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Chapter 1

Introduction

This thesis focuses on flexible, dynamic, and collaborative planning for synchromodal trans-
port, taking into consideration the preferences of carriers and shippers. This chapter intro-
duces the challenges tackled in this thesis and describes the methodologies to address those
challenges. The chapter is organized as follows: Section 1.1 provides an introduction to
synchromodal transport planning and the challenges it faces. Section 1.2 outlines the re-
search questions that the thesis seeks to address. The research approaches adopted in this
thesis are detailed in Section 1.3. Finally, the contributions of this thesis are presented in
Section 1.4, and the overall structure of the thesis is presented in Section 1.5.

1.1 Synchromodal transport planning & challenges
The needs of human society for efficient, cost-effective, and sustainable freight transport
have led to the development of intermodal transport (Agamez-Arias and Moyano-Fuentes
2017). Intermodal transport refers to freight transported by at least two modes, e.g., ship,
train, and truck, without handling the freight themselves in changing modes (UNECE 2001).
Compared to unimodal road transport, intermodal transport utilizes the advantages of dif-
ferent modes and has a positive impact on economics and environment by reducing the need
for long-haul trucking (Agamez-Arias and Moyano-Fuentes 2017). In order to mitigate cli-
mate change, different countries and regions have put forward initiatives to use intermodal
transport. The ambition of the European Commission is to shift 30% of road freight trans-
port by 2030 to more environmentally friendly modes, such as rail and inland waterways.
This shift should reach 50% by 2050 (European Commission 2011). China has announced
its “Carbon Peak and Carbon Neutrality” policy, which aims at achieving a peak in car-
bon emissions by 2030 and carbon neutrality by 2060, for which the volume of rail–ship
container transportation should increase by 15% each year between 2021 and 2025 (State
Council of China 2021a,b).

The stakeholders in intermodal transport include shippers, freight forwarders, carriers,
terminal operators, and government entities, all of whom have objectives such as minimizing
costs, time, and emissions, and maximizing efficiency, profit, and reliability with different
priorities. To achieve these objectives, research in intermodal transport has gained attention
from various domains, including transportation, logistics, real-time control, and operations
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2 1 Introduction

research. The scope of research encompasses all aspects of the planning problem, including
strategic, tactical, and operational decision-making (Agamez-Arias and Moyano-Fuentes
2017, Mathisen and Hanssen 2014, SteadieSeifi et al. 2014). Despite these efforts, the cur-
rent state of intermodal transport is still challenged by various barriers to its utilization, such
as a lack of flexibility, delays caused by uncertainty in travel time, and a lack of cooperation
among transport actors (Vural et al. 2020).

In order to achieve the operational and sustainability objectives of stakeholders, the con-
cept of synchromodal transport is proposed as an extension of intermodal transport. Syn-
chromodal transport has been studied in the context of transport networks in different re-
gions and countries, including Europe (Hrušovskỳ et al. 2021, Qu et al. 2019), China-Europe
(Guo et al. 2021b), and the United States (Farahani et al. 2023). Through synchronization
between different transport modes and collaboration among transport operators, synchro-
modal transport decides and adapts routes/modes in real time and optimally uses resources
to provide efficient, reliable, and sustainable services that meet the preferences of stakehold-
ers (Ambra et al. 2019, Giusti et al. 2019, SteadieSeifi et al. 2014). The main differences
between intermodal transport and synchromodal transport include mode-free booking, real-
time planning, and collaborative planning (Giusti et al. 2019, Guo et al. 2021b).

Mode-free booking means that shippers leave mode and route choices to transport op-
erators (Tavasszy et al. 2017). It allows carriers to make adjustments to the routes and
schedules of different modes of transportation like truck and barge depending on the de-
mand and specific situation (e.g., unexpected events or disruptions) without being tied to a
predefined mode of transportation. This flexibility enables the carrier to choose the most
efficient and cost-effective mode of transportation for a particular shipment, which is cru-
cial for mode-free booking to be successful. In other words, without the flexibility to adjust
routes and schedules, mode-free booking would not be able to fully realize its potential for
cost savings and efficiency improvements. Service flexibility is an emerging core compo-
nent of logistics services (Khakdaman et al. 2022). The use of multiple modes and flexible
services with different characteristics and constraints such as capacity, route, and sched-
ule, adds to the complexity of the planning process. Previous studies, such as Demir et al.
(2016), Guo et al. (2020), Qu et al. (2019), typically assume that the routes and schedules
of services are predetermined and the assignment to those services is optimized with the
developed models. This results in a lack of flexibility in synchromodal transport planning,
as the services cannot be updated during optimization.

Real-time planning is critical for ensuring the efficient operation of the supply chain
and reducing costs associated with disruptions and delays (Qu et al. 2019). By providing
the ability to dynamically update transport plans in response to disturbances and disruptions,
real-time planning enables synchromodal transportation to consistently and effectively de-
liver goods to their destination in a timely manner. Real-time planning also takes into ac-
count demand, travel time, and service time uncertainty, which can have a significant impact
on the reliability of synchromodal transport, and allows for updates under uncertainty to en-
sure reliable transportation (Van Riessen et al. 2015a). Several studies have addressed the
issue of travel time and demand uncertainty in real-time synchromodal transport planning,
as demonstrated by literature such as Guo et al. (2021a), Hrušovskỳ et al. (2018), Steadie-
Seifi et al. (2021), and Guo et al. (2022). However, there is a gap in the literature regarding
the service time uncertainty, which is crucial for the reliability of synchromodal transport.

Synchromodal transport that involves trains, barges, and trucks requires considerable
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coordination and cooperation (UNCTD 2022). Collaborative planning in synchromodal
transport involves carriers working together and sharing resources and information in order
to optimize the delivery of goods. Collaborative planning includes both vertical collabora-
tion among carriers with interconnected networks and horizontal collaboration among car-
riers with overlapping networks to improve the utilization of resources and increase service
frequency (Lee and Song 2017, Li et al. 2017). Collaborative planning can enable carriers
to respond more effectively to changing demand and disruptions, as they can rely on each
other for backup resources. It can also help to increase the range of services and improve
service quality, as carriers can offer a wider variety of services by working together. Vertical
collaborative planning has been explored in the literature, as demonstrated by studies such
as Guo (2020), Li et al. (2017), and Larsen (2022). Conversely, horizontal collaborative
planning has not yet received an adequate level of attention in the existing literature for
intermodal and synchromodal transportation.

Although synchromodal transport uses the above approaches to improve the perfor-
mance of the transportation system and provide better services, it is still hard to satisfy all
objectives of stakeholders because some objectives may conflict with each other. Therefore,
the preferences of stakeholders need to be taken into account in synchromodal transport
planning to determine which modes and routes meet the specific needs and goals of stake-
holders. This thesis focuses on two important stakeholders in synchromodal transport, i.e.,
the shipper and carrier (or freight forwarder). Shippers are the parties sending the goods
and carriers organize and coordinate the transportation of goods for shippers.

In synchromodal transport planning, both carriers and shippers have objectives such as
minimizing cost, time, and emissions, but their preferences may differ, as shown in Figure
1.1. Carriers may have different preferences on objectives due to factors like business mod-
els, operational strategies, capacity and resources, customer base, geographical location,
and routes. Shippers also have various preferences due to factors such as business models,
type of goods transported, geographical location, and inventory management. A shipper or
carrier may prioritize speed and timeliness over cost savings if the goods being shipped are
perishable or time-sensitive. They may also prioritize environmental sustainability and may
choose modes of transportation that have a lower carbon footprint. In Figure 1.1, Carrier
C is more concerned about emissions compared to Carriers A and B. Shipper E regards
minimizing emissions as the most important thing, whereas Shipper F wants to transport
shipments in a faster way. Apparently, Carrier B and Shipper E have non-aligned objec-
tives. If Carriers B and C serve a request together, they also have conflicts on decisions
affecting emissions and time.

While many studies have focused on optimizing the use of resources and reducing costs,
few studies have considered the preferences of stakeholders, such as carriers and shippers,
in the planning process. The consideration of preferences in synchromodal transport plan-
ning is crucial for the selection of appropriate modes and routes, as it aligns the transport
solution with the specific goals and needs of carriers and shippers. In synchromodal trans-
port, shippers may cede control to freight forwarders, determining only price and quality
requirements (Khakdaman et al. 2020). Carriers need to consider shipper preferences to
match services with demands considering requests with various preferences and trade-offs.
Neglecting stakeholders’ preferences may result in mismatches, high logistics costs, and/or
low satisfaction of shippers. However, considering preferences is a complex task as pref-
erences can be heterogeneous and vague. Heterogeneous preferences require trade-offs not
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Carrier A Carrier B

55%

Maximum Profit
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Carrier C

Shipper G

Shipper F
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13%
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Synchromodal
Transport
Planning

Shipper D

Shipper C
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Shipper A
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Time

Minimize
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Maximize
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Minimize
Emissions

Figure 1.1: Carriers and shippers with different preferences in synchromodal transport

only between objectives but also between different shippers. Each shipper may have unique
preferences, such as different priorities for cost, time, and environmental impact, which
can make it difficult to find a solution that satisfies all parties. Vague preferences may be
expressed as a linguistic term or a label, which are difficult to model and incorporate into
the planning process, as they require specific techniques for handling vagueness. The con-
sideration of preferences in collaborative planning is also a difficult task. For example, in
the context of collaboration among carriers for serving shippers’ requests with preferences,
it is necessary to design suitable collaborative planning mechanisms to ensure that unsatis-
fied requests are forwarded to the appropriate carriers efficiently according to their available
resources.

In summary, the successful implementation of synchromodal transport requires a trans-
port planning approach that includes flexible planning, real-time adjustments to service time
uncertainty, horizontal collaboration among carriers, and the integration of preferences from
both carriers and shippers into the transport planning process. This will ensure that the needs
and preferences of all parties involved are met in a timely and efficient manner.

1.2 Research questions

This thesis aims to propose optimization models and methodologies for the purpose of flexi-
ble, dynamic, and collaborative synchromodal transport planning, taking into consideration
the preferences of both carriers and shippers, with the ultimate aim of enhancing efficiency
and sustainability in transportation operations. In light of the challenges outlined in Section
1.1 and the research gaps identified in Chapter 2, the main research question of this thesis
is:

Q: How can flexible, real-time, and collaborative synchromodal transport planning ap-
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proaches be developed considering the heterogeneous and vague preferences of carriers
and shippers?

The key questions are listed as follows:

1. Q1: How can routes be optimized for the carrier to provide flexible services?

In synchromodal transport, carriers typically receive requests from shippers and op-
timize routes using available services. However, existing literature often assumes
that routes and schedules of services in synchromodal transport are fixed. In reality,
the ability to adapt to changing demands and disruptions requires the use of flexible
services in synchromodal transport. Flexibility in routes and schedules can help to
avoid idle capacity and ensure that vehicles are utilized according to actual demand.
By providing the ability to adapt to changing circumstances and meet the specific re-
quirements of shippers, flexible services enable the carrier to provide transport plans
that are in line with the preferences of shippers. Therefore, it is necessary to develop
an optimization model that takes into account flexible services in synchromodal trans-
port planning. To address research question Q1, Chapter 3 develops the mathematical
model and solution algorithm for synchromodal transport planning with flexible ser-
vices.

2. Q2: How can a real-time planning approach be developed for carriers to provide
reliable services while taking into account uncertainties in service time?

The ability to respond to uncertainty in real-time has emerged as a vital capability
in synchromodal transport. The uncertainty in the transport network includes travel
time, service time, and demand uncertainties. Travel time and demand uncertainties
have been relatively well studied in the literature (Demir et al. 2016, Guo et al. 2021b,
Van Riessen et al. 2015c). However, few scholars research the service time uncer-
tainty in synchromodal transport, although it is common in practice. The service time
uncertainty needs to be taken into account in the transport planning model to improve
the reliability of synchromodal transport. To address research question Q2, Chapter
4 develops a re-planning method and uses a model-assisted Reinforcement Learning
approach to deal with service time uncertainty. The following sub-questions will be
answered: (1) Should the affected requests be served by the current vehicle? (2) If
not, which vehicles can be used for serving them?

3. Q3: How can heterogeneous and vague preferences of carriers and shippers be incor-
porated into the planning approach?

In order to ensure the long-term profitability of the overall system, synchromodal
transport planning needs to consider shipper and carrier preferences that are by nature
heterogeneous and vague. Heterogeneous preferences refer to the fact that different
carriers and shippers may have different needs and preferences, which can be difficult
to capture and represent. Vague preferences refer to the fact that carriers and shippers
may have imprecise preferences, which can be difficult to quantify and incorporate
into transport planning. Considering preferences refers to the ability of the transport
service to meet the specific needs, wishes, and expectations of the shipper or carrier,
such as cost, time, reliability, and environmental impact. This can involve trade-offs
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between competing objectives and balancing heterogeneous preferences of the ship-
per and carrier. As different shippers may have different preferences, what may be
considered satisfactory for one shipper may not be for another. Therefore, it requires
a good understanding of the shipper’s preferences and needs. To address research
question Q3, Chapters 5 and 6 develop synchromodal transport planning models con-
sidering preferences of carriers and shippers, respectively.

4. Q4: What types of collaborative planning should be adopted and what is their effect
on the consideration of preferences?

There are different collaborative planning types with advantages and disadvantages,
including centralized, distributed, and decentralized approaches. Based on the char-
acteristics of synchromodal transport, the most suitable approach needs to be selected.
In centralized approaches, carriers are required to fully disclose information and re-
sources, with control centralized to a single agent. However, in practice, carriers
may be hesitant to share private information and prefer self-automation. In contrast,
decentralized approaches empower carriers to make autonomous decisions, but may
lack coordination and thus prove less efficient and sustainable than centralized ap-
proaches. Distributed approaches offer a compromise, balancing the benefits of cen-
tralization and decentralization. In these approaches, carriers share limited informa-
tion on requests and services, with an agent coordinating transport planning. The
specific type of collaborative planning implemented can have a significant impact on
performance in terms of efficiency, sustainability, and satisfaction in synchromodal
transport. Therefore, the performances of different types of collaborative planning
and the effect on the consideration of preferences need to be evaluated. To address
research question Q4, Chapter 7 develops a collaborative planning model considering
preferences.

1.3 Research approach

The approach of this research is shown in Figure 1.2.
Firstly, the optimization model for carriers is established to achieve flexibility in syn-

chromodal transport planning (Q1). The carrier receives requests from shippers, and then
the optimization model generates routing and scheduling plans for vehicles, including barges,
trains, and trucks. A mathematical model and a customized heuristic algorithm are proposed
for transport planning with fixed and flexible services.

Secondly, research on real-time synchromodal transport planning is conducted to ad-
dress service time uncertainty and provide more reliable planning for carriers (Q2). Build-
ing upon the static transport planning approach for Q1, a re-planning approach that accounts
for dynamic unexpected events at terminals is proposed. When such events occur, they can
cause service time uncertainty and have varying effects on requests and vehicles. The pro-
posed approach employs a decision-making process to determine which requests should be
reassigned to different vehicles, and which vehicles should be utilized, based on information
related to requests, vehicle routing and scheduling, and the unexpected event. Additionally,
the proposed approach learns online from historical experience to improve its ability to
handle service time uncertainty.
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Thirdly, based on the established optimization model, the preferences of carriers and
shippers are considered in a multi-objective/attribute setting to get the preferred solutions
(Q3). Different from the approach for Q1, the proposed approaches consider that shippers
specify preferences for the requests and that the carriers have preferences for transport plans
while serving the demand for the shippers. To account for the heterogeneity of preferences,
multi-objective optimization and multi-attribute decision making techniques are developed
for preferences of carriers and shippers, respectively. Additionally, the vagueness of pref-
erences is addressed through the application of the weight interval method and fuzzy set
theory.

Finally, collaborative planning is studied, and carriers and shippers with their objec-
tives/preferences will be involved in the collaborative planning (Q4). Carriers receive re-
quests from shippers that include specified preferences and develop corresponding transport
plans. In the proposed distributed approach, if a carrier is unable to fulfill the preferences
of a request, the request is then forwarded to a coordinator and shared with other carriers.
Using an auction-based method, the proposed approach determines the most suitable carrier
to fulfill the request based on bids submitted by participating carriers.
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Figure 1.2: The approach of this research

The approaches and techniques used in this research include Adaptive Large Neigh-
borhood Search (ALNS) (research question Q1 and Chapter 3), Reinforcement Learning
(research question Q2 and Chapter 4), Pareto Optimality (research question Q3 and Chapter
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5), Fuzzy Set Theory (research question Q3 and Chapter 6), and Auction-based collabo-
rative planning (research question Q4 and Chapter 7). This research uses knowledge from
various domains, such as Vehicle Routing Problems, Multi-objective/attribute Optimization,
Multi-agent Systems, and Optimization under Uncertainty.

1.4 Thesis contributions
This thesis contributes to the Operations Research and Transportation&Logistics Science
disciplines by developing a series of transport planning approaches in the synchromodal
transport field. The main contributions of this research are:

1. Development of a mathematical model and an efficient solution algorithm for opti-
mizing routes and schedules of fixed and flexible vehicles in synchromodal transport
(Chapter 3, Zhang et al. (2020b, 2022b)).

2. Introduction of a synchromodal transport re-planning problem under service time un-
certainty and development of a model-assisted Reinforcement Learning approach to
handling this uncertainty (Chapter 4).

3. Multi-objective optimization model for synchromodal transport planning that consid-
ers vague preferences of carriers (Chapter 5, Zhang et al. (2022a)).

4. Development of methodologies for synchromodal transport planning that considers
heterogeneous and vague preferences of shippers using multiple attributes decision
making and fuzzy set theory (Chapter 6, Zhang et al. (2022d)).

5. Designing of a conceptual framework for horizontal collaboration that considers pref-
erences of shippers in the context of sustainability (Chapter 7, Zhang et al. (2022c)).

6. Evaluation and analysis of the proposed approaches through computational experi-
ments and case studies using real-world data (Chapters 3-7, Zhang et al. (2020b) and
Zhang et al. (2022a,b,c,d)).

1.5 Thesis outline
The outline of this thesis is shown in Figure 1.3. A literature review is conducted in Chap-
ter 2. This chapter also identifies the main research gaps. In Chapter 3, a mathematical
model is developed for synchromodal transport planning with flexible services (STPP-FS).
This model considers both fixed and flexible services, as well as transshipment and syn-
chronization between them. To solve the medium- or large-sized problem instances of the
STPP-FS model, an ALNS heuristic algorithm with customized operators and performance
improvement approaches is proposed. In Chapter 4, building upon the research problem in
Chapter 3, the synchromodal transport re-planning problem under service time uncertainty
is introduced and a model-assisted reinforcement learning approach is proposed to address
this problem in real-time. Extending from the STPP-FS model in Chapter 3, Chapters 5 and
6 consider preferences of carriers and shippers through the use of multi-objective optimiza-
tion and multiple attribute decision-making techniques, respectively. Chapter 6 considers
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the transport planning for one carrier. Chapter 7 considers collaborative planning among
carriers to provide more alternative services and consider preferences through a concep-
tual framework for horizontal collaboration. Chapter 8 concludes the thesis and provides
directions for future research.

