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Distribution Chain Segments in Freight
Shipment Databases

Raeed Ali Mohammed1 , Ali Nadi1 , Lórant Tavasszy1 ,
and Michiel de Bok1

Abstract
Understanding the logistic determinants of freight trips is an important goal in freight transport modeling. Freight shipments
move between nodes in the supply chain for different logistic purposes, including production, storage, transshipment, and
consumption. A key problem with data availability is that databases generally do not identify these purposes, given the com-
mercial sensitivity of the data. In addition, including information on senders and receivers of the shipments is often prohibi-
tively costly. Therefore, one of the challenges of transport data analysis is to identify freight trip purposes using data fusion,
linking information about the main function of logistics nodes to trips in existing databases. This paper proposes a data fusion
approach to enrich big truck shipment databases with firm registry data. We use the national freight shipment micro-database
from the Netherlands which includes shipment, vehicle, and tour information. Although our presentation here uses formats
and methods of accounting for freight data used in the Netherlands, it can be readily replicated for conditions in other coun-
tries, as long as similar data sets on shipment data and firm registry are available. The enriched, new database contains trans-
port and firm data for more than 2 million observed trips with information on the vehicle used, shipments carried, and
sender/receiver firm. An initial descriptive analysis provides unique empirical insights into the logistic determinants of freight
trips. These include the share of national trips that use intermediate nodes, typical changes in shipment sizes, and the role of
distribution centers for (de)consolidation of shipments.
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Freight transportation is made up of multiple movement
types depending on the freight agents, goods, and/or
logistics nodes involved. While there has been significant
research on the analysis of freight trip patterns, under-
standing the logistic purpose of freight movements has
received little attention. To address this challenge,
researchers are turning their attention to microscopic dis-
aggregate modeling approaches which include the logis-
tic aspects of freight transport. In these microscopic
agent-based systems, freight nodes can be producers,
consumers, distribution centers, or multimodal tranship-
ment terminals. Freight movements between these nodes
can be broadly classified into direct consumer-related
flows (i.e., shipments transported directly from produc-
ers to consumers) and indirect distribution-related flows

through intermediate nodes. Since distribution centers
and wholesale warehouses allow shippers and carriers to
(de)consolidate and store shipments to minimize logistics
costs, a substantial part of freight is routed via inter-
mediate nodes. Figure 1 conceptualizes the movement
types between these logistics nodes. Flows move from
producers (P) to consumers (C) via distribution centers
(DC) or transhipment terminals (TT), if not routed
directly (arrow P–C). An important open challenge for
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empirical freight transport analysis is to unravel what is
now only known as freight trips, into trips by the differ-
ent purposes sketched here.

This type of analysis requires detailed information at
the firm level where movement patterns emerge as a
result of individual firms’ decisions on logistic opera-
tions. Probably the biggest hurdle in the way of micro-
scopic analysis is the absence of microdata reflecting the
prohibitive cost of data collection. In this regard, freight
studies have been generally slow to adopt innovative
data collection schemes and/or use multiple data sources
to acquire large microdata sets. A comprehensive review
of survey techniques and data used in urban freight stud-
ies is given by Allen et al. (1). Of the data collection
methods, survey-based travel diaries (filled out by drivers
or dispatchers) offer rich information for behavioral
analysis of freight movements. These methods however
are expensive, have a low response rate (2), and are sig-
nificantly misreported (3). A better collection scheme is,
therefore, to automatically generate data from the trans-
port management systems (TMS) of logistics companies
(4). This approach is currently being pioneered in some
countries, including the Netherlands. Data are automati-
cally extracted from TMS with relative ease and at low
cost; this allows for efficient collection of truck trip dia-
ries, including shipment, vehicle, and tour information.
Even though the data are high in volume and rich in
attributes, they still lack explicit information on the sen-
der/receiver of the shipments because of privacy concerns
and commercial sensitivity. Such a data set is rather
inadequate when differentiating movements of different
purposes as defined above. One of the challenges of
working with large-scale shipment databases is, there-
fore, to include missing information in these data sets.

A solution to the missing data problem is to fuse
multiple data sets and impute crucial missing

information. This interest in applying data fusion in
transport engineering and more notably freight data is
quite new (5). Much of the work uses GPS data in com-
bination with other sources (4, 6–9). Also, no study has
yet been directed at enriching the microdata set of trips
for identifying distribution movements. There is, there-
fore, a need for new approaches that impute sender/
receiver agents’ information into large-scale freight
transport databases.

Our contributions to the literature are the following:

� Firstly, we present a methodology to enrich freight
microdata with firms’ registry databases. Since
truck trip data often include information on load-
ing/unloading addresses, it allows imputing the
sender/receiver information from a firm’s registry
database at similar geographic detail. Using differ-
ent algorithms of varying degrees of certainty, we
identify the sender/receiver information of individ-
ual shipments in a tractable way. To demonstrate
our approach, we use the national freight ship-
ment micro-database from the Netherlands. We
acknowledge that the proposed data fusion
approach depends on the data structure and the
method of accounting for freight data in the
Netherlands. Nonetheless, we argue that it is read-
ily extendible to conditions where similar data
exist on shipments and firm registries.

