonable description of the residual glucose level if the dilution 

rate is below 0.2 h-1. When the dilution is increased further, the predicted 

residual glucose concentration exponentially increases until 50 g/kg (at D=0.3 

h-1) and the ODE system will not cover D>0.3h-1. This further makes clear that 

an alternative glucose transporter with higher capacity is required for reaching 

the steady state at a high dilution rate. 

Although the adaptation of the glucose uptake capacity validated our model in 

predicting short-term dynamics, we noticed a small discrepancy in the ethanol 

production profile for the first 50s (Figure 4B). Remarkably, the delayed 

detection of ethanol after the pulse is only observed from the pulse in 

fermentor but not in the BioScope. The authors suspect this difference can be 

attributed to the differences in biomass age, i.e., eight generations in BioScope 

perturbation and 13 generations in the fermentation perturbation (Mashego et 

al., 2006). Due to simplification of our 7-pool model, our model is not capable 

of reproducing this delay in ethanol production, which could be related to 

protein expression characteristics or cell aging. Still, we believe this has minor 

impact to the application of our model. 

 

Figure 4. 7-pool kinetic model prediction under single glucose pulse conditions. A: residual glucose 
concentration after a pulse and B: ethanol production as a response to the glucose pulse. Open circle for 
experimental data (Mashego et al., 2006). Solid line for the 7-pool model parameterized by all steady states 
discussed above; dash line for a 7-pool model with reduced glucose uptake capacity: V_glc_upt_max = 279 
mMol.CmolX-1.h-1 (instead of 818), which is determined under oscillation conditions with average D=0.1 h-1 
(Suarez-Mendez et al., 2014). 
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Fair model predictivity in reproducing dynamics in short-term 

oscillation 
The model was further challenged in a repeated glucose oscillation experiment, 

with periodic feeding of glucose (20s on, 380s off). The average dilution rate 

was kept at 0.1 h-1. For a more detailed experimental setting please refer to the 

published paper (Suarez-Mendez et al., 2014). Referring to the previous 

learnings from the single pulse validation, we tested both versions of the 7-pool 

kinetic models under these glucose feast-famine conditions. Figure 5 shows key 

extracellular and intracellular pool profiles compared to the corresponding 

experimental data when the system produces reproducible cycles. 

As can be seen from a plot of the residual glucose concentration during one 

cycle (Fig. 5A solid line) the glucose consumption rate predicted by the original 

model was too high, similar as was observed for the glucose pulse experiment. 

However, the prediction with the glucose uptake capacity estimated by Suarez-

Mendez et al. (Suarez-Mendez et al., 2014) (279 mMol.gDW-1.h-1) fitted the 

measured residual glucose profile well (Figure 5A, dashed line). As with this 

value of the maximum glucose uptake capacity also a satisfactory description of 

the glucose uptake during the single pulse experiment was obtained, this 

suggests that even after a period of 50 hours of repeated oscillations no 

adaptation of the glucose uptake kinetics had occurred. This although the 

maximum residual glucose concentration (0.5 mM) which was reached shortly 

after the glucose addition can already support a cell growth rate beyond 0.25 h-

1 and trigger ethanol production. 

Due to the high glucose uptake rate in the original version of the model, the 

Crabtree effect is also triggered incorrectly and causes ethanol accumulation to 

0.4 g/kg (Figure 5B). On the other side, almost no ethanol was produced 

according to model with the reduced glucose uptake capacity. This agrees with 

the published experimental result where no ethanol production was 

observed(Suarez-Mendez et al., 2014). 

Regarding the intracellular compounds, both versions of the model captured 

the correct trend of primary carbon metabolites, featured by a high peak for 

the 6-carbon unit pool (intC) but a dip of the 3-carbon unit pool (midC) in the 

first 100s of each cycle (Figure 5C and D). The model with reduced glucose 

uptake capacity showed smaller changes in both intermediates, which makes 

perfect sense because of a smaller glucose uptake peak. However, both models 

missed the peak of the 3-carbon unit pool at around 200s. The increase of this 

lumped pool is mainly caused by the accumulation of 3-phosphoglycerate (3PG), 
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2-phosphoglycerate (2PG) and phosphoenolpyruvate (PEP) caused by yet 

incompletely known regulatory mechanisms at the metabolite level (Suarez-

Mendez et al., 2014).  

We observed a clear deviation on the pyruvate profile for both models during a 

cycle. Both models suggest a pyruvate profile that should be similar to the 

profile of extracellular glucose or intC. This makes sense from the model’s 

perspective as the level of pyruvate is critical to determine the rate of either the 

TCA cycle or the ethanol production (PDC, under overflow conditions). The 

stable pyruvate level was explained by compartmentalization or a buffer 

capacity of alanine, a closely related amino acid that has a concentration about 

100 times higher than pyruvate (Suarez-Mendez et al., 2014). None of those 

were considered in our highly lumped model. Depending on the application of 

the model, a buffer pool of pyruvate can be added to bring the pyruvate profile 

closer to experimental data. At this point, we don’t think the mismatch of 

pyruvate will cause serious problems to the model performance. 

The predicted ATP profiles of both models showed interesting results: the 

model with the high glucose uptake capacity predicted an initial steep decrease 

of the ATP concentration while the model with reduced glucose uptake rate 

didn’t. Typically, one would expect an initial decrease of the ATP when there is 

a sudden increase in glucose concentration (Mashego et al., 2006; Theobald et 

al., 1997),  which is in generally referred to as the ‘ATP paradox’ (Somsen et al., 

2000). However, this paradox was not observed in the original glucose 

oscillation experiment we refer to here(Suarez-Mendez et al., 2014). It was 

explained by authors that 1) the trigger of the ATP paradox depends on the 

maximum glucose concentration during the oscillation or pulse and/or 2) the 

microorganism was ‘trained’ and has increased its oxygen uptake capacity to 

prevent the use of the ATP salvage pathway. Considering that the ATP paradox 

can also be observed in the previous single-pulse simulation by the model, even 

with a reduced glucose uptake capacity (Figure S1), we believe this ATP paradox 

is triggered due to the short-term imbalance between phosphates/ATP 

regeneration due to a sudden increase of glucose uptake rate, which was 

reported previously (van Heerden et al., 2014). Because our model did not cover 

the ATP salvage pathway and the total pool of adenine nucleotides is assumed 

constant, the initial glucose phosphorylation could be already sufficient to 

explain that the ATP paradox occurred during glucose oscillations/pulses. 

Unfortunately, the 7-pool model is not suitable to validate the second 
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hypothesis due to its simplified structure and missing gene regulation 

mechanisms. 

 

Figure 5. 7-pool kinetic model prediction under glucose oscillation conditions (20s feed on, 380s feed off). A 
and B: the extracellular glucose and ethanol concentration (mol.m-3) in one glucose oscillation cycle; C,D,E 
and F: intracellular compound profiles of intC(C6), midC(C3), pyruvate and ATP. Open circle for experimental 
data collected from Camilo A, et.al. (2014), solid line for prediction from the 7-pool model parameterized by 
all steady states discussed above; dash line for a 7-pool model with reduced glucose uptake capacity: Vmax,glcupt 
= 279 mMol.CmolX-1.h-1 (instead of 818), which is determined under oscillation condition with average D=0.1 
h-1(Suarez-Mendez et al., 2014). All extracellular concentrations with units of mol.m-3 and all intracellular 
concentration with units of mol.m-3(cell), assuming 26gDW.CmolX-1 and 2.5ml.gDW-1. 
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Suitability of the kinetic model for CFD simulation 
Finally, we tested the suitability of our 7-pool model for integration with CFD-

based reactor models. For this, we adapted the cell’s lifelines extracted from a 

22 m3 large pilot bioreactor (Haringa, Deshmukh, et al., 2017b). Like the test in 

the previous Chapter, we connected 120 separate original lifelines into a long, 

single lifeline which lasts for about 40 hours, to enable the model to reach an 

unbiased dynamic state.  

Here we only tested the 7-pool model with reduced glucose uptake capacity 
(279 mmol.gDW-1.h-1) because this glucose uptake capacity is able to provide a 
more realistic glucose profile for both the single glucose pulse and the glucose 
oscillation conditions (Figure 4A and Figure 5A). The glucose affinity constant 
fitted for the 7-pool model is very similar to the one used in the CFD simulation 
of Haringa and coworkers (Haringa, Deshmukh, et al., 2017b) and therefore no 
adaption of Km was needed. The lifeline consists of glucose concentrations 
experienced by the Lagrange parcels in the CFD framework. Dissolved oxygen 
was proven to be higher than 0.08mM (30% of saturated dissolved oxygen 
under 1 bar) and therefore no Pasteur effect was expected.  

