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In a material under stress, grain boundaries may give rise to stress discontinuities. Stress localization is crucial 
to materials’ behavior such as segregation, precipitation, and void nucleation. Here, the stress state at a grain 
boundary perpendicular to a uniaxial external stress is studied systematically. The grain boundary with the most 
extreme stress discontinuity is determined for cubic materials within the elastic limit for a bicrystal model. 
Additionally, grain boundaries with negligible stress discontinuity are identified. The influence of the elastic 
tensor components, 𝐶11, 𝐶12, and 𝐶44, and grain orientation is studied quantitatively.
Grain boundaries (GBs) act as walls that divide the bulk into parts 
with different orientations and discontinuous tensorial properties. Un-

der loading, the misorientation of grains and the intrinsic anisotropy of 
the crystal lead to a stress discontinuity at the GBs, resulting in stress 
states that deviate significantly from the average. The stress discontinu-

ity at GBs strongly influences some phenomena at the grain scale, such 
as grain growth [1,2] and segregation [3]. Moreover, since the failure 
of materials is controlled by extreme values of localized stresses rather 
than by the average stress level in the material, the stress discontinu-

ity at certain GBs strongly affects materials’ mechanical behavior, such 
as crack initiation under loading [4], fatigue [5–7], corrosion crack-

ing [8], and creep [9–11]. Grain boundary engineering [12] and new 
manufacturing methods show great promise for optimizing material 
performance through control of texture [13,14] and GB structure [15]. 
Therefore, investigating how stress states at GBs are influenced by grain 
orientations can help design polycrystalline materials with optimized 
textures [16].

Theoretically, already three decades ago, certain special GBs, such 
as the tilt symmetrical GB and twist GB [17–19], were studied and an-

alytic solutions for those particular incompatibility stresses (IS) were 
derived. A few years ago, for bicrystals, an explicit closed-form solution 
for IS for general GBs was derived and verified through finite element 
method (FEM) simulations [20]. This solution was then applied to study 

* Corresponding authors.

the stress state at Σ3⟨1 1 1⟩ twin boundaries [21] and the activation 
of dislocations in nickel bicrystalline micropillars [22]. It was revealed 
that IS plays a crucial role in activating slip, which directly affects the 
plastic deformation of metals. For polycrystals, FEM simulations and 
statistical analysis have shown that the inclination angle of grain bound-

aries, grain size, and triple junctions have a significant influence on 
IS [23–26].

In addition to IS at GBs, there are several theoretical studies on the 
interaction of dislocations with GBs. The elastic field induced by dis-

locations [36] and the dislocation pile-ups behavior [35,36] near GBs 
in anisotropic materials are strongly affected by the orientations of the 
grains.

Previous works either focus on special cases, which are not guar-

anteed to find the stress build-up extrema [17–19], or focus on poly-

crystals, which yield many details but do not easily reveal general rules 
about specific GBs [23–26].

This work starts from a bicrystal model with an external stress 𝜎E

perpendicular to the GB, aiming to identify the extrema of the IS and 
to gain insight into the stress state. We derive an analytical solution 
for the extreme value of the IS at the GB in terms of the elastic tensor 
components. It is revealed that the GB with the highest IS is the same for 
all cubic materials. Furthermore, the magnitude of IS for general GBs 
under perpendicular uniaxial applied stress is quantitatively described.
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Fig. 1. (Color online) The schematic figure of the bicrystal model in this work. 
The size of the GB in the X and Z direction is infinite. The two grains are semi-

infinite. The orientation of each grain is represented by three Miller indices. The 
blue arrows show the uniaxial external stress 𝜎E applied far from the GB, which 
is perpendicular to GB plane. The label of the grain is shown at the superscript.

The bicrystal model applied in this study is shown in Fig. 1. The 
3-dimensional space is divided into two semi-infinite half-spaces sepa-

rated by the GB. In keeping consistency with previous work [21], the 
GB plane is fixed parallel to the global XOZ plane, and the direction 
of 𝜎E is set along the global Y-axis, perpendicular to the GB. We firstly 
focus on the stress state near GBs that are perpendicular to 𝜎E. Experi-

ments [27] and simulations [25] suggest that GBs perpendicular to 𝜎E

are more likely to be the initial site of failure.

