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On-Line Black-Box Aerodynamic Performance
Optimization for a Morphing Wing With

Distributed Sensing and Control
Tigran Mkhoyan , Member, IEEE, Oscar Ruland, Roeland De Breuker , and Xuerui Wang , Member, IEEE

Abstract— Inspired by nature, smart morphing technologies
enable the aircraft of tomorrow to sense their environment
and adapt the shape of their wings in flight to minimize fuel
consumption and emissions. A primary challenge on the road to
this feature is how to use the knowledge gathered from sensory
data to establish an optimal shape adaptively and continuously in
flight. To address this challenge, this article proposes an online
black-box aerodynamic performance optimization architecture
for active morphing wings. The proposed method integrates
a global online-learned radial basis function neural network
(RBFNN) model with an evolutionary optimization strategy,
which can find global optima without requiring in-flight local
model excitation maneuvers. The actual wing shape is sensed
via a computer vision system, while the optimized wing shape
is realized via nonlinear adaptive control. The effectiveness of
the optimization architecture was experimentally validated on an
active trailing-edge (TE) camber morphing wing demonstrator
with distributed sensing and control in an open jet wind tunnel.
Compared with the unmorphed shape, a 7.8% drag reduction
was realized, while achieving the required amount of lift. Further
data-driven predictions have indicated that up to 19.8% of drag
reduction is achievable and have provided insight into the trends
in optimal wing shapes for a wide range of lift targets.

Index Terms— Black-box optimization, evolutionary optimiza-
tion, morphing, neural networks, vision-based control, wind
tunnel experiment.

I. INTRODUCTION

RECENT trends in aviation highlight the ever-increasing
need for fuel economy and sustainability. Active mor-

phing technology can offer significant benefits over conven-
tional wing designs. Due to conflicting requirements [1],
conventional wings are only optimized for a single flight
condition (such as cruise). By contrast, the ability to morph
wings into a desirable shape can allow aircraft to actively
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improve flight performance across the full flight envelope.
While many challenges exist in morphing design, the key
challenge to efficiently benefit from active morphing during
in-flight operation is how to establish a shape optimization
strategy that is adaptive and can find the global optimum.

The currently practiced method of “determining” the
optimal wing shape is through the selection from an
offline-determined and fixed lookup table. However, this
method is only optimal for one particular reference aircraft
design. Aircraft production variances and operating condition
variations (including gross weight, airspeed, and altitude) can
contribute to a wide range of uncertainty and thus suboptimal-
ity in the lookup table method [2]. By contrast, a promising
method is online data-driven nonlinear optimization, which
can tailor the wing shape adaptively and optimally to any
specific flight condition, like birds do [3].

Online shape optimization strategies for active morphing
wings do exist in the literature. In [4], a generative set
search method was used to optimize the deflections of eight
leading- and trailing-edge (TE) control surfaces at one fixed
angle of attack (AOA) to reduce the drag on a wind tunnel
model. This local black-box optimization strategy uses a linear
lift coefficient model, the parameters of which have to be
identified before optimization through sweeps of the control
surfaces for the preselected AOA. The local scope of the linear
lift model and the local search character of this black-box
direct search method make this method prone to converge on
local optima.

A real-time adaptive least-squares drag minimization
approach has been proposed for the variable camber con-
tinuous TE flap (VCCTEF) concept [5]. It uses a recursive
least-squares algorithm to estimate the derivatives of the aero-
dynamic coefficients with respect to the inputs. The optimal
wing shape and elevator deflection are then calculated using
the Newton-Raphson method from a constrained optimiza-
tion problem. Improvements to the model excitation method,
onboard model, and optimization methods were demonstrated
in wind tunnel experiments to achieve up to 9.4% drag reduc-
tion on the common research model (CRM) with VCCTEF
at low subsonic speeds [2]. Simulations have also indicated
that a 3.37% drag reduction is achievable on the CRM with a
distributed mini-plain flap system at Mach 0.85 [6].

While the linear-in-the-parameters multivariate polynomial
model adopted in [2], [5], and [6] has a low computational
cost, a significant shortcoming is that its model coefficients
are only valid around a trimmed equilibrium. The implications
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of this approach are that the model parameters have to be
reidentified at every operational point to perform real-time
drag minimization throughout the flight envelope. The model
excitation maneuvers required for reidentification need sweeps
of the AOA and control surfaces which cause increased fuel
consumption and reduced ride comfort. Although the inherent
model structure assumptions reduce the model identification
cost, they also make the model structure less adaptable. In fact,
for preserving the same model accuracy, the polynomial model
order and the number of coupling terms have to be varied
in different flight regimes. Furthermore, gradient-based opti-
mization methods combined with local models are prone to
converge to local optima [7].

The issues of local gray-box model strategies can be over-
come by an online black-box global model identification and
optimization approach, which has two potentials: first, global
wing shape solutions can be found, leading to more effec-
tive drag reductions; second, no additional model excitation
maneuvers or changes to the model structure will be needed for
operation at various flight conditions. The global optimization
approach, however, does not come without challenges.

Global optimization methods generally require more objec-
tive function evaluations than local gradient-based meth-
ods, which makes them impractical for direct application
to complex aerodynamic shape optimization. Low evaluation
cost global surrogate models may provide a solution by
sample-efficiently generalizing the information gathered by
onboard sensors [8], [9]. Surrogate modeling methods in the
literature include polynomial regression (PR) [10], artificial
neural networks (ANNs) [11], radial basis function (RBF)
models [12], and Gaussian process (GP), also referred to
as kriging [13], [14]. In an online data-driven framework,
ANNs are promising candidates due to their ability to approx-
imate complex nonlinear functions and adaptability. A type
of feed-forward ANN is the RBF neural network (RBFNN),
which is featured by its ability in handling noisy, multipara-
meter, and scattered data and its sensitivity and adaptability to
fresh data [15]. These characteristics make RBFNNs promis-
ing for in-flight aerodynamic model identification.

Evolutionary algorithms solve optimization problems by
mimicking natural evolution. Analogous to the survival of
the fittest principle in evolutionary biology, only the highest
quality solutions and their offspring are selected for further
consideration. Evolutionary algorithms can deal with discon-
tinuities in the objective function and are suitable for multi-
modal and high-dimensional problems [16]. They have been
demonstrated to be effective global black-box optimization
tools to be combined with surrogate models for aerodynamic
shape optimization problems [17], [18]. However, to the best
of the authors’ knowledge, the existing applications of evo-
lutionary algorithms to the aerospace field are only limited
to offline design optimization problems. Exploiting the merits
of evolutionary algorithms in online and real-world scenarios
remains an open challenge.