All tests with the 20 lifelines went smoothly without any stability issues, which 

assured the fitness and robustness of the 7-pool model in handling this type of 

highly dynamic glucose concentrations. Figure 6 shows a snapshot of the 

responses of the cells to one tested lifeline in a 720s time window. The model 

showed a similar dynamic feature as in the controlled glucose oscillation: the 

intC and pyruvate pool showed a similar pattern as extracellular glucose but 

more dampened. The midC pool also showed a proper inverted pattern 

compared to intC. The predicted ATP showed a rather stable value around of 6 

µmol.gDW-1 and the NADH level showed a high peak as it rapidly responds when 

the cells were suddenly exposed to high glucose concentrations. Based on these 

local observations, we believe the 7-pool model performs according to our 

expectations in the provided set of cell lifelines.  

When looking from a longer time scale perspective, we observed proper long 

term cell growth under the conditions of these lifelines with an average growth 

rate around 0.07 h-1. We also do not see significant discrepancies among 

different lifelines, suggesting a consistent model response to these long-term 

glucose profiles. Ethanol production was observed to occur at a low level 

(maximum concentration of about 0.1 g/kg at a biomass intensity of around 

90gDW/kg). This indicates that the short-term Crabtree effect may be triggered 

due to local glucose accumulation in the 22 m3 large pilot scale tank. Higher 
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ethanol peaks were observed in the later phase of the simulation which is a 

result of the higher biomass concentration. Nevertheless, the prediction of 

glycerol production is problematic as it keeps accumulating till the end of the 

fermentation. This is a defect of the 7-pool model because of the absence of a 

glycerol uptake mechanism. This will not only cause incorrect predictions on the 

glycerol profile but also an underestimation of CO2 production and biomass 

formation due to unrealistic carbon loss. Despite this defect, we confirmed that 

the 7-pool model showed stable and reasonable cell responses when facing 

long term rapid glucose oscillations. This successfully proved its fitness for a 

complete CFD integration. 

 

Figure 6 A snapshot of intracellular cell responses during a 720s cell lifeline. A: the experienced glucose profile, 
simulated by (Haringa, Deshmukh, et al., 2017b) for a 22m3 large pilot scale bioreactor. B-F: corresponding 
intracellular cell response to the experienced glucose concentration.  
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Figure 7 Extracellular compounds’ profile in 20 long-term (40h) lifelines simulated by the 7-pool model. A: 
Experienced glucose profile; B: biomass growth under such glucose oscillation regime. The biomass profile 
follows an exponential growth with a specific growth rate of 0.07 h-1 C&D: accumulation of two main 
byproducts. 
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Conclusions 
In this Chapter, the possibility of using a compact kinetic model to describe the 

dynamics behavior of Saccharomyces cerevisiae as response to glucose 

gradients is explored. A 7-pool lumped kinetic model covering glycolysis, TCA 

cycle, electron transfer chain and overflow metabolism was first proposed and 

showed a reasonable prediction under steady state conditions, including at 

specific growth rates that are beyond the critical value for fully respiratory 

metabolism. The ethanol formation was successfully triggered by NADH 

accumulation caused by either overflow (glucose excess, Crabtree effect) or 

limited ETC capacity (oxygen limitation, Pasteur effect) in this model. The model 

was further tested for single glucose pulse conditions and periodic glucose 

oscillations. It showed good predictivity under glucose pulse conditions and 

qualitatively predicted the glucose oscillation conditions. Finally, the model was 

tested with highly dynamic glucose profiles simulated for a 22 m3 large pilot 

bioreactor. This 7-pool model showed sufficient stability in handling such 

dynamics and maintained proper kinetic features throughout multiple long 

lifelines. This proves that the 7-pool model is suitable for integrating into a 

complete CFD framework. 

Nevertheless, we also noticed that for reproducing short-term dynamics, the 

glucose uptake capacity has to be adapted to a high-affinity low-capacity 

glucose transporter which is normally expressed at low residual glucose 

conditions. This adaptation will not impact the predictivity of steady states 

below a dilution rate of 0.2 h-1 but sacrifices the model’s predictivity at higher 

growth rates. A proper solution is to introduce two or more parallel glucose 

uptake mechanisms and regulate the use of the glucose uptake channels via 

enzyme balancing (Tang et al., 2017). We also suggest several other possible 

improvements including a better design for lumped intracellular species and 

additional mechanisms for consuming produced byproducts such as glycerol. In 

the Outlook Chapter of this thesis, we will address those opportunities in more 

detail and propose an extended model structure for the future work.  
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Supplementary: Model details 

Model Stoichiometry  
Table S1 Stoichiometry matrix of the 7-pool kinetic model 

   v_glc_u
pt 

v_emp_
up 

v_emp_l
ow 

v_tca_p
yr 

v_tca_
ac 

v_et
c 

v_sto_i
n* 

v_sto_ou
t* 

v_gl
yc 

v_pd
c 

v_ad
h 

v_etoh_
tp 

v_grow
th 

In
tr

ac
el

lu
la

r 

Int_C C6H12O6 1 -1     -1 1      

Mid_C C3H6O3  2 -1      -1     

Sto_C C12H22O11       0.5 -0.5      

Pyr C3H4O3   1 -1      -1   -0.42 

Aca C2H4O     -1     1 -1   

EtOH C2H6O           1 -1  

NADH NAD-H   1 5 5 -2   -1  -1   

ATP - -1 -1 2 1 -1 2*PO -1 -1     GAM 

Ex
tr

ac
el

lu
la

r 

Glc C6H12O6 -1             

Fru C6H12O6              

Glycerol C3H8O3         1     

EtOH C2H6O            1  

Biomass 
CH1.8O0.5

N0.2 
            1 

Ammonia NH4             -0.2 

Proton H   1 5 5 -2   -1  -1  0.2 

water H2O    -3 -3 2 0.5 -0.5     0.24 

oxygen O2      -1        

Carbon 
dioxide 

CO2    3 2     1   0.26 

* The storage cycle is excluded in this kinetic model. 
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Kinetics 
Table S2 Core kinetics applied in 7-pool kinetic model 

Conversion Kinetics 

glucose uptake 𝑣𝑔𝑙𝑐𝑢𝑝𝑡 = 𝑣𝑚𝑎𝑥,𝑔𝑙𝑐𝑢𝑝𝑡 ∙
𝐶𝐸𝐶,𝑔𝑙𝑐

𝐶𝐸𝐶,𝑔𝑙𝑐+𝐾𝑚,𝑔𝑙𝑐𝑢𝑝𝑡,𝑔𝑙𝑐
∙

𝐶𝐼𝐶,𝑎𝑡𝑝

𝐶𝐼𝐶,𝑎𝑡𝑝+𝐾𝑚,𝑔𝑙𝑐𝑢𝑝𝑡,𝑎𝑡𝑝
∙

𝐶𝐼𝐶,𝑖𝑛𝑡𝐶

𝐶𝐼𝐶,𝑖𝑛𝑡𝐶+𝐾𝑚,𝑔𝑙𝑐𝑢𝑝𝑡,𝑖𝑛𝑡𝐶
  

higher glycolysis 𝑣𝑒𝑚𝑝𝑢𝑝 = 𝑣𝑚𝑎𝑥,𝑒𝑚𝑝𝑢𝑝 ∙
𝐶𝐼𝐶,𝑖𝑛𝑡𝐶

𝐶𝐼𝐶,𝑖𝑛𝑡𝐶+𝐾𝑚,𝑒𝑚𝑝𝑢𝑝,𝑖𝑛𝑡𝐶
∙

𝐶𝐼𝐶,𝑎𝑡𝑝

𝐶𝐼𝐶,𝑎𝑡𝑝+𝐾𝑚,𝑒𝑚𝑝𝑢𝑝,𝑎𝑡𝑝
∙

𝐾𝑖,𝑒𝑚𝑝𝑢𝑝,𝑚𝑖𝑑𝐶

𝐶𝐼𝐶,𝑚𝑖𝑑𝐶+𝐾𝑖,𝑒𝑚𝑝𝑢𝑝,𝑚𝑖𝑑𝐶
  

lower glycolysis 𝑣𝑒𝑚𝑝𝑙𝑜𝑤 = 𝑣𝑚𝑎𝑥,𝑒𝑚𝑝𝑙𝑜𝑤 ∙
𝐶𝐼𝐶,𝑖𝑛𝑡𝐶

𝐶𝐼𝐶,𝑖𝑛𝑡𝐶+𝐾𝑚,𝑒𝑚𝑝𝑙𝑜𝑤,𝑖𝑛𝑡𝐶
∙

𝐶𝐼𝐶,𝑚𝑖𝑑𝐶

𝐶𝐼𝐶,𝑚𝑖𝑑𝐶+𝐾𝑚,𝑒𝑚𝑝𝑙𝑜𝑤,𝑚𝑖𝑑𝐶
  

TCA cycle 
(pyruvate) 