Two grains with the same material property but with different ori-

entations are labeled as grain I and grain II. For cubic materials, the 
orientations of crystals can be conveniently described with Miller in-

dices. For grain I,

�̂�I =
⎡⎢⎢⎢⎣
𝑙Ix 𝑙Iy 𝑙Iz
𝑚I

x 𝑚I
y 𝑚I

z

𝑛I
x 𝑛I

y 𝑛I
z

⎤⎥⎥⎥⎦ , (1)

where 𝒍I, 𝒎I, 𝒏I are normalized Miller indices of the crystallographic 
orientation of grain I corresponding to X, Y, and Z-axis in global coor-

dinate system, respectively. Then the orientation of grain I is uniquely 
represented with [𝑙Ix 𝑙Iy 𝑙Iz] and [𝑚I

x 𝑚I
y 𝑚I

z], and analogously for grain 
II.

The compliance tensor 𝑺′ after rotation �̂�, is given by

𝑺′
𝑚𝑛𝑜𝑝

= �̂�𝒎𝒊�̂�𝒏𝒋 �̂�𝒐𝒌�̂�𝒑𝒍𝑺𝒊𝒋𝒌𝒍, (2)

in which 𝑺 is the compliance tensor in the cubic crystal coordinate 
system.

Within the continuum description of GBs the following constraints 
apply for the bicrystal model.

1. The two grains are rigidly glued together at the GB. No relative 
motion is allowed at the GB.

2. The model contains only one GB with infinite size. The interaction 
between GBs is not included.

3. The model is valid within the linear elastic limit.

4. 𝜎E is along global Y-axis, which is perpendicular to the GB plane.

Considering the equilibrium equations for momentum, the stress 
field in the bicrystal model must be invariant with respect to the Y coor-

dinate. The discontinuity of a scalar field 𝑔(𝑥𝑖) at the GB is represented 
as [𝑔] = 𝑔I − 𝑔II then 𝐼𝑆 can be presented as [𝜎ij].

The constitutive equation of a linear elastic material is

𝜀𝑖𝑗 = 𝑆𝑖𝑗𝑘𝑙𝜎𝑘𝑙. (3)

According to the first constraint listed above, strain components in the 
GB plane are continuous,
2

[𝜀𝑖𝑗 ] = 0, 𝑖, 𝑗 = 1,3. (4)
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Since 𝜎E is a far-field stress, global stress equilibrium requires

1
𝑉 ∫

𝑉

𝜎𝑖𝑗𝑑𝑉 = Σ𝑖𝑗 , (5)

where Σ𝑖𝑗 is the general external stress [20]. In this problem Σ𝑖𝑗 only 
contains 𝜎E. So⎧⎪⎨⎪⎩
𝜎I
22 = 𝜎II

22 = 𝜎E

𝜎I
23 = 𝜎II

23 = 0 .

𝜎I
12 = 𝜎II

12 = 0
(6)

Since the model assumes that each grain occupies half the space, Eq. (5)

is equivalent to

Σ𝑖𝑗 =
1
2
(𝜎I

𝑖𝑗
+ 𝜎II

𝑖𝑗
). (7)

Then for in-plane stress components can be written as

𝜎I
𝑖𝑗
+ 𝜎II

𝑖𝑗
= 0, 𝑖, 𝑗 = 1,3. (8)

According to Eq. (6), the stress states at both sides of the GB are{
𝜎I = [𝜎1, 𝜎E, 𝜎3,0, 𝜎5,0]
𝜎II = [−𝜎1, 𝜎E,−𝜎3,0,−𝜎5,0],

(9)

with Voigt notation (xx → 1, yy → 2, zz → 3, yz → 4, xz → 5, xy →
6). Noticing 𝜎4 and 𝜎6 are zero, the global Y-axis is one of the princi-

pal directions for the stress state. When the global coordinate system is 
rotated around its Y-axis, the in-plane stress components can be repre-

sented by a Mohr circle. Then (𝜎1 + 𝜎3) is an invariant for [𝜎𝑖𝑗 ] during 
the rotation.