Chapter 1
Introduction 

Chapter 2
Literature review 

Chapter 3
Flexible transport planning 

Chapter 7
Collaborative transport planning

Chapter 4
Dynamic transport planning

Chapter 6
Transport planning considering 

shippers’ preferences

Chapter 8
Conclusions & Future research
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Q2

Q4

Static, centralized approach 

Dynamic approach

Distributed 
approach

Research 
subject

Research 
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Chapter 5
Transport planning considering 

carriers’ preferences

Q3Q3

Figure 1.3: The outline of this thesis.





Chapter 2

Literature review

The research topic of this thesis is synchromodal transport planning, including flexible, dy-
namic, preference-based, and collaborative transport planning. Both synchromodal, multi-
modal, and intermodal transport studies are reviewed, as the limited studies in synchromodal
transport are complemented by the relevant studies in multimodal and intermodal transport.

This chapter is organized as follows: Section 2.1 introduces synchromodal transport
planning and reviews the critical success factors to achieve synchromodal transport plan-
ning. Section 2.2 reviews the challenges in static planning. Section 2.3 identifies the differ-
ent types of uncertainties and the need for dynamic planning. Section 2.4 investigates the
multi-objective optimization and preference-based optimization in synchromodal transport
planning. Section 2.5 reviews collaborative planning approaches in synchromodal trans-
port. Section 2.6 concludes the chapter and provides motivations for the following chapters
highlighting the contributions to the literature.

2.1 Synchromodal transport planning
Multimodal transport is the original concept of combining the use of several transport
modes, as described in UNCTAD (2020). Intermodal transport is the next concept in line,
characterized by integration, the use of one and the same load unit, and the door-to-door
concept as described in the definition proposed by the EC (1997) and the joint definition
by UNECE (2001). Combined transport and co-modal transport are other concepts that are
similar to intermodal transport but with slightly different characteristics as discussed in lit-
erature review articles of Reis (2015), SteadieSeifi et al. (2014), Van Riessen et al. (2015a).
Synchromodal transport is the newest concept, characterized by the ability to switch freely
between transport modes at particular times while the cargoes are in transit as described in
the works of Behdani et al. (2014), Tavasszy et al. (2017), Verweij (2011).

Synchromodal transport offers multiple benefits such as improved resource utilization,
increased reliability, cost savings, improved flexibility, and environmental benefits. These
benefits are achieved by combining different modes of transport, reducing empty runs and
providing alternative routes, allowing carriers to quickly respond to changes in demand or
disruptions in the supply chain, and using more sustainable modes of transport. To achieve
synchromodal transport, scholars have studied it from different perspectives, such as busi-

11
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ness, legal barriers, physical infrastructure, digital planning tools, awareness, and imple-
mentation (Rentschler et al. 2022). Synchromodal transport planning consists of planning
at strategic, tactical, and operational levels (SteadieSeifi et al. 2014). Strategic level plan-
ning deals with long-term decisions related to investments in transportation infrastructure,
such as building or expanding networks. Tactical level planning concerns optimization by
utilizing the existing infrastructure, such as choosing services and transportation modes,
allocating capacities, and planning itineraries and frequency. Operational level planning fo-
cuses on the real-time management of transportation services, considering the dynamic and
uncertain nature of transportation demand and addressing any issues that arise in real-time.
It involves making quick decisions on transportation modes, routes, and resource allocation
to meet the actual demand. It is considered to be the most complex among the three levels
as it involves dealing with real-time requirements of multiple parties and requires the use
of advanced algorithms to make accurate and efficient decisions. This thesis focuses on
synchromodal transport planning at tactical and operational levels.

The stakeholders in synchromodal transport planning include port authorities, terminal
operators, carriers, freight forwarders, and shippers (Agbo et al. 2017). A shipper is an
individual or company that sends goods to a recipient or another location by hiring a car-
rier or using a freight forwarder. Carriers are companies that physically transport goods,
while freight forwarders are companies that act as intermediaries between shippers and car-
riers. This thesis focuses on shippers, carriers, and freight forwarders. Between carriers
and freight forwarders, the focus is mainly on carriers as they are responsible for transport
planning and execution. Note that, in some cases freight forwarders also own resources to
transport goods, i.e., they can act also as carriers.

Table 2.1 reviews explanatory research on synchromodal transport and summarizes the
critical success factors of synchromodal transport planning, including mode-free book-
ing, integrated planning, flexible planning, real-time planning, collaborative planning, and
preference-based planning. Other critical success factors not in operational transport plan-
ning, including trust among stakeholders, information and communication technologies
(ICT) and intelligent transportation system (ITS) technologies, physical infrastructure, le-
gal and political framework, mental shift, service cost, and pricing (Agbo et al. 2017, Giusti
et al. 2019), are not considered in the review. It is worth noting that the review papers
and explanatory research on synchromodal transport listed in Table 2.1 do not propose any
transport planning models, but rather identify success factors for synchromodal transport
planning.

Synchromodal transport involves shippers leaving mode selection to the carrier, allow-
ing for flexibility in mode choice based on shipper needs and real-time availability. This
is referred to as mode-free booking and is necessary for synchromodal transport (Behdani
et al. 2014). Integrated planning is the process of optimizing transportation by consider-
ing all modes and resources in the entire network, it is more efficient than only scheduling
specific routes and modes for each individual connection (Pfoser et al. 2021). Mode-free
booking and integrated planning are prerequisites of other critical success factors. Without
mode-free booking, shippers would be restricted to a specific mode of transportation, lim-
iting the ability of the service provider to make adjustments based on real-time availability
and customer requirements. This would make it difficult to achieve flexibility in transporta-
tion planning. Without integrated planning, the transportation plan would be limited to
individual connections and specific routes, resulting in suboptimal utilization of resources
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and fewer alternative routes. This would make it difficult to achieve an optimal and ef-
ficient plan. Therefore, without mode-free booking and integrated planning, it is hard to
achieve other critical success factors. Literature reviews on other critical success factors are
provided in the following sections. Based on the literature review on critical success fac-
tors, this thesis addresses flexible, real-time, preference-based, and collaborative planning
in Chapters 3, 4, 5&6, and 7, respectively. This thesis covers all of these success factors,
and the proposed methodologies can be helpful in achieving synchromodal transport.

Table 2.1: Critical success factors of synchromodal transport planning in the literature

Mode-free Integrated Flexible Real-time Collaborative Preference-based
Article booking planning planning planning planning planning

Behdani et al. (2014) ✓ ✓ ✓ ✓ ✓
Van Riessen et al. (2015a) ✓ ✓ ✓

Pfoser et al. (2016) ✓ ✓ ✓ ✓ ✓
Tavasszy et al. (2017) ✓ ✓ ✓ ✓ ✓ ✓

Agbo et al. (2017) ✓ ✓ ✓ ✓ ✓
Guo et al. (2017) ✓ ✓ ✓ ✓ ✓

Giusti et al. (2019) ✓ ✓ ✓ ✓ ✓ ✓
Pfoser et al. (2021) ✓ ✓ ✓ ✓
Acero et al. (2022) ✓ ✓ ✓

This thesis ✓ ✓ ✓ ✓ ✓ ✓

2.2 Static planning

Static planning in synchromodal transport planning refers to the process of creating a trans-
portation plan based on requests and available services. This type of planning typically takes
place in advance and does not account for real-time changes in the transportation system.
It forms the basis for dynamic and collaborative planning by providing a foundation for
adjusting the transportation plan as needed. In the literature, static transport planning has
primarily focused on the use of mathematical models and heuristic algorithms to optimize
the routing and scheduling of vehicles and the flow of goods between different modes of
transportation.

In synchromodal transport planning, both Minimum Cost Network Flow (MCNF) and
Path-based Network Design (PBND) models are used to optimize the transport of containers
over various links in the network, where each link has capacity constraints (Farahani et al.
2023, Van Riessen et al. 2013). MCNF models, such as the shipment matching problem,
define links as services and match these services with requests (Demir et al. 2016, Guo
et al. 2020). PBND models, on the other hand, have predetermined paths (subsequent links)
for the transport of containers, which reduces the number of decision variables and can be
more efficient compared to MCNF. However, PBND models may also lose some potential
solutions and have a higher cost than MCNF models. Both MCNF and PBND models
assume that the services (links or paths) are predefined and adhere to fixed time schedules.
Some researchers allow for some flexibility in these models, but only in the form of flexible
due or departure times (Demir et al. 2016, Van Riessen et al. 2013). These models, known
as Service Network Design Problems (SNDP), use either MCNF, PBND, or a combination
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of both to model the transport of containers. Some papers allow for flexible due times and
charge delay penalties (Ghane-Ezabadi and Vergara 2016, Guo et al. 2020, Van Riessen
et al. 2013), while others allow for flexible departure times within a defined time window
(Demir et al. 2016, Hrušovskỳ et al. 2018, Moccia et al. 2011). Qu et al. (2019) propose a re-
planning model for synchromodal transport that integrates shipment rerouting and service
rescheduling. This model benefits from two types of flexibility: the ability to split shipments
and the inclusion of buffer times on the departure of services (Qu et al. 2019). However,
this model does not consider changing pre-planned service routes.

Shipment routing is considered while vehicle routing is ignored when the service is a
link or path. Vehicle routing is crucial for achieving synchromodal transport as it is neces-
sary for flexible routing and scheduling (Larsen et al. 2021). Ignoring vehicle routing limits
the potential for flexibility in transport operations. Some studies consider the routing of
trucks. In the studies of Pérez Rivera and Mes (2019), Wolfinger et al. (2019), the routes of
trucks are flexible, but only in the first- and last-mile of transport. Additionally, they limit
each request to using at most one long-haul vehicle (ship or train). Larsen et al. (2021) con-
sider simultaneous planning of container and truck routes, and the barge and train’s routing
is not considered.

Table 2.2 summarizes the studies in static planning and highlights that flexibility has not
received enough attention to date. Flexibility in synchromodal transport planning is impor-
tant because it allows for the adaptability of the transport plan to changing circumstances
and demands. This can include changes in the availability of certain modes of transport,
changes in customer requirements or preferences, and disruptions or unexpected events.
Flexibility allows for the creation of transport plans that are more resilient to these changes,
leading to more efficient and cost-effective transport operations. Additionally, flexibility
can help to reduce the amount of unused or underutilized capacity in the transport system,
leading to more sustainable transport operations.

One way to incorporate flexibility into synchromodal transport planning is through the
use of flexible vehicles, such as trucks or barges, that are able to change routes and schedules
and adapt to changes in demand and specific situations. However, there are also challenges
to achieving flexibility in synchromodal transport planning. One of the main challenges
is the need to develop effective optimization algorithms and decision-making frameworks
that can handle the large solution space and complex constraints associated with flexible
transport operations. This includes the coordination and synchronization between differ-
ent transport modes, involving both fixed and flexible vehicles, as well as the routing and
scheduling for requests and vehicles. This thesis proposes a synchromodal transport plan-
ning approach for integrated shipment and vehicle routing and considers both fixed and
flexible vehicles in Chapter 3.

2.3 Dynamic planning
In synchromodal transportation, the utilization of multiple modes of transportation to trans-
port goods from one location to another may result in various uncertainties. These uncer-
tainties include, but are not limited to:

1. travel time uncertainty, which can be caused by factors such as traffic and weather
conditions (Demir et al. 2016, Guo et al. 2022, 2021a, Yee et al. 2021);
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Table 2.2: Summary of the literature review on static planning

Article integrated vehi-
cle and ship-
ment routing

vehicle routing flexible routing flexible scheduling

Moccia et al. (2011) dep
Van Riessen et al.
(2013)

due and dep

Mes and Iacob
(2016)

tw

Ghane-Ezabadi and
Vergara (2016)

due

Demir et al. (2016) dep
Hrušovskỳ et al.
(2018)

dep

Wolfinger et al.
(2019)

✓ truck first- and last-
mile trucks

wait and dep

Qu et al. (2019) dep
Resat and Turkay
(2019)

wait, due

Pérez Rivera and
Mes (2019)

✓ truck first- and last-
mile trucks

N/A

Guo et al. (2020) due and sto
Larsen et al. (2021) ✓ truck trucks wait, dep, due
Farahani et al. (2023) wait and due

This thesis ✓ truck, barge, and train trucks, barges dep, due, wait, sto

dep: departure time, tw: time window, due: due time, wait: waiting time, sto: storage time

2. service time uncertainty, which can be caused by factors such as cargo loading and
unloading, maintenance of equipment, weather-related issues, and congestion at ter-
minals (Demir et al. 2016);

3. and demand uncertainty, which can be caused by factors such as market fluctuations,
seasonal variability, and disruptions in supply chains (Demir et al. 2016, Guo et al.
2021b, Yee et al. 2021).

Such uncertainties can cause delays and disrupt the transportation schedule, leading to un-
happy customers and financial losses for the transport company. It is therefore imperative
that these uncertainties be taken into consideration when planning and executing synchro-
modal transport.

To mitigate these uncertainties in synchromodal transport, dynamic planning is essen-
tial. Dynamic planning is a process that enables real-time adjustments to transportation
plans, taking into account the current and expected uncertainties. These adjustments can be
made periodically (such as in the case of the rolling horizon approach) (Guo et al. 2021a,b,
Li et al. 2015b, Pérez Rivera and Mes 2019, Rivera and Mes 2022, Van Riessen et al. 2016,
Zhang and Pel 2016) or in real-time (such as in the case of the event-triggered approach) (Qu
et al. 2019, Zhang and Pel 2016). A variety of methods can be employed to handle uncer-
tainty within the framework of dynamic planning, including stochastic programming (Demir
et al. 2016, Guo et al. 2021a,b), robust optimization (Li and Chung 2020), and machine
learning (Guo et al. 2022, Pérez Rivera and Mes 2019, Rivera and Mes 2022, Van Riessen
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et al. 2016). Stochastic programming utilizes probability distributions to represent uncer-
tainty in the model. Robust optimization is specifically designed to be robust against po-
tential disruptions or changes in uncertain parameters. Meanwhile, machine learning tech-
niques learn from experience, either online or offline and update the learned policy to make
it more efficient in handling uncertainty. There are also studies that do not explicitly model
uncertainty, but rather employ dynamic planning to adjust plans in response to unexpected
events as they occur (Qu et al. 2019).

It is worth noting that stochastic programming and robust optimization typically assume
the availability of distribution information on uncertainty and modeling uncertainty through
these distributions (Guo et al. 2021a). Similarly, offline machine learning also assumes the
availability of such distribution or historic information (Van Riessen et al. 2016). However,
in real-world situations, such distribution information may not be available due to various
reasons, such as a lack of historical records, difficulty in capturing uncertainty patterns
through a specific distribution, or complexity in modeling uncertainty caused by multiple
factors. In such cases, online learning may be a suitable solution, because it allows updating
the model based on the current observations and it can also adapt to changing conditions,
which can reduce the risk of poor performance due to inaccurate assumptions about the
uncertainty distribution.

Table 2.3 summarizes the literature on dynamic synchromodal transport planning. In the
literature, travel time and demand uncertainties have been extensively investigated, however,
the service time uncertainty has not been fully addressed. Neglecting service time uncer-
tainty in planning and decision-making can lead to delays and increased costs, negatively
impacting the overall performance of synchromodal transport. Service time uncertainty can
be influenced by multiple factors and the distribution of service time uncertainty is usually
not available. Online learning methods are therefore needed. This thesis proposes an online
Reinforcement Learning approach for synchromodal transport re-planning under service
time uncertainty in Chapter 4.

2.4 Multi-objective and preference-based planning

The diverse objectives and preferences of shippers and carriers can make synchromodal
transport planning a complex and challenging task, as it requires the integration of multiple
(possibly conflicting) objectives and preferences into a single optimization model. To ad-
dress this complexity, some studies have focused on the use of multi-objective optimization
and preference-based optimization approaches in synchromodal transport planning.

Multi-objective optimization (MOO) is a method used to solve problems with multiple
conflicting objectives. MOO includes different approaches. In the weighted sum method,
weights are assigned to objectives and used to create a scalar objective function by linearly
combining the multiple objectives with these weights. Another approach is the ε-constraint
method, which involves restricting other objectives while minimizing or maximizing one
objective (Zhang et al. 2020a). Pareto-optimality is also popular for solving MOO problems
in synchromodal transport (Sun and Lang 2015a). Pareto-optimality is a concept used to
describe a set of solutions that are not dominated by any other solution, which means that
it is better in at least one objective and not worse in any other objectives. The multi-criteria
decision making (MCDM) approach is also used, which allows for the explicit consideration
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Table 2.3: Summary of the literature review on dynamic planning

required prior
Article uncertainty re-planning learning information

Xu et al. (2015b) demand ? N/A distribution
Li et al. (2015b) ? periodical N/A N/A
Van Riessen et al.
(2016)

demand real-time DT, offline historical requests

Zhang and Pel (2016) N/A real-time N/A N/A
Demir et al. (2016) travel and ser-

vice time, de-
mand

? N/A distribution

Qu et al. (2019) N/A real-time N/A N/A
Pérez Rivera and
Mes (2019)

demand periodical ADP, ? N/A

Guo et al. (2020) demand periodical N/A N/A
Guo et al. (2021a) demand periodical N/A distribution
Yee et al. (2021) travel time periodical ? N/A
Guo et al. (2021b) demand and

travel time
periodical N/A distribution

Rivera and Mes
(2022)

demand periodical ADP, offline distribution

Guo et al. (2022) travel time periodical RL, offline distribution
Xu et al. (2023) travel time N/A N/A
Akyüz et al. (2023) N/A real-time N/A N/A

This thesis service time real-time DRL, online none

DT: Decision tree; ADP: Approximate dynamic programming; RL: Reinforcement learning; DRL: Deep RL
“?” means that the relevant item is not mentioned in the article.

of multiple conflicting objectives in the decision-making process (Zhang et al. 2020c).
In recent years, there has been a growing interest in incorporating preferences into syn-

chromodal transport planning (Shao et al. 2022, Zhang et al. 2020c). This is because pref-
erences can play a significant role in determining the efficiency and effectiveness of syn-
chromodal transport systems. Efficient synchromodal transport can move goods from one
location to another with minimal resources, while effective synchromodal transport meets
the needs and goals of the shippers and carriers. Carriers can design more targeted and ef-
ficient transport solutions by considering preferences, resulting in reduced waste and better
alignment with actual needs. This can also lead to more sustainable solutions, as preferences
may include criteria such as emissions. Additionally, considering preferences can improve
satisfaction and trust among carriers and shippers, resulting in stronger relationships and
greater cooperation among stakeholders, ultimately facilitating the successful implementa-
tion of synchromodal transport.