� Secondly, we generate unique empirical knowl-
edge and descriptive insights into the use of inter-
mediate logistic facilities by carriers of goods. An
important implication of the research is that the
database provides new opportunities to further
develop shipment-based and agent-based freight
transport models.

The paper is built up as follows. We review the relevant
literature on freight data and data enriching techniques.
We then describe the characteristics of data sets that
the approach builds on, before presenting the metho-
dology for the data enrichment process. We follow up
with the empirical analysis of the data and provide
insights about different trip purposes. Here we also
take account of different commodity groups. Finally,
we draw conclusions and highlight opportunities for
further research.

Literature Review

Data fusion is a collection of techniques by which infor-
mation from multiple sources is combined to reach a bet-
ter inference. Tasks that demand any type of parameter
estimation from multiple sources can benefit from the
use of data/information fusion methods (10). Artificial

Figure 1. Freight trip purposes in a distribution network.
Note: P = producers; DC = distribution centers; TT = transhipment

terminals; C = consumers.
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intelligence, pattern recognition, statistical estimation,
machine learning, and other areas laid the foundation
for the development of different data fusion techniques
in transport systems.

These fusion techniques have seen limited use in
freight studies. For example, You et al. (6) proposed the
Future Mobility Sensing (FMS) digital survey of driver
activity and integrated the information with the GPS data
for Singapore. The GPS data were then enriched with
smartphone data using machine learning that is assisted
by a driver verification process. They later made infer-
ences on tour characteristics of shipments in Singapore
using the enriched data. Alho et al. (7) paired GPS traces
and stop activity surveys in Singapore to describe the
stop location and parking characteristics of freight
trucks. Zhao et al. (11) and Eluru et al. (8) used a data
fusion approach to integrate the US Commodity Flow
Survey with multiple data sets. They used a joint econo-
metric model framework grounded in the maximum like-
lihood approach to estimate country-level commodity
flows. You and Ritchie (12) also developed a framework
to process GPS data to interpret clean drayage truck tour
behavior. Research from Zhu et al. (13) presented the
development of a data fusion method to impute variables
of interest for large GPS data sets by establishing a link
to a behaviorally rich commercial travel survey data set.
They fused three data sets to take advantage of having a
large sample size and rich information from roadside
interviews. None of the above techniques/methods, aim
to identify freight trip purpose in the sense of position in
the distribution chain, as illustrated in Figure 1, in rela-
tion to other trip characteristics.

Previous studies that include big data at the shipment
level are limited. In the United States, the US
Commodity Flow Survey (CFS) was used to characterize
shipments based on modes and destinations (14) or to
characterize the transport chain of shipments (15). Here,
the focus was on shipment size and mode choice, disre-
garding different types of node. The Swedish CFS was
also used to characterize transport chains from an inter-
modal chain perspective (16), however without differen-
tiating between types of intermediate nodes. Sakai et al.
(17) used large disaggregate shipment data of the Tokyo
Metropolitan Area to generate statistics on intermediate
logistic facilities. Here, the data lack detailed location
features. To the best of our knowledge, big empirical
data has not been used to differentiate between ship-
ments that use direct and indirect channels explicitly.
Available big data concern either truck diaries or com-
modity flow surveys, and do not specifically include the
type of logistics node involved in the movement of the
shipment.

Although data fusion from multiple sources sheds
light on freight transport, it usually requires many

assumptions to support linking databases. Alho et al. (7)
cautioned that the results of big data analysis are highly
dependent on the data type and the associated assump-
tions made, underling the importance of carefully select-
ing and disclosing the methods for data processing. In
this paper, we contribute to this field of research by mak-
ing specific and explicit descriptions of the big data
fusion process that we translated into a data matching
scheme for automated truck shipment data collection in
the Netherlands. Our method uses the structure of the
data to make as few assumptions as possible. We also
mark the imputed data with a certainty indicator that
clearly explains which part of the data is filled with
higher certainty (i.e., no assumption) and which part has
a lower level of certainty (i.e., probabilistic assumptions).

Data

The Shipments Database

We define shipments to be consignments that are trans-
ported from a producer to either a consumer or an inter-
mediate logistics node, or from intermediate logistics
node to a consuming agent. They are transported in a
single vehicle individually or with other consignments.
We have access to the microdata of these transported
shipments collected by Statistics Netherlands (known as
CBS). This is a set of data collected at three levels (tours,
trips, and shipments) for Rijkswaterstaat (the Dutch
Road and Waterways Authority, or officially the
Directorate-General for Public Works and Water
Management) which uses it to develop freight models
and evaluate related policies (for more detail see De Bok
and Tavasszy (18)). Companies are obliged to report on
their shipments per vehicle which allows high volumes of
data with high density. CBS keeps track of shipments
carried by trucks with a capacity of at least 3.5 metric
tons. Thus, their target population is all road transporta-
tion done by Dutch companies. Companies share a week
of transported shipments data for their vehicles. The unit
of analysis is, therefore, vehicle-weeks for trucks with a
loading capacity of at least 3.5 metric tons. However, the
shipments are not complete per company, since the data
extraction is done for a sample of all registered Heavy
Goods Vehicles (truck) vehicles in the Netherlands.