Consider the discontinuity of hydrostatic stress 𝜎h at the GB,

[𝜎h] =
2(𝜎1 + 𝜎3)

3
. (10)

As our description is in the linear elastic limit, all stresses are propor-

tional to 𝜎E. Therefore it is convenient to define an incompatibility 
factor (𝐼𝐹 ) as

𝐼𝐹 =
𝜎1 + 𝜎3
𝜎E

. (11)

When exchanging the labeling of the two grains, 𝐼𝐹 changes sign, so 
that only the absolute value of 𝐼𝐹 has physical meaning. Then 𝜎h at 
either side of GB can be expressed as

𝜎h = (1 ± 𝐼𝐹 )𝜎E

3
(12)

In Supplement A a Python module is provided for computing 𝐼𝐹 ana-

lytically.

Hayes and Shuvalov proposed a parameter 𝜒 to characterize the 
Young’s modulus anisotropy of cubic crystals [28],

𝜒 = 2𝑠11 − 2𝑠12 − 𝑠44. (13)

Here 𝑠𝑖𝑗 refers to compliance components written with Voigt notation 
and with the engineering convention (𝑠44 = 4𝑠yzyz = 4𝑠xyxy = 4𝑠xzxz). 
Here we derive a property of 4𝑡ℎ rank tensors of cubic crystals using 
Voigt notation, with special application to the compliance matrix. The 
compliance matrix after rotation is given as (see Supplement B for de-

tails)

𝑺′ = 𝑺 + 𝜒𝑭 (𝒍,𝒎,𝒏), (14)

where 𝑭 is a 6 by 6 symmetric matrix of polynomials of 𝒍, 𝒎, 𝒏 compo-

nents, e.g.

𝐹22 = −(𝑚2
x𝑚

2
y +𝑚2

x𝑚
2
z +𝑚2

y𝑚
2
z), (15)

𝐹25 =𝑚2
x𝑙x𝑛x +𝑚2

y𝑙y𝑛y +𝑚2
z𝑙z𝑛z, (16)
𝐹55 = −4(𝑛x𝑛y𝑙x𝑙y + 𝑛x𝑛z𝑙x𝑙z + 𝑛y𝑛z𝑙y𝑙z). (17)
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Since 𝑭 doesn’t contain any elastic tensor components, it is common for 
all cubic materials.

For two grains with compliance tensor 𝑆I and 𝑆II it is convenient 
to properly rotate the coordinate system along Y axis to make 𝜎1 =
𝜎3. According to Eq. (3), (9), and (14), the strain continuity equation 
(Eq. (4)) can be recast as

⎧⎪⎨⎪⎩
[(𝐹 I

11 + 𝐹 II
11)𝜒 + 2𝑠11 + (𝐹 I

13 + 𝐹 II
13)𝜒 + 2𝑠12]𝜎1 + (𝐹 I

12 − 𝐹 II
12)𝜒𝜎

E + (𝐹 I
15 + 𝐹 II

15)𝜒𝜎5 = 0,

[(𝐹 I
33 + 𝐹 II

33)𝜒 + 2𝑠11 + (𝐹 I
31 + 𝐹 II

31)𝜒 + 2𝑠12]𝜎1 + (𝐹 I
32 − 𝐹 II

32)𝜒𝜎
E + (𝐹 I

35 + 𝐹 II
35)𝜒𝜎5 = 0,

(𝐹 I
51 + 𝐹 II

51 + 𝐹 I
53 + 𝐹 II

53)𝜒𝜎1 + (𝐹 I
52 − 𝐹 II

52)𝜒𝜎
E + [(𝐹 I

55 + 𝐹 II
55)𝜒 + 2𝑠44]𝜎5 = 0.

(18)

Then considering the orthonormality of 𝒍, 𝒎, and 𝒏 of �̂�, the expres-

sion for 𝜎1 is simplified as

𝜎1
𝜎E

=
(𝐹 I

22 − 𝐹 II
22)[(𝐹

I
55 + 𝐹 II

55)𝜒 + 2𝑠44]𝜒 − [(𝐹 I
25)

2 − (𝐹 II
25)

2]𝜒2

[(𝐹 I
22 + 𝐹 II

22)𝜒 + 4𝑠11 + 4𝑠12][(𝐹 I
55 + 𝐹 II

55)𝜒 + 2𝑠44] − (𝐹 I
25 + 𝐹 II

25)2𝜒2
.