After an optimal wing shape is determined in-flight, a chal-
lenge still exists in realizing this optimized shape in real
time. Intuitively, a feedforward mapping between the servo
angle and the TE displacement can be utilized. However,

owing to the nonlinear couplings between aerodynamics and
structural dynamics, this mapping is uncertain and is perturbed
by external disturbances. Moreover, in an earlier validation
experiment of a morphing wing prototype [19], a nonlinear
phenomenon named backlash was observed [19], [20]. Owing
to the backlash, the output of the morphing mechanism not
only depends on the actuator inputs at the current time instant
but is also determined by the actuation history, leading to an
undesirable hysteresis phenomenon [19], [21]. One promising
approach to robustly observe and regulate the motions of a
physical system is vision-based control, which has shown its
effectiveness in aircraft position tracking [22] and inverted
pendulum stabilization [23]. However, the effectiveness of
vision-based control in dealing with nonlinear hysteresis and
wind disturbances remains unknown.

This article proposes and experimentally validates an effec-
tive and adaptable online performance optimization architec-
ture for active morphing wings. The main contribution is
threefold.

1) Eliminates local model excitation maneuvers during
operations and can find global optima by integrating
an evolutionary optimization strategy with a global
online-learned RBFNN model.

2) Realizes the optimal shape in the presence of backlash
hysteresis, model uncertainties, and external gust dis-
turbances using a nonlinear adaptive control algorithm
supported by real-time computer vision sensing.

3) Validates the proposed architecture on a seamless active
morphing wing demonstrator with distributed sensing
and control in an open jet wind tunnel.

This article is organized as follows. Section II formulates
the problem. The optimization architecture is then designed in
Section III. The optimized shape realization using a distributed
vision-based control is proposed in Section IV. The experi-
mental setup and results are presented in Section V and Section
VI, respectively. Finally, conclusion is drawn in Section VII.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Morphing Wing

The active morphing wing considered in this research is
illustrated in Fig. 1.1 The wing has six distributed translation
induced camber modules, allowing independent camber and
span-wise twist morphing [19]. There are 12 servos (two per
module) embedded in the wing box, allowing the TE bottom
skin to slide in chord-wise and span-wise directions along a
guided sliding interface. To reduce noise and drag, elastomeric
skin segments are integrated between the modules. As shown
in Fig. 1, the rotational motion of the servo is converted to
the sliding motion of the skin by a ball joint linkage system,
which results in active morphing of the wing from its nominal
NACA6510 shape [19].

B. Online Optimization Problem

The goal of online shape optimization is to find the most
aerodynamically efficient wing shape and AOA combination

1The project video can be found via https://www.youtube.com/watch?v=
SdagIiYRWyA&t=319s.
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Fig. 1. Morphing wing actuation mechanism and coordinate system.

without altering the intended flight path of the aircraft. This
task is complicated by the uncertainties, unsteadiness, and
nonlinearities in aerodynamics. The wing shape is governed
by a virtual shape input vector u ∈ R

q×1, which will be
elaborated in Section III-A. The wing AOA is denoted as α.
The mappings from α,u to the lift and drag coefficients CL

and CD are highly nonlinear and depend on many uncertain
parameters. The maximization of lift-to-drag ratio (CL/CD)
results in reduced fuel consumption of the aircraft. Moreover,
the right amount of lift force must be generated to maintain
level flight, which is determined by the target lift coefficient
CLt . Therefore, the objective of the optimizer is to find the
set of inputs α,u that maximizes (CL/CD) while meeting
the target lift coefficient CLt without violating the AOA and
actuation limits, which is formulated as follows:

maximizeα,u
CL (α,u)
CD(α,u)

subject to CL (α,u)= CLt

α∈ [αmin, αmax]
u∈ [umin,umax]. (1)

This optimization problem is nonlinear and non-convex,
because CL and CD are nonlinear and non-convex functions
of α and u.

III. OPTIMIZATION ARCHITECTURE

To solve the online optimization problem formulated in
Section II-B, the input u is first elaborated in Section III-A,
followed by the cost function design in Section III-B. The
evolutionary optimization strategy and neural network onboard
model are designed in Section III-C and Section III-D,
respectively. Finally, the overall optimization architecture is
presented in Section III-E.

A. Virtual Shape

To ensure spanwise smoothness, within the optimization
algorithm, the wing shape is represented by the virtual shape
input vector u ∈ R

q×1, rather than the TE displacements at the
12 actuator locations z = [z1, z2, . . . , z12]T. This choice has
another promising benefit, i.e., the dimensionality of the opti-
mization problem is decoupled from the input dimensionality
of the morphing wing. Consequently, if q is chosen to be less
than 12, the computational load is significantly reduced.

Essentially, the virtual inputs are the parameters of
an approximation function that describes the wing shape.

Fig. 2. Comparison of an elliptical distribution function and its 5th order
Chebyshev polynomial approximation.

Fig. 3. Virtual input basis functions.

Chebyshev polynomials were chosen as the parametric wing
shape approximation basis functions because of their nearly
optimal property and orthogonality [24]. Consequently, the
virtual inputs scale q basis shapes, which are described by the
first q Chebyshev polynomials of the first kind: Tq(x) = cos(q·
arccos(x)), where q is a non-negative integer. These polyno-
mials are orthogonal in the interval [−1, 1] and are rescaled
onto the [0, 1.80] m domain, where 1.8 m is the half-wing
span. The choice of q is determined by the tradeoff between
reducing the number of measurements required to identify
an onboard model and computational loads and reducing the
shape approximation error. The order of the virtual shape func-
tion was chosen to be q = 5, because it resulted in the greatest
reduction in computational loads without compromising the
approximation power below acceptable levels for the expected
wing shapes. Fig. 2 demonstrates that the 5th order Chebyshev
polynomial has sufficient approximation power to make the
normalized root mean square error (NRMSE) below 1.15%
and approximate an elliptical distribution well.

As a consequence, the five virtual inputs u1, u2 . . . , u5 are
the coefficients of a fifth-order Chebyshev approximation of
the spanwise camber distribution function that describes the
morphed wing shape. The distribution function is given as
follows:

z(y) =
5∑

i=1

ui Ti(y) (2)

in which z is the TE vertical displacement as a function of
the spanwise location y (Fig. 1). The local TE displacement
zi at the i th actuator is zi = z(yi), where yi is the spanwise
location of the actuator. The shapes described by these basis
polynomials and their contributions to the amount of camber
at the actuator locations are shown in Fig. 3.

B. Cost Function

The cost function is used to score the desirability of the
system outputs CL and CD . It is designed to maximize the
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Fig. 4. Cost function for CLt = 0.50.

lift-to-drag ratio while regulating the error between the actual
and the target lift coefficients, as presented in the following
equation:

J
(
CL ,CD,CLt

) = − CL

CD︸ ︷︷ ︸
efficiency

· k2

k1 + (
CL − CLt

)2︸ ︷︷ ︸
deviation from lift target

. (3)

The efficiency and lift target terms are multiplied such that
a low cost can only be reached when high efficiency and the
correct amount of lift are achieved simultaneously. A constant
k1 = 1 × 10−4 is added to prevent singularities for small error
values. The constant k2 = 2 × 10−5 serves to scale the cost
function output to [−1, 0]. As an example, the cost function
for CLt = 0.50 is shown in Fig. 4.