The integration of preferences into transport planning poses a significant challenge, as
preferences can be highly heterogeneous and vague. They may be subjective and vary
among different shippers and carriers, making it difficult to accurately capture and math-
ematically model them. In the context of synchromodal transport, shippers may hold con-
flicting preferences, requiring the carrier to navigate trade-offs among these preferences.
There are several approaches to modeling preferences in transport planning. For example,
in the weighted sum method, the preferences of the stakeholder are represented as weights
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for each objective. To handle the heterogeneity, multi-attribute decision making (MADM)
is a method used to evaluate and compare different options or alternatives based on multiple
criteria or attributes (Zanakis et al. 1998). To handle the vagueness, the fuzzy set theory is
often used to represent preferences in a mathematical way, which can be compared and ag-
gregated by the use of mathematical techniques to find the best solution (Koohathongsumrit
and Meethom 2022).

Table 2.4 shows the summary of studies on multi-objective optimization and preferences
in synchromodal transport. Some studies model preferences but do not consider them for
transport planning (Koohathongsumrit and Meethom 2022, Oudani 2023, Pamucar et al.
2022). The vagueness of preferences is ignored in the synchromodal transport planning
(Shao et al. 2022, Zhang et al. 2020c). In road transport, incorporating preferences in trans-
port planning is also studied. For example, Dumez et al. (2021), Los et al. (2018) consider
the delivery location preferences of recipients, Afshar-Bakeshloo et al. (2016), Baniamerian
et al. (2018), Ghannadpour et al. (2014) consider fuzzy or soft time window preferences of
recipients in the objective, and Zhang et al. (2013) use customer service level constraints to
ensure the on-time shipment delivery preferences of recipients. In order to incorporate pref-
erences of shippers and carriers into the transport planning, this thesis proposes approaches
for synchromodal transport planning considering heterogeneous and vague preferences in
Chapters 5 and 6.

Table 2.4: Summary of the literature review on multi-objective optimization and preferences in
synchromodal transport

Article planning preferences approach heterogeneity vagueness

Verma and Verter
(2010)

✓ WS

Resat and Turkay
(2019)

✓ ε and PO

Zhang et al. (2020c) ✓ shipper MCDM ✓
Shao et al. (2022) ✓ shipper PO ✓
Koohathongsumrit
and Meethom (2022)

carrier MCDM, FS ✓ ✓

Pamucar et al. (2022) expert OPA-P ✓
Oudani (2023) PO and

MCDM

This thesis ✓ shipper and car-
rier

PO,
MADM,
and FS

✓ ✓

WS: weighted-sum method; ε: ε-constraint method; PO: Pareto-optimality; MCDM: Multi-criteria decision making; MADM:
Multi-attribute decision making; OPA-P: Ordinal Priority Approach under picture fuzzy sets; FS: Fuzzy set theory

2.5 Collaborative planning

Collaborative planning can be divided into three types: centralized planning, decentralized
planning, and distributed planning (Negenborn and Maestre 2014). If a controller has full
power on all carriers, it is called centralized planning. When carriers are in charge of the
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local transport planning and require no communication among them, it is decentralized
planning. When the carriers communicate in order to find a cooperative solution for the
overall planning, it is distributed planning. Further divided by the means of exchanging
requests, distributed planning can be non-auction or auction-based (Gansterer and Hartl
2018). There are various levels of cooperation between carriers, depending on the level of
sharing information and resources and the establishment of joint partnerships.

Current research on collaborative planning mainly focuses on vertical collaboration for
carriers with interconnecting transport networks. Puettmann and Stadtler (2010) study de-
centralized planning of carriers through iterative proposal exchange, analyzing stochastic
demand on coordinated plans. Li et al. (2017) investigate a coordinated model predictive
container flow control problem among multiple hinterland carriers in interconnected service
areas. The Lagrangian relaxation method is used for the coordination among carriers. Guo
(2020), Huang et al. (2021) and Zhou et al. (2023) use a similar coordination method as Li
et al. (2017). Guo (2020) consider shipment requests that have specific time windows in-
stead of container flows in Li et al. (2017). Larsen et al. (2020) propose a departure learning
method for co-planning between barge and truck carriers. Studies have shown that collab-
oration can lead to significant performance improvements in synchromodal transport, such
as cost savings (Guo 2020). Collaborative planning can enable carriers to share resources
and information, such as equipment, routes, and demand forecasts, and to reduce empty
runs and duplication of services. Collaborative planning can also facilitate the integration
of multiple transport modes and the coordination of transshipment operations, which can
improve the utilization of resources and the flexibility of the transport system.

There is more research on collaborative planning in road transport, compared to syn-
chromodal transport (Gumuskaya et al. 2020). In the field of road transportation, researchers
frequently investigate the concept of horizontal collaboration. Within this area of study, the
auction-based approach is a commonly utilized methodology (Los et al. 2022). Auction-
based collaborative planning refers to the use of auctions as a means to exchange requests
among carriers. Auctions can provide a transparent and fair platform for carriers to negoti-
ate and agree on terms for the provision of transport services. By allowing carriers to bid
for requests from shippers and to offer their available capacity, auctions can facilitate the
matching of demand and supply, leading to increased efficiency and improved utilization of
resources. Furthermore, auctions can enable carriers to diversify their portfolio of services
by making use of shared services from other carriers.

Table 2.5 summarizes the literature review on collaborative planning in synchromodal
transport. Horizontal collaborative planning and auction-based distributed planning need
to be investigated in synchromodal transport. The studies on collaborative planning do not
consider preferences, although collaborative planning can also better satisfy the preferences
of stakeholders. It can help carriers offer a wider range of services to shippers and meet their
heterogeneous preferences. This can increase the attractiveness of synchromodal transport
to shippers, as it provides them with more options and the possibility of finding a service
that better fits their needs. This thesis proposes an auction-based approach for horizontal
collaborative planning in synchromodal transport considering the preferences of shippers in
Chapter 7.
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Table 2.5: Summary of the literature review on collaborative planning in synchromodal transport

Article participants category approach preferences

Puettmann and
Stadtler (2010)

drayage and intermodal carriers VC DP

Li et al. (2017) intermodal carriers VC DIP
Guo (2020) intermodal carriers VC DIP
Larsen et al. (2020) barge and truck carriers VC DIP
Huang et al. (2021) intermodal carriers VC DIP
Zhou et al. (2023) intermodal carriers VC DIP

This thesis intermodal/unimodal carriers HC ADP ✓

VC: Vertical collaborative planning; HC: Horizontal collaborative planning; CP: Centralized planning; DP: Decentralized planning; DIP:
Distributed planning; ADP: Auction-based distributed planning; P: Preference.

2.6 Conclusions

In this literature review, we have discussed the concept of synchromodal transport and its
potential advantages for improving efficiency, flexibility, and reliability. In terms of static
planning, we have discussed different types of planning models and emphasized the impor-
tance of flexibility in enabling synchromodal transport to adapt to changing demands and
disruptions. In terms of dynamic planning, we have discussed the importance of handling
uncertainty in order to achieve reliable synchromodal transport. We have also reviewed the
methods that can be used to handle travel time, service time, and demand uncertainties. In
terms of preferences, we have discussed how they can be difficult to incorporate into trans-
portation planning due to their heterogeneous and vague nature. We have also reviewed the
existing studies on how preferences are modeled and considered in synchromodal transport,
and the benefits of taking preferences into account in transport planning. Finally, in terms
of collaborative planning, we have discussed the importance of collaboration in enabling
synchromodal transport to provide a wider range of services and satisfy the preferences of
stakeholders. We have also reviewed the different approaches to collaborative planning, in-
cluding centralized, decentralized, and distributed approaches, and the benefits that can be
obtained through collaboration.

We have also highlighted the challenges in synchromodal transport planning, including
the importance of flexibility in static planning, the learning ability under service time un-
certainty in dynamic planning, the consideration of heterogeneous and vague preferences
in transport planning, and the need for horizontal collaborative planning among carriers.
This thesis fills the research gap by proposing optimization models and solution algorithms
that consider these factors in the context of synchromodal transport planning through do-
main knowledge-based methodologies and data-driven techniques. The approaches for
static planning considering flexibility, dynamic planning, transport planning considering
carriers’ preferences, transport planning considering shippers’ preferences, and horizontal
collaborative planning are proposed in Chapters 3, 4, 5, 6, and 7, respectively. We have
also highlighted the challenges in synchromodal transport planning, including the impor-
tance of flexibility, the learning ability under service time uncertainty, the consideration of
heterogeneous and vague preferences, and the need for horizontal collaborative planning
among carriers. This thesis fills the research gap by proposing optimization models and
solution algorithms that consider these factors in the context of synchromodal transport
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planning through domain knowledge-based methodologies and data-driven techniques. The
approaches for static planning considering flexibility, dynamic planning, transport planning
considering carriers’ preferences, transport planning considering shippers’ preferences, and
horizontal collaborative planning are proposed in Chapters 3, 4, 5, 6, and 7, respectively.





Chapter 3

Flexible services: Mathematical
model and heuristic algorithm

As discussed in Chapters 1 and 2, service flexibility plays an important role in improving
the utilization of resources to reduce costs, emissions, congestions, and delays. Despite its
significance, there remains a gap in the consideration of flexible services within the context
of synchromodality. In order to fill this gap, this chapter addresses research question Q1:
How can routes be optimized for the carrier to provide flexible services?

This chapter is organized as below: Section 3.1 introduces the background of consider-
ing flexibility in synchromodal transport planning. Section 3.2 presents a brief literature re-
view of articles related to synchromodal transport planning. Section 3.3 defines the problem
in detail. The optimization problem is formulated by Mixed-integer Linear Programming in
Section 3.4. Section 3.5 presents the solution methodology, i.e., a customized ALNS with
a series of operators and performance improvement methods. In Section 3.6, experimental
settings and results are provided. Section 3.7 concludes this chapter.

Parts of this chapter have been published in Zhang et al. (2020b) 1 and Zhang et al.
(2022b)2.

3.1 Introduction
As a distinct feature of synchromodality, service flexibility plays a key role in improving
the utilization of resources (Behdani et al. 2014, Delbart et al. 2021, Giusti et al. 2019,
Van Riessen et al. 2015a, Zhang and Pel 2016). The service flexibility means that the
decision-maker can change vehicles’ routes and schedules based on demand and available
resources. In other words, flexible services enable the decision-maker to achieve the objec-
tive better by exploiting the benefits of each modal choice in synchromodal transport (ST).

1Zhang, Y., Atasoy, B., Souravlias, D., & Negenborn, R. R. (2020). Pickup and delivery problem with trans-
shipment for inland waterway transport. In Proceedings of 11th International Conference on Computational Lo-
gistics (ICCL 2020), Enschede, The Netherlands, pp. 18-35, September 28–30, 2020.

2Zhang, Y., Guo, W., Negenborn, R. R., & Atasoy, B. (2022). Synchromodal transport planning with flexible
services: Mathematical model and heuristic algorithm. Transportation Research Part C: Emerging Technologies,
140, 103711.

23
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Flexibility has different functions under different scenarios. Specifically, when the objec-
tive is to minimize cost, flexible services can reduce more costs than predefined services by
avoiding empty miles, improving loading factors of low-cost vehicles, minimizing storage
time, etc. Besides, flexible services can provide more alternatives to alleviate the impacts of
congestion or other unexpected events than fixed services. Flexibility is also vital to handle
transport demand in the most efficient and sustainable way by using different modes and
routes in an integrated network (Delbart et al. 2021, Giusti et al. 2019).

However, the majority of the existing models in ST, e.g., Demir et al. (2016) and Guo
et al. (2020), only consider services with fixed routes and schedules. The flexible services
are not considered mainly due to the following reasons: (a) providing flexible services
needs the development of various technologies, such as digital platform, information and
communication technologies, and physical internet (Ambra et al. 2019, Giusti et al. 2019);
(b) achieving flexible services needs to consider transshipment and synchronization of op-
erations (Giusti et al. 2019); (c) tackling the optimization problem with flexible services
needs customized, sophisticated and efficient algorithms due to computational complexity
(Wolfinger 2021). Therefore, existing studies usually assume that the routes and schedules
of services are predefined, which loses the flexibility of trucks and ships. In reality, routes
of trucks and ships can be changed according to demands and weather, and transport oper-
ators and shippers are flexible in their negotiations depending on the circumstances, such
as transportation volume and disturbances (Van Riessen et al. 2013). The requirement of
flexibility and the development of modern technologies are driving the transformation from
fixed to flexible services in ST.

Figure 3.1 illustrates the routing of vehicles with fixed versus flexible services. In the
following, vehicles with fixed services and vehicles with flexible services are abbreviated as
fixed vehicles and flexible vehicles, respectively. In Figure 3.1, the nodes are ST terminals,
which could be ports or truck/train stations, and these nodes are connected by roads, rail-
ways, or inland waterways. When the vehicle is fixed, it can only run between predefined
terminals. In contrast, when it’s a flexible vehicle, its transport network is expanded, and it
can go to any terminal if there are suitable routes for it. Assuming the routes are fixed may
cause empty miles and low load factors, which increases the transport cost. Fixed vehicles’
departure and arrival times need to fit in the predefined open time windows at terminals. Be-
sides, the schedules of different requests are the same when using the same fixed vehicles.
In contrast, the schedules are adjustable when using flexible vehicles because the transport
operator can customize schedules for different requests to avoid unnecessary storage and de-
lay. Although flexible vehicles could bring benefits for ST, fixed vehicles are still necessary
in the current ST. For instance, the schedules of freight trains are usually predefined due to
the higher priority accorded to passenger trains (Wolfinger et al. 2019). Therefore, the mix
of fixed and flexible vehicles needs to be considered in synchromodal transport panning.

Flexible routing and scheduling need a vehicle routing component, which is often ad-
dressed by coarse approximations in the existing models that cannot be applied to ST with
flexible services (Drexl 2012). For example, the links or paths are used to “transport” con-
tainers in the literature (Demir et al. 2016, Guo et al. 2020, Van Riessen et al. 2013). When
considering flexible routing and scheduling at the operational level, the transport operator
needs to take the capacity and speed of each vehicle into account and decide which vehi-
cle will be used to serve requests. Moreover, the schedules of flexible vehicles, such as
arrival/departure time and waiting time, need to be decided by the model. It is more con-
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Figure 3.1: Routing of vehicles with fixed and flexible services in synchromodal transport.

venient to calculate these times by adding a vehicle routing component as in the case of
Vehicle Routing Problems (VRPs). The request routing is also required due to the possi-
ble transshipment between vehicles. Therefore, request routing and vehicle routing need to
be modeled simultaneously. Furthermore, the transshipments of requests and interdepen-
dency between vehicles complicate both routing and scheduling in synchromodal transport
planning (Drexl 2014, Rais et al. 2014, Zhang and Pel 2016).

In order to address the above-mentioned modeling requirements for synchromodality,
we define the optimization problem as Synchromodal Transport Planning Problem with
Flexible Services (STPP-FS). In STPP-FS, vehicles and requests are planned simultane-
ously, which allows the model to keep flexible during operations. The objective is to min-
imize the total cost, including transit cost, transfer cost, storage cost, carbon tax, waiting
cost, and delay penalty. Besides typical constraints in routing optimization, such as time
windows and capacity constraints, the special constraints for ST are considered in STPP-
FS, including constraints on transshipments, different modes, fixed and flexible vehicles,
and complex schedules. An ALNS heuristic is developed to solve the proposed problem ef-
ficiently. The proposed model allows flexible planning based on transport demands, which
improves the utilization of available resources and reduces costs and emissions. To the
best of our knowledge, this is the first study that formulates the STPP-FS and develops a
customized ALNS to solve it.
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3.2 Literature Review

This section presents a review of the literature on the optimization models in synchromodal
transport planning and the studies in the freight transportation domain that considers flexible
vehicles and transshipments.

3.2.1 Optimization models in synchromodal transport planning

In the literature, containers in ST are moved by vehicles with fixed schedules (Agamez-
Arias and Moyano-Fuentes 2017, Guo et al. 2020, SteadieSeifi et al. 2014). These models
can be divided into two groups: Minimum Cost Network Flow model (MCNF) and Path-
based Network Design model (PBND) (Van Riessen et al. 2013). Both MCNF and PBND
assume that the services (links or paths) are predefined and obey fixed time schedules, which
loses flexibility due to the following reasons:

1. These service routes (links or paths) are predefined depending on historical informa-
tion, such as transport volume and decision makers’ experience. Because it is not
practical to keep all possible service options, some potential routes are neglected due
to historical low demand when designing services, although they can serve current re-
quests in a better way. Therefore, research on synchromodal routing is mostly limited
to commodity flow formulations based on predefined services, and vehicle routing is
usually ignored (Wolfinger et al. 2019).

2. The time schedules are fixed and vehicles’ departure/arrival time may not fit the
pickup/delivery time windows of requests, which may cause unnecessary waiting
cost, transshipment cost, storage cost, and delay penalties. Moreover, strictly com-
plying with predefined time schedules is not realistic because there are uncertainties
and disturbances (Van Riessen et al. 2013).

Some scholars allow some flexibility in the model but only allow the flexible due/departure
times (Demir et al. 2016, Ghane-Ezabadi and Vergara 2016, Guo et al. 2020, Moccia et al.
2011, Qu et al. 2019, Van Riessen et al. 2013, Wolfinger et al. 2019). They regard the
problem as a Service Network Design Problem (SNDP) and uses MCNF, PBND, or a com-
bination of MCNF and PBND to model it. In practice, transport operators do not strictly
follow the schedules because there are always new requests and delays, which makes some
vehicles unavailable and needs other unplanned vehicles to serve the requests (Zhang and
Pel 2016). Moreover, there are not always enough requests that make full use of the capac-
ities of vehicles. Therefore, an optimization model with flexible services for ST is needed.
To achieve flexible services, this study adds a vehicle routing component and these vehicles
are highly dependent on each other due to flexibility, which leads to phenomena such as
chain reactions that do not occur in MCNF and PBND. Furthermore, flexibility brings in
computational complexity as the number of feasible services increases, and then a powerful
and customized heuristic is needed. Therefore, the distinctions of our study compared with
MCNF/PBND lie in having a mixed fleet of fixed and flexible vehicles in the research prob-
lem, a vehicle routing component in modeling, and a customized heuristic in the solution
methodology.
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3.2.2 Optimization models with flexible vehicles and transshipments in
freight transport

Optimization models that consider flexible vehicles and transshipments in freight trans-
portation are usually regarded as Pickup and Delivery Problem with Transshipment (PDPT).
The PDPT is a variant of the Pickup and Delivery Problem (PDP), where requests can
change vehicles at transshipment points during their trips (Masson et al. 2013, Mitrović-
Minić and Laporte 2006, Shang and Cuff 1996). Qu and Bard (2012) use a Greedy Ran-
domized Adaptive Search Procedure (GRASP) to generate the initial solution of PDPT for
transport of aircraft and then use ALNS to improve the initial solution. Rais et al. (2014)
propose several variants for PDPT, including cases with and without time windows, a het-
erogeneous fleet of vehicles, variable size fleet, split loads, and a limited number of transfer
nodes visited by a vehicle. A small instance with seven requests is solved using Gurobi op-
timization software in their paper. Ghilas et al. (2016) integrate freight flows with scheduled
public transportation services in short-haul transport, and the packages can be transferred
between trucks and scheduled lines. Danloup et al. (2018) use both Large Neighborhood
Search (LNS) and Genetic Algorithm (GA) to solve PDPT, where transport duration lim-
itation is considered for requests and pickup/delivery time windows are ignored, therefore
there is no time synchronization in their paper. Moreover, a request can be transshipped at
most once, i.e., it cannot be served by more than two vehicles in their model.