(19)

Considering a global coordinate system rotated around Y-axis such 
that 𝜎1 = 𝜎3, it follows that

𝐼𝐹 =
2𝜎1
𝜎E

. (20)

Then, Eq. (19) shows the orientation dependence of 𝜎1 as well as of 𝐼𝐹 . 
Referring to Eq. (15), (16), and (17), for each grain, we can consider 𝐹22
as reflecting the effects of two degrees of freedom of the grain rotation, 
while 𝐹25 contains the remaining 1 degree of freedom, which represents 
the rotation of the grain around the Y-axis. Considering the connection 
between Young’s modulus of the grain along the global Y-axis and com-

pliance components, as

𝐸Y = 1
𝑆′
22

= 1
𝐹22𝜒 + 𝑠11

, (21)

terms with 𝐹22 show the influence of the stiffness of the grain along 
the global Y-axis. Eq. (19) fits well with our intuition about the 𝐼𝑆. In-

tuitively, one might link the 𝐼𝑆 to the difference of transverse strain 
(induced by the Poisson effect) across the GB. A grain with a low (high) 
Young’s modulus along the loading direction has a large (small) positive 
longitudinal elastic strain, which leads to a large (small) negative trans-

verse strain in the GB plane. Thus the 𝐼𝐹 is related to the discontinuity 
of the Young’s modulus along the Y-axis.

According to Eq. (15), the range of 𝐹22 is estimated as

𝐹22 = −(𝑚2
x𝑚

2
y +𝑚2

x𝑚
2
z +𝑚2

y𝑚
2
z) =

𝑚4
x +𝑚4

y +𝑚4
z − 1

2
. (22)

The maximum (minimum) of 𝐹22 is 0 (−1
3 ) when 𝒎 is along ⟨1 0 0⟩

(⟨1 1 1⟩). For 𝐹55, Eq. (17) can be written as

𝐹55 = −4(𝑛x𝑛y𝑙x𝑙y + 𝑛x𝑛z𝑙x𝑙z + 𝑛y𝑛z𝑙y𝑙z) = 2(𝑙2x𝑛
2
x + 𝑙2y𝑛

2
y + 𝑙2z𝑛

2
z). (23)

The maximum (minimum) of 𝐹55 is 1 (0) when 𝒍, 𝒏 are along ⟨1 1 0⟩
and ⟨−1 1 0⟩ (⟨1 0 0⟩ and ⟨0 1 1⟩), 𝒍 and 𝒏 can be exchanged.

The value of 𝐹25 is found numerically, which gives a maximum of 
1
4 when 𝒍, 𝒎 are along ⟨1 − 1 

√
2⟩ and ⟨1 1 0⟩ (in arbitrary order), 

respectively. When exchanging the sequence of 𝒍 and 𝒏, 𝐹25 changes its 
sign. 𝐹25 approaches 0 when 𝐹22 approaches its extrema.

It’s difficult to derive the extreme value of 𝜎1∕𝜎E mathematically 
since Eq. (19) contains both rotation variables and material elastic 
components. The following two points are considered to search for the 
maximum 𝜎1∕𝜎E.

1. 𝐹25 is much less than 1, and it appears quadratically only. This 
shows that the influence of the rotation of the grain around the 
Y-axis is relatively small.

2. When 𝐹22 approaches its extremum, i.e. 𝐹22 = 0 and 𝐹22 = − 1
3 , 
3

terms with 𝐹25 vanish.
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Then the expression of 𝜎1∕𝜎E simplifies to

𝜎1
𝜎E

≈
(𝐹 I

22 − 𝐹 II
22)[(𝐹

I
55 + 𝐹 II

55)𝜒 + 2𝑠44]𝜒

[(𝐹 I
22 + 𝐹 II

22)𝜒 + 4𝑠11 + 4𝑠12][(𝐹 I
55 + 𝐹 II

55)𝜒 + 2𝑠44]

=
(𝐹 I

22 − 𝐹 II
22)𝜒

[(𝐹 I
22 + 𝐹 II

22)𝜒 + 4𝑠11 + 4𝑠12]
.