It can be observed from Fig. 4 that a solution deviates from
the target lift coefficient is undesirable even if it provides low
drag. In this research, the virtual inputs and AOA bounds
pose constraints on the inputs and are implemented directly
as constraints on the input space. By contrast, the TE dis-
placement bounds and target lift coefficient pose constraints
on intermediate and output variables and are implemented
indirectly through the cost function scoring. If the local TE
displacement at any of the actuator locations is outside of the
bounds, the cost value is determined by a penalty function.
The cost is then equal to the square of the maximum TE
displacement at any of the actuator locations plus a large
constant, such that the cost penalty will always be higher than
the cost of inputs that do not violate the constraints. The square
of the maximum absolute local TE deflection provides a cost
gradient to aid the optimizer in steering the solution back to
the feasible space.

C. Covariance Matrix Adaptation—Evolutionary Strategy

To solve the nonlinear and non-convex morphing wing
shape optimization problem, while considering online cal-
culation efficiency, trivial approaches using either exhaus-
tive search or naive random search is either infeasible
or too slow considering the number of samples required.
Instead, the covariance matrix adaptation evolutionary strategy
(CMA-ES) [25], [26] is an evolutionary optimization strat-
egy for black-box optimization of nonlinear non-convex con-
tinuous problems. With sufficiently large population sizes,
CMA-ES has desirable global search performance as demon-
strated by various black-box optimization benchmarking

studies [25], [27]. Furthermore, as suggested by a recent
comparative study, CMA-ES and its variants [28] have the
ability to find the optima of a broader class of functions, with
promising efficiency and speed [29], [30].

The applicability of CMA-ES to multitopology optimiza-
tion of aircraft design combined with the nonlinear vortex
lattice method aerodynamic analysis is demonstrated in [31].
It has also been applied for online optimization of feedback
controllers of aeroacoustic instabilities of gas turbine com-
bustors [28]. The adaptability and effectiveness of CMA-ES
are further demonstrated in comparative studies with particle
swarm optimization, genetic algorithm, and multipopulation
genetic algorithm for damage detection and quantification of
structural systems [32]. Various applications of CMA-ES for
real-world online optimization are discussed in [30].

The principle of CMA-ES is to iteratively sample pop-
ulations of candidate solutions from a multivariate normal
distribution N (m,C), which is uniquely identified by its mean
m ∈ R

n and covariance matrix C ∈ R
n×n [33]. Based on

the returned costs of these candidate solutions, the mean
and covariance matrix of the next generation’s population
are deterministically adapted. This process is repeated until
the variation of the cost function converges to below a set
threshold.

With g the generational counter, the k-th offspring from the
subsequent generation g + 1 is sampled from a multivariate
normal distribution N , which is dependent on the current gen-
eration’s mean search distribution value m(g), overall standard
deviation or step size σ (g), and covariance matrix C(g) as
shown in the following equation:

x(g+1)
k ∼ N

(
m(g),

(
σ (g)

)2
,C(g)

)
, for k = 1, . . . , λ. (4)

The distribution of N (m(g), (σ (g))2,C(g)) is equal to m(g)+
σ (g)N (0,C(g)). In (4), m(g) shifts the center of the multivariate
normal distribution in a n-dimensional space; σ (g) scales
the size of the distribution; C(g) adapts the shape of the
distribution. During each iteration of the algorithm, m(g), σ (g),
and C(g) are updated based on the object parameter variations.
As shown in (5), the mean of the next generation is a weighted
average of the μ best scoring search points from the sample
x(g+1)

1 , . . . , x(g+1)
λ . In other words, the center of the next

generation’s distribution is shifted in the average direction of
the best performing candidates

m(g+1) =
μ∑

i=1

wi x(g+1)
i :λ . (5)

The adaptation law for the covariance matrix is shown as
follows:

C(g+1) = (1 − ccov)C(g) + ccov

μcov
p(g+1)

c p(g+1)T
c︸ ︷︷ ︸

rank-one update

+ccov

(
1 − 1

μcov

)

×
μ∑

i=1

wi

(
x(g+1)

i :λ − m(g)

σ (g)

)(
x(g+1)

i :λ − m(g)

σ (g)

)T

︸ ︷︷ ︸
rank−μupdate

(6)
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in which ccov and μcov are the learning rate for updating the
covariance matrix and weighting parameter between rank-one
and rank-μ updates, respectively. The rank-μ update uses
information from previous generations to improve the relia-
bility of the covariance matrix estimator for small population
sizes. The rank-one update exploits the directional information
from past generations using the evolution path p(g+1)

c , which
is a sum of successive steps defined as follows:

p(g+1)
c = (1 − cc)p(g)c + √

cc(2 − cc)μeff
m(g+1) − m(g)

σ (g)
(7)

where cc is the learning rate for cumulation for the rank-one
update; μeff is the variance effective selection mass defined as
follows:

μeff =
(

μ∑
i=1

w2
i

)−1

. (8)

The overall standard deviation σ (g) scales the size of the
search distribution based on the length of the evolution path
compared with its expected length under random selection as
follows:

σ (g+1) = σ (g) exp

(
cσ
dσ

(
�p(g+1)

σ �
E� N (0, I)� − 1

))
(9)

in which cσ and dσ are the learning rate for the cumulation for
the step size control and a damping parameter, respectively.
The scaling of the distribution with σ (g) can be used to
either broaden the distribution’s search space or to focus it.
When an evolution path is relatively long, the successive steps
are roughly in the same direction and the step size can be
automatically increased so that fewer iterations are needed
to cover the distance. Conversely, when the evolution path is
short, the successive steps, at least partially, cancel out each
other and the step size can be automatically decreased [33].

D. Onboard Model—RBFNNs

To reduce the online objective function evaluation cost,
a global surrogate model (also referred to as the onboard
model) is established to approximate the mappings from the
AOA and wing shape inputs to the lift and drag coefficient
outputs using two RBFNNs. These types of ANNs use RBFs
as activation functions and are widely used as function approx-
imators, particularly suitable for establishing multivariate and
nonlinear mappings from multiparameter, noisy, and scattered
data sets [15].

The architectures of the two single-hidden-layer RBFNNs
used in this research are shown in Fig. 5. Both of them use
six inputs: the AOA α and the five virtual inputs that describe
the wing shape u1, . . . , u5. Their respective outputs are the lift
and drag coefficients CL and CD .

Equation (10) represents the hidden unit activations given by
the basis functions φ j (e.g., Gaussian basis functions). These
depend on the input activations from the previous layer x, and
on the parameters μ and σ j [15], where μ represents the RBF
location in R

q+1 and σ j denotes the RBF radius

φ j(x) = exp

(
−�x − μ j�2

2σ 2
j

)
. (10)

Fig. 5. Single-hidden-layer RBFNN architecture.

Both the center locations and the radii of the RBF basis
functions are determined by the network training process.
To train the onboard model, the adaptive gradient algorithm
(Adagrad) is used [34], which maintains and adapts one learn-
ing rate for each dimension using historical data as follows:

θt+1,i = θt,i − η√
Gt,ii + �

· gt,i (11)

in which gt,i is the gradient of the loss function with respect
to parameter i at time t , and Gt,ii = ∑t

τ=1 g2
τ,i is the

cumulative sum of the squares of the past gradients. The effect
of Gt,ii in (11) is that the effective learning rate is diminished
over time. Since this diminishing depends on the parameter
gradient histories, higher learning rates are automatically used
for parameters relating to infrequent features, whereas lower
learning rates are automatically used for parameters relating to
frequent features. This makes Adagrad well-suited for dealing
with sparse data.