Wolfinger and Salazar-González (2021) propose a branch-and-cut algorithm for solving
PDP with split loads and transshipments (PDPSLT), however, the time window is not con-
sidered and the time synchronization method is not proposed. In another paper of Wolfinger
(2021), the time window is considered and LNS is used to solve PDPSLT, and some insights
regarding the benefits of combining split loads and transshipments are provided. In Wolfin-
ger (2021)’s model, transshipment is allowed at dedicated transshipment locations and not
allowed at customer locations.

The key feature of PDPT is the synchronization of activities among different vehicles.
These synchronization requirements make routes interdependent (Drexl 2013, Hojabri et al.
2018). For example, if a special request is inserted into a route of vehicle k and delayed
request r served by vehicles k and l, all later requests in the route of vehicle l will also be
delayed. Then these already scheduled requests need to be re-planned due to interconnec-
tions between routes.

3.2.3 Summary and contributions

This section compares the model developed in this study with the existing studies in the
literature in Table 3.1.

In Table 3.1, all models are divided into three groups, i.e., models in ST (upper part),
models in freight transport (lower part), and the proposed model (the last row). Almost all
models consider transshipment but only part of them considers synchronizations among ve-
hicles. The models in ST include multiple modes and fixed vehicles, while models in freight
transport consider more flexibilities. In comparison, the model developed in this study has
synchronization requirements, flexible routes, and flexible schedules, which include flexible
due time, flexible waiting time, flexible storage time, and flexible departure time.

Regarding the studies in freight transport, Ghilas et al. (2016)’s study seems similar to
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Table 3.1: Comparison between the proposed model and existing models in the literature

Article Problem Mode Service Objective Heuristic T S F FR FDue FW FS FDep

Synchromodal transport
Moccia et al. (2011) SNDP railway,

road
link
&path

c BC ✓ ✓ ✓ ✓

Van Riessen et al. (2013) SNDP waterway,
railway,
road

link
&path

c, t, d − ✓ ✓ ✓ ✓

Ghane-Ezabadi and Vergara
(2016)

SNDP − path c DS ✓ ✓ ✓

Demir et al. (2016) STPP waterway,
railway,
road

link c, t, e, w, d − ✓ ✓ ✓ ✓

Hrušovskỳ et al. (2018) SNDP waterway,
railway,
road

link c, t, e, w, d − ✓ ✓ ✓ ✓

Wolfinger et al. (2019) MMLHRP waterway,
railway,
road

vehicle c ILS ✓ ✓ ✓ ✓ ✓ ✓

Qu et al. (2019) SNDP waterway,
railway,
road

link c, t, s, d − ✓ ✓ ✓ ✓

Resat and Turkay (2019) STTP waterway,
railway,
road

link c, t, e − ✓ ✓ ✓ ✓ ✓

Pérez Rivera and Mes
(2019)

SMDP and PDP waterway,
railway,
road

vehicle
and
link

c − ✓ − ✓ ✓

Guo et al. (2020) STPP waterway,
railway,
road

link c, t, s, e,
w, d

PGFM ✓ ✓ ✓ ✓ ✓

Larsen et al. (2021) STPP waterway,
railway,
road

link
and
vehi-
cle

c, t, s, d − ✓ ✓ ✓ ✓ ✓ ✓ ✓

Farahani et al. (2023) SNDP waterway,
railway,
road

link c, t, d GA ✓ ✓ ✓ ✓ ✓

Freight transport
Qu and Bard (2012) PDPT road vehicle c GRASP&

ALNS
✓ ✓ ✓ ✓ ✓

Rais et al. (2014) PDPT road vehicle c − ✓ ✓ ✓ ✓ ✓ ✓
Ghilas et al. (2016) PDPTWSL metro,

road
vehicle c, t ALNS ✓ ✓ ✓ ✓ ✓ ✓ ✓

Danloup et al. (2018) PDPT road vehicle n, dis LNS&GA ✓ ✓ ✓
Wolfinger and Salazar-
González (2021)

PDPSLT road vehicle c, t − ✓ ✓

Wolfinger (2021) PDPSLT road vehicle c, t LNS ✓ ✓ ✓ ✓ ✓

This study STPP-FS waterway,
railway,
road

vehicle c, t, s, e,
w, d

ALNS ✓ ✓ ✓ ✓ ✓✓✓ ✓ ✓ ✓

−: not considered in the related paper.
T: Transshipment operations; S: Synchronization of operations; F: Fixed vehicles; FR: Flexible routing; FDue: Flexible due time; FW: Flexible waiting time; FS: Flexible storage time; FDep:

Flexible departure time; c, t, s, e, w, d, n, dis: transit cost, transfer cost, storage cost, carbon tax, waiting cost, delay penalty, number of used vehicles, distance; SNDP: Service Network Design
Problem; MMLHRP: Multimodal Long Haul Routing Problem; PDPT: PDP with Transshipment; PDPTWSL: PDP with Time Windows and Scheduled Lines; PDPSLT: PDP with Split Load and
Transshipment; STPP: Synchromodal Transport Planning Problem; STPP-FS: STPP with Flexible Services; BC: Branch-and-cut algorithm; DS: Decomposition-based Search; ILS: Iterated Local
Search; PGFM: preprocessing heuristics of Path Generation and Feasible Matches; GRASP: Greedy Randomized Adaptive Search Procedure; LNS: Large Neighborhood Search; ALNS: Adaptive
LNS; GA: Genetic Algorithm

us. However, we establish models for different fields, and the sizes of transport networks
are also different. They consider trucks and scheduled lines in urban transport. However, in
this study, services with different modes, including barges, trucks, and trains, are allowed
to be used to transport containers in hinterland transport. Besides, the objectives of our
mathematical models are different, which will influence the solutions significantly. While
Ghilas et al. (2016) design more origin and destination nodes but a few transshipment nodes,
all the nodes in our model can be transshipment nodes. These differences make the routes
of vehicles in synchromodal transport more dependent on each other and it also makes
the problem in ST more difficult to solve because it causes complicated chain reactions
and heavy burdens on the computation time (see detailed explanations in Section 3.5.4).
Compared with PDPT in the literature (Danloup et al. 2018, Wolfinger 2021), there are
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some new characteristics in STPP-FS, such as more than two modes, a mix of fixed and
flexible vehicles, and complex schedules. Moreover, these characteristics influence each
other, which makes the transshipment and synchronization in STPP-FS more complex than
PDPT.

In contrast, both Guo et al. (2020) and Demir et al. (2016) solve Synchromodal Trans-
port Planning Problem (STPP) and consider the same modes with our study, including wa-
terway, railway, and road. Guo et al. (2020) design the same objective function and Demir
et al. (2016) only do not consider the storage cost compared with ours. In their studies,
some links between two terminals are defined as services, and each service has a specific
capacity, travel and service times, costs, and CO2 emissions. The requests need to be picked
up/delivered within specific time windows and can be transferred between services. There-
fore, the most related articles are the studies of Guo et al. (2020) and Demir et al. (2016).
However, there are still significant differences between the studies. The services in Guo
et al. (2020) and Demir et al. (2016) are fixed and vehicle routing is not considered. In
this study, the possibility of using transshipments increases a lot due to flexible services,
therefore the complexity of STPP-FS grows exponentially. Moreover, the vehicle routing
and request routing need to be considered simultaneously in STPP-FS, which makes the
modeling more complicated. Therefore, the modeling approach for STPP-FS is different
from both models in synchromodal and freight transport.

The main contributions of this study are briefly summarized as follows. Firstly, we
propose a mathematical model to provide a formulation of the STPP-FS. Fixed vehicles are
restricted by predefined routes and time windows at terminals. On the contrary, flexible
vehicles have flexible routes and schedules. Transshipment and synchronization of both
fixed and flexible vehicles are considered. Only fixed, only flexible, or hybrid fleets can
be handled by the proposed model. The proposed model with flexibilities necessitates an
efficient solution algorithm as the solution space is large. To address this need, we develop
a customized Adaptive Large Neighborhood Search (ALNS) heuristic algorithm according
to the characteristics of STPP-FS. Therefore, the second contribution is the ALNS with
specific adaptations and improvements, which include customized operators (e.g., a swap
operator) for ST, feasibility checking methods, and performance improvement approaches.
Finally, we provide insights about the added value of flexibility in ST through computational
experiments that compare the proposed approach to different benchmarks. In a nutshell,
we design and validate a model that optimizes routes and schedules for fixed and flexible
vehicles simultaneously in ST and can be used by freight forwarders and carriers for more
economic and sustainable transport operations.

3.3 Problem Description

We consider a setting with multiple shippers and a transport operator. The transport operator
can be the freight forwarder, carrier, or transport platform in reality, and makes decisions
on the routing and scheduling of vehicles (Li et al. 2015b). The shippers provide the re-
quest information, including pickup and delivery terminals, number of containers, and time
windows; and the transport operator provides transport network information, including ter-
minal information, distances among terminals, vehicle information, and cost. The transport
operator wants to optimize the transport operations and provide low-cost services to ship-
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pers (Di Febbraro et al. 2016). Moreover, the transport operator is assumed to be able to
keep flexible schedules by collaborating with terminal operators. All travel times between
terminals are known beforehand, except trucks’ travel times which are influenced by traffic
congestion. All costs are in Euros and the unit of containers is Twenty-foot Equivalent Unit
(TEU).

The characteristics of the proposed STPP-FS include multiple modes, transshipment,
the mix of fixed and flexible vehicles, complex schedules, and synchronization, as shown in
Figure 3.2.
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Multiple modes and a mix of fixed and flexible vehicles

Terminal (only modes inside the 
circle can use this terminal) 

Transshipment

Synchronization

0:30

4:30

0:15
0:00

0:30
2:00

10:00

12:00

16:00

5:00

9:00

14:00

17:00

7:00

11:00

13:00
15:00

3:00

12:00

13:00

18:00

3:30

5:00

11:00

17:30

Requests
Scheduling

Requests 
Routing

C
om

plex schedules

requests

vehicles

A: terminals 
of all modes

All modes/
Railway/Waterway/Road

Figure 3.2: Characteristics of the STPP-FS. To illustrate the problem clearly, the real-life
transport network (layer A) is decomposed into five layers (a1, a2, a3, a4, a5),

which are routing and scheduling of five types of vehicles. The main horizontal
and vertical axes are the routing and scheduling of requests, respectively. The

vehicles and requests are planned simultaneously in this study.

1. Multiple modes. In ST, trucks, barges, and trains are used to serve requests, and one
request can be served using any combination of these modes. Different modes have
different parameters on capacity, speed, costs, and emissions. Barges usually have the
lowest emissions and costs but have the slowest travel speed. Trains have a moderate
speed and cost. We assume that a truck service is a truck fleet and each truck can serve
requests in the fastest way when containers arrive. Trucks are the fastest vehicles but
the transportation cost is higher than trains and barges.

2. Transshipment. A request can be transferred between vehicles at transshipment ter-
minals, which can provide transshipment equipment and a yard for the temporary
storage of containers. Typically a transshipment terminal has functions of regular
terminals, therefore it can also be pickup/delivery terminals. Different transshipment
terminals provide different types of services, such as transshipments between barges
and trucks. Transshipments between vehicles with the same mode but different time



3.3 Problem Description 31

schedules are also possible. Compared with ST with only fixed vehicles, the flexible
services increase the possibility of transshipments significantly. In Figure 3.3, request
r is transported by a barge firstly and then transferred to a truck fleet. At the trans-
shipment terminal, the barge should arrive earlier than trucks. When trucks arrive at
the transshipment terminal before the barge completes the unloading, trucks will wait
for the barge.

Route of 
barge/truck

Request r Port Pickup/transshipment/
delivery

Trainsshipment 
terminal

Truck 
station

Figure 3.3: Transshipment

3. The mix of fixed and flexible vehicles. In ST, trucks and barges may be flexible while
trains are fixed. Fixed vehicles can only run between predefined terminals, and the
departure time and arrival time are also predefined. Flexible vehicles can go to any
terminal (on available routes, such as waterways for barges) and have no predefined
schedules. Therefore, there are five types of vehicles, i.e., fixed barges, trains, and
trucks, and flexible barges and trucks, as shown in Figure 3.4. In Figure 3.4, there
are three terminals, i.e., terminal A, B, and C, and two requests, i.e., requests r1
and r2, which are transported in different ways by five types of vehicles. Request
r1’s pickup terminal and transshipment terminal are terminals A and B. Request r2’s
transshipment terminal and delivery terminal are terminals B and C. When requests
are transported by the fixed barge, two barges are needed, i.e. barge k1 from terminal
A to B for request r1 and barge k2 from terminal B to C for request r2. When the barge
is flexible, only one barge k1 is needed and k1 starts at A and goes through B to C.
Another flexible barge k2 could go to other terminals and transport other requests. The
case with fixed trains l1 and l2 is similar to fixed barges. Regarding truck fleet, one
request is usually served by multiple trucks, and each truck transports one container.
The difference between fixed and flexible truck fleets is similar to barges.

4. Complex schedules. In the scheduling of ST, the waiting time, storage and delay
need to be considered. If a vehicle arrives before containers at the pickup terminal
or transshipment terminal, it can wait until containers arrive. If containers arrive
before vehicles, they can be temporarily stored in the terminal with a storage fee
until the vehicle arrives. If a vehicle is delayed at the delivery terminal, it will be
charged with a delay penalty. The transshipment makes the waiting time and delay of
one vehicle influenced by another vehicle, and the waiting and storage time could be
changed to synchronize vehicles. Moreover, the mix of fixed and flexible vehicles and
transshipments between different modes also make the scheduling more complicated.
Figure 3.5 shows the schedules of fixed barges k1 and k2 in Figure 3.4. Containers
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Figure 3.4: Five types of vehicles

must be loaded/unloaded in the open time windows for vehicles at each terminal. At
terminal A, the open time window for vehicle k1 is [1,3], and request r1’s pickup
time window is [2,4]. Therefore, request r1 will be picked up at time 2. Request r2
arrives at terminal B at time 5. However, vehicle k1 has not arrived and request r2
needs to wait for vehicle k1 at terminal B. Therefore, request r2 is stored at terminal
B until time 7. During the open time window ([7,8]) at terminal B, k1 unloads r1 and
k2 loads r2. At terminal C, k2 arrives later than the delivery time window of request
r2, which causes one hour’s delay. If requests are transported by flexible vehicles,
these unnecessary storage and delay could be avoided, but the overall schedule will
be more complex because the schedule of one vehicle will influence the schedule of
another vehicle.
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Figure 3.5: Complex schedules

5. Synchronization. Because of the transshipment, changes in a vehicle’s route may
affect another vehicle’s route. Such influences might trigger a chain reaction in all
routes, which may make the original plan infeasible. When vehicles influence each
other, synchronization between vehicles is required in ST. Specifically, the synchro-
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nization coordinates vehicles and minimizes the changes to the original plan. The
complex schedules also complicate the time synchronization between vehicles. As
shown in Figure 3.6, there are three requests (r2, r3, and r4) that are served by a
flexible barge, a flexible truck fleet, and a train with fixed services. The requests are
transferred between these three services at two transshipment terminals and a vehi-
cle may transport more than one request at the same time. Request r2 is transferred
twice, i.e., from barge to truck and then to train. When a new request r1 is inserted
into the barge’s route, not only the barge’s schedule is influenced, but also the train’s
schedule is influenced due to the transshipment of request r2. Moreover, the barge
and train’s schedules are also influenced by the changes in the truck’s schedule due to
the transshipment of requests r2 and r4 at another transshipment terminal.

Route of a flexible 
barge/a flexible truck 

fleet/a fixed train
Request r1/r2/r3/r4 Port Train 

station
Pickup/

transshipment/
delivery

Trainsshipment 
terminal

Truck 
station

Insert request r1

Figure 3.6: Synchronization

3.4 Mathematical Model
This section presents the Mixed-integer Linear Programming model to formulate the STPP-
FS. There are multiple modes w ∈ W in a transport network. The transport network is
defined as a directed graph G = (N,A), where N represents the set of terminals (ports and
train/truck stations) and A= {(i, j)|i, j ∈N, i �= j} represents the set of arcs (roads, railways,
and inland waterways). P,D,T,O ⊆ N are sets of pickup terminals, delivery terminals,
transshipment terminals, and depots of vehicles. In ST, the same terminal could belong to
all P,D,T,O sets and be accessed by all transport modes. The nonnegative travel time τk

i j
equals the distance between i and j divided by speed vk of vehicle k. Note that distances are
different for different modes because different modes use different routes between i and j.
Moreover, the travel time τ′kr

i j of trucks is considered time-dependent, which means travel
time at peak periods will be longer than non-peak periods due to traffic congestion (Guo
et al. 2020).

The unit of capacity of vehicles is TEU. Barges and trains have fixed capacities and
a truck’s capacity is 1 TEU. We assume that each truck fleet has an unlimited number of
trucks. The pickup and delivery terminals of request r ∈ R are designated by p(r) and d(r).
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Let o(k) and o′(k) represent the starting and the ending depot of vehicle k ∈K. Some depots
may be the same terminals with pickup/delivery terminals, which makes some constraints of
pickup/delivery terminals, such as time window constraints, will also work on these depots
when the related vehicle does not serve the request. Dummy depots o(k) and o′(k) are
therefore created. Fixed vehicles can only go to terminals in predefined routes, and there
is an open time window at each terminal [ak

i ,b
k
i ], in which fixed vehicles can load/unload

containers.
A solution of the STPP-FS is a set of |K| routes that serve all requests and route k starts

and ends at (dummy) depots. At any moment, the number of containers carried simultane-
ously by vehicle k cannot exceed capacity uk. For every request r, terminals p(r) and d(r)
can be served by the same vehicle k, which means d(r) being served after p(r). Terminals
p(r) and d(r) can also be served by distinct vehicles k1 ∈ K and k2 ∈ K, and r is transferred
from k1 to k2, which means vehicle k2 must start its service at the transshipment terminal
after vehicle k1 which unloads the containers. Request r needs to be picked up in time
window [ap(r),bp(r)] and delivered in time window [ad(r),bd(r)], but the delivery time can
exceed bd(r) with a delay penalty. Vehicle k is allowed to wait for containers at terminal i
and request r is allowed to be stored at terminal i when the vehicle has not arrived.