𝑣𝑡𝑐𝑎𝑝𝑦𝑟 = 𝑣𝑚𝑎𝑥,𝑡𝑐𝑎𝑝𝑦𝑟 ∙
𝐶𝐼𝐶,𝑝𝑦𝑟

𝐶𝐼𝐶,𝑝𝑦𝑟+𝐾𝑚,𝑡𝑐𝑎𝑝𝑦𝑟,𝑝𝑦𝑟
∙

𝐶𝐼𝐶,𝑛𝑎𝑑

𝐶𝐼𝐶,𝑛𝑎𝑑+𝐾𝑚,𝑡𝑐𝑎𝑝𝑦𝑟,𝑛𝑎𝑑
  

PDC 𝑣𝑝𝑑𝑐 = 𝑣𝑚𝑎𝑥,𝑝𝑑𝑐 ∙
𝐶𝐼𝐶,𝑝𝑦𝑟

3

𝐶𝐼𝐶,𝑝𝑦𝑟
3+𝐾𝑚,𝑝𝑑𝑐,𝑝𝑦𝑟

3  

TCA cycle 
(acetaldehyde) 

𝑣𝑡𝑐𝑎𝑎𝑐𝑎 = 𝑣𝑚𝑎𝑥,𝑡𝑐𝑎𝑎𝑐𝑎 ∙
𝐶𝐼𝐶,𝑎𝑐𝑎

𝐶𝐼𝐶,𝑎𝑐𝑎+𝐾𝑚,𝑡𝑐𝑎𝑎𝑐𝑎,𝑎𝑐𝑎
∙

𝐶𝐼𝐶,𝑛𝑎𝑑

𝐶𝐼𝐶,𝑛𝑎𝑑+𝐾𝑚,𝑡𝑐𝑎𝑎𝑐𝑎,𝑛𝑎𝑑
  

ETC 𝑣𝑒𝑡𝑐 = 𝑣𝑚𝑎𝑥,𝑒𝑡𝑐 ∙
𝐶𝐸𝐶,𝑜2

2

𝐶𝐸𝐶,𝑜2
2+𝐾𝑚,𝑒𝑡𝑐,𝑜2

2 ∙
𝐶𝐼𝐶,𝑛𝑎𝑑ℎ

𝐶𝐼𝐶,𝑛𝑎𝑑ℎ+𝐾𝑚,𝑒𝑡𝑐,𝑛𝑎𝑑ℎ
∙

𝐶𝐼𝐶,𝑎𝑑𝑝

𝐶𝐼𝐶,𝑎𝑑𝑝+𝐾𝑚,𝑒𝑡𝑐,𝑎𝑑𝑝
  

maintenance 
(non-growth associate) 

𝑣𝑛𝑔𝑎𝑚 = 𝑣𝑚𝑎𝑥,𝑛𝑔𝑎𝑚 ∙
𝐶𝐼𝐶,𝑎𝑡𝑝

5

𝐶𝐼𝐶,𝑎𝑡𝑝
5+𝐾𝑚,𝑛𝑔𝑎𝑚,𝑎𝑡𝑝

5  

glycerol formation 𝑣𝑔𝑙𝑦𝑐 = 𝑣𝑚𝑎𝑥,𝑔𝑙𝑦𝑐 ∙
𝐶𝐼𝐶,𝑚𝑖𝑑𝐶

𝐶𝐼𝐶,𝑚𝑖𝑑𝐶+𝐾𝑚,𝑔𝑙𝑦𝑐,𝑚𝑖𝑑𝐶
∙

𝐶𝐼𝐶,𝑛𝑎𝑑ℎ

𝐶𝐼𝐶,𝑛𝑎𝑑ℎ+𝐾𝑚,𝑔𝑙𝑦𝑐,𝑛𝑎𝑑ℎ
  

ADH 𝑣𝑎𝑑ℎ = 𝑣𝑚𝑎𝑥,𝑎𝑑ℎ ∙

1

𝐾𝑚,𝑎𝑑ℎ,𝑎𝑐𝑎∙𝐾𝑚,𝑎𝑑ℎ,𝑛𝑎𝑑ℎ
∙(𝐶𝐼𝐶,𝑎𝑐𝑎𝐶𝐼𝐶,𝑛𝑎𝑑ℎ−

𝐶𝐼𝐶,𝑒𝑡𝑜ℎ𝐶𝐼𝐶,𝑛𝑎𝑑
𝐾𝑒𝑞,𝑎𝑑ℎ

)

(1+
𝐶𝐼𝐶,𝑎𝑐𝑎

𝐾𝑚,𝑎𝑑ℎ,𝑎𝑐𝑎
)∙(1+

𝐶𝐼𝐶,𝑛𝑎𝑑ℎ
𝐾𝑚,𝑎𝑑ℎ,𝑛𝑎𝑑ℎ

)+(1+
𝐶𝐼𝐶,𝑒𝑡𝑜ℎ

𝐾𝑚,𝑎𝑑ℎ,𝑒𝑡𝑜ℎ
)∙(1+

𝐶𝐼𝐶,𝑛𝑎𝑑
𝐾𝑚,𝑎𝑑ℎ,𝑛𝑎𝑑

)−1
  

biomass formation 𝑣𝑔𝑟𝑜𝑤𝑡ℎ = 𝑣𝑚𝑎𝑥,𝑔𝑟𝑜𝑤𝑡ℎ ∙
𝐶𝐼𝐶,𝑖𝑛𝑡𝐶

𝐶𝐼𝐶,𝑖𝑛𝑡𝐶+𝐾𝑚,𝑔𝑟𝑜𝑤𝑡ℎ,𝑖𝑛𝑡𝐶
∙

𝐶𝐼𝐶,𝑝𝑦𝑟

𝐶𝐼𝐶,𝑝𝑦𝑟+𝐾𝑚,𝑔𝑟𝑜𝑤𝑡ℎ,𝑝𝑦𝑟
∙

𝐶𝐼𝐶,𝑎𝑡𝑝
3

𝐶𝐼𝐶,𝑎𝑡𝑝
3+𝐾𝑚,𝑔𝑟𝑜𝑤𝑡ℎ,𝑎𝑡𝑝

3  

ethanol transport 𝑣𝑒𝑡𝑜ℎ,𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 = 𝑘𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡,𝑒𝑡𝑜ℎ ∙ (𝐶𝐼𝐶,𝑒𝑡𝑜ℎ − 𝐶𝐸𝐶,𝑒𝑡𝑜ℎ)  
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Parameters 
Table S3 Parameter values of the 7-pool kinetic model fitted to multiple steady states 

Parameter Unit Value Remark Source 

P/O dimensionless 0.950 
amount of atp produced per O 
atom 

(Famili et al., 
2003) 

vmax_glcupt molintC/CmolX/h 0.279 max glucose uptake rate 
(Suarez-Mendez 
et al., 2014) 

K_glcupt_glc mol/m3(broth) 1.062 affinity constant glc 
(Suarez-Mendez 
et al., 2014) 

K_glcupt_atp mol/m3(cell) 0.101 affinity constant atp Fitted 

Ki_glcupt_intC mol/m3(cell) 20.44 inhibition constant c6 Fitted 

vmax_empup molintC/CmolX/h 1.289 
max conversion rate from c6 to 
c3 

Fitted 

K_empup_intC mol/m3(cell) 21.02 affinity constant c6 Fitted 

Ki_empup_midC mol/m3(cell) 0.448 inhibition constant c6 Fitted 

K_empup_atp mol/m3(cell) 0.025 affinity constant atp Fitted 

vmax_emplow molmidC/CmolX/h 3.740 
max conversion rate from c3 to 
pyr 

Fitted 

K_emplow_intC mol/m3(cell) 121.3 affinity constant c6 Fitted 

K_emplow_midC mol/m3(cell) 0.111 affinity constant c3 Fitted 

vmax_tcapyr molpyr/CmolX/h 0.069 
max conversion rate for pyr 
entering tca 

Fitted 

K_tcapyr_pyr mol/m3(cell) 0.702 affinity constant pyruvate Fitted 

K_tcapyr_nad mol/m3(cell) 0.127 affinity constant nad+ Fitted 

vmax_tcaaca molaca/CmolX/h 0.180 
max conversion rate for aca 
entering tca 

Fitted 

K_tcaaca_aca mol/m3(cell) 0.006 affinity constant acetaldehyde Fitted 

K_tcaaca_nad mol/m3(cell) 0.061 affinity constant nad+ Fitted 

vmax_etc molo2/CmolX/h 0.426 
max conversion rate of electron 
transfer chain 

Fitted 

K_etc_o2 mol/m3(broth) 0.006 affinity constant oxygen Fitted 

K_etc_nadh mol/m3(cell) 0.022 affinity constant nadh Fitted 

K_etc_adp mol/m3(cell) 3.181 affinity constant adp Fitted 

GAM_baseline molatp/CmolX 2.050 
growth related maintenance 
parameter 

(Famili et al., 
2003) 

v_max_ngam molatp/CmolX/h 0.028 
non-growth related 
maintenance 

(Famili et al., 
2003) 

K_atpm_atp mol/m3(cell) 0.009 affinity constant atp Fitted 

vmax_glyc molglyc/CmolX/h 0.002 
max conversion rate from c6 to 
glycerol 

Fitted 

K_glyc_midC mol/m3(cell) 0.001 affinity constant c3 Fitted 

K_glyc_nadh mol/m3(cell) 1.200 affinity constant nadh Fitted 

vmax_pdc molpyr/CmolX/h 5.465 
max conversion rate from 
pyruvate to acetaldehyde 