E. Optimization Architecture and Algorithms

An overview of the optimization architecture is shown in
Fig. 6. The left-hand side of Fig. 6 presents a fast model
optimization loop, which comprises three main parts: 1) the
cost function (Section III-B); 2) the optimizer (Section III-C);
and 3) the onboard model (Section III-D). A pseudocode
description of the online optimization algorithm is given by
Algorithm 1.

During each iteration of the optimization procedure, the
evolutionary optimizer generates a population of λ candidate
solutions and queries the onboard model (RBFNNs) with
their AOA and wing shape combinations αk,uk , where k =
1, . . . , λ. In turn, the onboard model predicts the steady-state
lift and drag coefficients ĈLk , ĈDk resulting from each of these
inputs, and the cost function scores the desirability γk =
J (ĈLk , ĈDk ,CLt ) of these predicted outputs. Subsequently, the
scores of the evaluated input combinations are used by the
optimizer to generate a more promising population of input
combinations. This cycle is repeated with a frequency of
approximately 15 Hz, depending on the population size and
available computing power. This process continues until the
optimizer converges onto a single most optimal α,u combi-
nation, whose index is defined as β. This input combination
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Fig. 6. Online shape optimization architecture diagram with components of the optimization algorithm marked in gray.

Algorithm 1 Online Morphing Shape Optimization

is then actuated on the real system and the resulting measure-
ments are subsequently used to improve the onboard model.

Since the zero position of the turntable did not coincide
with the zero AOA, the turntable angle to be commanded to
realize any true aerodynamic AOA was unknown beforehand.
To address this challenge, the angular difference ε between the
commanded turntable angle ψref and the aerodynamic AOA α,
was estimated using measurements of a sweep in AOA with
the wing jig (baseline) shape and the iterative approach is
outlined in Algorithm 2. During this procedure, the turntable
misalignment constant ε was iteratively estimated by matching
the measurement-based zero-lift AOA α̂CL =0 estimation to
the theoretical zero-lift AOA α∗

CL =0. This theoretical zero-lift
AOA was determined to be −6.5570◦ using the 3-D panel
viscous solver XFLR5 v 6.48. This estimation procedure was
performed once, at the beginning of the experiment.

Algorithm 2 Turntable Misalignment Estimation

Using the ε estimation, the most promising aerodynamic
AOA αβ is converted to an equivalent turntable angle reference
ψref = αβ − ε. In addition, the virtual shape inputs uβ
are transformed to the reference TE displacements at the
12 actuator locations zref ∈ R

12. Then, the reference table
angle and TE displacements are sent to the turntable and
morphing controllers, respectively. The morphing controller
uses the TE displacement feedback zm from a vision system
to steer the TE displacements to their reference values by
controlling the morphing actuators θ . The vision system and
the morphing controller will be elaborated in Section IV.

After the controllers have converged and the intended wing
shape and AOA are actuated on the system, the resulting aero-
dynamic forces Fxm , Fym are measured using a force balance
which is mounted to the turntable. The 40-s running averages
of the resulting measurements denoted as F̄xm , F̄ym are then
transformed to the lift and drag coefficients CLm ,CDm using an
α-dependent nonlinear mapping. Both the inputs used, and the
resulting aerodynamic coefficients, are added to the training set
which is kept in memory. Finally, the loop is closed by training
the onboard model, which results in updated parameters wi+1.
This completes the architecture.

IV. OPTIMIZED SHAPE REALIZATION—A VISION-BASED

CONTROL APPROACH

A vision-based control approach is adopted to realize the
optimized shape on the real physical system while resisting
external disturbances, model uncertainties, and mechanical
imperfections. The distributed vision system is described in
Section IV-A, while an adaptive nonlinear shape control algo-
rithm is presented in Section IV-B.
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Fig. 7. Coordinate systems and vision-based wing shape reconstruction.

Fig. 8. Real-time vision-based tracking pipeline.

A. Vision System

1) Vision-Based Shape Reconstruction: A distributed vision
system is developed to provide the knowledge of the morphing
wing’ shape to the controller in real time. The variable of
interest to the controller is the local vertical displacement of
the wing trailing edge with respect to a body-fixed coordinate
system. The body-fixed coordinate system FB is chosen to
be near the root of the wing with an origin OB (Fig. 7).
The displacement of the trailing edge is reconstructed in the
FB frame in real time by means of a 5-view vision-based
tracking system. Each morphing module is fit with a pair
of active infrared (IR) light-emitting diodes (LEDs), with
3 additional markers for the definition of FB . An overview
of the vision-based tracking pipeline is shown in Fig. 8.

2) 3-D Reconstruction: The n-view 3-D reconstruction
problem is concerned with finding the optimal estimation of an
object X̂ in a 3-D global coordinate frame (i.e., locations in the
x–z-axes), which is observable in x̄1, x̄2, . . . , x̄n noisy points
correspondence in n camera views. The point correspondences
x̄i are generally defined by markers in u, v coordinates of a
2-D image plane and transformed to a camera fixed reference
frame FC via triangulation. Prior to this process, several suc-
cessive image processing steps are implemented to refine the
observation of point correspondences. The most common setup
for triangulation is a calibrated 2-view stereo camera setup,
which was demonstrated in a previous study for the recon-
struction of flexible wing motion [35]. However, the tracking
accuracy and redundancy can be improved with the addition of
more distributed camera observations. As highlighted in [35],
this is particularly beneficial for objects subject to adverse
environmental conditions (such as disturbing flow conditions
and mechanical vibrations), where calibration drift can be

Fig. 9. 3-D orientation of the cameras with respect to the morphing wing
positioned in the wind tunnel.

accumulated over time. Therefore, a five-camera setup was
adopted in this research.

The principle of the n-view reconstruction relies on
back-projecting the 3-D point onto the respective camera
views, allowing to define a minimization problem for the
reprojection error, E = ∑n

k=1 ||xk − x̄k ||2. The n-view min-
imization problem is commonly solved by an expanded linear
system of equations similar to singular value decomposition
(SVD) in a direct linear transform (DLT) procedure [36].
Global optimization methods can be applied, such as algebraic,
matrix inequality, and the L∞ approach [37]. More computa-
tionally intensive methods also exist, such as bundle adjust-
ment, where the camera calibration parameters are not known
prior and are included in the minimization problem [36]. This
research adopted a proprietary 3-D point cloud reconstruction
engine in the OptiTrack application programming interface
(API) system [38]. Multicamera calibration was performed by
a wanding process, resulting in an average calibration error of
0.25 mm for all cameras.