The chance of drawing a vehicle depends on company
size, vehicle age, vehicle capacity, and vehicle type. Each
vehicle from the sample group is assigned to a specific
week in which all transported shipments and tours are to
be reported. The requested data include origin/destina-
tion location of shipments, type of commodity of trans-
ported goods, and their weight among more than 80
other features. In total, 0.7% of yearly total vehicle
movements in the Netherlands are recorded in the
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shipment data. Since reporting is mandatory and CBS
keeps reminding respondents, the response rate is very
high.

Reporting of the data can be done through three sur-
vey tools: paper, internet, and structured XML format.
The latter data set is the source for our study where den-
ser and higher quality is achieved by automatic input.
Responses come from companies in three categories: only
requested vehicles, all vehicles for the requested week,
and all vehicles for the entire year. We have made no dis-
tinction in the data with regard to this category. We also
point to the limitation in the data where most of it comes
from larger companies that have the set-up to include an
automated XML reporting system (and the willingness).
It is wise to note that these companies have an advanced
and efficient transport system that would be of interest to
see in the data. But it means our analysis can only draw
conclusions about large road haulage companies that
have invested in optimizing logistic processes.

In total, CBS extracted 2.65 million shipment data
from the year 2013 to 2015 which contains rich informa-
tion with regard to loading, unloading locations, com-
modities carried, and vehicles used. The database has
been used in previous agent-based urban freight models
(18, 19). A particular interest for this study is the geo-
graphic detail of loading and unloading points of the
shipments given as either a six-digit postal code, four-
digit postal code, or international destinations. However,
the database lacks the sender/receiver firm of each ship-
ment and whether each shipment went directly from pro-
ducers to consumers or went through an intermediate
firm. About a million records have registered six-digit
loading/unloading locations and another million have
four-digit registrations allowing for matching the ship-
ments to registered freight agents in those geographic
zones.

The most important feature of our data fusion process
is the detailed location attributes of the shipments. We
use this feature along with firms registered at that spe-
cific location to draw a match between the sender/recei-
ver agent.

Firm Databases

As shown in Figure 1, in this study, we consider produc-
ers, consumers, distribution centers, and transshipment
terminals as freight agents. The firm registry database
for each of these agent populations is available sepa-
rately. For our analysis, we are primarily interested in
differentiating shipment flows along direct and indirect
paths. Direct paths are the ones that go from producer
to consumer while the indirect shipments make use of
intermediate facilities such as DCs, warehouses, or trans-
shipment terminals.

Production/Consumption Business Units. The firm registration
data are collectively known as the ABR database in the
Netherlands. This contains all registered companies in
the country and contained over 1.9 million registered
local business units in 2015 (CBS 2017b). The database
gives the sector codes (SBI), employment size, and six-
digit postal code addresses of registered firms. This data-
base is used as the main source for identifying producers
and consumers of freight. For our analysis, we group
business units into sectors based on the SBI identifier.
Fifteen aggregate sectors are identified: agriculture, man-
ufacturing-food, manufacturing-nonfood, retail, horeca,
chemicals, minerals, raw materials, construction, utility,
waste management, auto and heavy machinery, whole-
sale, and storage. We classify all other business firms that
do not belong in these categories as ‘‘others.’’ We have
filtered out business units that only employ one person
as these are assumed to be not the generators of freight.

Intermediate Logistic Nodes. The Netherlands is a hub for
freight distribution in Europe. The variety of these inter-
mediate locations makes it important to differentiate
them into categories. For our study, we have classified
the intermediate nodes into two categories; distribution
centers (i.e., wholesale and storage/cross-docking centers)
and transshipment/port-related facilities. The distribu-
tion center database comes from Rijkswaterstaat and, as
of 2015, contains over 1,600 registered distribution cen-
ters along with their six-digit address, size, and sectors.
The database for transshipment terminals and ports con-
tains 54 transshipment terminals in the Netherlands. The
registered location of the terminals is given in six-digit
postal codes. However, the geographic coverage of trans-
shipment terminals extends beyond the registered
address. For this reason, we modify the border of the
transshipment terminal zones to cover larger areas using
neighborhood codes and Google Maps image processing.

Spatial Data

This section describes the geographic zoning used. For
our study, we use a very dense geographic zoning of the
Netherlands at six digits. The country is divided into
more than 400,000 of these zones. As the origin and des-
tination of the shipments are registered at either six-digit
or four-digit levels, we also use the latter classification,
which divides the country into more than 4,000 zones.