Fitted 

K_pdc_pyr mol/m3(cell) 4.843 affinity constant pyruvate Fitted 
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vmax_adh moletoh/CmolX/h 1.208 
max conversion rate from 
acetaldehyde to ethanol 

(Kesten et al., 
2015) 

Keq_adh dimentionless 8319 equilibrium constant for adh 
(Kesten et al., 
2015) 

K_adh_aca mol/m3(cell) 0.059 affinity constant acetaldehyde 
(Kesten et al., 
2015) 

K_adh_nadh mol/m3(cell) 0.069 affinity constant nadh 
(Kesten et al., 
2015) 

K_adh_etoh mol/m3(cell) 54.00 affinity constant ethanol 
(Kesten et al., 
2015) 

K_adh_nad mol/m3(cell) 0.075 affinity constant nad 
(Kesten et al., 
2015) 

Ktp_etoh m3/h 123.8 ethanol export parameter Fitted 

vmax_growth molC/CmolX/h 0.526 max growth rate Fitted 

K_growth_intC mol/m3(cell) 1.289 affinity constant c6 Fitted 

K_growth_pyr mol/m3(cell) 0.300 affinity constant pyruvate Fitted 

K_growth_atp mol/m3(cell) 2.050 affinity constant atp Fitted 

Hcc_o2 - 0.030 
Henry solubility defined as 
ca/cg 

(Sander, 2015) 

MW_cell - 26.00 molecular weight of cell assumed 

V_cell ml/gDW 2.500 cell volume assumed 

Total_nadX mol/m3(cell) 
0.800 

total available nadh+nad in the 
cell 

(Canelas et al., 
2008) 

Total_axp mol/m3(cell) 
4.200 total available axp in the cell 

(Canelas et al., 
2011) 
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Supplementary: conserved moieties  
In the 7-pool kinetic model, 2 conserved moiety pairs were applied, namely 

ATP-ADP and NADH-NAD+, which implies that their total amounts were 

assumed constant and only one of the moieties (in this case, ATP and NADH) 

was subjected to the kinetics defined in the model. 

Taking the ATP-ADP pair as an example, the amount of ATP would normally take 

around 80% of the total AXP. This leads to different dynamics in applying ATP 

activation or ADP inhibition: 

Assuming: 

𝐶𝐴𝑇𝑃 + 𝐶𝐴𝐷𝑃 = 1 

In a normal healthy yeast cell, the energy charge level is around 0.85. From 

which we can calculate ATP =0.7 and ADP =0.3. This means a stimulus causing a 

short period of ATP increase at 0.1 (14.3%) will lead to a 0.1 drop of ADP (33%).  

Take the following ATP activation and ADP inhibition kinetic as examples: 

𝐴𝑐𝑡𝑖𝐴𝑇𝑃 =
𝐶𝐴𝑇𝑃

𝐶𝐴𝑇𝑃 + 𝐾𝑚,𝐴𝑇𝑃
 

𝐼𝑛ℎ𝑖𝐴𝐷𝑃 =
𝐾𝑖,𝐴𝐷𝑃

𝐶𝐴𝐷𝑃 + 𝐾𝑖,𝐴𝐷𝑃
 

We assign 𝐾𝑚,𝐴𝑇𝑃 = 0.7 and 𝐾𝑖,𝐴𝐷𝑃 = 0.3 so that for the reference  state both 

terms are equal to  0.5. In the above stimulus condition, the ATP term will 

increase from 0.5 to 0.53 (+6% more activation) while the ADP term will 

increase from 0.5 to 0.6 (+20% less inhibition).  

Therefore, applying the ADP inhibition instead of ATP activation, with a proper 

value of the kinetic constant, can realize the same level of rate change with less 

metabolite fluctuation. Essentially, one could expect a more stable ATP profile 

but still provide a sufficient dynamic role in the kinetic model. 
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Supplementary: ATP paradox after single glucose pulse  

 

Figure S1 Simulated ATP paradox during a glucose pulse on 7-pool kinetic model (with a reduced Vmax,glcupt 
at 279 mmol.CmolX-1.h-1).The level before time 0 indicates a steady state with D=0.05 h-1. 
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Introduction 
In previous Chapters, we used two industrially relevant model strains, 

Penicillium chrysogenum and Saccharomyces cerevisiae, as examples to 

demonstrate the feasibility and power of the integration of metabolic kinetic 

models and CFD.  

The 9-pool (Chapter 3) for P. chrysogenum was the first model designed 

according to the principle of CFD integration from the very beginning. The 

design of the model largely relied on the pathway interactions knowledge from 

well-developed intracellular metabolite quantifications and metabolic flux 

estimations (de Jonge et al., 2014; Nasution et al., 2008) as well as existing 

kinetic models (Deshmukh et al., 2015; Douma et al., 2010). The model was able 

to successfully describe all experimental data, including the productivity loss 

during oscillation conditions. Nevertheless, stiff nodes remain to be adapted to 

achieve a successful and stable two-way integration in a CFD framework 

(Chapter 4).  

The modelling work for the other strain, S.cerevisiae, was targeted at 

incorporating an interesting natural phenotype of this yeast: the Crabtree effect. 

First, we paid a closer look at the storage carbohydrate cycle, which proved that 

to properly model the dynamical process, a certain degree of complexity is 

required (i.e. enzyme level regulation). The central metabolism of yeast was 

then modelled in a similar way as the 9-pool model for P.chrysogenum. Key 

metabolites/nodes were extracted and an additional conserved moiety, the 

NAD+/NADH pair, was included as trigger for a smooth shift from respiration to 

fermentation. In the development of both yeast models, the model fitness for 

integration with CFD was assessed via a one-way coupling to lifelines from a 22 

m3 tank fermentation process (Haringa et al., 2017b). 

During the analysis of the yeast model, we spotted several shortcomings in the 

whole yeast model (Chapter 5) and acknowledge the still missing storage 

kinetics (Chapter 4). I here take the opportunity for the first part of this Chapter 

to propose and design an extended yeast kinetic model structure which is more 

promising regarding dynamic response predictions in all previous conditions, 

but yet compact enough to allow efficient CFD simulation. The proposed model 

structure thus fits our goal of integration into a full CFD framework. In the 

second part, we look back to the path we went through, highlighting two 

important aspects to bear in mind before starting any modeling construction 

work: “begin with the end in mind” and “fit for purpose”, which, I believe, are 

the determining factors of making a useful model. We also foresee a future for 
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model-guided smart biomanufacturing, via the integration of the traditional 

factory (real world) and model-based ‘digital twins’ (digital world). We are 

convinced that this is the way towards a better-controlled, optimized, efficient 

and smart bioprocess industry. 

Proposal for an improved kinetic model structure for Saccharomyces 

cerevisiae 
The 7-pool model for S. cerevisiae already showed its capability in reproducing 

major kinetic responses in both short- and long-term scenarios. In addition, it 

also proved to be stable when tested against highly dynamic glucose 

concentration profiles simulated for the 22 m3 pilot scale tank. All of this 

demonstrates that it is a suitable yeast kinetic model for integration in a full-

scale CFD simulation framework and can serve as a tool for evaluating industrial 

scale fermentation performance. Nevertheless, several issues were identified 

as structural defects that could not be solved by improving the parameter fitting 

quality.  

In this outlook Chapter, we propose possible solutions to these issues by 

extending the yeast model with more intracellular details. Beginning with the 

end in mind, we propose to keep a relatively simple model structure but to 

include 1) a clearer classification of central metabolism, including two kinetic 

mechanisms for glucose uptake featured by high and low glucose affinities; 2) a 

full capability to produce and re-consume byproducts, e.g. glycerol, acetate and 

ethanol; 3) incorporation of storage carbohydrate synthesis and consumption 

as developed in Chapter 4; 4) 8 enzyme pools to describe cellular adaptation at 

higher specific growth rates, using acetate or glycerol as carbon source and 

storage dynamics at different time scales. The proposed yeast model still has all 

the features from the 7-pool yeast model, such as the trigger of ethanol 

formation as well as the concept of lean biomass. Figure 1 shows a schematic 

representation of the improved, 21-pool yeast kinetic model (11 metabolite 

pools, 2 pairs of conserved moieties, 8 enzyme pools). Table S1 and Table S2 

explain all intermediates and conversions that have been included in the 

proposed yeast model and Table S3 contains the stoichiometry matrix of the 

model. The rationale and details of the structured model are explained in the 

following parts. 
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Figure 1 Schematic of the proposed yeast full-cell kinetic model structure. The model summarizes 6 metabolic network modules at high level and introduced the concept of 
lean biomass, where the complete biomass requires the lean biomass added with storage carbon consisting of trehalose and glycogen. The red arrow stands for conversions 
with gene regulation. The bold arrow stands for reversible reactions of which the direction is determined by their rate law. Reaction ID with ‘a’ and ‘b’ denote conservations 
interacting with the same compounds but in different directions, following different rate laws. 