3) Coordinate Transformation: As illustrated in the 3-D
view of Fig. 9, a coordinate system transformation from FC to
FB is required for shape reconstruction. This transformation
is performed by a translation, followed by 3-axis rotations
in pitch, roll, and yaw axes (θ , φ, ψ). It is noteworthy
that FB is attached to the wing and thus is rotating along
with the turntable. Therefore, the transformations have to be
performed continuously in real time. The applications for
processing, reconstructing, and accessing the data are written
in low-level C++ programming language for performance
enhancement. The average total processing latency of the
complete processing pipeline (Fig. 8) was in the range of
5–7 ms, which is smaller than the control sampling interval
(16.67 ms).

B. Nonlinear Adaptive Vision-Based Control

The objective of the morphing controller is to steer the
distributed actuators to morph the wing to the optimal shape
commanded by the optimizer, using the real shape recon-
structed by the vision system as a feedback signal (Fig. 6). The
morphing wing can be represented by the following nonlinear
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multiinput multioutput system:
ẋ(t) = f (x(t), u(t))+ d(t), y(t) = h(x(t)) (12)

where x ∈ R
n, u ∈ R

m , and y ∈ R
p are the system

state, input, and measurable output, respectively. d(t) ∈ R
n

is the external disturbance vector. For this morphing control
problem, the output signal y is provided by computer vision.
f : (Rn, R

m) → R
n and h : R

n → R
p are assumed to be

Lipschitz continuous on their domains.
To make the controller constantly adapt to changes in the

system and environment, online system identification is neces-
sary. A precise online identification method for dynamic sys-
tems that only requires output feedback and less computation
power than neural networks has been proposed in [39]. This
method identifies the incremental [40] model using sampling
interval-based linearization and discretization.

Theorem 1 [39]: If the nonlinear system given by (12) is
observable, then under sufficiently high sampling frequency,
the output tracking error increment �et+1 = �yt+1 −�yref,t+1

can be determined uniquely from the observations and con-
trol inputs over a sufficiently long time horizon, [t − M +
1, t], M ≥ (n + p)/p

�et+1 ≈ Ft�et,M + Gt�ut,M (13)

where Ft ∈ R
p×Mp is the augmented transition matrix, and

Gt ∈ R
p×Mm is the augmented input distribution matrix.

�ut,M = [�uT
t ,�uT

t−1, . . . ,�uT
t−N+1] ∈ R

Nm and �et,M =
[�eT

t ,�eT
t−1, . . . ,�eT

t−N+1] ∈ R
N p are the input and track-

ing error data of N previous samples, respectively. For the
selection of N , readers are recommended to [39]. Using (13),
the nonlinear dynamic inversion control in its discrete form
can be applied, which regulates the tracking error to zero
asymptotically.

It is noteworthy that this nonlinear adaptive control is
superior to the incremental nonlinear dynamic inversion con-
trol in the literature [40] mainly because of its abilities of
online adaptation and dealing with hysteresis effects [41].
The Lyapunov-based stability and robustness proofs of the
proposed control method are presented in our recent pub-
lication [41]. Real-world experiment results show that this
nonlinear adaptive controller is able to decrease the tracking
error by more than 62% despite model uncertainties, external
disturbances, frictions, and nonlinear backlash hysteresis [41].

V. EXPERIMENTAL DESIGN AND SETUP

To assess the performance of the proposed online shape
optimization architecture, an experiment was conducted with
the SmartX-Alpha morphing wing at the open jet facility (OJF)
wind tunnel [42].

A. Apparatus

The experimental apparatus is shown in Fig. 10. The sys-
tem consists of the SmartX-Alpha morphing wing, mounted
vertically on an actively controlled turntable system, and
placed in the wind tunnel test section. The operational point
was selected as V = 15 m/s. The wing is clamped on a
three-axis external balance measurements system, allowing
to measure root reaction forces and moments at 1000 Hz.

Fig. 10. Experimental apparatus with various hardware, software, and
vision-based control components. The green, red, and blue lines represent
mechanical, electrical, and synchronization paths, respectively.

The shape command and the resulting lift distribution are
achieved by 12 high-performance servos, connected to an array
of recommended standard (RS)-485 devices communicating
serially via the RS-485 protocol. The update rate is constrained
by the physical universal serial bus (USB) host interface with
a fixed time delay of 15 ms. The actuation angles of the servo
are constrained to ±25◦ as to not exceed the physical limits
of the morphing system. The online optimization was carried
out on an Intel Xeon W-2223 3.60 GHz central processing unit
(CPU) system with 16.00 GB random access memory (RAM).

An array of IR-LEDs of type 3528 850NM WLP PLCC2,
characterized by 850 nm wavelength is installed on the wing
bottom surface and powered by a 12 V direct current (DC)
power supply. The brightness is actively controlled by the
IRF520 Power metal–oxide–semiconductor field-effect transis-
tor (MOSFET) dimmer circuit. Five Primex41 4.1 Mpixel IR
cameras are responsible for marker tracking at a frame rate of
250 frames per second (FPS) [38]. The shape-reconstruction
algorithm is written in C++ and deployed on a Dell Optiplex
7400 i5-8500 3.00 GHz CPU system with 8.00 GB RAM.

To continuously control the wing AOA, a real-time turntable
control loop has been implemented. The Franke turntable of
type LTB 400 is equipped with a brushless TC-60-1.3 motor
with encoder and breaking systems. The table angle is mea-
sured by an MSR-40-MOR rotary encoder. The turntable
is controlled by a proportional–integral–derivative algorithm
whose parameters are tuned to provide smooth table angle
command tracking while satisfying servo rate and position
limits. The servo commands are communicated via an RS232
protocol over a USB controller. A.NET-based software control
interface is developed to set control parameters and received
the encoder feedback signal, which is interfaced to the syn-
chronization framework in real time at 200 Hz.

B. Real-Time Synchronization

Various hardware and software components are needed to
cooperate coherently and harmoniously in real time. To facili-
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Fig. 11. Control flow and timeline of the experimental system.

tate this, a distributed data-sharing architecture was developed
based on the decentralized communication principle, which
allows parallel integration of hardware and software compo-
nents in various programming languages (Python, MATLAB,
Simulink, C++,.NET, etc.) and various communication pro-
tocols (RS485, Ethernet, ModBus, etc.). The architecture
software is developed in C++ with the real-time D-SIM
framework, connecting several personal computer (PC) nodes
over a local Ethernet network [43], and enabling synchroniza-
tion as depicted in the bottom part of Fig. 10. This approach
provides several key benefits over conventional centralized
systems: 1) running hardware and software processes in paral-
lel at nonuniform sampling rates with a 1 kHz synchronization
of shared variables between processes; 2) scalability and easy
to be modified system structure; and 3) mixing various pro-
gramming languages and protocols for various experimental
components.

C. Optimization Experiment Configuration

The CMA-ES algorithm was used to solve the optimization
problem. A relatively large population size of λ = 150 was
used to improve the global search performance of the algo-
rithm. The middle of the input domain was used as the initial
solution point x0. To allow global convergence, the initial
standard deviation σ 0 and the scaling of the input variables
were selected such that x0±2σ 0 spanned the width of the
domain in each of the input axes. A suitable cost function
variation convergence threshold was found at 1 × 10−6, such
that the optimizer yielded adequate convergence considering
the computational load. The computational time was further
reduced by a parallel query of 150 candidate solutions.