Methods

In this section, we explain the required three steps and
methods used to explore freight trip databases and firm
registries. As is demonstrated in Figure 2, the first step is
the data acquisition and preprocessing and explains the
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initial preprocessing needed to make this data ready for
further analysis. The second step is to combine the ship-
ment database with the firm registry. Finally, we explore
the enriched data. We elaborate on these steps further in
the next paragraphs.

We start the data fusion scheme with preprocessing of
the truck shipment database. Tasks in this step include
importing and reading the data set, cleaning false data,
and spatial refinement of the loading and unloading
nodes to bring them into a standard six-digit or four-digit
format. On the other hand, the firm registry databases of
transshipment terminals, distribution centers, and freight
producing/consuming firms are fed into the ‘‘Freight
Agent Fuser’’ module that combines and generates a uni-
fied ‘‘Freight Firms’’ database. Using the industry sector
code (SBI) of the firms, the module reduces the firm reg-
istry database into freight generating and attracting
firms. The fused Freight Firms database includes over 55
transshipment terminals, over 1,600 distribution centers
(sub-categorized into wholesale, storage, and freight
transport nodes), and over 323,000 producers, consu-
mers, or both. We classify these firms into four categories
based on their logistic functions: producers, consumers,
distribution centers, and transshipment terminals. Note
that the producers and consumers categories are not
mutually exclusive; a firm can be a producer or a con-
sumer. As an example, a manufacturing factory can be a
consumer of raw materials and a producer of finished/
semi-finished products. Within the shipment database,
we distinguish between these functions by considering the
loading/unloading zones of the shipments. If a firm is
located at the loading end of a shipment, we assume that
the firm takes the role of the producer. Similarly, firms
located at the unloading end take the role of consumer.
We denote F = P, C, DC, TTf g as the set of logistic
activity types of firms.

Next, we aggregate the total number of each firm
category at each geographic zones in the spatial data.
For this, we use the unified Freight Firms database. The
database gives the total number of each type of firm
available at every six-digit postal code in the spatial data.

We denote the set of geographic postal zones by
Z = Z1, Z2, . . . , Zzf g. The total number of each cate-
gory of firms in F at each spatial zone in Z is given by

N =

Z1

Z2

..

.

Zz

N1p N1c

N2p N2c

N1dc N1tt

N2dc N2tt

..

. ..
.

Nzp Nzc

..

. ..
.

Nzdc Nztt

2
6664

3
7775 ð1Þ

where Nzf =
P

nzf is the total number of firms with
activity type f 2 F at location z 2 Z.

Next, spatial data are parsed into two categories. The
first category of postal codes hosts a single type of freight
firm while the second category hosts multiple types of
freight firms within them. When a geographic zone has a
single firm category, we call it a deterministic node.
Otherwise, it is a probabilistic node. Here, the main
objective is to classify the spatial data into either determi-
nistic or probabilistic zones. It follows that if a zone
where the shipment is generated/attracted only hosts a
single type of firm, the sender/receiver of the shipment
will be the same type of firm. As an example, if in zone
‘l’, all firms are producers, it follows that the shipment is
shipped by a producer. For this purpose, we calculate the
probability of a firm type f 2 F given spatial node z 2 Z

in Equation 2

P f jzð Þ= NzfP
f Nzf

ð2Þ

From the probabilities of firms, we then classify the spa-
tial zones set Z into two subsets Zdeter and Zprob using
Equation 3

Zdeter � Z if P f jzð Þ= 1 for any f 2 F and 0 for all others

Zprob � Z if 0\P f jzð Þ\1 for any f 2 F

�

ð3Þ

Note that the number of zones in the spatial data is quite
large. However, not every zone is an origin or a destina-
tion of shipments. Since we are only interested in the
zones that generated/attracted shipments, we can reduce

Figure 2. Steps in the data fusion and analysis.
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the computational cost by only selecting zones that gen-
erated or attracted shipments in the truck shipment data-
base. We, therefore, made a list of unique geographic
zones out of the truck shipment data. If a geographic
zone is in the list, then the location is classified.
Otherwise, it is not.

Once the spatial nodes are grouped into two cate-
gories, we now turn into the main phase where we deter-
mine the sender/receiver firm of each shipment. Let
S = s1, s2, . . . , snf g be the set of the shipments in the
truck shipment database. Attributes recorded for each
shipment s in S are sender location postal code lo

s and
country code co

s , receiver location postal code ld
s and

country code cd
s , and commodity type Cs. Given these

attributes of a shipment, we are interested in finding the
firm type of its sender f o

s and receiver f d
s . A look at the

loading/unloading node information in the truck ship-
ment database reveals that shipment nodes fall into three
classes; within the Netherlands, international zones, or
locations that cannot be identified in the spatial data.
We attribute the latter to a data collection error. For
shipments originating from or destined to somewhere
outside the Netherlands, we cannot attach a freight firm
type as we lack information. For shipments with their
origin, destination, or both, in the Netherlands, sender
and/or receiver firm assignment follows either a determi-
nistic D lo

s

� �
or a probabilistic algorithm P lo

s

� �
. Equation

4 shows the classification of the assignment algorithm
for the sender node. The same procedure follows for des-
tination nodes.