(24)

For 𝜒 > 0 (𝜒 < 0), the maximum (minimum) for Eq. (24) is achieved 
when 𝐹 I

22 = 0 and 𝐹 II
22 = − 1

3 , which corresponds to 𝒎𝐼 and 𝒎II parallel to ⟨1 0 0⟩ and ⟨1 1 1⟩, respectively. With Eq. (11) and (24), and 𝜎1 = 𝜎3, 
the maximum value of 𝐼𝐹 is

𝐼𝐹max =
2𝜒∕3

−𝜒∕3 + 4𝑠11 + 4𝑠12

=
4𝑠11 − 4𝑠12 − 2𝑠44
10𝑠11 + 14𝑠12 + 𝑠44

=
−2

(
𝐶11 −𝐶12 − 2𝐶44

)(
𝐶11 + 2𝐶12

)(
10𝐶11 − 4𝐶12

)
𝐶44 +

(
𝐶11 −𝐶12

)(
𝐶11 + 2𝐶12

) .
(25)

After conducting large-scale sampling of 𝐼𝐹 for the bicrystal model with 
various grain orientations, it is confirmed that Eq. (25) represents the 
global maximum of 𝐼𝐹 .

We found the magnitude of 𝐼𝐹 is related to the elastic instability of 
cubic crystals. The elastic stability conditions for cubic crystals are

𝐶11 −𝐶12 > 0, 𝐶11 + 2𝐶12 > 0, 𝐶44 > 0, (26)

or, equivalently

−1
2
<

𝐶12
𝐶11

< 1,
𝐶44
𝐶11

> 0. (27)

The 𝐼𝐹max values, as computed with Eq. (25), for common metals are 
shown in Fig. 2(a) using the experimentally determined elastic tensor 
components [29]. When 𝐶12∕𝐶11 approaches 1, or 𝐶44∕𝐶11 approaches 
0, which means the stability of the crystal is low according to Eq. (27), 
the absolute value of 𝐼𝐹max rises rapidly.

In alloys the 𝐼𝐹max can be designed on purpose. The types and con-

centrations of alloying elements can influence the elastic properties of 
alloys as has been shown experimentally and computationally [30,31]. 
By designing alloys with low 𝐼𝐹max using Fig. 2(a), it might be possible 
to improve properties that are sensitive to the stress state at GBs.

At the GB, not only the discontinuities in stresses are of interest, but 
large values of local stresses themselves are of importance too. There-

fore, the 𝜎h values on both sides of the GB corresponding to 𝐼𝐹max are 
calculated. The stress concentration factor 𝐹h is defined as the ratio of 
the 𝜎h values on both sides of the GB to the value of the hydrostatic 
stress without a GB under 𝜎E,

𝐹h =
3𝜎h

𝜎E
= 1 ± 𝐼𝐹 . (28)

The most extreme 𝐹h for common metals are shown in Fig. 2(b). For 
common engineering metal bicrystals under a uniaxial 𝜎E perpendicu-

lar to the GB, the variation of 𝜎h at a GB is 14% for aluminum, 54% for 
iron and nickel, and 78% for copper, when compared to an isotropic 
material. In alkali metals, 𝐹h can take a negative value, indicating that 
dilatation in bulk can give rise to compression on one side of the GB 
and large tension on the other side. As both 𝜎h and its gradient [33]

play significant roles in the segregation and diffusivity [32] of inter-

stitial atomic species and poorly fitting substitutional atomic species, 
precipitation processes can be affected particularly in materials with 
large variations in 𝐹h values.

Based on Eq. (21) and (24), 𝐼𝐹 is further simplified as

𝐼𝐹 ≈
1∕𝐸I

Y
− 1∕𝐸II

Y

(𝐹 I
22 + 𝐹 II

22)𝜒 + 4𝑠11 + 4𝑠12
6(1∕𝐸I

Y
− 1∕𝐸II

Y
)

(29)
≈
10𝑠11 + 14𝑠12 + 𝑠44

,
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Fig. 2. (Color online) (a) The relation between elastic components and incompatibility factor, according to Eq. (25). The positions of common metals are labeled 
with black solid circles. (b) The maximum and minimum stress concentration factor 𝐹h for hydrostatic stress 𝜎h at GBs for common metals, according to Eq. (28).