The objective of the proposed STPP-FS is minimizing cost (Euros), which consists of
transit cost (F1), transfer cost (F2), storage cost (F3), carbon tax (F4), waiting cost (F5), and
delay penalty (F6), as shown in Equations (3.1)-(3.7) (Guo et al. 2020). The emissions are
calculated using an activity-based method by Demir et al. (2016) and the amount of emis-
sions is related to vehicle type, distance, and amount of containers. The decision variables
are shown in Table 3.2. The binary variables xk

i j and ykr
i j decide whether vehicle k uses arc

(i, j) or not and whether vehicle k carries request r on arc (i, j) or not, respectively. The
binary variable zk

i j is used for subtour elimination. We also have the binary variable skl
ir ,

which decides whether request r is transferred from vehicle k to vehicle l at terminal i or
not. For barge and train services, constraints for both vehicle flow (constraints related to
variables xk

i j) and request flow (constraints related to variables ykr
i j ) are considered. Some

constraints for vehicle flows do not apply to truck services, because truck services in this
study are truck fleets and trucks in a truck fleet may serve different requests with different
schedules.

Table 3.2: Decision variables

xk
i j Binary variable; 1 if vehicle k uses the arc (i, j), 0 otherwise.

ykr
i j Binary variable; 1 if request r transported by vehicle k uses arc (i, j), 0 otherwise.

zk
i j Binary variable; 1 if terminal i precedes (not necessarily immediately) terminal j in the route

of vehicle k, 0 otherwise.
skl

ir Binary variable; 1 if request r is transferred from vehicle k to vehicle l ̸= k at transshipment
terminal i, 0 otherwise.

min F = F1 +F2 +F3 +F4 +F5 +F6 (3.1)

F1 = ∑
k∈K

∑
(i, j)∈A

∑
r∈R

(c1
kτ

k
i j + c1′

k dk
i j)qrykr

i j (3.2)



3.4 Mathematical Model 35

F2 = ∑
k,l∈K,k ̸=l

∑
r∈R

∑
i∈T

(c2
k + c2

l )qrskl
ir + ∑

k∈K
∑

(i, j)∈Ap

∑
r∈R

c2
kqrykr

i j + ∑
k∈K

∑
(i, j)∈Ad

∑
r∈R

c2
kqrykr

i j

(3.3)

F3 = ∑
k,l∈K,k ̸=l

∑
r∈R

∑
i∈T

c3
kqrskl

ir (t
′lr
i − tkr

i )+ ∑
k∈K

∑
(i, j)∈Ap

∑
r∈R

c3
kqrykr

i j (t
′kr
i −ap(r)) (3.4)

F4 = ∑
k∈K

∑
(i, j)∈A

∑
r∈R

c4
kekqrdk

i jy
kr
i j (3.5)

F5 = ∑
k∈Kb&t

∑
i∈N

c5
ktwait

ki (3.6)

F6 = ∑
r∈R

cdelay
r qrtdelay

r (3.7)

Constraints (3.8)-(3.26) are the spatial constraints and Constraints (3.27)-(3.49) are the
time-related constraints.

Constraints (3.8)-(3.15) are typical constraints in PDP. Constraints (3.8) and (3.9) ensure
that a vehicle begins and ends at its begin and end depot, respectively. Constraints (3.8)-(3.9)
are modified from Rais et al. (2014), and these constraints only limit the routes of barges and
trains because each truck service is considered as a fleet of trucks which might have different
routes. Constraints (3.10)-(3.12) are the subtour elimination constraints and provide tight
bounds among several polynomial-size versions of subtour elimination constraints (Öncan
et al. 2009). Constraints (3.13) and (3.14) ensure that containers for each request must be
picked and delivered at its pickup and delivery terminal, respectively. Constraints (3.15) are
the capacity constraints.

∑
j∈N

xk
o(k) j ⩽ 1 ∀k ∈ Kb&t (3.8)

∑
j∈N

xk
o(k) j = ∑

j∈N
xk

jo′(k)
∀k ∈ Kb&t (3.9)

xk
i j ⩽ zk

i j ∀i, j ∈ N, ∀k ∈ Kb&t (3.10)

zk
i j + zk

ji = 1 ∀i, j ∈ N, ∀k ∈ Kb&t (3.11)

zk
i j + zk

jp + zk
pi ⩽ 2 ∀i, j, p ∈ N, ∀k ∈ Kb&t (3.12)

∑
k∈K

∑
j∈N

ykr
p(r) j = 1 ∀r ∈ R (3.13)

∑
k∈K

∑
i∈N

ykr
id(r) = 1 ∀r ∈ R (3.14)

∑
r∈R

qrykr
i j ⩽ ukxk

i j ∀(i, j) ∈ A, ∀k ∈ K (3.15)

Constraints (3.16) and (3.17) facilitate transshipment. Constraints (3.16) ensure that
the transshipment occurs only once per transshipment terminal. Constraints (3.17) forbid
transshipment between the same vehicle k.
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∑
j∈N

ykr
ji + ∑

j∈N
ylr

i j ⩽ skl
ir +1 ∀r ∈ R, ∀i ∈ T, ∀k, l ∈ K (3.16)

skk
ir = 0 ∀r ∈ R, ∀i ∈ T, ∀k ∈ K (3.17)

Flow conservation constraints of both vehicles and requests are handled by Constraints
(3.18)-(3.23). Constraints (3.18) represent flow conservation for vehicle flow and (3.19)-
(3.22) represent flow conservation for request flow. Constraints (3.19) are for regular termi-
nals and Constraints (3.20) are for transshipment terminals. Constraints (3.21) and (3.22)
ensure the flow conservation of requests when vehicle k passes the transshipment terminal
but no transfer happens. Constraints (3.21) and (3.22) consider a special case in STPP-FS,
where request r is not transferred at terminal i ∈ T but vehicle k passes terminal i due to
operations for other requests. Constraints (3.23) link ykr

i j and xk
i j variables to guarantee that

for a request to be transported by a vehicle, that vehicle needs to traverse the associated arc.

∑
j∈N

xk
i j− ∑

j∈N
xk

ji = 0 ∀k ∈ Kb&t, ∀i ∈ N \o(k),o′(k) (3.18)

∑
j∈N

ykr
i j − ∑

j∈N
ykr

ji = 0 ∀k ∈ K, ∀r ∈ R, ∀i ∈ N \T, p(r),d(r) (3.19)

∑
k∈K

∑
j∈N

ykr
i j − ∑

k∈K
∑
j∈N

ykr
ji = 0 ∀r ∈ R, ∀i ∈ T \ p(r),d(r) (3.20)

∑
j∈N

ykr
i j − ∑

j∈N
ykr

ji ⩽ ∑
l∈K

slk
ir ∀k ∈ K, ∀r ∈ R, ∀i ∈ T \ p(r),d(r) (3.21)

∑
j∈N

ykr
ji − ∑

j∈N
ykr

i j ⩽ ∑
l∈K

skl
ir ∀k ∈ K, ∀r ∈ R, ∀i ∈ T \ p(r),d(r) (3.22)

ykr
i j ⩽ xk

i j ∀(i, j) ∈ A, ∀k ∈ K, ∀r ∈ R (3.23)

Characteristics of ST are considered in Constraints (3.24)-(3.26). Constraints (3.24)
avoid vehicles running on unsuitable routes, for example, the truck cannot run on inland
waterways. Constraints (3.25) take care of predefined routes for certain vehicles. Con-
straints (3.26) ensure the transshipment occurs in the right transshipment terminal because
some transshipment terminals only allow the transshipment between two specific modes.
When the containers need to be transferred from barges to trucks, terminals that only allow
transshipment between barges and trains will not be considered. Constraints (3.24)-(3.26)
are unique to this model because they consider the characteristics of vehicle routing in ST.

xk
i j = 0 ∀k ∈ Kw, ∀(i, j) ∈ A\Aw, ∀w ∈W (3.24)

xk
i j = 0 ∀k ∈ Kfix, ∀(i, j) ∈ A\Ak

fix (3.25)

skl
ir = 0 ∀k ∈ Kw1 , ∀l ∈ Kw2 , ∀i ∈ T \T w2

w1
, ∀r ∈ R, ∀w1,w2 ∈W (3.26)

Constraints (3.27)-(3.31) are time constraints related to services, which are necessary
for both fixed and flexible services. Constraints (3.27) guarantee that service start time is
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later than the arrival time of containers. Constraints (3.28) ensure that the service finish time
equals service start time plus service time. Constraints (3.29) maintain that the departures
happen only after all services are completed. Constraints (3.30) ensure that the request’s
arrival time cannot be earlier than the vehicle’s arrival time. Constraints (3.31) define the
vehicle’s last service start time.

tkr
i ⩽ t ′kr

i ∀i ∈ N, ∀k ∈ K, ∀r ∈ R (3.27)

t ′kr
i + t ′′kr

i ∑
j∈N

ykr
i j ⩽ tkr

i ∀i ∈ N, ∀k ∈ Kb&t, ∀r ∈ R (3.28)

tk
i ⩾ tkr

i ∀i ∈ N, ∀k ∈ Kb&t, ∀r ∈ R (3.29)

tk
i ⩽ tkr

i ∀i ∈ N, ∀k ∈ Kb&t, ∀r ∈ R (3.30)

t ′ki ⩾ t ′kr
i ∀i ∈ N, ∀k ∈ Kb&t, ∀r ∈ R (3.31)

Constraints (3.32) and (3.33) ensure that the time on the route of barges or trains is
consistent with the distance travelled and speed, and Constraints (3.34) and (3.35) ensure
the time on the route of trucks. When waiting time is not considered, Constraints (3.32)
are enough to take care of arrival time tk

j . Since vehicles should wait at terminals in this
study, Constraints (3.33) need to be added to restrict travel time tightly and avoid wrongly
adding waiting times to tk

j (tk
j > tk

i +τk
i j). Constraints (3.36) and (3.37) take care of the time

windows for pickup terminals and fixed terminals, respectively.

tk
i + τ

k
i j− tk

j ⩽ M(1− xk
i j) ∀(i, j) ∈ A, ∀k ∈ Kb&t (3.32)

tk
i + τ

k
i j− tk

j ⩾−M(1− xk
i j) ∀(i, j) ∈ A, ∀k ∈ Kb&t (3.33)

tkr
i + τ

k
i j− tkr

j ⩽ M(1− ykr
i j ) ∀(i, j) ∈ A, ∀k ∈ Ktruck (3.34)

tkr
i + τ

k
i j− tkr

j ⩾−M(1− ykr
i j ) ∀(i, j) ∈ A, ∀k ∈ Ktruck (3.35)

t ′kr
p(r) ⩾ ap(r)y

kr
i j , tkr

p(r) ⩽ bp(r)+M(1− ykr
i j ) ∀(i, j) ∈ A,∀r ∈ R, ∀k ∈ K (3.36)

tkr
i ⩾ ak

i ykr
i j , tkr

i ⩽ bk
i (y

kr
i j +M(1− ykr

i j )) ∀(i, j) ∈ A, ∀r ∈ R, ∀k ∈ Kfix (3.37)

Constraints (3.38) are time constraints for transshipment. If there is a transshipment
from vehicle k to vehicle l, but vehicle l arrives before vehicle k departs, vehicle l can wait
until vehicle k completes its unloading. Constraints (3.39) and (3.40) calculate waiting time
and delay time, respectively, and these constraints are used to reduce waiting times and
delay costs.

tkr
i − t ′lri ⩽ M(1− skl

ir ) ∀r ∈ R, ∀i ∈ T, ∀k, l ∈ K, k ̸= l (3.38)

twait
ki ⩾ t ′ki − tk

i ∀i ∈ N, ∀k ∈ Kb&t (3.39)

tdelay
r ⩾ (tkr

d(r)−bd(r)) ∑
i∈N

ykr
id(r) ∀r ∈ R, ∀k ∈ K (3.40)

Constraints (3.41) to (3.48) are imposed to linearize the time-dependent travel time func-
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tions of trucks and Constraints (3.49) take care of the arrival time of trucks (Guo et al. 2020,
Lin et al. 2013).

t̃kr
i = tkr

i −24nkr
i ∀k ∈ Ktruck, ∀i ∈ N, ∀r ∈ R (3.41)

t̃kr
i = ∑

b∈{1,2...,B}
ζ

b
irktb ∀k ∈ Ktruck, ∀i ∈ N, ∀r ∈ R (3.42)

∑
b∈{1,2...,B}

ζ
b
irk = 1 ∀k ∈ Ktruck, ∀i ∈ N, ∀r ∈ R (3.43)

∑
m∈{1,2...,B−1}

ξ
m
irk = 1 ∀k ∈ Ktruck, ∀i ∈ N, ∀r ∈ R (3.44)

ζ
1
irk ⩽ ξ

1
irk ∀k ∈ Ktruck, ∀i ∈ N, ∀r ∈ R (3.45)

ζ
B
irk ⩽ ξ

B−1
irk ∀k ∈ Ktruck, ∀i ∈ N, ∀r ∈ R (3.46)

ζ
b
irk ⩽ ξ

b−1
irk +ξ

b
irk ∀k ∈ Ktruck, ∀i ∈ N, ∀r ∈ R, ∀b ∈ {2,3...,B−1} (3.47)

τ
′kr
i j = ζ

1
irk(θ1t1 +η1)+ ∑

b∈{2...,B}
ζ

b
irk(θb−1tb +ηb−1) ∀k ∈ Ktruck, ∀r ∈ R, ∀(i, j) ∈ A

(3.48)

(tkr
j − tkr

i )ykr
i j = τ

′kr
i j ∀(i, j) ∈ A, ∀k ∈ Ktruck, ∀r ∈ R (3.49)

Constraints (3.50) and (3.51) set variables x and y as binary variables.

xk
i j ∈ {0,1} ∀(i, j) ∈ A, ∀k ∈ K (3.50)

ykr
i j ∈ {0,1} ∀(i, j) ∈ A, ∀k ∈ K, ∀r ∈ R (3.51)

Compared with studies that model services as links and paths and ignore vehicle routing
(Demir et al. 2016, Ghane-Ezabadi and Vergara 2016, Guo et al. 2020, Hrušovskỳ et al.
2018, Moccia et al. 2011, Van Riessen et al. 2013), the vehicles and requests in this study
are planned simultaneously by the vehicle routing component (constraints related to xk

i j

variable), requests routing component (constraints related to ykr
i j variable), and the relations

between these two components (such as constraints related to the transshipment variable
skl

ir ). These components enable the proposed model to explore routes that are not defined in
advance.

As Constraints (3.25) and (3.37) do not work on flexible vehicles, the number of alter-
natives is significantly larger than the case of MCNF/PDND models in the literature (Demir
et al. 2016, Guo et al. 2020, Van Riessen et al. 2013). It makes the feasible region of the
proposed STPP-FS very large and the problem hard to solve. However, some parts of the
feasible region can be cut without losing any feasible solutions by using so-called valid in-
equalities (Cornuéjols 2008). We propose a novel set of valid inequalities (see Appendix
A.1), which are divided into three categories, i.e., valid inequalities related to requests, ve-
hicles, and transshipments.
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3.5 Adaptive Large Neighborhood Search
Due to the computational complexity, we develop an ALNS heuristic to solve the proposed
problem. In the literature, ALNS was proposed to solve PDP based on an extension of the
LNS heuristic, which obtains the best solution by using removal and insertion operators to
destroy and repair routes iteratively (Ropke and Pisinger 2006). To solve the STPP-FS in
this research, we adapt the traditional operators and design new ones in ALNS consider-
ing characteristics of ST. Compared with ALNS for PDPT in the literature (Masson et al.
2013, Qu and Bard 2012, Wolfinger 2021), the innovations of the proposed ALNS are (a)
getting the initial solutions by multiple methods (Section 3.5.1), (b) customizing operators
considering the characteristics of ST (Section 3.5.2), (c) providing feasibility check meth-
ods for fixed and flexible vehicles and synchronization methods for interdependent vehicles
(Section 3.5.3), and (d) using several performance improvement methods (Appendix A.3).

The pseudocode of the designed ALNS is shown in Algorithm 1. The input of the al-
gorithm is the sets of vehicles K, requests R, terminals N, and arcs A. The output is the
optimal solution found, denoted as Xbest . Rpool is a set of active requests that need to be
inserted to routes. ALNS finds (near) optimal solutions by using removal and insertion op-
erators. In the beginning, an initial solution Xinitial is found by the simple removal operator
and insertion operator, such as random removal and greedy insertion. Then, the ALNS al-
gorithm searches for solutions within a specified number of iterations, guided by objectives.
These iterations are divided into segments. At the beginning of each segment, the weights,
i.e., scores of past performance, of operators are refreshed and operators used in the next
segment are chosen based on the weights. In each iteration, routes will be destroyed and
repaired alternately until all requests are served, i.e., a feasible solution is found.

At the end of the iteration, a decision is made whether to accept current solution Xcurrent
obtained in this iteration by comparing it with the last solution Xlast obtained in the last
iteration. If the current solution is worse than the last solution, it will be accepted with a
probability p in order to avoid local optima easier. Simulated annealing idea is used and
probability p gradually declines in order to avoid local optima Ropke and Pisinger (2006),
as the following equation shows:

p = e
−(F(Xcurrent)−F(Xlast))

Ttemp (3.52)

where Ttemp > 0 is the temperature which starts from an initial temperature and gradually
decreases in every iteration by cooling rate, c, where 0 < c < 1.