The onboard model on which the candidate solutions from
the optimizer are evaluated comprises two single-hidden-layer
RBFNNs. These networks are continuously improved with
training being performed each iteration using training data kept
in memory in the replay buffer. After balancing approximation
power and computational load, the lift and drag coefficient
networks (Fig. 5) were configured with 500 and 940 neurons,
respectively. The higher neuron count in the drag coeffi-
cient network is necessary for capturing the higher degree

of nonlinearities and spanwise distribution dependencies in
drag. During training, the RBF center locations, radii, network
weights, and the bias parameter are updated using the Adagrad
algorithm with a mean squared error loss function. The initial
learning rates for both networks were configured as 0.01.

The training data, comprised of previously evaluated inputs
and their lift and drag coefficients, is stored in a buffer.
In this research, the replacement of old data points when the
buffer is full is based on the nearest neighbor search on all
points in the buffer, inspired by the coverage maximization
strategy presented in [44]. The data point with the lowest
mean Euclidean distance to its 10 closest neighbors is replaced
with the latest available data point. This replacement strategy
aims to maximize the coverage domain of the training set by
replacing the data points in regions of high data density and
holding onto samples in data scare regions of the domain.

Because of the backlash effects in the actuation mechanism,
the required actuator angles for any given wing shape are
not unique and are unknown beforehand. Therefore, limits
were imposed on the commanded local z-displacements of
the trailing edge at the actuator positions z1, z2, . . . , z12. The
maximum absolute displacement achievable at any actuator
position is dependent on the actuation of the neighboring
actuators. Actuator pairs that deflect in unison are able to
effectuate larger TE displacements than actuator pairs that
deflect in opposite directions. The local vertical displacements
allowed for the optimizer were selected as ±10 mm.

D. Experiment Procedures
The control flow is shown in Fig. 11, responsible for the

operation of various system components during the experi-
ment. The order and measurement conditions of the performed
runs are shown in Table I. The three types of runs performed
are baseline, wandering, and optimization. The baseline runs
are AOA sweep with a fixed (jig) wing shape, to establish
a performance baseline. During the wandering phase runs,
pseudo-random (PR) inputs were actuated on the system to
explore the input space for onboard model identification.
Throughout the optimization runs, the optimal angles of attack
and wing shapes established by the optimizer were com-
manded to maximize the lift-to-drag ratio.
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TABLE I

EXPERIMENT TEST MATRIX, MEASUREMENT WITH ANGLE-OF-ATTACK
BIAS IN GRAY (PR = PSEUDORANDOM)

VI. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, the experimental results are presented and
discussed. First, a performance baseline is established, and the
wandering phase measurements are presented in Section VI-A.
Then, the convergence property and computational loads are
discussed in Section VI-B. In Section VI-C, the results from
online optimization for CLt = 0.65 are elaborated upon.
Experimental data-driven optimization predictions are shown
in Section VI-D for a wider range of target lift coefficients.
Finally, real-world operation considerations are discussed in
Section VI-E.

A. Baseline and Wandering Phase

A performance baseline was developed by measuring the
aerodynamic forces of the wing jig shape at various angles
of attack. This wing jig shape was realized by performing a
doublet maneuver without wind. Subsequently, 40-s averaged
force measurements were taken at table angles from −18◦ to
10◦ in increments of two degrees at a wind speed of 15 m/s.

The performance baseline was established by interpolation
of the jig shape measurements with a 16-th degree polynomial.
This relatively high polynomial order was selected considering
the fitting performance. The validity of this interpolation
in the region of interest was not compromised by Runge’s
phenomenon [45] as the bounds of the jig sweep measurements
are much wider than the region of interest. Both the jig shape
measurements and the fit model are shown in Fig. 12. During
the wandering phase, the actuation space was explored with PR
inputs. As shown in Fig. 12, naturally, the performances of the
PR wandering inputs are distributed around the jig shape per-
formance curve. While the jig shape curve serves as a baseline,
the distribution of the wandering phase performances roughly
indicates the physical bounds of the attainable performance
with active morphing for SmartX-Alpha.

B. Convergence Property and Computational Loads

The computational load of the proposed method is mainly
comprised of the computational loads of the CMA-ES opti-
mizer and the RBFNN onboard model. These in turn are
determined by the convergence rate of the optimizer, and the
amount of training of the onboard model required.

To the best of our knowledge, there are no theoretical proofs
that guarantee convergence of CMA-ES in the literature.
However, much evidence exists to show that the algorithm
convergences on many functions [46]. This promising con-
vergence property can be explained as follows: as shown

Fig. 12. Wing jig shape baseline performance measurements (orange
dots), wing jig shape performance fit model (orange line), and performance
measurements from PR exploration (blue dots).

in Section III-C, the scaling of the CMA-ES distribution
depending on the length of the evolution path serves to either
focus or broaden the search. When the successive search steps
partially cancel out, the distribution is scaled down. This
reduces the footprint of the generated population in the search
space and consequently reduces the variation in their function
evaluation values until a set threshold is reached upon which
convergence is declared. Thus, in principle, convergence could
only not occur if the optimizer were to step in roughly the
same direction indefinitely.

This evolution-path-dependent scaling strategy is also the
primary mechanism responsible for the acceleration of the
convergence rate of this method. When the evolution path
is relatively long, owing to a series of successive steps in a
similar direction, the distribution is automatically scaled up
to reduce the number of successive steps needed. Referring
to [25], [33], the rate of convergence is dependent on the ratio
of the population size to the number of dimensions of the
input space. Therefore, in order to improve the convergence
rate in our experiment, a large population size of λ = 150 was
used, whilst the number of dimensions in the input space was
reduced from 13 to 6 by the employment of the 5-th order
virtual shape functions to describe the wing shape. In addition,
the convergence threshold was selected as 1 × 10−6 which
was as high as possible without causing variations in the lift-
to-drag ratios of the solutions over 1 × 10−4. This ensures
that no further optimization steps are performed when the
change in result would be negligible, avoiding unnecessary
computations.

During both the wandering and the optimization phases of
the experiment, the CMA-ES optimizer converged in every
iteration. The mean time for convergence was 6.6 s on the
hardware as described in Section V-A, and convergence hap-
pened within 9.8 s in 95% of cases. This time span is deemed
acceptable, because it is small compared with the time required
for reaching steady-state aerodynamics and noise averaging
and filtering, which add up to 60 s.

The computational time required for the training of the
onboard RBFNN model is mainly influenced by the number
of times the model weights are updated during the training
process. This in turn is largely dependent on the size of
the training data set. While large training data sets improve
the accuracy of the neural network model, the time required
for training also increases significantly. Therefore, a limit
on the training set size was introduced. When this limit is
reached, new measurements replace old data in the training
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Fig. 13. Lift and drag coefficients, and selected wing shapes from online
optimization with a target lift coefficient of 0.65 for 15 iterations.

set using a replacement strategy which focuses on retaining
a sufficient coverage of the data throughout the optimization
domain. Although the maximum amount of training data was
not reached during our wind tunnel experiment, in real-world
operations when large amounts of data from simulations and
previous flights are available this sample replacement strategy
will be a vital part of the framework.