 



161 

Glucose uptake 
It is known that Saccharomyces cerevisiae has multiple hexose transport (HXT) 

systems to accommodate for different growth conditions(Maier et al., 2002; 

Ozcan & Johnston, 1999). From the behavior of the 7-pool model under steady 

state and dynamic conditions it was inferred that a single glucose uptake 

mechanism was not sufficient to capture the glucose uptake kinetics across the 

full range of specific growth rates (Chapter 5). As the first step, we here propose 

to incorporate two types of hexose transport systems to improve the yeast 

kinetic model. Referring to the HXT expression profile (Maier et al., 2002), the 

high affinity HXT (Km ≈ 1 mM) is expressed at low glucose concentrations but 

repressed at high glucose concentrations. In contrast, the low glucose affinity 

transporter (Km > 10 mM) is expected to be activated only at high glucose 

concentrations (Ozcan & Johnston, 1999). The turnover times of the high and 

low affinity transporters are assumed to be about one half to several hours. This 

feature is embedded in two gene-regulated kinetic expressions (e_1a and e_1b) 

via balancing of the synthesis rate, degradation rate and growth dilution term 

for both transport proteins.  

The uptake process is further lumped with the first phosphorylation step in the 

glycolysis and thus produces hexose monophosphate (hmp_c), representing 

glucose-6-phosphate (G6P) and fructose-6-phosphate (F6P). One ATP is 

consumed for the lumped hexokinase and the redox level remains unchanged. 

Central carbon metabolism (Glycolysis and TCA cycle) 
The central carbon metabolism is responsible for catabolism of glucose and 

provides metabolites for storage carbohydrate synthesis, biomass formation, 

and energy production. In the 7-pool model, a discrepancy between the 

measured levels of the individual intermediates G6P, F6P and FBP and their 

lumped pool (intC) was observed at specific growth rates beyond the critical 

value (Chapter 5). Here, we propose the following new structure for modeling 

the central carbon metabolism: 

1. Non-oxidative part. This represents the first half of glycolysis, resulting 
in a lumped reaction including phosphofructokinase (PFK), fructose 
bisphosphate aldolase (ALDO) and triosephosphate isomerase (TPI). 
Therefore, one ATP is consumed for the kinase (PFK step) and the 
product of this lumped step is called nog_c (non-oxidized glycolytic 
intermediate). This lumped pool consists of fructose-1,6-biphosphate 
(FBP), glyceraldehyde 3-phosphate (G3P) and dihydroxyacetone 
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phosphate (DHAP). The lumped pool is represented as a three-carbon 
unit with the same redox level as glucose. 

2. Oxidative part. The second part of glycolysis includes oxidation via 
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and ATP 
production via phosphoglycerate kinase (PGK), which are both 
reversible reactions. This lumped step includes also the other two 
reversible steps: phosphoglycerate mutase (PGM) and enolase (ENO). 
All lumped steps are biochemically reversible which makes this lumped 
step reversible too. NADH is produced in this lumped lower part of 
glycolysis. The product is called og_c (oxidized glycolytic intermediates) 
and includes 1,3-biphosphoglycerate (1,3-BPG), 3-phosphoglycerate 
(3PG), 2-phosphoglycerate (2PG) and phosphoenolpyruvate (PEP). 

3. Pyruvate kinase. In the 7-pool model, the allosteric regulation of 
pyruvate kinase (PK) by intC ensured a good prediction of midC 
dynamics during both short- and long-term dynamic conditions 
(Chapter 5). This feature will be kept in the proposed model by explicitly 
modeling the PK step using nog_c as allosteric regulator. This is an 
irreversible step and produces pyruvate (pyr_c) from og_c together 
with one ATP.  

4. Tricarboxylic acid cycle. Because we are not aiming at incorporating all 
details of the central metabolic pathways and the model application 
doesn’t require specific intermediate(s) of the TCA cycle, we decided to 
lump the whole cycle into one reaction and neglect the 
compartmentation. This results in one reaction for the full oxidization 
of pyruvate into carbon dioxide, producing 5 NADH and 1 ATP per 
molecule of pyruvate. Similar as for the 7-pool model, FADH2 and GTP 
are considered equivalent to respectively NADH and ATP for simplicity 
purposes. 

Glycerol metabolism 
Glycerol formation is not coupled to ethanol formation due to the fact that the 

fermentation of glucose to ethanol is NADH neutral (Nordström, 1966). Under 

anaerobic conditions, NADH produced from anabolism needs to be recycled via 

glycerol-3-phosphate dehydrogenase (GPDH) (Geertman et al., 2006).  

One of the main shortcomings of the 7-pool model is an overestimation of the 

glycerol production at high growth rates and in lifeline simulations. To correct 

for this, the capacity to consume glycerol as carbon source is required for this 

model. Four reactions can be lumped to represent the whole glycerol 

metabolism as a branch of central carbon metabolism from nog_c (Figure 1, 

green section). Glycerol-3-phosphate (G3P) is the first intermediate which is 
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reduced from nog_c via GPDH. It is known that GPDH consumes NADH for 

reducing DHAP to G3P while reducing quinone when converting G3P back to 

DHAP. In this model, the process was simplified as a reversible conversion 

where the reducing agent is always the NADH/NAD pair. The produced G3P is 

sequentially converted to glycerol via phosphoglycerate phosphatase (PGP). 

When the cell starts using glycerol as carbon source, glycerol kinase (GK) is 

activated and phosphorylates the intracellular glycerol instead. This step is a 

gene-regulated step and the expression of GK is inhibited by the presence of 

extracellular glucose and limited by low oxygen availability (Klein et al., 2017). 

During the fermentation of glucose, glycerol is produced and diffused passively 

via the Fps1p channel (Oliveira et al., 2003).However, when glucose is depleted 

and secreted glycerol is being reused, the STL1 gene will be induced and encode 

an H+ symporter for active glycerol uptake (Ferreira et al., 2005). For 

simplification purpose, we would suggest lumping the induction of STL1 and GK 

and therefore transportation and phosphorylation of glycerol will be modelled 

in one step, at a cost of 2 ATP per glycerol. 

Ethanol formation 
The 7-pool kinetic model provided a good prediction of ethanol production 

under carbon overflow conditions and oxygen limitation (Chapter 5). Therefore, 

we would propose to keep the same ethanol production pathway as in the 7-

pool model with similar kinetics. In short, the designed model will still use the 

NADH as the trigger for stimulating ethanol production (Vemuri et al., 2007). 

The irreversible pyruvate decarboxylase reaction (PDC) will be modelled as a 

single conversion step and alchohol dehydrogenase (ADH) acts as a reversible 

step that either reduces acetaldehyde or oxidizes ethanol using NADH or NAD 

as cofactor. The exchange flux of ethanol follows simple diffusion without 

energy costs (Kotyk & Alonso, 1985). 

Ethanol uptake and gluconeogenesis 
When using C2 carbon sources, e.g. ethanol or acetate, the cell requires the 

gluconeogenesis pathway (de Jong-Gubbels et al., 1995). In this model, part of 

the gluconeogenesis (acetate to PEP) is lumped into one reaction which consists 

of the glyoxylate cycle from acetate (which is oxidized from ethanol via ADH and 

ALDH) and phosphoenolpyruvate carboxykinase (PEPCK). These conversions 

will end in phosphoenolpyruvate (PEP) and join the central metabolism 

(detailed stoichiometry of single steps shown in Table 1). Due to the lumping of 

central carbon metabolism in this model, we treat the product of this part of 

the conversions, phosphoenolpyruvate, as og_c. In the absence of glucose, the 
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og_c from ethanol can go to nog_c for biomass synthesis and to pyruvate for 

energy formation. In this way the whole model is capable of describing growth 

using ethanol or acetate as the sole carbon source.  

The lumped gluconeogenesis reaction is a gene-regulated conversion as the key 

enzyme, PEPCK, is known to be rapidly inactivated by the presence of glucose, 

fructose and mannose (de Jong-Gubbels et al., 1995; Gancedo & Schwerzmann, 

1976), irreversibly. To reproduce such rapid inhibition dynamics, a high protein 

degradation rate activated by the presence of glucose is required, next to a 

constant protein degradation rate and dilution by cell division.  