3.5.1 Initial solution

In the literature, the initial solution is usually obtained from insertion operators from scratch
(Qu and Bard 2012, Ropke and Pisinger 2006, Wolfinger 2021). However, in ST, planning
from scratch may cause significant changes in the predefined schedules. The transport op-
erator may not be able to make significant changes due to external factors, such as port
schedules and reliable services required by shippers. Moreover, the more flexibility the op-
timization problem has, the harder it is to solve. Optimization based on fixed schedules
may reduce the complexities brought by flexibility. Therefore, the predefined fixed sched-
ules could be taken into account when designing the initial solution. We designed different
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Algorithm 1: ALNS algorithm
Input: K, R, N, A; Output: Xbest ; // Xbest means the best solution.
[K, R, N, A] = Preprocessing(K,R,N,A);
define the set of unserved requests as Rpool ; // Rpool represents the request pool.
obtain initial solution Xinitial; set Ttemp > 0 depending on Xinitial;
Xcurrent← Xinitial; Xlast← Xinitial; Xbest← Xlast; // Xcurrent/Xlast means the
current/last solution.

repeat
refresh weights and choose operators depending on weights at the beginning of each

segment;
Xcurrent← Xlast; [Xcurrent,Rpool] = RemovalOperator(Xcurrent,Rpool); f lag = False;

until the predefined number of iterations is reached;
while Rpool is not empty do

if f lag == True then
[Xcurrent,Rpool] = RemovalOperator(Xcurrent,Rpool)

else
f lag = True

end
[Xcurrent,Rpool] = InsertionOperator(Xcurrent,Rpool);
if insertion operator is a greedy type then

[Xcurrent,Rpool] = BundleInsertion(Xcurrent,Rpool)
end

end
[Xcurrent,Rpool] = SwapOperator(Xcurrent,Rpool);
if F(Xcurrent)< F(Xlast) then

Xlast← Xcurrent;
else

Xlast← Xcurrent with probability p = e
−(F(Xcurrent)−F(Xlast))

Ttemp ; // Update Xlast based on
the simulated annealing idea (Ropke and Pisinger 2006).

end
if F(Xlast)< F(Xbest) then

Xbest← Xlast;
end
Ttemp← Ttemp · c; // c is the cooling rate.

methods to obtain the initial solution:

1. Method R: By the Regret Insertion operator from scratch. This method does not
consider predefined fixed schedules.

2. Method S: Using the best solution of the problem with fewer flexibilities, e.g., the
best solution when all vehicles are fixed is used as an initial solution for the problem
with flexible trucks. This method obtains the solution of full flexibility step by step
and the complexity of the problem with flexible vehicles is reduced.

3. Method M: Using the optimal solution of a predefined fixed schedule and the optimal
solution is obtained by the matching model proposed by Guo et al. (2020).

There are two differences between method M and method S: (a) method M always uses
the solution without flexible vehicles as the initial solution for different flexibility levels,
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while method S uses the solution with fewer flexibilities which may have some flexible
vehicles; (b) method S’s initial solution is obtained by ALNS itself and it may be sub-
optimal, while method M uses the optimal solution of a predefined fixed schedule.

3.5.2 Operators in ALNS

There are many different operators in the literature (Grangier et al. 2016, Liu et al. 2019, Qu
and Bard 2012, Sarasola and Doerner 2020, Wolfinger 2021). Choosing the insertion and
removal operators not only needs to consider features of the studied problem but also the
balance between exploitation and exploration. How to use the historical experience and pre-
dict the future reward also need to be considered. In this work, Transshipment Insertion and
Node Removal operators consider the transshipments and specific modes (waterway and
railway) in ST. The Greedy Insertion, Most Constrained First insertion, and Worst Removal
operators are used for exploiting. Random Insertion, Random Removal, Route Removal,
and Related Removal (also called Shaw Removal) operators are responsible for exploring.
History Removal and Regret Insertion operators use the historical experience and predict
future situations, respectively. Besides insertion and removal operators, a novel Swap oper-
ator is proposed to make up for the disadvantages of using an insertion operator or a removal
operator alone.

Some operators have been reported in the literature (Danloup et al. 2018, Ropke and
Pisinger 2006). The following sections introduce customized operators in detail and the
others are introduced briefly.

Insertion operators

All insertion operators have two basic operations, i.e., inserting one request to one route and
multiple routes. When a request is inserted into one route of vehicle k, k will finish both
pickup and delivery and there is no transshipment. When a request is inserted into multiple
routes, firstly the request is segmented into multiple by potential transshipment terminals
and then each will be served by one vehicle, and containers are transferred between vehicles.

Greedy Insertion operator tries all possible solutions using one vehicle and more than
one vehicle and inserts the request into the best route(s) (Ghilas et al. 2016, Wolfinger 2021).

Transshipment Insertion operator also inserts requests greedily, but it only tries solu-
tions using more than one vehicle and transshipment (Masson et al. 2013, Wolfinger 2021).

Random Insertion operator chooses vehicles and positions randomly and inserts the
request once the solution is feasible (Danloup et al. 2018, Qu and Bard 2012).

Regret Insertion operator inserts a request into the route based on regret values. This
operator first tries all possibilities of inserting request r into all routes, then determines the
regret value for every alternative:

cr =△ Fkth
r − △ F lowest

r (3.53)

where cr is the regret value; △ Fr is the insertion cost of r; △ Fkth
r is the kth lowest insertion

cost and △ F lowest
r is the lowest insertion cost. If now the alternative with △ F lowest

r not be
chosen, then it may use a higher cost to insert r in future iterations, therefore cr can represent
a kind of look-ahead information.
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In the literature, the r with the highest cr is usually inserted in one construction step
(Qu and Bard 2012, Ropke and Pisinger 2006), therefore n (the number of requests in the
request pool) steps are needed to insert all requests. In each step, this operator tries all
possible routes and positions for all requests in the requests pool. However, it will cause un-
necessary computation when trying to insert requests into the other unchanged routes in the
next step (experiments are provided in Section 3.6.5). To avoid such repetitive computation,
multiple requests will be tried to be inserted into routes in one construction step. When only
inserting one request in one step, at the next step the requests can choose new alternatives
based on changed route(s) in this step. When inserting multiple requests, we may lose such
alternatives. But these alternatives may be found using other operators and many vehicles
have fixed schedules that will not be changed in ST. Therefore, we choose to insert multiple
requests in each step to save the computation time.

Because these requests may use the same vehicle in the alternatives, they cannot be
inserted into routes one by one depending on the sort of regret values. The possible inserted
requests are divided into two groups, (a) requests which have no conflict with other requests,
and (b) requests which have conflicts with other requests. Two requests have conflicts when
both requests use the same vehicle(s). Notice that if the vehicle is fixed, there is no conflict
because the route and schedule of the fixed vehicle will not be changed. The requests in
group (a) are inserted into routes directly. For requests in group (b), the requests which tried
to be inserted into the same vehicle k will be sorted depending on regret values. Let rregret

k
and rsecond

k (if exist) represent the request with the highest and second-highest regret value
among all requests which are tending to be inserted into route k. If rregret

k only uses vehicle
k, then it can be inserted. If rregret

k uses multiple vehicles, for example k and l, the operator
will check whether there are other requests that intend to use l. If only rregret

k intends to
use l, rregret

k can be inserted. Otherwise, if the regret values of rregret
k bigger than or equal

to regret values of rregret
l , rregret

k will be inserted; if smaller, rsecond
k (if exist) will be inserted

when rsecond
k only use k. Other requests will not be inserted in this step.

Most Constrained First Insertion operator sorts the requests depending on the fol-
lowing weighted function of the distance between pickup and delivery terminal when using
trucks (dtruck

p(r)d(r)), load, and time windows:

Cr = ϖ1dtruck
p(r)d(r)+ϖ2/(|bp(r)−ap(r)|+|bd(r)−ad(r)|)+ϖ3qr (3.54)

where ϖ1, ϖ2, and ϖ3 are the corresponding weights (Danloup et al. 2018, Qu and Bard
2012). Note that each component needs to be normalized by dividing the largest value of
all requests. The larger the value of Cr, the harder request r fits into a route. Therefore, this
operator considers the r with a larger Cr first.

Removal operators

All removal operators have a basic operation, i.e., removing one request. It means removing
the pickup, transshipment, and delivery of this request from routes, and then recalculating
the times of relevant routes. The main difference between these removal operators is that
the chosen requests are different.

Worst Removal operator removes the requests with the highest cost in each route (Ghi-
las et al. 2016, Wolfinger 2021).
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Random Removal operator selects part of vehicles and removes one request from each
vehicle randomly (Danloup et al. 2018, Qu and Bard 2012).

Related Removal operator removes a request r randomly and then removes part of
similar requests r′ according to distance, time, load, and vehicles which can serve r and r′

(Danloup et al. 2018, Ropke and Pisinger 2006).
History Removal operator uses historical information to remove requests which may

be in the wrong position and guides insertion operators to insert requests which may be
inserted at a lower cost.

All insertion operators record all insertion costs, and reserve the lowest insertion cost
clowest

r for each r. History Removal operator calculates the gap ∆cr between current insertion
cost ccurrent

r and clowest
r and sorts the requests in descending order according to ∆cr. If there is

no request whose ∆cr > 0, then the algorithm goes to the next iteration directly. If there are
n requests whose ∆cr > 0, this operator removes max{σn,1} (σ is the removal proportion)
requests from these n requests. Requests which are not inserted at the lowest-cost position
may also make it possible for other requests to be inserted cheaply, and thus allow an overall
cheaper solution. Therefore a removal proportion of σ is used in this operator.

Route Removal Insertion operators may not be able to find feasible solutions based on a
small number of removals in a short time. In this case, the route needs to be cleared, which
means all requests in a route are removed to the request pool. Another idea behind this
operator is to guide the search in the direction of minimizing the number of used vehicles
and making full use of capacity.

First, this operator obtains a random number n with a given numerical distribution
[x1,x2, ...,x3] for [1,2, ...,m], where m is the number of routes which served requests, x1 =
1/ξ and xi = xi−1/ξ when i > 1. Then, it chooses n vehicles according to a probability
ψ = uava

k /(∑k∈Kserve uava
k ), where uava

k is available capacity and Kserve is a set of vehicles
which have served requests. The vehicle whose capacity has not been fully made use of will
have a higher probability to be cleared. In an extreme case, all routes will be cleared and
all requests fill the request pool. In this case, this operator may change the search direction
from the beginning and thus provide a larger neighborhood for insertion operators.

Node Removal In most cases, barges and trains in ST carry multiple requests, therefore
removing part of the requests may not change the routes of vehicles, as shown in Fig-
ure 3.7(a). However, the cost-savings are usually obtained from minimizing distance, i.e.,
changing the routes of vehicles. To obtain better solutions quicker, the Node Removal op-
erator is designed, which deletes visited terminals in the routes, as shown in Figure 3.7(c).
Similar to the Route Removal operator, this operator chooses n vehicles based on a distri-
bution and probability ψ. One terminal of each route is randomly chosen and all requests
which visit this terminal will be removed.

Swap operator

In the following cases, the requests will be wrongly placed in routes and it’s difficult for the
operators in previous sections to find the optimal solution:

1. When vehicle k is out of capacity but the served requests of vehicle k are not the
most appropriate. For example, requests 1 and 2 should be served by vehicle k in the
optimal solution, but vehicle k is occupied by requests 3 and 4 in the current solution.
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Route of bargeRequest r1/r2/r3/r4 Port Pickup/deliveryRequest / / /

Remove 
terminalRemove 

request

Remove

(a) the route after 
removing a request

(b) the original route
(c) the route after 

removing a terminal 

Figure 3.7: Difference between removing a request and a terminal in ALNS

However, operators in previous sections cannot remove requests 3 and 4 and insert 1
and 2 precisely.

2. When vehicle k has available capacity but requests cannot be served by vehicle k due
to other constraints. For example, vehicle k goes to pickup terminal A of request 1
at time 20 and arrives at delivery terminal B at time 30. If request 2’s due time is 20
at delivery terminal B, then it cannot be served by vehicle k because vehicle k needs
to go to terminal A first. When there are more requests (requests 3-5) with a similar
situation, the best solution should use vehicle k to serve requests 2-5 rather than only
request 1 to make full use of its capacity.

The reason behind it is that Greedy Insertion and Worst Removal operators only care about
whether the solution is the best one for the individual request, rather than overall requests.
Regret Insertion considers that inserting which request will let us the most regret, but it
still cannot find the best solution precisely. The Historical Removal operator removes the
requests that are not in the historical best position, which may remove requests 1 and 2
in case 1. But it will not remove requests 3 and 4 because they are in their best position.
Therefore, requests 1 and 2 still cannot be inserted into vehicle k because k’s capacity is
full. It’s difficult to solve this problem using Random Insertion/Removal operators because
they change routes randomly.

To make up for the shortcomings of existing operators, a Swap operator is designed.
The Swap operator is a combination of History Removal and Greedy Insertion operators.
It uses the History Removal operator to find the requests Rswap that are not served by the
historical best vehicles Kswap, but only records them rather than removing them directly. As
shown in Figure 3.8, for all requests r ∈ Rswap, the following steps will be iterated:

1. Identification: The Swap operator identifies requests R′r
swap that may be swapped

with r. Let Kr
swap ⊆ Kswap represents historical best vehicles which serve request r.

For each kr
swap ∈ Kr

swap, if it is case 1, all requests served by vehicle kr
swap belong to

R′r
swap; if it is case 2 and vehicle kr

swap is not a fixed vehicle or truck, all requests
served by vehicle kr

swap also belong to R′r
swap. No request belongs to R′r

swap when
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1. Identification
Identify requests r'1, r'2, and r'3;

Origninal overall cost: 250 euros

2. Attempt
Overall cost after swapping r with

r'1/r'2/r'3 is 300/200/400 euros

3. Swap
Swap r with r'2 because the 
overall cost is the lowest 

Identification Attempt

Request r/r'1/r'2/r'3

kr
swap

Attempt to insert 
to route k greedily

kr
swap

Swap

kr
swap

kr
swap

kr
swap

k' ∈ K\kr
swap

k' ∈ K\kr
swap

k' ∈ K\kr
swap

k' ∈ K\kr
swap

k

Insert to route k
greedily

k

Terminal

Figure 3.8: Three steps in the Swap operator

vehicle kr
swap is a truck or fixed vehicle because requests served by truck fleet or using

fixed schedule will not influence each other.

2. Attempt: All r′ ∈ R′r
swap will be tried to be swapped with r one by one. In ev-

ery attempt, firstly, the Swap operator removes request r and one possible request
r′ ∈ R′r

swap; then, Greedy Insertion operator is used to insert request r/r′ into vehicle
kr

swap/k′ ∈ K \ kr
swap; finally, the overall cost after the swap attempt is recorded and

routes are restored as before.

3. Swap: If the lowest overall cost of all possible swaps is lower than the overall cost
without swap, request r′ with the lowest overall cost will be swapped with request r.

3.5.3 Feasibility check and synchronization
The insertion may cause infeasible solutions, e.g., the capacity constraints may be violated
after an insertion. Both insertion and removal operators will affect the schedules of the op-
erated route as well as the relevant routes. After the insertion of each request or segment,
(a) the times of the operated route will be updated, (b) vehicles that influence each other
will be synchronized, and (c) the feasibility of the current solution will be checked. After
the removal of each request, the (a) and (b) will be executed but (c) is not required because
removal will not cause infeasible solutions. In this section, feasibility checking and syn-
chronization in ALNS are highlighted, and how to achieve flexible routing and schedule are
illustrated in detail.

Same with the mathematical model, the following constraints will be checked in ALNS:

1. Subtour elimination constraints (3.10)-(3.12);

2. Capacity constraints (3.15);
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3. Suitable routes constraints (3.24);

4. Time constraints (3.27)-(3.49).

Other constraints are satisfied automatically in the construction of routes, such as flow con-
servation (3.18)-(3.23), or preprocessing procedure, such as fixed routes constraints (3.25).
The subtour elimination constraints can be guaranteed by checking whether there are du-
plicate terminals on the route. When picking up/delivering requests, the current load will
increase/decrease by the quantity qr. If the current load exceeds the capacity of the vehi-
cle, the capacity constraints will be violated. The suitable route constraints are ensured by
checking whether the adjacent terminals in the routes are the same as unsuitable routes.

The difficulty lies in satisfying the time constraints. The times in the proposed model
include time windows of requests, open time windows of terminals for fixed vehicles, load-
ing/unloading time, waiting time, storage time, delay time, fixed travel time of barges and
trains, and time-dependent travel time of trucks. Detailed feasibility checking on time con-
straints is shown in flow charts in Appendix A.2. In this section, some key points are listed,
including waiting time and infeasible cases for barges and trains, time-dependent travel time
for trucks, and time synchronization.

The vehicle will wait when it departs earlier than the fixed departure time (tk
j < bk

j),

arrives before pickup time window (t ′kj < ap(r)), and arrives earlier than the containers at
transshipment terminal (t ′kj < T dr

j). If the vehicle’s departure time is later than open time
window (tk

j > bk
j) or pickup time window (tk

j > bp(r)), the route of vehicle k is infeasible.

At peak period, the travel time of trucks τ′kr
i j will be longer than normal due to conges-

tions, i.e., τ′kr
i j is time-dependent. When the truck deliveries request at the transshipment

terminal or delivery terminal, the time-dependent travel time τ′kr
i j will be calculated depend-

ing on the departure time at the last terminal tkr
i by function ftruck:

τ
′kr
i j = θmtkr

i +ηm (3.55)

where θm and ηm are the slope and intersection of ftruck and can be calculated based on
specific time period m within a day, tkr

i , and travel time at non-peak period τk
i j (Guo et al.

2020).
In ST with flexible services, vehicles are highly dependent on each other and synchro-

nization is needed. The synchronization means that when a vehicle influences other vehi-
cles, these vehicles’ schedules will be re-planned and vehicles could cooperate to obtain
the best solution. Such cooperation could be changing pickup/delivery time or extend-
ing/shortening the waiting or storage time. As shown in Figure 3.9, Vehicles l1-l3 load
containers unloaded by vehicle k1, therefore the changes on the route of vehicle k1 will in-
fluence vehicles l1-l3. The routes of vehicles l1-l3 are called relevant routes of vehicle k1.
Similarly, routes of vehicles m1-m3/m4-m6/m7-m9 are relevant routes of vehicle l1/l2/l3. A
small change of a vehicle will cause a chain reaction on relevant routes. For example, at the
transshipment terminal, if the pickup vehicle k1 delivers request r1 later than the planned
time, the route plans of vehicles l2 and m5 need to be synchronized to find suitable arrival
times to load request r1. a chain reaction may be caused by a small change of one route,
and all relevant routes need to be synchronized. When a new request r2 is inserted into the
route of vehicle l2, the request r1 will be influenced because it is transported by the relevant
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route m5, and the schedule of r2 will be recalculated using the information of k1, l2, and
m5. Algorithm 2 shows the synchronization on relevant routes, in which the initial input is
the original changed route. To check all relevant routes shown in Figure 3.9, this function
is a recursion function. Only when all relevant routes meet the time constraints, the current
solution is feasible, otherwise, the synchronization will stop and return “infeasible”.

Route of vehicle k1 
and k1 serve request r1

TerminalRequest r1/
New request r2

DeliveryPickup

l1

k1

l2

l3

m1

m2

m3 m4
m5

m6
m7

m8

m9

k1

Figure 3.9: Chain reaction and synchronization.