(lo
s 62 Z ^ co

s 2 INT) ) f o
s = International

(lo
s 62 Z ^ co

s 62 INT) ) f o
s = unidentified

lo
s 2 Zdeter ) f o

s =D lo
s

� �
lo
s 2 Zprob ) f o

s =P lo
s

� �

8>><
>>:

ð4Þ

The deterministic algorithm is an algorithm that imputes
the firm types f o

s and f d
s with 100% certainty. It is a

straightforward classification with no assumption as
shown in Equation 5. This is only possible because we
are certain that only a single type of firm exists in a cer-
tain geographic location. The loading/unloading agent of
the respective shipment is assigned to the only existing
type of freight firm in that given location, that is, if only
distribution centers exist in that geographic zone, the
shipment loading/unloading is assigned to a distribution
centers agent. If only producers exist in that zone, the
shipment is assigned to a producer.

f o
s =D lo

s

� �
= f for P f jlo

s

� �
= 1 ð5Þ

The probabilistic assignment procedure is used when
there exist multiple firms with different logistic functions
at a specific location. The probabilistic algorithm uses
the commodity type of the shipment Cs and the SBI

code of freight firms at the loading/unloading locations.
For this assignment, we further classify firms in more
detail using their SBI industry sector code. The industry
classification includes agri-business, food manufacturers,
non-food manufacturers, retail, horeca, minerals and
raw materials, and auto and heavy machinery, wholesa-
lers, distribution centers, and storages. We classify all
other business firms that do not belong in these cate-
gories as ‘‘Others.’’

Let I = I1, I2, . . . , Ikf g be the set of industry
classes, IP � I is the set of industry sectors that fall as
producers/consumers, and IDC � I is the set of industry
sectors for distribution centers. For our analysis, all
industry sectors except wholesalers, transporters, and
storage companies belong to the producer/consumer sub-
set. We further classify commodity types of the shipment
into C = C1, C2, . . . , Cj

� �
based on the reported

NSTR record in the truck database. For each industry
and commodity type combination, the CBS provides an
aggregated make/use table CBS (22). The make/use table
allows determining the probabilities that a specific sector
produces or consumes a certain type of commodity.
Here we use the Make-table for loading locations and
the Use-table for unloading locations respectively. The
make (M) and use (U ) probabilities are given below. The
actual make/use probability tables used for this study are
attached in the Appendix.

M =

M11 � � � M1i

..

. . .
. ..

.

Mc1 � � � Mci

2
64

3
75 andU =

U11 � � � U1i

..

. . .
. ..

.

Uc1 � � � Uci

2
64

3
75

ð6Þ

where Mci and Uci are the probability that an industry i

is producing and consuming commodity type c

respectively.
At the same time, we now have an updated aggrega-

tion of firms by the new industry classification. The
matrix for the total number of firms is then updated to
reflect the industry classifications.

N =

N11 � � � N1i

..

. . .
. ..

.

Nz1 � � � Nzi

2
64

3
75 ð7Þ

where Nzi is the total number of firms classified as indus-
try i 2 I in the postal zone z 2 Z. Consequently, the
probability of a sender/receiver being from an industry
i 2 I for each shipment given the origin/destination loca-
tion is obtained using Equation 8

P io
s jlo

s

� �
=

NziP
i Nzi

ð8Þ
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However, since we have additional information on the
commodity type of the shipment and the associated
make/use probabilities, we update this probability by
considering the associated make/use probabilities. Note
that if the commodity type is unknown, all the industry
sectors get an equal chance. The assignment will, there-
fore, be based solely on the total number of firms in each
sector as shown in Equation 9

P io
s

� �
=P ios jlo

s

� �
3

mijcsP
j pjjlo

s
3 mjjcs

ð9Þ

where pjjlo
s
is the probability of a sender firm being indus-

try i given the shipment was loaded from location l 2 Z

and mijcs
is the probability of a sender firm being industry

i given the shipment was a commodity type c 2 C:
For our study, we are interested in the logistic func-

tion of the sender/receiver firms. Recalling that we classi-
fied the industry sector set I into potential producers and
consumers (IP) and potential intermediate logistics nodes
(IDC), we can aggregate back the probabilities of sender/
receiver using Equation 10

P f o
s

� �
=

X
P io

s

� �
for 8 io

s 2 Ik , k = P, DCf g ð10Þ

Finally, given the loading/unloading location data and
the commodity type of shipment, a random firm type is
assigned to its potential sender/receiver based on the
probabilities generated from its respective algorithm. For
this, we use the random generator functionalities of the
Python program.

We consider Shannon entropy (Equation 11), adopted
from information theory, to indicate uncertainty in the
probabilistic assignment. This will help the user of data
to select a sample from data based on a predefined uncer-
tainty level. Since, f o

s is a discrete random variable, the
Shannon entropy of this variable H f o

s

� �
indicates the

average level of uncertainty associated with the probabil-
ity that each of the activity types in f o

s may occur.