Table 1 Stoichiometry of glyoxylate cycle and PEPCK. All reactions can be lumped into one in the proposed 
model 

Reactions[1] 
Metabolites ACS[2] 

CS & 
ACON

T 
ICL MS 

SDH & 
FH 

MDH PEPCK SUM 

Acetate -2       -2 
Acetyl-CoA 2 -1  -1     
Isocitrate  1 -1      
Glyoxylate   1 -1     
Succinate   1  -1    
Malate    1 1 -2   
Oxaloacetate  -1    2 -1  
Phosphoenolpyruvate       1 1 
H2O  -1  -1 -1   -3 
CO2       1 1 
CoA-SH -2 1  1     
NADH     1 2  3 
ATP -4      -1 -5 

[1] ACS: Acetyl-CoA synthase; CS: citrate synthase; ACONT: Aconitase; ICL: isocitrate dehydrogenase; MS: 

malate synthase; SDH: succinate dehydrogenase; FH: fumarate hydratase; MDH: Malate dehydrogenase; 

PEPCK: phosphoenolpyruvate carboxykinase 

[2] Producing 1 Acetyl-CoA via ACS will consume 1 ATP and produce 1 AMP which is equivalent to 

consuming 2 ATP to 2 ADP in this model 

Acetate transport 
Different from the transport of ethanol which is driven by simple diffusion, 

acetate, as a weak acid, requires more attention in cross-membrane transport. 

Casal and coworkers (Casal et al., 2016) reported that undissociated carboxylic 

acids can cross the plasma membrane by passive diffusion and more specfically, 

acetic acid can also be transported by facilitated diffusion via the Fps1 Channel 

(Mollapour & Piper, 2007). Other transporters, for example Jen1 and Ady2 can 

import anionic forms of these substrates by a H+-symport mechanism and Pdr12, 

an ATP-binding cassette (ABC) transporter, can export the anionic form of 

acetate which prevails at the physiological pH of the cytoplasm (Casal et al., 

2016; Holyoak et al., 1999; Verduyn et al., 1990). 
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Following those reports, we suggest passive diffusion of the undissociated 

acetic acid into the cells but an ATP consuming process in pumping acetate out. 

This simplification is structurally similar to the transport kinetics for (PAA) in the 

P. chrysogenum 9-pool model (Deshmukh et al., 2015; Tang et al., 2017). 

Electron transfer chain and maintenance energy requirements 
As the prediction of the respiration and the energy balance of the 7-pool model 

were satisfactory, we suggest maintaining the structure and kinetics of the 

electron transfer chain and maintenance in the 7-pool model. The initial value 

of the P/O ratio (ATP production per electron pair) would be set at 1 (Famili et 

al., 2003; Verduyn et al., 1991) which is close to the optimized value (0.95 

molATP/molO) for the 7-pool model.  

The initial guess of the non-growth associated maintenance energy rate (NGAM) 

was 0.028 molATP.CmolX-1.h-1, referring to the 7-pool model. This value is in 

agreement with the previously reported value of 0.026 molATP.CmolX-1.h-1 

(Famili et al., 2003) but higher than the value (0.017 molATP.CmolX-1.h-1) 

determined from near-zero growth experiments in an aerobic retentostat (Vos 

et al., 2016). The growth associated maintenance (GAM) is defined as ATP 

consumption for producing one mole lean biomass. The fitted value for the 7-

pool model was 2.05 molATP.CmolX-1, which is close to the reported 1.83 

molATP.CmolX-1 (Famili et al., 2003) in the constraint-based genome-scale 

metabolic model analysis. We will adopt the value determined by the 7-pool 

model as initial guess for the proposed model.  

Growth (lean biomass) 
Because the biomass storage carbohydrate content (here we refer to trehalose 

and glycogen) can change dramatically at different growth rates (Suarez-

Mendez, 2015), we propose the biomass of the extended model to be divided 

in two parts, namely lean biomass and storage carbohydrates, similar to the 

model presented in Chapter 4.  

The lean biomass is basically referring to the biomass without any intracellular 

trehalose and glycogen content. This is similar to the definition of ‘active 

biomass’ by (Aboka et al., 2012). At a specific growth rate of 0.1 h-1, a complete 

yeast cell contains 12.4%(w/w) of trehalose and glycogen and has a molar 

composition of CH1.761O0.581N0.155. The composition of biomass after eliminating 

the storage carbohydrates (i.e. lean biomass) then becomes CH1.773O0.548N0.176. 

In the proposed extended yeast kinetic model, we will only use the lean biomass 

formula in the simulation. The molar composition and the weight of complete 
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biomass will be subject to the prediction of trehalose and glycogen content. It 

needs to be mentioned that when calibrating and validating the model 

predictions against experimental data, any specific rates and intracellular 

concentrations should be re-calculated based on the complete biomass rather 

than the rates directly coming out of the kinetic model. All kinetics were set up 

based on lean biomass (active biomass) with units of mol.CmolX(lean)-1.h-1. 

Storage carbohydrates 
The kinetics of the synthesis and degradation of storage carbohydrates, that is 

trehalose and glycogen, were separately developed and calibrated in Chapter 4. 

It was inferred that to predict the dynamics of those two storage compounds 

during both long-term steady state conditions and short-term perturbations, all 

four steps of conversions required gene-regulation based enzyme kinetics. We 

propose to incorporate the storage kinetics developed in Chapter 4 into this 

model, but some parameters may require further optimization.  

Further steps with the extended yeast model 
The re-designed yeast kinetic model featured with more intracellular 

components is expected to be able to capture more complex cell responses 

under various conditions. The proposed adaptations should solve the structural 

defects of the kinetic model described in Chapter 5. Furthermore, it should 

contain storage carbohydrate synthesis and degradation as described in 

Chapter 4. However, the increased number of kinetic expressions and 

intermediates also means an increased demand for experimental data for 

model training, which should cover all necessary parts of the lumped network, 

including, but not limited to:  

• Ethanol/acetate formation and (co-)consumption 

• Glycerol production and (co-) consumption 

• Storage carbon profile beyond critical growth rates 

• Short-term response and long-term adaption of glucose transporters 

• Ideally, quantitative proteomics data for PEPCK related enzyme and 

glycerol metabolism (esp. GK) 

To produce reliable data on these parts of the metabolism requires well-

designed experiments and a high-quality analytical platform, let alone all the 

remaining in-scilio work like parameter estimation, parameter confidence 

interval (CI) calculation, sensitivity analysis, cross validation, and full-scale 

simulation integrated with CFD. 
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So far, we proposed improvements to the 7-pool yeast model which has been 

constructed and validated in Chapter 5, to solve certain shortcomings. Before 

actually constructing the model and designing experiments to provide data for 

parameter estimation questions should be raised such as: 

• Does this “expensive” model really fit our purpose?  

• Is it necessary to solve our problem with such an “expensive” model? 

In the next section we will address these questions in a more general way, as 

they are crucial to make proper choices in the development, construction, and 

further optimization of mathematical models for (fermentation) process 

development. 

“Begin with the end in mind” and “fit for purpose” 
The field of developing a kinetic model to describe the behavior of 

microorganisms is very broad and diverse, and highly dependent on the 

purpose of the model. Simple black box models based on hyperbolic glucose 

uptake kinetics and the Herbert-Pirt equation for substrate consumption 

together with the proper material balances can already provide guidance in 

solving many engineering problems (Haringa et al., 2017a). This simple type of 

kinetic models can also be a baseline for more dedicated pathway kinetics 

(Douma et al., 2010). On the other side of the spectrum there are also research 

works targeting at a detailed representation of microbial metabolism, e.g. using 

genome-scale models (dFBA) (Vargas et al., 2011) or via a complex kinetic 

models (Kesten et al., 2015; Smallbone & Mendes, 2013). Such detailed 

approaches can help to understand the detailed dynamic responses of the cells 

to stimuli: figuring out the mechanisms behind the cell’s phenotype, identifying 

the engineering target for strain improvements, etc. 

Because the number of possible variants of kinetic metabolic models and their 

level of detail is infinite, it is crucial to ‘begin with the end in mind’, where ‘begin’ 

can even refer to the conceptual phase of a project. All three models (one for 

P.chrysogenum and two for S.cerevisiae) presented in this thesis, and the 

improved version of the S. cerevisiae model proposed above, were developed 

with the purpose of integrating them into a CFD simulation framework, trying 

to solve the environmental heterogeneity problem at the industrial scale and 

provide guidance for the design of representative scale-down simulators (Table 

2). Some key features of reaction kinetic models to be combined within a CFD 

framework are: 
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1. The model takes environmental variables (concentrations) as input and 
provides cellular responses (rates) including but not limited to substrate 
uptake, biomass growth and product formation. 

2. A relatively simple and robust model structure that will not add heavy 
computational burden when integrated into CFD simulation platforms. 

3. Capability of reproducing dynamics of the host as a result of different 
environmental perturbations at different time scales. The perturbation 
is defined quantitatively from the specific industrial scale bioprocess 
under study. 

The last point largely determines the structure and complexity of the model. 