Algorithm 2: Synchronization

Input: relevant routes; Output: feasibility;
for route ∈ relevant routes do

update pickup/delivery time and extend/shorten the waiting or storage time of
influenced requests;

if route does not satisfy time constraints then
return infeasible

else
obtain relevant routes of route;
Synchronization(relevant routes)

end
end
return feasible;

3.5.4 Comparison with (A)LNS for PDPT in the literature
A detailed comparison between the developed ALNS and the existing (A)LNS for PDPT
in the literature is presented in Table 3.3. When an operator is used in only one paper, it is
called the special operator of this paper. Although some operators proposed in the literature
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have similar functions to the operators designed in this study, there are still some differences.
For example, the Route Removal operator used by Danloup et al. (2018) chooses a route
randomly or depending on the number of visited nodes, while in this study, it chooses a route
depending on available capacity. Besides, in this study, we developed a Swap operator to
enhance the local search, and the experiments (Section 3.6.5) show that the solution quality
is improved by using this new operator. Several performance improvement methods are also
used in this study, including preprocessing heuristics, hash table, and bundle insertion, and
they are illustrated in Appendix A.3.

In freight transport, such as urban freight transport, all customer nodes are usually dis-
tinct, while many requests in ST share the same terminal. Therefore the maximum number
of nodes in this study is fewer than others. Moreover, there are usually several dedicated
transfer nodes in freight transport, which cannot be customer nodes. In comparison, almost
all terminals are transshipment terminals in ST, which also have functions as pickup/delivery
terminals. It increases the possibility of transshipments and the connections between vehi-
cles. The number of requests in ST is also bigger than the number in freight transport. In
Table 3.3, the maximum number of requests is 100 in the literature, while there are up to
1600 requests in the case studies in this work. A large proportion of transshipment terminals
together with a large number of requests make the routes of vehicles in ST highly depen-
dent on each other. In an extreme case, a small change in one route may cause changes in
several dozens of vehicles because this change will influence subsequent terminals in this
route and each terminal may cause a chain reaction as in Figure 3.9. Therefore, ST brings
more complexity to freight transport when there are many requests. To address this issue,
we propose the synchronization algorithm (Algorithm 2), swap operator, and performance
improvement methods.

Table 3.3: Comparison between the proposed ALNS and existing (A)LNS for PDPT in the literature

Article Qu and Bard
(2012)

Ghilas et al. (2016) Danloup et al. (2018) Wolfinger (2021) this study

Removal operator Worst - ✓ ✓ ✓ ✓
Random ✓ ✓ ✓ ✓ ✓
Route ✓ ✓ ✓ - ✓
History - ✓ - - ✓
Related ✓ ✓ ✓ ✓ ✓
special - Late-arrival, Worst-

distance
Cluster, Many-split - Node

Insertion operator Greedy ✓ ✓ - ✓ ✓
Random ✓ - ✓ ✓ ✓
Regret ✓ - - ✓ ✓
Most constrained ✓ - ✓ ✓ ✓
Transshipment - ✓ - ✓ ✓
special - Second best, Best λ

feasible
- - -

Swap operator - - - - ✓

Choosing operator adaptive adaptive random random adaptive

Acceptance criterion best solution
only

simulated annealing fixed percentage of
degradation allowed

fixed percentage of
degradation allowed

simulated annealing

Performance improve-
ment

hash table - - - preprocessing, hash
table, bundle inser-
tion

Transshipment loca-
tion

dedicated lo-
cation

dedicated location dedicated location dedicated location transshipment termi-
nals

Instance size N - 108 100 55 10
T 1 5 5 5 10
R 25 100 50 100 1600
K 3 24 unlimited 6 116

Max. # of transship-
ments

once allow twice once allow twice allow twice

–: not considered or stated in the related paper; N/T/R/K: maximum number of nodes/transshipment nodes/requests/vehicles.
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3.6 Numerical experiments
The proposed ALNS (Algorithm 1) is compared with the developed MILP model and two
benchmark methods from the literature that do not consider flexible services, namely Demir
et al. (2016) and Guo et al. (2020). The transport network information and request data
can be found in these two papers. In the comparison with the MILP model, we compared
the exact approach by the commercial solver (Gurobi) and ALNS in terms of the quality
of solutions and computation time. In the benchmarking on small instances, firstly we
compared with results in (Demir et al. 2016) under different weights for the individual
objectives, then we designed a scenario using the transport network of Guo et al. (2020)
to illustrate the function of flexible vehicles under congestion. In the benchmarking on
large instances, we compared with the model in Guo et al. (2020) with up to 10 terminals,
116 services (vehicles), and 1600 requests. Most parameters are derived from Guo et al.
(2020), Demir et al. (2016), and the rest parameters are defined by tuning ALNS. Part of the
parameters is shown in Table 3.4.

Table 3.4: Parameters used in the paper

parameter value parameter value parameter value
c1

truck 30.98 c1
train 7.54 c1

barge 0.6122
c1′

truck 0.2758 c1′
train 0.0635 c1′

barge 0.0213
c2

truck 3 c2
train 18 c2

barge 18
c3

truck 1 c3
train 1 c3

barge 1
c4

truck 8 c4
train 8 c4

barge 8
c5

truck 1 c5
train 1 c5

barge 1
etruck 0.8866 etrain 0.3146 ebarge 0.2288
γ1−4 0.25 ξ 1.3 σ 0.5

ς 1.1 ρ 0.2 ϕ 1.3
t1 0 t2 5 t3 7
t4 9 t5 13 t6 13
t7 17 t8 19 t9 21
t10 24 α 2 β 1.5
ϖ1 0.5 ϖ2 0.2 ϖ3 0.3

Note that the cost parameters in Table 3.4 are used in the comparison with results of
Guo et al. (2020). Demir et al. (2016) use different cost parameters for different vehi-
cles/terminals. The values of other parameters which have different values for different
vehicles/requests/terminals and all instances can be found at a research data website3. All
experiments are implemented in Python 3.7 and run on Linux with 62 GB of memory and
an Intel Xeon E5 CPU with a 2.40GHz core.

We consider three levels of flexibility with an increasing degree:

1. Level 0 (L0): all vehicles are fixed except the flexibilities considered by Demir et al.
(2016) and Guo et al. (2020) when compared with them;

3https://figshare.com/s/2bbc4c63fd9a7200594f

https://figshare.com/s/2bbc4c63fd9a7200594f
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2. Level 1 (L1): trucks have flexible routes and schedules, including flexible due time,
waiting time, storage time, and departure time;

3. Level 2 (L2): both trucks and barges have flexible routes and schedules.

At Level 0, the initial solution is obtained by the Regret Insertion operator. Except for Level
0, the initial solution is obtained in three different ways, as mentioned in Section 3.5.1. It
is worth mentioning that the proposed model allows more specific flexibility levels, e.g.,
only part of the barges can be flexible. This study mainly shows the potential of flexibility
and specific flexibility levels are not considered. The maximum number of segments of a
request is also adjustable in the proposed model and it is set to three in the case studies.

3.6.1 Comparison with the exact approach

Table 3.5 shows the comparison between the exact approach (by Gurobi) and ALNS. All in-
stances are based on the transport network with 116 vehicles published in Guo et al. (2020).
There are ten terminals in the lower Rhine-Alpine corridor, and two or five of them are se-
lected as transshipment terminals randomly. One, three, and five request(s) are randomly
chosen from instances in Guo et al. (2020) and tested under different flexibility levels. All
experiments are repeated three times to obtain the average values of costs and computation
time. For all instances in Table 3.5, there are significant differences in both costs and com-
putation time. ALNS gets the best solution in a few seconds, while the exact approach needs
5 min for the smallest instance. When the numbers of requests and transshipment terminals
increase, the computation time of the exact approach increases dramatically and no solution
is obtained in a limited time (12h) when there are five requests at L2. Increasing the number
of transshipment terminals decreases the costs of ALNS, while costs of the exact approach
may be higher because it cannot find the optimal solution in the limited time. Moreover,
at L0, both the exact approach and ALNS can find the optimal solution, although the exact
approach needs an obviously longer time. At L1, the exact approach cannot find the optimal
solution within 12 hours when there are five transshipment terminals and more than three
requests. At L2, the exact approach cannot find the optimal solution for all instances in
Table 3.5, while ALNS finds solutions with significantly lower costs.

3.6.2 Optimization with and without flexibility under different weight
combinations

The transport network studied by Demir et al. (2016) is located in the Danube region be-
tween Hungary and Germany, which consists of 10 terminals including inland waterway
ports and railway terminals and 3 barge, 18 train, and 11 truck services. Demir et al. (2016)
assume trucks can depart with a flexible time and they also consider storage time but storage
cost is not included in the objective, i.e., F3 = 0 in their model. To make a fair comparison,
we do not consider storage cost in the objective function when comparing with Demir et al.
(2016). Moreover, they compare results under different weights for service cost, penalty
cost, and emissions cost. Therefore, the objective is as follows:

F = w1(F1 +F2 +F5)+w2F6 +w3F4 (3.56)
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Table 3.5: The comparison between exact approach and ALNS

Avg. Cost (EUR) Avg. CPU (s)

T R L Exact approach ALNS Exact approach ALNS

2 1 L0 3585 3585 343.26 0.18
2 1 L1 3585 3585 461.56 0.18
2 1 L2 1315 994 43200.00∗ 0.12

2 3 L0 8935 8935 3790.64 0.36
2 3 L1 8935 8935 4383.69 2.68
2 3 L2 8851 6074 43200.00∗ 2.26

2 5 L0 16491 16491 12921.26 0.37
2 5 L1 16491 16491 15941.14 3.15
2 5 L2 − 12986 43200.00∗ 2.62

5 1 L0 2098 2098 385.46 0.13
5 1 L1 2098 2098 431.34 0.14
5 1 L2 3775 994 43200.00∗ 0.06

5 3 L0 5828 5828 5793.62 0.35
5 3 L1 6859 5828 43200.00∗ 1.24
5 3 L2 11226 5828 43200.00∗ 1.23

5 5 L0 13383 13383 11050.79 0.59
5 5 L1 13738 13383 43200.00∗ 1.70
5 5 L2 − 11345 43200.00∗ 2.37

T: number of transshipment terminals; R: number of requests; L: flexibility level
∗ time limit reached (12 hours). − no solution is found due to time limitation.

The weights enable the reflection of individual preferences regarding different costs. The
impact of preferences can also be analyzed with different weights.

ALNS finds all best solutions reported by Demir et al. (2016) under the same setting and
hence not reported in this study. The barge services in Demir et al. (2016) are three consec-
utive services operated by one barge, therefore the route of the barge is fixed and barges’
timetables and truck services could be flexible. In Table 3.6, results with and without flexi-
bility are compared under cases with different weight combinations for multiple objectives.
There are 32 services (vehicles) and 5 requests, and their numbers are the same with Demir
et al. (2016). All used services/vehicles of five requests and costs of objectives are listed
and the cost saving is shown in brackets. Table 3.6 shows that ALNS with flexibility finds
better solutions on all cases except case 1, where it finds the same solution. The differences
are marginal in some cases because the solution found in the case without flexibility is also
optimal under flexibility. Although in some cases the differences between sub-costs are
0%, the differences in the total cost are always larger than 0% except for case 1, where our
approach finds the same solution with Demir et al. (2016). In case 3, routes for requests
are the same but the delay penalty is lower due to the flexible schedule. Sometimes the
proposed model sacrifices part of the objectives for a better overall solution, such as case 6.
In all other cases, by using flexible vehicles, the proposed model provides better solutions
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from the perspectives of all objectives under different weight combinations. Moreover, all
the best solutions can be found in few seconds by ALNS.

The results are always in line with the preferences (weights) on the objectives. For
example, in case 3, the decision-maker prioritizes the minimization of emissions, and the
electric trains (services 4-21) are chosen as much as possible, which causes a delay for
request 3 and more waiting time for request 5. In this case, the total emissions cost is the
lowest, but the service and penalty costs are higher than case 8 when there are no preferences
(all weights equal to 1). When the decision-maker has preferences on service cost (cases 1,
4, 6, and 8) and penalty cost (cases 2, 5, and 7), the cheaper modes (barges and trains, i.e.,
services 1-21) and faster modes (trucks, i.e., services 22-32) are chosen, respectively. The
preferred costs usually are compensated by other higher costs, but the flexibility makes the
compensation as low as possible compared with the cases without flexibility.

Table 3.6: Comparison on results with flexibility (the proposed model) and without flexibility (Demir et al. 2016)

Weights Services/Vehicles Total service Total penalty Total emissions Total

Case w1 w2 w3 1 2 3 4 5 costs (EUR) costs (EUR) costs (EUR) costs (EUR)

1⋆ 1 0 0 1,2,3 1,2,3 31,5 2,3 21 17179 6720 782 24681
1 1 0 0 1,2,3 1,2,3 31,5 2,3 21 17179 (0%) 6720 (0%) 782 (0%) 24681 (0%)

2⋆ 0 1 0 22 22 22,26 23 28,30 32284 0 1634 33919
2 0 1 0 1,2,3 1,2,3 23 2,3 25 24152 (25%) 0 (0%) 1287 (21%) 25439 (25%)

3⋆ 0 0 1 31,5,25 31,6,25 31,7 2,3 21 22435 12200 594 35229
3 0 0 1 31,5,25 31,6,25 31,7 2,3 21 22435 (0%) 11900 (2%) 594 (0%) 34929 (1%)

4⋆ 0.4 0.4 0.2 1,2,3 1,2,3 31,5 2,3 28,30 19171 3220 894 23285
4 0.4 0.4 0.2 1,2,3 1,2,3 31,5 2,3 27 18543 (3%) 3220 (0%) 865 (3%) 22629 (3%)

5⋆ 0.2 0.6 0.2 1,2,3 1,2,3 22,26 2,3 28,30 24707 0 1303 26010
5 0.2 0.6 0.2 1,2,3 1,2,3 1,22 2,3 27 22739 (8%) 0 (0%) 1248 (4%) 23987 (8%)

6⋆ 0.6 0.3 0.1 1,2,3 1,2,3 31,5 2,3 21 17179 6720 782 24681
6 0.6 0.3 0.1 1,2,3 1,2,3 31,5 2,3 27 18543 (-8%) 3220 (52%) 865 (-11%) 22628 (8%)

7⋆ 0.1 0.8 0.1 1,2,3 1,2,3 22,26 2,3 28,30 24707 0 1303 26010
7 0.1 0.8 0.1 1,2,3 1,2,3 1,22 2,3 27 22739 (8%) 0 (0%) 1248 (4%) 23987 (8%)

8⋆ 1 1 1 1,2,3 1,2,3 31,5 2,3 28,30 19171 3220 894 23285
8 1 1 1 1,2,3 1,2,3 31,5 2,3 27 18543 (3%) 3220 (0%) 865 (3%) 22628 (3%)

9⋆ 1 10 10 1,2,3 1,2,3 31,8,27,26 2,3 28,30 25081 0 1098 26179
9 1 10 10 1,2,3 1,2,3 1,22 2,3 27 22739 (9%) 0 (0%) 1248 (-14%) 23987 (8%)

⋆ means benchmark by Demir et al. (2016), in which all vehicles follow fixed routes and schedules except the truck’s departure time is flexible.

3.6.3 Optimization with and without flexibility under congestion

The flexibility considered in this study is helpful for mitigating congestions in ST. Two
types of congestions are considered: arc congestion and node congestion, which are con-
cerned with the limited capacities of roads and terminals, respectively. For arc conges-
tion, we consider the congestions in peak periods on roads. As shown in Figure 3.10,
there are several time breakpoints in one day, i.e., b1, b2, b3, b4, b5, b6, b7, b8, b9, b10
= 0,5,7,9,13,13,17,19,21,24. Between b2 and b9, there are congestions adjusted by coef-
ficients α and β, which represent multiples of time spent in the peak period compared with
the travel time in the normal period (τk

i j). According to Guo et al. (2020), when α is 2,
double travel time will be needed on the road when departing at 5 pm. More congestion will
cause higher costs when we take the time-dependent travel time into account by replacing
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Equation (3.2) with:

F1 = ∑
k∈K

∑
(i, j)∈A

∑
r∈R

(c1
k(t

kr
i − tkr

i )+ c1′
k dk

i j)qrykr
i j (3.57)

Travel time





2b 3b 4b 5b 6b 7b 8b 9b 10b Departure time

Figure 3.10: Time-dependent travel times of truck services (source: Guo et al. (2020))

For node congestion, terminal a will be unavailable for vehicles when the served vehi-
cles/containers exceed its capacity, i.e., the following constraints are added:

∑
j∈N

xk
a j = 0 ∀k ∈ K (3.58)

∑
i∈N

xk
ia = 0 ∀k ∈ K (3.59)

Because the time horizon of the synchromodal transport planning is usually longer than
one day, we use hours beginning from 0 to represent the time. For example, time 25 means
1 am on the second day. A simple but illustrative scenario using the data in Guo et al. (2020)
is designed to show the function of flexibility under congestions. There are three terminals,
two services, and one request:

• Terminals A, B, and C, and all terminals are connected with roads and waterways. The
road/waterway distances between A and B, A and C, and B and C are 15km/15km,
270km/262.5km, 262.5km/255km, respectively.

• A truck fleet service with begin and end depots of terminals B and C respectively and
a speed of 75km/h.

• A barge service, whose begin depot is terminal A (fixed departure time is 66), end
depot is terminal C (fixed arrival time is 83.5), speed is 15 km/h, and capacity is 160
TEU.

• A request, whose pickup terminal is B (pickup time is 63), delivery terminal is C (due
time is 85), and load is 12 TEU.

There is no fixed service on other roads/waterways because the demand is low. As
shown in Figure 3.11 (a), at L0, the only solution is using the truck to serve this request
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because both truck and barge routes are fixed. However, because the pickup is at 3 pm
(normalized by time 63), the truck will depart at peak time and there will be congestion
on road. At L1, the best solution uses the combination of the truck and barge (Figure 3.11
(b)), which means the request is picked up by the truck, transferred from truck to barge at
terminal A, and delivered by barge. This solution can mitigate the impact of congestion
by using inland waterways. Table 3.7 shows the comparison between costs of L0 and L1
at different congestion levels. When the congestion level increases, the cost increase of L0
is much greater than the increase of L1. When α = 14, the road is disrupted due to severe
congestion and there is no feasible solution at L0.

Table 3.7: Costs under congestions

Congestion level α Cost of L0 (EUR) Cost of L1 (EUR)

2 3240 906
6 5842 1050
10 8444 1194
14 − 1338

− means there is no feasible solution.

(a) no flexibility (L0), 
congestion on road / at terminal A

(b) flexible truck (L1), 
congestion on road, 

no congestion at terminal A  

(c) flexible truck (L1),
congestion on road / at terminal A

(d) flexible truck and barge (L2), 
congestion on road / at terminal A

Route of fixed barge
Route of fixed truck fleet

Route of flexible barge
Route of flexible truck fleetTerminal  A/B/C Request r

Pickup/
transshipment/

delivery
CongestionUnchosen service

Figure 3.11: Optimal routes under congestions on road and at the terminal

Furthermore, if the truck and barge cannot use terminal A to transfer containers because
too many containers are piled up at the terminal or no crane is available at the terminal (node
congestion), we can only use the truck to serve the request at L0 and L1, as shown in Figure
3.11 (a) and (c). However, at L2, we can use the barge to serve this request even though
terminal A is unavailable. As shown in Figure 3.11 (d), The barge will go to terminal B to
pick up containers first and then deliver the request to terminal C directly with a cost of only
628e.