H f o
s

� �
= �

X
P ios
� �

log2P io
s

� �
ð11Þ

When one of the discrete values of f o
s for a firm gets a

high probability in the probability assignment, H f o
s

� �
ø 0

gets a value close to zero. This means that the logistic
activity type assignment to this firm has a high certainty.
The larger value of H f o

s

� �
indicates that the assignment

to the firm has higher uncertainty.
Note also that if there is a mix of freight agents with

transshipment terminals, the shipment sender/receiver is
directly assigned to the transshipment terminal or port-
related activities. We make this assumption with the idea
that distribution centers located near transshipment term-
inals primarily serve transshipment services to switch
between transport modes. Therefore, our assignment

algorithms will strongly discriminate between intermediate
logistics nodes and producers/consumers of goods.
Importantly, we also correct for tours within the truck
shipment database, that is, we make sure to assign the
shipments part of a tour to the same type of sender/recei-
ver. Finally, the assignment is also corrected for carriers of
the shipments (3PLs); where the ‘‘tour origin,’’ ‘‘shipment
origin,’’ and ‘‘firm address’’ in the shipment database are
found to be identical, the sender/receiver of the shipment
is assigned to a distribution center. The overall process is
summarized in the flow chart shown in Figure 3.

Below we describe the results of the imputation pro-
cess using the different schemes. Figure 4 shows the pro-
portions of shipments’ sender/receiver firms imputed by
the different assignment procedures. Figure 5 shows that
a similar result is obtained by both the probabilistic and
deterministic approaches.

Figure 4 indicates that our algorithm can assign up to
10% loading/unloading locations within the Netherlands
using a deterministic assignment at 100% certainty.
Approximately 70% of loading/unloading locations are
assigned using the probabilistic assignment with varying
degrees of certainty. This illustrates the difficulty of mak-
ing a deterministic match between observed stops and
loading locations, and thus the need to implement addi-
tional probabilistic matching schemes. Another 20% of
locations are assigned to international origin/destination
with 100% certainty. Only 10% of the records could not
be unidentified with our scheme. The main reason is that
the location record is non-existent (a false record) or
there exists no registered firm in the firm repository at
the loading/unloading location. Similar results for uni-
dentifiable shipment locations in an automated data col-
lection were found in Alho et al. (7). Figure 5 offers
reassurance that our probabilistic assignment follows a
similar pattern to our deterministic approach where the
assignment is 100% precise.

In the following, we proceed with an empirical analy-
sis of the combined database.

Empirical Results

Here we are primarily interested to see how shipments
are distributed according to the different trip purposes as
shown in Figure 1, and how this differs across commodi-
ties. We discuss these questions in two respective
subsections.

Freight Trip Purpose

As explained above, the characteristics of the databases
used mean that the overview here is limited to shipments
transported within the Netherlands, excluding all import
and export shipments. This represented approximately
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1.8 million shipments which account for 69% of the total
shipments. Table 1 presents the share of shipments for
the different logistics segments and the mean values for
the flow characteristics measured: shipment size, number

of shipments per trip, and trip distance. Figure 6 and
Figure 7 show the distribution of these values with box
plots, again for the different segments.

The observations from the enriched database show
that close to 60% of shipments in the Netherlands are
transported directly between producers and consumers.
For our database, another 35% of the shipment trans-
port demand goes through distribution centers. Similar
statistics are reported by Davydenko et al. (20) who esti-
mated the market share of distribution centers to be
around 40% of the total trips. We also observe that dis-
tribution centers receive similar shares of shipments from
producers and other distribution centers. This suggests
that distribution centers are used equally for both single
and double echelon chains. The number of shipments
departing from a DC is higher than the sum of the arri-
vals, which matches the general idea of DCs for break-
bulk purposes. The share of shipments that involve a
transshipment terminal is significantly lower. This is
mainly a reflection of the relatively small volume of

Figure 3. Flow chart for fusing truck shipments database and firms’ registry.
Note: XML = Extensible Markup Language; TT = transhipment terminals; SBI = sector codes.

Figure 4. Proportion of loading and unloading locations
identified by different assignment schemes.
Note: D = deterministic; P_6 = probabilistic at six-digit postal code level;

P_4 = probabilistic at four-digit postal code level; INT = international;

Un = unidentified.
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intermodal flows, compared with all other freight flows
in the country. It may also be a result of the existence of
cross-border trips related to these terminals, although
these constitute a minority of trips compared with
domestic flows.

On average, direct shipments are considerably heavier
than indirect shipments that use distribution centers. As
shown in Figure 6a, direct shipments also have signifi-
cantly different weight distribution than their indirect
counterparts where shipments through DCs follow a
skewed distribution with a long tail and peak at very a
small weight. Although small in number, shipments that
make use of transshipment terminals are large in size.
We may speculate about the reasons for this since

transshipment terminals are largely used for modal
transfer from ships or trains and are used for heavy-bulk
goods.