For example, Chapter 2 and 3 present a compact mathematical model for 

growth and product formation in P.chrysogenum which has as main purpose to 

describe the dynamics of the formation of one specific product, penicillin G 

(PenG). The model has a relatively simple central metabolism (one carbon pool 

only) but was extended with a lumped amino acid pool which is considered as 

the precursor of PenG. The kinetics of the transport of the side chain precursor 

phenylacetic acid (PAA) and a gene regulation model for the PenG biosynthesis 

pathway were obtained from previous publications to ensure a proper kinetic 

performance of PenG production. In Chapter 4, a model was developed aimed 

at reproducing the cellular dynamic response of storage metabolism of S. 

cerevisiae. The central metabolism was therefore highly simplified. In this 

specific case, directly adopting a black box model for substrate uptake and cell 

growth appeared sufficient. In Chapter 5, another yeast kinetic model was 

designed but for a completely different purpose. This model was expected to 

reflect a more complete yeast physiology, by reproducing the ethanol 

production pattern under various conditions (Crabtree effect and Pasteur effect) 

at different time scales. It was also required for this model to trigger ethanol 

production with the proper metabolic mechanism (in our case, we used NADH 

as trigger) rather than mathematically mimic the ethanol production profile. To 

reach this target, the central metabolism of the yeast was described at a certain 

resolution. But still, in the design of this model we also paid attention to the 

first and second requirement for combination with CFD modeling, stated above. 

This ensured a successful application of this model with a highly dynamic lifeline 

family and proves its fitness to CFD integration.  

The conceptional phase of developing a kinetic model is the first important step. 

A clear definition of the problem to be solved is required and one needs to be 

able to further translate it into a proper metabolic network structure that 
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highlights the major conflicts in the problem. The next step is to secure that the 

model is fit for its purpose. 

One example of model fitness for purpose is the adaption of glucose uptake 

kinetics in Chapter 5. We first tried one single Michaelis-Menten kinetic 

equation to describe the glucose uptake pattern under steady state conditions 

throughout the whole range of specific growth rates. The kinetics, despite some 

underestimations on the residual glucose concentration at low growth rates, 

could describe the overall phenotype good enough. However, a closer look at 

the responses of the cells during short-term perturbations suggested that at 

least two different types of glucose uptake mechanisms were required, 

depending on the residual glucose concentration. One solution is to equip the 

model with two different kinetic mechanisms for glucose uptake. Moreover, 

their capacity (i.e., the expression of corresponding transporter) should be 

regulated at the gene level. This solution is the most ‘physiologically correct’ 

one and should ensure a proper cell response when shifting from low to high 

glucose concentrations and back. Nevertheless, this solution will introduce a 

total of six kinetic equations (2 for glucose uptake and 4 for gene regulation of 

the transporters, which is exactly proposed in the above yeast kinetic model). 

Additional data, ideally quantitative proteomics data on different types of 

transporters, is needed to properly fit the parameters of these equations. A 

temporary solution, applied in Chapter 5, is a straightforward adaption of Vmax 

based on the glucose uptake rate that makes the glucose uptake fit to only a 

low growth rate range. This adaptation compromised the model’s predictivity 

(or more precisely, the long-term adaptation of the cells) at very high growth 

rates or glucose excess conditions. But still, it gives a robust and simple solution 

to increasing the predictability of the model under single and periodic glucose 

pulse conditions, without increasing the degree of freedom of the model and 

additional challenges in parameter fitting. It needs to be mentioned that it 

should be checked if this adaptation and hypothesis remain correct for the ‘final’ 

simulation on the large scale and if not, it indicates that not only the application 

boundary needs extension, but also raises doubts whether the scale-down 

design (feast-famine) is a good representation of large-scale gradients. 
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Table 2 An overview of all four models developed/proposed in this thesis with their key technical features  

Chapter 
model 
name 

Central 
metabolism 

Biomass 
growth 

conserved 
moieties 

product/byproduct 
formation 

enzyme regulations CFD integration 

2 9-pool 1 glycolytic 
pool 
1 amino acid 
pool 

unified biomass ATP-ADP Penicillin synthesis 
PAA transportation 

glucose transportation 
Penicillin formation 
storage synthesis 
storage degradation 

two-way coupling after model 
adaption (Chapter 3) 

4 storage 
model 

black-box 
(no pool) 

lean biomass  
variable 
storage carbon 

n.a.[1] storage regulation 
 - metabolite level 
 - enzyme level 

trehalose synthesis 
trehalose degradation 
glycogen synthesis 
glycogen degradation 

one-way coupling validated 

5 yeast model 
_v1 

3 glycolytic 
pools 

unified biomass ATP-ADP 
NAD+-NADH 

ethanol 
glycerol 

n.a. [1] one-way coupling validated 

6 
(This 

Chapter) 

yeast model 
_v2[2] 

4 glycolytic 
pools 

lean biomass 
variable 
storage carbon 

ATP-ADP 
NAD+-NADH 

ethanol 
glycerol 
acetate 
storage regulation 
 - metabolite level 
 - enzyme level 

glucose transportation 
trehalose synthesis 
trehalose degradation 
glycogen synthesis 
glycogen degradation 
gluconeogenesis 
glycerol utilization 

n.a. [1] 

[1] n.a.: not available  

[2] conceptional phase 
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An era of digital twins (DTs) 
The concept of creating a virtual representation of real objects was first publicly 

introduced in 2002. The first practical definition of ‘digital twins’ was launched 

at NASA later in 2010. It originated from a model but was extended extensively 

for describing/monitoring/controlling a whole system. Digital twins (DTs) are 

believed to be the ideal tool for the rapid and cost-effective development, 

realization and optimization of control and automation strategies for 

bioprocesses. They may be utilized for the development and implementation of 

conventional controllers (e.g. temperature, dissolved oxygen, etc.), for 

monitoring non-measurable biological indexes, i.e. using soft sensors (Kadlec et 

al., 2009), as well as for advanced control strategies (e.g. control of substrate or 

metabolite concentrations, multivariable controls), and the development of 

complete bioprocess control (Appl et al., 2021). Ultimately, the DTs leads to the 

smart biomanufacturing under the scope of industry 4.0. 

Mathematical process models are central and basic components of DTs (Moser 

André et al., 2020). The model should be capable of describing and predicting 

the microorganism’s cultivation process, including product formation, with high 

fidelity. Udugama and coworkers (Udugama et al., 2020) highlighted 5 levels of 

digital twin application in industry, from basic steady state models to DT-

assisted process control. A validated model (such as the models developed in 

this thesis) is positioned at level 3 (validated kinetic model) and “digital shadow” 

is lying between this level and the final realization of DTs. As an intermediate 

step, a fairly broadly accepted definition of digital shadow is that, even though 

digital shadows share a lot of properties with DTs, the dataflow of digital 

shadows is only one-way (Gargalo et al., 2020). This is further being explained 

as the capability of real-time model re-parameterization and curation using the 

real-time dataflow from the actual bioprocess. Unlike the forward simulation 

using a validated kinetic model, the digital shadow can fuse the data from the 

two worlds and predict the development of the target process with higher 

accuracy. This builds a solid foundation towards the final step: DTs, where data 

flows are communicated in two-ways between physical instances and its digital 

twin representation such that the real process is always running under the most 

optimal control supervised and forecasted by the DT. This thesis provides 

several model examples for Penicillium chrysogenum and Saccharomyces 

cerevisiae to demonstrate the feasibility, the value, and the challenges in 

constructing the core part of DTs. We are convinced that model-guided, DT-

supported bioprocess control, problem diagnosis, optimization and innovation 
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will be the future for a smarter bio-industry. This thesis can be viewed as an 

early, but vital step towards this vision. 

During our development of the mechanistic-based kinetic models in this thesis, 

we realized that there are constraints when using pure mechanistic kinetic 

models to describe everything we observed, especially when the phenotype of 

the microorganism is clear while the underlying mechanism is complicated, 

hypothesized without validation or even remains unknown. An example is that, 

in Chapter 4, we tried to reproduce the fast/slow responses of carbohydrate 

storage. We applied a total of 6 kinetic equations and fitted 11 kinetic 

parameters for just describing the trehalose concentration profile. Although we 

explained in Chapter 4 that those are all built on top of our inference and 

necessity to mimic cellular regulation (the actual regulation mechanism can 

only be more complex), we are still in doubt whether it is still feasible when 

more conversions in the interested network require this level of complexity and 

may largely increase the computation burden of the whole model, especially 

when integrating into a CFD framework. An alternative way to tackle the 

system’s complexity is the application of a hybrid model, i.e., the synthesis of 

data-driven and mechanistic models.  

Lopez and coworkers (Lopez et al., 2020) showed a simple DT example via 

integration of a mechanistic and a partial-least-squares (PLS) model. This hybrid 

model was used to forecast the cellulose fermentation process with complex 

interactions, including potential inhibitory effects emerging from lignocellulosic 

feedstocks. The PLS model is used to estimate the glucose concentration from 

spectroscopic data and its output feeds the mechanistic model to predict long-

horizon glucose, xylose and ethanol profiles. The data-driven model, including 

a machine learning model, requires a large amount of data to calibrate and is 

particularly suitable for solving problems in a complex system that lacks 

thoughtful understanding. In such a way, the hybrid model can take the 

advantages of both mechanistic models and data-driven models and represent 

the most suitable ‘high-fidelity’ model set-up (Gargalo et al., 2020), fulfill the 

requirement of DTs and maintain the computational burden of DTs at an 

acceptable level.  