Fig. 3. (Color online) (a) For low-index GBs, 𝐼𝐹GB estimated by Eq. (32) are shown below the diagonal, while above the diagonal the maximum absolute value 
of 𝐼𝐹GB (exact) - 𝐼𝐹GB (Eq. (32)) that occurs when one of the two grains is rotated around the Y-axis is displayed. (b) Compliance factor as function of the grain 
orientation according to Eq. (31). The orientations of two bicrystals in [34] are presented by red dots for one bicrystal and yellow dots for another bicrystal.
where 𝐸I
Y

(𝐸II
Y

) is the Young’s modulus of grain I (II) along the global Y-

axis. Here (𝐹 I
22 +𝐹 II

22)𝜒 in the denominator is replaced by −1
3𝜒 to ensure 

the accuracy of the approximation in predicting high absolute values of 
𝐼𝐹 .

Eq. (29) disregards the stress variations arising from rotating the 
two grains around the direction of 𝜎E for two reasons. Firstly, 𝐼𝐹 , be-

ing defined as sum of 𝜎1∕𝜎E and 𝜎3∕𝜎E, is less sensitive to variations 
of individual stress components. Secondly, the bicrystal structure dis-

plays at least a four-fold symmetry during the rotation around global 
Y-axis. This equation is in good agreement with the analytical results 
(see Supplement C). Hence, while 𝒎I and 𝒎II have a strong influence on 
IF, the other four Miller indices have little effect. Therefore, the GB in 
the bicrystal model can be characterized by 𝒎I and 𝒎II.

In order to clarify the role of the orientations of the two grains, we 
define a rescaled incompatibility factor for GBs

𝐼𝐹GB = 𝐼𝐹∕𝐼𝐹max, (30)

ranging from -1 to 1, which is independent of the elastic anisotropy. 
The 𝐼𝐹GB for low-index GBs are shown in Fig. 3(a).

For general GBs, it is convenient to define the compliance factor 
4

(CF) to separate the contributions to 𝐼𝐹𝐺𝐵 from each grain. For grain I,
𝐶𝐹 I =
1∕𝐸min − 1∕𝐸I

Y

1∕𝐸min − 1∕𝐸max

= −3𝐹 I
22

= 3
(
(𝑚I

x𝑚
I
y)

2 + (𝑚I
x𝑚

I
z)
2 + (𝑚I

y𝑚
I
z)
2
)
,

(31)

where 𝐸𝑚𝑖𝑛, 𝐸𝑚𝑎𝑥 are the minimum and maximum Young’s modulus for 
the material, and analogous for grain II. Then 𝐼𝐹GB is expressed as

𝐼𝐹GB = 𝐶𝐹 II −𝐶𝐹 I. (32)

Fig. 3(b) shows a contour plot of CF as function of 𝒎 of each grain in 
a (0 0 1) inverse pole figure. This figure displays two important features.

First, the geometry of each GB can be presented as two points, cor-

responding to grain I and grain II, in Fig. 3(b). Then the rescaled IF for 
a given GB can be read from the map according to Eq. (32), e.g. the 
maximum of 𝐼𝐹GB, at 1, corresponds to 𝒎I, 𝒎II parallel to [1 0 0] and 
[1 1 1], respectively.

Second, the IF for GBs with large misorientation is not always large. 
The IF vanishes for two grains with orientations located along a contour 
line. Therefore, even for materials with high anisotropy, it is possible to 
design textures with near-zero stress incompatibility at GBs.

Considering the proportional relationship between 𝐼𝐹 and [𝜎h]
shown in Eq. (21), Fig. 3 is also valid for estimating the magnitude 

of [𝜎h] for various GBs.
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In recent in-situ tensile tests of bicrystals [34], the orientations of 
grains at both sides of GBs are represented by pairs of dots in Fig. 3(b). 
The corresponding 𝐼𝐹GB is approximately 0.1. This implies that the 
stress incompatibility in the experiments are only 1/10 of the most ex-

treme configuration. This may explain why the initial fracture position 
in the experiments did not occur at pre-existing GBs [34].

In summary, we have quantified incompatibility factor 𝐼𝐹 = (𝜎1 +
𝜎3)∕𝜎E and the discontinuity in hydrostatic stress 𝜎h near grain bound-

aries under external stress 𝜎E with a bicrystal model. The extreme 
values have been derived in terms of elastic tensor components. The in-

compatibility factors for general grain boundaries are estimated based 
on grain orientations. These findings provide valuable insights into fail-

ure phenomena, such as creep and fatigue, that occur in polycrystalline 
materials. Moreover, identifying grain boundaries with high and low 
stress concentration can guide the design of higher-performing materi-

als.
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