We also observe that the average number of shipments
that are consolidated together in direct shipments is con-
siderably smaller than indirect shipments. On average,
8.8 shipments are bundled together in a distribution run
to consumers while less than two shipments are bundled
together for direct flows. However, the box plot in Figure
6b for the number of shipments bundled together sug-
gests that for each of the flow types, the empirical distri-
bution is skewed with a long tail. Note that there are
cases where hundreds of shipments are bundled together
to a destination. This may be a result of multiple small

Figure 5. Proportion of freight agents assigned at loading and unloading nodes by deterministic (dark) and probabilistic (light)
assignment schemes.
Note: P = producers; DC = distribution centers; TT = transhipment terminals; C = consumers.

Figure 6. (a) Shipment size distribution by flow type; and (b) number of shipments in a bundle by flow type.
Note: P = producers; DC = distribution centers; TT = transhipment terminals; C = consumers.
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orders assembled in a palette to a single destination. An
example of this is observed with agricultural produce
where a typical shipment order is in the range of 50kgs.

A combined analysis of the shipment size distribution
and the numbers of shipments in a bundle in Figure 6, a
and b, shows that shipments going out of distribution
centers are smaller in weight and consolidated in larger
number than shipments going into distribution centers.
This suggests a typical break-bulk role for distribution
centers. On the other hand, the difference in the ship-
ment size and the number in a bundle for transshipment
terminals suggests that transshipment terminals have a
different intermediate role (mainly of mode transfer)
than distribution centers in the freight system.

Shipment distance distribution (Figure 7) and average
distance (Table 1) together indicate that direct shipments
travel shorter distances than indirect shipments. This is
attributed to the sparse network of distribution centers in
the spatial organization.

Commodity Specific Analysis

The use of intermediate nodes differs strongly between
commodity types. It is expected that certain types of
commodity make use of distribution centers more often
than others. Also, the role of distribution centers may
differ from cross-docking, warehousing, and rapid fulfill-
ment depot. Although this heterogeneity is a well-known
phenomenon, data to help identify these differences has
been lacking. With the current database, we can start
mapping these differences. We classify commodity types
into eight broad groups based on the available commod-
ity classification in the database. We distinguish between
four typical bulky categories with two at endpoints of
the supply chain (mineral ores, household waste) and
two major intermediate goods for industry (chemicals,
building materials), two food-related categories (tem-
perature-controlled and agricultural), and two mixed
cargo categories (manufactured products and general
cargo).

Figure 8 presents three logistic indicators for each of
the commodity groups and the segments (direct [P–C]
and indirect related to distribution centers [P–DC, DC–
C, and DC–DC]). The three indicators include the mar-
ket share, the shipment size distribution, and the number
of shipments consolidated together in one truck for each
distribution type.

The logistic indicators show some general patterns for
all commodity types: transports directly from producer
to consumer (P–C: orange) have higher average shipment
sizes. This is logical as larger clients will typically receive
full truckloads from factories rather than running these
via distribution centers. Across all commodity types, we
observe a certain degree of consolidation, meaning that
there are multiple shipments carried in one tour. This
confirms that it is important to take into account the
bundling of shipments and multi-stop tour patterns in
freight transport modeling.

For bulky commodity types such as mineral ores, che-
micals, and building materials, we observe that the

Figure 7. Shipment distance distribution by flow type.
Note: P = producers; DC = distribution centers; TT = transhipment

terminals; C = consumers.

Table 1. Characterization of Shipments Within the Netherlands by Purpose

Logistics Segment Share of shipments in total (%) Avg. shipment size (tons) Avg. # of shipments in a bundle Avg. trip distance (km)

P–C 60.1 14.4 1.9 54.9
P–DC 7.5 2.6 4.2 73.2
DC–C 21 1.1 8.8 100.9
DC–DC 7.6 1.4 7.6 88.5
P–TT 1.2 8.9 1.2 86.9
TT–C 2.1 11.9 1.3 104.3
DC–TT 0.2 3.3 2.2 104.5
TT–DC 0.2 14.3 1.3 110.7
TT–TT 0.1 3.7 1.1 99.5

Note: Avg. = average; P = producers; DC = distribution centers; TT = transhipment terminals; C = consumers.
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Figure 8. Market share, empirical cumulative empirical distribution (ECDF) for shipment size (ton), and the number of shipments in a
bundle; by commodity type and segment.
Note: P = producers; DC = distribution centers; TT = transhipment terminals; C = consumers.

[— P–C — P–D — DC–C — DC–DC].
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majority of the shipments are transported directly from
the factory or the mine to the consumer. For these com-
modities, the shipment weight pattern from the empirical
cumulative distribution shows that the shipment weight
of direct transport is significantly heavier than indirect
shipments. At the same time, shipments through distri-
bution centers are consolidated in larger numbers than
the direct shipments. This suggests that these are bulk
goods that benefit from economies of scale in size.