Other efforts are being made to reduce the computational burden of DTs via 

the simplification of hydrodynamic simulation (Tajsoleiman et al., 2019) and 

novel ways of parcel tracking in simplified compartment models (Haringa et al., 

2022). The later methodology uses the adapted 9-pool model of P.chrysogenum 

(Chapter 3) as an example and demonstrated the possibility of solving 80h of 
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flow time within just a few minutes, way faster than a full Euler-Lagrange CFD 

simulation that usually takes weeks. The fact that the solving time (~several 

minutes) is much shorter the real process time (~80h) enables further model 

applications, like model parameter adaptation during process, real-time quality 

check or even inline real-time process optimization, etc.  

Other than a ‘hi-fi’ mathematical model as the core of DT system, its 

implementation in industry requires more support elements, for example, a 

mature digitalization infrastructure. As mentioned above, the dataflow towards 

digital shadows and digital twins is not necessarily limited to the live data 

stream from available online measurements but may also include various data 

types such as in-line, at-line, and offline datasets, or even manual records (e.g. 

batch number of seed, raw materials) upon request. This can be particularly 

true for those DT systems using hybrid/data-driven models as the core model. 

Besides, the scope of digital shadow/twin models in biomanufacturing is not 

limited to monitoring/controlling the bioprocess but can further be extended 

to upstream (e.g. seed cultivation/preparation, raw material quality, robust 

strain re-design, etc.) and downstream processing (e.g. separation, purification, 

etc.). A more ambitious scope is to take logistics, scheduling of unit operations, 

and material quantity/quality management also into account. In such a way, 

various models present a digital replica at the whole plant level which 

eventually enables the realization of industry 4.0 smart biomanufacturing (Son 

et al., 2022). 
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Supplementary  
Table S1 List of metabolites/enzymes of the proposed yeast full-cell kinetic model 

No. 
Metabolites or 
Enzymes[1] 

Formula[2] Remarks 

1 hmp_c C6H12O6-P 
intracellular hexose mono phosphate, 
including: G6P, F6P 

2 nog_c C3H6O3-P 
non-oxidized glycolysis intermediates, 
including: FBP, GAP, DHAP 

3 og_c C3H4O3-P 
oxidized glycolysis intermediates, including: 
BPG, 3PG, 2PG, PEP 

4 pyr_c C3H4O3 intracellular pyruvate 
5 glyP_c C3H8O3-P glycerol-3-phosphate 
6 gly_c C3H8O3 intracellular glycerol 
7 aca_c C2H4O intracellular acetaldehyde 
8 etoh_c C2H6O intracellular ethanol 
9 ac_c C2H4O2 intracellular acetate 
10 tre_c C12H22O11 intracellular trehalose 
11 glyc_c C6H10O5 intracellular glycogen 
12 e_1a n.a. low affinity glucose transporter 
13 e_1b n.a. high affinity glucose transporter 
14 e_6b n.a. glycerol kinase 
15 e_11 n.a. acetaldehyde dehydrogenase 
16 e_18a n.a. lumped trehalose synthesis kinetics 
17 e_18b n.a. lumped trehalose degradation kinetics 
18 e_19a n.a. lumped glycogen synthesis kinetics 
19 e_19b n.a. lumped glycogen degradation kinetics 

20 atp_c AP3 
adenosine triphosphate (ATP), conserved 
moiety 

21 nadh_c DH2 NADH and H+, conserved moiety 
22 nad_c D NAD+, conserved moiety 

23 adp_c AP2 
adenosine diphosphate (ADP), conserved 
moiety 

24 p_c P phosphate (neutral), ignored in balances 
25 glc_e C6H12O6 extracellular glucose 
26 etoh_e C2H6O extracellular ethanol 
27 ac_e C2H4O2 extracellular acetate 
28 gly_e C3H8O3 extracellular glycerol 
29 nh4_e NH4

+ ammonia, charged 
30 leanX_e CH1.77O0.58N0.15 lean biomass, excluding storage compounds 
31 o2_e O2 oxygen 
32 co2_e CO2 carbon dioxide 
33 h2o_e H2O water, ignored in balances 
34 h_e H+ proton, charged, ignored in balances 

[1] “_c” and “_e” refer to intracellular and extracellular compounds, respectively. 

[2] n.a.: not applicable. 
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Table S2 Reactions included in the proposed yeast full-cell kinetic model 

Reaction ID Remarks[1] 

v_1a glucose uptake with low-affinity glucose transporter (uniport), e.g. HXT1, lumped 
with HK which is presumed to be at pseudo steady state 

v_1b glucose uptake with high-affinity glucose transporter (H-symport), e.g. HXT2, 
lumped with HK which is presumed to be at pseudo steady state 

v_2 non-oxidative part of glycolysis (upper part), including: PGI, PFK, ALDO, TPI 
v_3 lower part of glycolysis (oxidative), including: GAPDH, PGK, PGM, ENO 
v_4 PK 
v_5 GPDH (cytosolic and mitochondrial) 
v_6a PGP 
v_6b GK 
v_7 glycerol transportation 
v_8 PDC 
v_9 ADH 
v_10 ethanol transportation 
v_11 ALDH 
v_12 lumped reaction that allows ethanol entering central metabolism via glyoxylate 

cycle + PEPCK 
v_13a ac import (undissociated passive Fps1) 
v_13b ac export (ABC transporter Pdr12) 
v_14 TCA 
v_15 ETC 
v_16 lumped reaction for lean biomass formation 
v_17 maintenance as ATP dissipation 
v_18a trehalose formation 
v_18b trehalose degradation 
v_19a glycogen formation 
v_19b glycogen degradation 
vE_1a_syn synthesis rate of low-affinity glucose transporter 
vE_1a_deg degradation rate of low-affinity glucose transporter 
vE_1b_syn synthesis rate of high-affinity glucose transporter 
vE_1b_deg degradation rate of high-affinity glucose transporter 
vE_6b_syn synthesis rate of GK 
vE_6b_deg degradation rate of GK 
vE_11_syn synthesis rate of ALDH 
vE_11_syn degradation rate of ALDH 
vE_18a_syn synthesis rate of trehalose synthesis capacity 
vE_18a_deg degradation rate of trehalose synthesis capacity 
vE_18b_syn synthesis rate of trehalose degradation capacity 
vE_18b_deg degradation rate of trehalose degradation capacity 
vE_19a_syn synthesis rate of glycogen synthesis capacity 
vE_19a_deg degradation rate of glycogen synthesis capacity 
vE_19b_syn synthesis rate of glycogen degradation capacity 
vE_19b_deg degradation rate of glycogen degradation capacity 

[1] HK: hexose kinase; PGI: glucose-6-phosphate isomerase; PFK: phosphofructokinase; ALDO: frutose-

bisphosphate aldolase; TPI: triosephophate isomerase; GAPDH: glyceraldehyde-3-phosphate 

dehydrogenase; PGP: phosphoglycerate phosphatase; PGM: phosphoglycerate mutase; ENO: 

phosphopyruvate hydratase(enolase); PK: pyruvate kinase; GPDH: glycerol-3-phosphate dehydrogenase; 

PGP: glycerol-3-phosphate phosphatase; GK: glycerol kinase; PDC: pyruvate decarboxylase; ADH: alcohol 

dehydrogenase; ALDH: acetaldehyde dehydrogenase; PEPCK: phosphoenolpyruvate carboxykinase; TCA: 

tricarboxylic acid cycle; ETC: electron transport chain 
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Table S3 Stoichiometry of the full-cell yeast kinetic model 
  v_1a v_1b v_2 v_3 v_4 v_5 v_6a v_6b v_7 v_8 v_9 v_10 v_11 v_12 v_13a v_13b v_14 v_15 v_16 v_17 v_18a v_18b v_19a v_19b 

in
tr

ac
el

lu
la

r 

hmp_c 1 1 -1                  -2 2 -1 1 

nog_c   2 -1  -1             -0.2      

og_c    1 -1         1     -0.26      

pyr_c     1     -1       -1        

glyP_c      1 -1 1                 

gly_c       1  -1                

aca_c          1 -1  -1            

etoh_c           1 -1             

ac_c             1 -2 1 -1         

tre_c                     1 -1   

glyc_c                       1 -1 

adp_c 1 2 1 -1 -1   2      5  2 -1 -2.5 1.54 1 1 2 1 1 

atp_c -1 -2 -1 1 1   -2      -5  -2 1 2.5 -1.54 -1 -1 -2 -1 -1 

nadh_c    1  -1     -1  1 3   5 -2 0.42      

nad_c    -1  1     1  -1 -3   -5 2 -0.42      

p_c  1  -1   1       4  1 -1 -2.5 2 1 3  2  

ex
tr

ac
el

lu
la

r 

glc_e -1 -1                       

etoh_e            1             

ac_e               -1 1         

gly_e        -1 1                

nh4_e                   -0.15      

leanX_e                   1      

o2_e                  -1       

co2_e          1    1   3  0.38      

h2o_e              -3   -3 2 0.04  1 -1 1 -1 

h_e                   0.15      
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