During the experiment, the combined training of both neural
networks required 3.0 s on average and remained below 3.2 s
in 95% of cases. This time span is also deemed acceptable as
it is even shorter than the time required for optimization.

C. Online Optimization

After the first 150 wandering phase measurements, 15 iter-
ations of online wing shape optimization were performed with
a target lift coefficient CLt = 0.65. The resulting lift and drag
coefficient measurements are shown in Fig. 13. During the
first six iterations, the discrepancies between the targeted and
the measured lift coefficients are relatively large, i.e., ±0.25.
This is caused by the small number of measurements collected
during the wandering phase relative to the dimensionality of
the input space. The 150 samples used correspond to a grid
with only 6

√
150 ≈ 2.305 points in each of the six dimensions.

Hence it is very challenging to capture the true aerodynamic
mapping in such a small data set. At the same time, the mea-
sured drag coefficients also fluctuate considerably. This is also
reasonable as the total drag is dominated by the lift-induced
drag. Furthermore, these initially evaluated wing shapes are
suboptimal, attributed to the observation of increased amounts
of camber near the root and tip. While the true optimal
shape is unknown, the amounts of camber at those locations
are expected to decrease for constructing a nearly elliptical
optimal lift distribution.

Fig. 14. Shape evaluated at iteration 12 during online optimization with a
target lift coefficient of 0.65.

The variations during the first six iterations will not result
in instability or severe ride discomfort on an aircraft, because
the fluctuated CL values shown in Fig. 13 are only the CL

commands. These commands and the corresponding wing
shapes are realized by the inner-loop nonlinear vision-based
adaptive controller which damps out the transit responses
and high-frequency fluctuations in the real CL responses.
Moreover, the wing shape is adapted at a low frequency based
on the steady-state aerodynamic forces and will not cause
large accelerations. Furthermore, the initial fluctuations can
be greatly reduced by more training on an expanded data set.
This has also been proved by the experimental results that
after iteration 6, the CL values have much fewer variations,
because the RBFNN onboard model has sufficiently learned
the wing aerodynamic properties. Luckily, in real-world
operations, the training data set generated by higher-fidelity
aerodynamic simulations, test flights, and accumulated flight
operations will be much more abundant than what we can
afford in the wind tunnel test, thus reducing the initial model
errors and CL variations.

After iteration six, the measured lift coefficient converges
to its target. Moreover, Fig. 13 shows that the wing shape
and AOA combinations evaluated from iteration seven onward
not only realized CLt but also achieved a lower CD . In other
words, the executed wing shapes are more efficient as indi-
cated by the positive lift-to-drag ratio increase percentage.
The most desirable performance was measured for the input
combination evaluated during iteration 12 with CL = 0.642.
The measured lift-to-drag ratio at this iteration was 10.015,
which corresponds to a 7.8% drag reduction compared with
the wing jig shape at the same CL .

The wing shape evaluated at iteration 12 is shown in Fig 14.
This shape comprises maximum positive camber between
1.4 and 1.6 m from the wing root (corresponds to module
5), a steep decrease at the wing tip, and a gradual reduction
of the local camber toward the root end of the wing. It is
mainly the reduction of the local camber near the wing ends,
which is supposed to reduce the strength of the wing tip
vortices, that results in the observed improvement in the
aerodynamic efficiency. These vortices are the result of the
spanwise flow components caused by the “leaking” of high
pressure air from the bottom side of the wing around the
wing tips toward the lower pressure regions on the upper wing
surface. Nevertheless, the optimal location of the maximum
camber is expected to be in between the wing root and the
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Fig. 15. Experimental data-driven optimal shape prediction for CLt = 0.65.

center of the wing, which corresponds to an interpolation
between the elliptical distributions associated with wings with
one and two free ends. There, it is suspected that even though
the given shape already offers a 7.8% drag reduction over
the wing jig shape for this target lift coefficient, even more
efficient wing shapes do exist.

An advanced efficient wing shape is predicted using the
measurements from the second wandering phase. After the
first optimization run, the zero angle of the turntable was reset
by a reconfiguration of the turntable hardware and software
as part of the shut-down and startup procedure. The shift
in the turntable zero position was approximated by matching
the force balance readings to earlier established benchmarks
through variation of the table angle. However, later analysis
revealed this approximation method to be less accurate than
was expected. Post-processing of the measurements using
Algorithm 2 showed that the shift in the table angle zero
position was overestimated by approximately 1.6◦. As a result,
the true AOA and the AOA-dependent lift and drag coeffi-
cients of the second wandering phase were unintentionally
biased, which were found to negatively affect the performance
of the later optimization runs. Nevertheless, more accurate
optimal wing shape predictions are achieved by correcting
these biases in post-processing. These results are presented
in Section VI-D.

D. Experimental Data-Driven Optimization Predictions

To make an improved estimation of the optimal shape
and its corresponding drag reduction, and to make a more
general prediction about the optimal wing shapes at other
target lift coefficients, the online training was simulated using
experimental data collected during wandering phases. In post-
processing, the samples measured after the AOA bias was
introduced in the turntable were corrected. These samples were
then fed to the optimization algorithm on a per-sample basis to
simulate the wandering phase experiment. A validation subset,
which contained 25% of the samples, was used to estimate the
predictive accuracy of the trained model.

When CLt = 0.65, the optimal wing shape as computed
by the optimizer on the trained onboard model, was shown in
Fig. 15. With an AOA of 0.8◦, the predicted lift-to-drag ratio
of this shape is 10.35. This corresponds to a 11.1% of drag
reduction compared with the wing jig shape. Furthermore, the
shape shown closely represents the expected optimal shape
described in Section VI-C, with a gradual reduction of airfoil

Fig. 16. Experimental data-driven model training evolution.

camber toward the free wing tip end, and a more moderate
amount of camber reduction at the root end as a result of
pressure leakage at the root intersection.

The predictive accuracy of the trained onboard model was
evaluated using error measures computed on the validation
data set. The evolution of the root mean square errors (RMSEs)
of the lift and drag models on the training and validation
data sets are shown in Fig. 16, in which 25 training epochs
equal one iteration of the optimization algorithm. Naturally,
the RMSE of the model is naturally higher on the validation
data set than on the training set as the former represents unseen
rather than familiar data. It can also be observed that after an
initial steep decline, the validation RMSE values continue to
decrease as more measurements become available.

The training of the RBFNNs is conducted using a
mini-batch size of 32, meaning that the network weights are
adapted based on batches of up to 32 samples. One complete
pass through the entire training data set is referred to as an
epoch. When the total number of samples in the training
data set is not a multiple of the mini-batch size, as many
mini-batches of the maximum size are drawn as possible.
The last batch containing the remainder of the samples will
naturally contain fewer samples than the others. Hence, if the
number of the remainder of the samples is too small, the
last model weight update of an epoch will be performed
based on only a small number of samples. Such small-sample-
size training passes generally result in increased loss and
increased variance between the losses over different epochs.
This phenomenon can be observed at iteration 65, which
corresponds to epoch 825, containing 65 samples divided into
batches of 32 samples. Consequently, the third batch contains
only one sample, which causes a temporary increase in loss
and noisiness. Nevertheless, with subsequent iterations, the
size of the last mini-batch increases and the losses decrease
again and smooth out.