For goods packaged in pieces or perishable products
such as temperature-controlled agricultural produce or
fashion items, the share of using distribution centers is
significantly higher than for bulk products. However, the
difference in shipment size distribution or degree of con-
solidation distribution is not as pronounced as bulk
products. This may be for two reasons: these are high-
value low-density products that fill trucks with volume
instead of weight or are items stored close to the con-
sumer to satisfy service demand as quickly as possible.

For the commodity groups of general cargo, manufac-
tured products, temperature-controlled products, and
agriculture-produced goods, we observe the most signifi-
cant share of use of indirect distribution channels.
General cargo and temperature-controlled products show
similar distribution patterns with roughly half of all ship-
ment transports being part of a distribution channel. The
shipment size distribution shows that most of the ship-
ments have small shipment sizes (\3 ton), both for direct
and indirect channels. For agriculture-produced goods,
results show that trucks are used to transport a consider-
able share of agricultural and food products to distribu-
tion centers. The cumulative shipment size distribution
shows that the inbound trips to distribution centers (P–
DC: green) have higher average shipment weight com-
pared with the outbound trips to consumers (DC–C:
orange). This aligns with a distribution pattern where
agricultural products are transported to centers of stor-
age or wholesale for further distribution to retailers.

Manufactured products also make use of distribution
centers. Most of the transports observed are transports
from the distribution centers to consumers. We also
observe a high degree of consolidated manufactured
product shipments from the producer to DCs (P–DC:
green line). This implies a distribution structure where
producers send out large batches of orders in consoli-
dated transports to logistic nodes for further distribution.

A considerable share of wet and dry bulk, such as che-
micals, mineral ores and industrial waste are transported
in large shipment sizes, in the range of 20 to 30 tons.
Most of the shipments in these commodity types are
direct (P–C: black lines), without using indirect distribu-
tion channels. In particular, mineral ores are transported
in heavy shipments from producer to consumer. There is
a marginal number of observations of mineral ores that

are transported between logistic nodes, but with a very
high degree of consolidation with many shipments in one
transport. These are interpreted as batches of orders of
specific minerals, not typically associated with low-value
bulk transport of ores.

Together these descriptive statistics characterize freight
flows in distribution chains at different levels of aggregation.
They present insights into the relationship between logistic
segments and the associated characteristics shipment size,
consolidation levels, trip distances, and commodity types.
They demonstrate how additional information allows the
development of shipment-base and agent-based freight mod-
els. As an example, with the new database it is now possible
to infer underlying structures in freight transport as investi-
gated by Nadi et al. (21). Similarly, agent-based models such
as MASS-GT (18) can be estimated and validated with the
statistics produced here.

Discussion and Conclusions

This paper presents a hierarchical data matching scheme
with minimal assumptions for the enrichment of a large
shipment database. Our assignment algorithm uses dif-
ferent levels of certainty to assign logistics activity types
to origins and destinations of shipments. This approach
makes it easier for future analysis to develop more com-
prehensive disaggregate behavioral models, in a frame-
work of activity-based freight demand modeling. The
proposed methodology can be replicated by analysts
who work with big data from freight transport markets.
However, the reproducibility of the proposed data fusion
method depends on the format of the data structure, and
the richness of the data set in commodity types, details
of loading/unloading locations, and firm population.
Such data is collected in the Netherlands by tapping into
the transport management systems of companies. This
data source comes with relative ease and less cost and
can be readily adopted by other countries. In fact, we
recommend that statistics agencies and freight modelers
collaborate to collect similar data in other countries.

The logistic indicators reveal patterns of distribution
structures that can be interpreted from a logistics per-
spective. We have also presented an exploratory analysis
to understand the difference between flows on direct and
indirect segments of distribution chains. We find that
close to 40% of shipments are transported through inter-
mediate nodes. Shipments that go indirectly through
intermediate nodes are distinctly smaller than shipments
that go directly between producers and consumers, and
they are combined in higher numbers than the direct
ones. This suggests that intermediate nodes serve as (de)-
consolidation points. In addition, the findings differ over
commodity groups. For bulk low-value goods, the use of
distribution centers is very limited. When used, however,
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it is where consolidation occurs. For high-value or per-
ishable goods, distribution centers are commonly used.
Here, DCs may serve for both (de)consolidation and ful-
filling service demand.

The research demonstrates that data fusion can provide
valuable empirical insight into the logistic patterns behind
freight transportation. Future works may include the
improvement of the assignment algorithm by reducing the
level of uncertainty. Also, more disaggregate descriptive
analysis supported with data-driven modeling will provide
additional empirical insights. Further systematic and for-
mal analysis at deeper levels of detail could be worthwhile
to study specific commodities and characterize their spatial
and functional organization. Finally, we believe that disag-
gregate freight trip data have great potential for data min-
ing and, in particular, for forecasting freight transport
activities where machine learning techniques (e.g., classifi-
cation and cluster analysis) can be adopted to extract valu-
able knowledge from these data with applications in
forecasting (see e.g., Nadi et al. [21]).
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