The final RMSE values, and their normalized counterparts
are shown in Table II. The normalization was performed
using the domain width of the corresponding output variables,
i.e., NRMSE = RMSE/(ymax − ymin). Table II shows that
the NRMSE values of the lift and drag coefficient RBFNN
models are close to each other. By contrast, the lift-to-drag
ratio NRMSE is higher, because the lift-to-drag ratio is not
approximated with a dedicated neural network, but by the ratio
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TABLE II

MODEL ERROR MEASURES ON THE VALIDATION DATA SET

Fig. 17. Experimental data-driven optimal shape predictions for four target
lift coefficients.

of two estimated outputs. Nevertheless, based on the relatively
small training data set, the onboard model is able to predict
the lift and drag coefficients of the validation data set samples
with an average prediction error that is approximately 2.5%
of their respective domain widths.

To reveal the trend in the estimated optimal wing shape,
the shape optimization was also conducted for target lift coef-
ficients of 0.35, 0.50, and 0.80. The predicted optimal shapes
for these lift coefficients are shown in Fig. 17. In general,
the maximum amount of camber morphing is commanded
at approximately one-quarter span, with a gradual reduction
approaching the minimum camber limit toward the wing tip.
For higher target lift coefficients, the area under the virtual
shape curves, which can be interpreted as the overall amount
of camber, is increased.

For active camber morphing airfoils, the amount of lift
generated can be changed with variations of both the AOA
and the airfoil camber. Hence, multiple combinations of the
AOA and camber morphing can be employed to realize any
given CLt . However, due to the underlying aerodynamics,
these different solutions will not necessarily come with the
same drag penalties. Computational fluid dynamics (CFDs)
simulations for active camber morphing airfoils have shown
that the TE deflection for best lift-to-drag ratio increases
with increasing lift coefficients [47]. Moreover, in the case
of a 3-D distributed active camber morphing wing, CLt can
be realized with different combinations of the AOA and the
spanwise camber distribution. Earlier wind tunnel experiments
on SmartX-Alpha have shown that for a uniform spanwise
camber morphing, the optimal amount of TE displacement also
increases with increasing lift coefficients. Therefore, the trend
of increasing the overall camber with increasing CLt conforms
to the expectations.

TABLE III

ANGLES OF ATTACK AND AERODYNAMIC COEFFICIENTS CORRESPONDING
TO PREDICTED OPTIMAL WING SHAPES

As long as the morphing limits are not reached, both the
best overall amount of camber and the ideal spanwise lift dis-
tribution, which is elliptical for induced drag reduction, can be
achieved simultaneously. Comparing the camber distributions
for CLt = 0.35 and CLt = 0.50, the largest difference between
the two distributions is a flat increase of camber along the
entire wing span. For the CLt = 0.50 distribution, the fourth
and fifth servo units have already reached their upper limits.
Consequently, for CLt = 0.65 and CLt = 0.80, no flat camber
increases across the span are observed, but rather reshaping of
the spanwise distribution occurs. This can be explained by the
tradeoff between increasing the overall camber for achieving
CLt and retaining an ideally shaped spanwise lift distribution
when the morphing saturation limit is locally reached.

The lift and drag coefficients and the angles of attack of
the predicted optimal shapes are given in Table III, which
proves that over 6.5% of drag reduction has been successfully
reached for all the tested target lift coefficients. It can be
seen from Table III that higher CD reductions are achieved
for lower target lift coefficients. As mentioned before, the
relatively highly cambered baseline wing shape (NACA6510)
is naturally efficient at inducing higher lift coefficients and
consequently, the wing can benefit more from active morphing
for lower target lift coefficients. In addition, for a lower CLt ,
the associated drag is also lower, meaning that the relative
error of the drag coefficient prediction becomes larger, and the
maximum lift-to-drag ratio may become optimistic. Owing to
the experimental time constraint, the measured data set is of
a relatively small size but is adequate for demonstrating the
effectiveness of the proposed optimization architecture. In the
future, with more data, even higher-accuracy neural network
models could be trained such that more accurate evaluations
can be made on the highest achievable drag reductions.

E. Real-World Operational Considerations

For the application of the optimization framework to
real-world commercial aircraft, no further changes to the opti-
mization architecture are needed. The only required changes
will be to the RBFNN training data and the sensors used.

Because gathering enough steady-state flight data to train
a global model in every flight is impractical, some initial
training data needs to be available. In the presented experi-
ment, this data was gathered by measuring the forces of PR
wing-shape and angle-of-attack combinations throughout the
domain, in the wandering phase. In real-world operation, this
data can be generated with high-fidelity simulations, and later
on with measurements from previous flights. Note that this
data is only used to maintain a reasonably accurate model in
regions of the domain in which no measurements have yet
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been gathered. The onboard RBFNN model is still actively
updated as new measurements become available.

Secondly, the external force-balance as used in our experi-
mental setup is essentially a group of strain gauges, which can
also be realized on real-world aircraft structures. Fiber optics
is also an alternative to strain gauges. Moreover, considering
the whole aircraft free-flying operation, in the steady-state
equilibrium conditions for which the optimization framework
is proposed, the lift and drag forces balance the weight and
thrust forces. These forces can be estimated using the gross
aircraft weight, pitch angle, AOA, fuel consumption rate and
the engine’s thrust-specific fuel consumption (TSFC). The
gross aircraft weight can be calculated from the aircraft’s
gross take-off weight and the fuel burned. These are known
quantities on commercial airliners, as are fuel consumption
rate and the angles of attack and pitch. The TSFC varies with
flight speed and altitude, which are also known knowledge.

Finally, our experimental IR camera setup can be converted
to a fuselage-mounted in-flight vision tracking system as has
been experimentally validated in [48]. With these considera-
tions and adaptations, the proposed optimization architecture
can be realistically applied to real-world free-flying aircraft in
the future.

VII. CONCLUSION

An online black-box shape optimization architecture for
active distributed camber morphing wings has been proposed
and experimentally validated. Compared with the unmorphed
wing base shape, a drag reduction of 7.8% was achieved on
the SmartX-Alpha demonstrator for a target lift coefficient of
0.65. For a wide range of target lift coefficients, the predicted
drag reductions vary between 6.5% and 19.8%, with higher
drag reductions being associated with lower lift coefficients.

The ability of the proposed architecture to realize the best
wing shape for various lift coefficients online eliminates the
need for model excitation maneuvers at every trim condition,
as is characteristic for existing gray-box methods employing
local models. By virtue of its black-box nature, this archi-
tecture can be applied to other morphing wing platforms with
relative ease. For future applications to real-world commercial
aircraft, the external force-balance and the vision system used
in the experimental setup can all be made onboard. These
features make the proposed optimization architecture both
effective and practical for achieving sustainable aviation.
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