3.6.4 Benchmarking on large instances
Guo et al. (2020)’s instances are based on a transport network operated by European Gate-
way Services4, which offers a wide variety of synchromodal transport services between the
ports of Rotterdam and Antwerp and the leading economic centres of Western and Central
Europe. The instances contain 116 vehicles (49 barges, 33 trains, and 34 trucks), 10 termi-
nals (3 deep-sea terminals in Port of Rotterdam and 7 inland terminals in the Netherlands,

4https://www.europeangatewayservices.com/en

https://www.europeangatewayservices.com/en
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Belgium, and Germany), and 10 transshipment terminals. The origins and destinations of
requests are independently and identically distributed among deep-sea terminals 1, 2, 3 with
probabilities 0.66, 0.2, 0.14 and inland terminals 4, 5, 6, 7, 8, 9, 10 with probabilities 0.306,
0.317, 0.153, 0.076, 0.071, 0.034, 0.043, respectively. The container volumes of requests
are drawn independently from a uniform distribution with range [10, 30] and the average
container volume is 20 TEU. The earliest pickup time ap(r) of requests is drawn indepen-
dently from a uniform distribution with range [1, 120]; the latest delivery time bd(r) of
requests is generated based on its ap(r) and lead time LDr, i.e., bd(r) = ap(r) + LDr, and the
lead time of requests is independently and identically distributed among 24, 48, 72 (unit:
hours) with probabilities 0.15, 0.6, 0.25. Since Guo et al. (2020) do not use time windows,
we set bp(r) and ad(r) equal to bd(r) and ap(r), respectively. The objective in Guo et al. (2020)
is as same as the objective in this study. Guo et al. (2020) assume that there are unlimited
storage spaces at terminals and loading/unloading infrastructure is always available for mul-
tiple vehicles. In the original paper, Guo et al. (2020) provide results with 5-30 requests and
700-1600 requests. To obtain a complete comparison, we asked the authors to run their
model again, and then we got the results with 50-400 requests.

Tables 3.8 to 3.10 show the results of different levels of flexibility with different methods
to obtain the initial solution. In each table, the number of requests increases from 5 to 1600,
and results of different levels of flexibility are obtained for each instance. At L⋆

0 (benchmark)
and L0, the delay penalty is charged when vehicles deliver containers later than the due
time, while other flexibilities, such as flexible routing and flexible waiting time, are not
considered. In Table 3.9, there is no results under L0 because the initial solution given by
matching model is optimal under L0. All experiments are repeated 10 times and Tables 3.8
to 3.10 show average values of results. The time limitation for all experiments is 48 hours.
The computation time of the benchmark is not provided because we use different computers
and software with Guo et al. (2020). The Cost Savings column shows the gap in percentage
between the cost of ALNS’s solution and cost of solutions in Guo et al. (2020).

Based on the results, we obtain the following insights:

1. Initial solution:

(a) When using the best solution of the predefined schedule (method M) as the
initial solution, the costs are lower than other ways in most cases. Therefore,
adjusting the plan based on a predefined schedule is the most appropriate way
for transport operators because there will be no significant changes and better
solutions can be found quicker than optimization from scratch.

(b) For small instances (less than 50 requests), optimization based on an initial so-
lution provided by method S is better than other methods because method S can
find the (near) optimal solution under L1. However, for instances with more
than 50 requests, method S performs worse than method M because the initial
solution obtained by method S may be worse than the optimal solution under
L0, which is the initial solution of method M.
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Table 3.8: Comparison of results with different levels of flexibility (obtain the initial solution by method R)

Avg. Costs (EUR) # of Avg. Mode Share (%) Avg. CPU (s) Cost

R L F F1 F2 F3 F4 F5 F6 Vehicles barge train truck initial best Savings (%)

5 L⋆
0 4386 1532 2562 269 23 0 0 5 60 0 40 − − −

5 L0 4385 1531 2562 269 23 0 0 5 60 0 40 0.2 0.0(0%) 0
5 L1 4270 967 2994 290 18 0 0 6 66 0 33 0.4 0.0(0%) 2
5 L2 3808 482 3312 0 14 0 0 4 100 0 0 0.9 0.0(0%) 13

10 L⋆
0 25988 14560 6990 2158 186 0 0 14 50 29 21 − − −

10 L0 25988 14559 9084 2158 186 0 0 14 50 28 21 0.6 0.0(0%) 0
10 L1 25985 14559 9084 2155 186 0 0 14 50 28 21 1.6 0.3(32%) 0
10 L2 24838 15847 8304 450 211 25 0 12 69 7 23 2.9 23.7(1%) 4

20 L⋆
0 44198 20870 16218 5003 287 0 1820 23 57 18 25 − − −

20 L0 44221 20604 15990 5527 279 0 1820 22 57 23 19 1.1 0.0(0%) 0
20 L1 42786 22342 15210 4940 293 0 0 21 53 23 23 4.5 0.0(53%) 3
20 L2 36737 19757 15324 1270 276 108 0 20 70 16 12 8.5 105.5(0%) 16

30 L⋆
0 65126 36953 22896 4794 483 0 0 35 50 11 39 − − −

30 L0 65126 36953 22896 4794 482 0 0 35 50 11 38 1.5 0.4(0%) 0
30 L1 64905 35873 23712 4845 473 0 0 33 51 11 37 7.8 18.2(68%) 0
30 L2 51665 26691 24258 15 415 285 0 29 74 2 23 11.8 419.5(15%) 20

50 L⋆
0 135679 88930 23919 9350 1069 0 0 46 42 14 44 − − −

50 L0 139819 96241 33396 9050 1131 0 0 47 41 15 42 2.9 2.1(0%) -3
50 L1 131605 84662 35357 10568 1017 0 0 37 41 16 41 19.7 50.9(69%) 2
50 L2 106728 64815 38058 2493 885 476 0 40 75 6 18 25.0 639.1(17%) 20

100 L⋆
0 181204 92873 53580 15838 1297 0 0 56 56 12 32 − − −

100 L0 183818 97853 68880 15748 1337 0 0 56 56 12 30 6.9 60.8(1%) -1
100 L1 176074 89282 69852 15688 1251 0 0 49 55 14 30 45.3 258.4(69%) 2
100 L2 142721 68150 71016 1812 1115 614 13 57 79 5 15 72.7 3507.9(46%) 20

200 L⋆
0 497380 316980 97149 29648 3950 0 0 70 45 12 43 − − −

200 L0 502851 325703 142016 30880 4002 0 248 72 44 13 41 13.8 1824.2(11%) -1
200 L1 481192 298941 146606 31694 3741 0 210 69 45 15 38 130.7 2620.3(67%) 3
200 L2 374768 216237 146145 7683 3194 934 574 73 71 4 24 138.6 7351.4(70%) 24

400 L⋆
0 1100758 754771 194634 62051 8848 0 0 95 40 19 41 − − −

400 L0 1115227 777999 265497 61787 9066 2 875 96 39 18 42 47.4 14492.7(64%) -1
400 L1 1117930 773891 270943 61765 9023 0 2308 89 40 18 41 427.2 9695.9(80%) -1
400 L2 925230 623500 268031 22206 8109 1399 1984 82 63 6 29 855.8 29465.0(77%) 15

700 L⋆
0 1060077 723033 197406 57334 8483 0 1815 104 39 18 43 − − −

700 L0 1070117 740118 261762 57451 8647 0 2138 102 39 17 43 102.6 48788.1(76%) -1
700 L1 1071214 735499 267561 57209 8613 0 2330 98 40 17 41 1293.7 27376.0(82%) -1
700 L2 943710 654660 249363 25799 8242 1530 4115 90 60 7 31 2448.5 99186.4(85%) 10

1000 L⋆
0 1017669 692260 189822 62025 8146 0 850 101 41 16 43 − − −

1000 L0 1028469 713238 245619 59702 8327 0 1581 100 39 15 45 140.7 95235.4(75%) -1
1000 L1 1024973 704195 251533 59992 8257 0 996 93 40 15 44 1318.5 60259.9(79%) -1
1000 L2 934731 630058 255919 35646 7427 1213 4465 99 59 7 32 4788.3 159355.5(72%) 7

1300 L⋆
0 1042481 704457 196548 58404 8336 0 1974 103 42 16 41 − − −

1300 L0 1057118 721333 262740 62029 8486 0 2528 102 41 17 41 629.1 111229.6(63%) -1
1300 L1 1052389 707281 270223 63145 8357 0 3380 94 42 17 40 3019.4 111889.8(84%) -1
1300 L2 985232 689334 236429 34801 8471 1304 14891 97 55 8 36 7610.4 135318.0(82%) 5

1600 L⋆
0 1020075 671262 201825 62765 7961 0 408 100 43 21 37 − − −

1600 L0 1031499 687488 269642 65989 8110 0 269 101 42 20 37 294.5 146337.4(83%) -1
1600 L1 1036620 690889 269330 67511 8156 0 735 95 43 19 37 6522.0 126142.0(83%) -1
1600 L2 991122 705891 229860 33201 8482 1023 12663 99 52 11 36 6763.0 140737.1(84%) 3

R: number of requests; L: flexibility level; L⋆
0: benchmark; L0: flexibility Level 0, i.e., same with benchmark; L1: flexibility Level 1, i.e., trucks are flexible; L2: flexibility Level 2, i.e., trucks and barges

are flexible; F : total cost, F1: transit cost, F2: transfer cost, F3: storage cost, F4: carbon tax, F5: waiting cost, F6: delay penalty, barge: proportion of requests served by barge, train: proportion of requests
served by barge, truck: proportion of requests served by barge, initial: running time of the initial solution, best: running time of the best solution, and the percentage in bracket equals the running time of
the best solution divided by the total running time;
size of segment: 20 iterations; cooling rate c = 0.99; 200 iterations; time limit: 48 hours.
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Table 3.9: Comparison of results with different levels of flexibility (obtain the initial solution by method M)

Avg. Costs (EUR) # of Avg. Mode Share (%) Avg. CPU (s) Cost

R L F F1 F2 F3 F4 F5 F6 Vehicles barge train truck initial best Savings (%)

5 L⋆
0 4386 1532 2562 269 23 0 0 5 60 0 40 − − −

5 L1 4266 967 2994 286 18 0 0 6 66 0 33 0.3 0.9(10%) 2
5 L2 3792 782 2993 0 16 0 0 5 84 0 16 0.3 0.8(6%) 13

10 L⋆
0 25988 14560 6990 2158 186 0 0 14 50 29 21 − − −

10 L1 25988 14559 9084 2158 186 0 0 14 50 28 21 0.8 0.0(0%) 0
10 L2 22912 13458 8801 436 184 32 0 11 64 19 16 0.8 14.7(29%) 11

20 L⋆
0 44198 20870 16218 5003 287 0 1820 23 57 18 25 − − −

20 L1 42751 22450 15301 4703 296 0 0 21 53 21 25 0.6 16.2(34%) 3
20 L2 36604 20099 14969 1256 278 0 0 22 66 16 16 0.6 35.0(38%) 17

30 L⋆
0 65126 36953 22896 4794 483 0 0 35 50 11 39 − − −

30 L1 64938 35862 23724 4877 473 0 0 34 51 11 37 0.9 13.1(12%) 0
30 L2 50111 25233 24356 29 398 94 0 30 72 4 22 0.9 264.0(62%) 22

50 L⋆
0 135679 88930 23919 9350 1069 0 0 46 42 14 44 − − −

50 L1 131171 84358 35309 10486 1017 0 0 40 42 15 42 2.8 83.9(54%) 2
50 L2 106530 65774 37017 2515 888 336 0 42 71 8 20 2.8 401.3(55%) 21

100 L⋆
0 181204 92873 53580 15838 1297 0 0 56 56 12 32 − − −

100 L1 175830 88962 70025 15594 1249 0 0 52 55 14 30 4.1 435.4(55%) 2
100 L2 135866 59862 72136 2273 1031 563 0 60 78 6 14 4.1 2164.2(76%) 24

200 L⋆
0 497380 316980 97149 29648 3950 0 0 70 45 12 43 − − −

200 L1 480191 298177 148325 29863 3750 0 74 72 45 14 40 9.1 1373.4(62%) 3
200 L2 375251 215376 147082 8383 3175 848 387 73 70 5 24 9.1 11530.6(76%) 24

400 L⋆
0 1100758 754771 194634 62051 8848 0 0 95 40 19 41 − − −

400 L1 1094750 744197 280991 60806 8755 0 0 97 40 18 40 29.1 7950.8(68%) 0
400 L2 921991 616403 272201 23052 7991 1226 1117 88 61 8 29 29.1 31958.4(81%) 15

700 L⋆
0 1060077 723033 197406 57334 8483 0 1815 104 39 18 43 − − −

700 L1 1054526 714839 273176 56286 8409 0 1815 104 40 17 42 38.4 17466.6(75%) 0
700 L2 921924 617128 262654 28483 7896 1230 4532 101 56 11 31 38.4 97319.8(82%) 12

1000 L⋆
0 1017669 692260 189822 62025 8146 0 850 101 41 16 43 − − −

1000 L1 1010503 679957 261160 60443 8045 0 898 101 41 15 42 78.9 32804.0(75%) 0
1000 L2 919037 621175 253311 33110 7700 1098 2640 104 52 12 35 78.9 151032.2(86%) 9

1300 L⋆
0 1042481 704457 196548 58404 8336 0 1974 103 42 16 41 − − −

1300 L1 1038067 693346 276066 58614 8241 0 1798 105 42 16 40 158.6 89314.2(65%) 0
1300 L2 971182 661358 258441 37425 8147 1041 4768 109 50 13 35 158.6 129940.4(73%) 6

1600 L⋆
0 1020075 671262 201825 62765 7961 0 408 100 43 21 37 − − −

1600 L1 1017824 666952 280231 62303 7929 0 407 102 43 20 36 302.4 142784.8(82%) 0
1600 L2 961277 651516 258086 39327 7965 905 3477 111 50 17 32 302.4 132404.6(74%) 5

R: number of requests; L: flexibility level; L⋆
0: benchmark; L0: flexibility Level 0, i.e., same with benchmark; L1: flexibility Level 1, i.e., trucks are flexible; L2: flexibility Level 2, i.e., trucks and

barges are flexible; F : total cost, F1: transit cost, F2: transfer cost, F3: storage cost, F4: carbon tax, F5: waiting cost, F6: delay penalty, barge: proportion of requests served by barge, train: proportion
of requests served by barge, truck: proportion of requests served by barge, initial: running time of the initial solution, best: running time of the best solution, and the percentage in bracket equals the
running time of the best solution divided by the total running time;
size of segment: 20 iterations; cooling rate c = 0.99; 200 iterations; time limit: 48 hours.
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Table 3.10: Comparison of results with different levels of flexibility (obtain the initial solution by method S)

Avg. Costs (EUR) # of Avg. Mode Share (%) Avg. CPU (s) Cost

R L F F1 F2 F3 F4 F5 F6 Vehicles barge train truck initial best Savings (%)

5 L⋆
0 4386 1532 2562 269 23 0 0 5 60 0 40 − − −

5 L0 4385 1531 2562 269 23 0 0 5 60 0 40 0.2 0.0(0%) 0
5 L1 4269 967 2994 289 18 0 0 6 66 0 33 0.2 2.1(14%) 2
5 L2 3793 757 3020 0 16 0 0 5 85 0 15 2.3 1.9(10%) 13

10 L⋆
0 25988 14560 6990 2158 186 0 0 14 50 29 21 − − −

10 L0 25988 14559 9084 2158 186 0 0 14 50 28 21 0.7 0.0(0%) 0
10 L1 25988 14559 9084 2158 186 0 0 14 50 28 21 0.7 0.0(0%) 0
10 L2 21907 12389 8854 456 175 32 0 11 67 16 16 0.7 34.6(55%) 15

20 L⋆
0 44198 20870 16218 5003 287 0 1820 23 57 18 25 − − −

20 L0 44221 20604 15990 5527 279 0 1820 22 57 23 19 1.6 0.0(0%) 0
20 L1 42776 22344 15210 4929 293 0 0 20 53 23 23 1.6 10.2(14%) 3
20 L2 36603 20119 14934 1270 278 0 0 23 66 16 16 11.8 41.4(38%) 17

30 L⋆
0 65126 36953 22896 4794 483 0 0 35 50 11 39 − − −

30 L0 65126 36953 22896 4794 482 0 0 35 50 11 38 2.4 0.8(0%) 0
30 L1 64938 35862 23724 4877 473 0 0 34 51 11 37 3.0 16.8(17%) 0
30 L2 50468 25638 24307 11 402 109 0 29 73 4 23 19.9 304.5(71%) 21

50 L⋆
0 135679 88930 23919 9350 1069 0 0 46 42 14 44 − − −

50 L0 139796 96241 33396 9027 1131 0 0 47 41 15 42 3.6 11.4(8%) -3
50 L1 131556 84339 35596 10607 1013 0 0 39 41 16 42 15.1 149.8(57%) 2
50 L2 104722 64172 37027 2306 870 346 0 42 69 9 21 164.8 622.4(68%) 22

100 L⋆
0 181204 92873 53580 15838 1297 0 0 56 56 12 32 − − −

100 L0 183818 97853 68880 15748 1337 0 0 56 56 12 30 7.6 63.0(11%) -1
100 L1 176277 89606 69740 15677 1253 0 0 51 55 14 30 65.1 273.3(49%) 2
100 L2 136570 60699 72043 2251 1041 534 0 60 78 6 14 338.4 2571.0(67%) 24

200 L⋆
0 497380 316980 97149 29648 3950 0 0 70 45 12 43 − − −

200 L0 503213 326231 141763 30962 4008 0 248 72 44 13 41 16.6 1744.5(57%) -1
200 L1 480447 298048 146909 31575 3735 0 180 73 45 15 39 1761.1 2212.3(70%) 3
200 L2 375011 216329 145604 8830 3184 847 217 72 69 5 24 3973.4 9941.7(76%) 24

400 L⋆
0 1100758 754771 194634 62051 8848 0 0 95 40 19 41 − − −

400 L0 1116016 778088 265674 62092 9056 0 1105 96 39 18 41 55.9 18595.5(79%) -1
400 L1 1109777 765050 273158 61491 8947 2 1128 94 40 18 41 14840.2 11397.8(65%) -1
400 L2 927872 621526 271452 23902 8022 1189 1780 87 62 8 28 21199.0 32510.2(84%) 15

700 L⋆
0 1060077 723033 197406 57334 8483 0 1815 104 39 18 43 − − −

700 L0 1069477 738691 261757 58154 8643 2 2230 102 39 17 42 117.0 40557.4(79%) -1
700 L1 1064366 726571 269101 57923 8539 2 2229 101 40 17 41 33041.7 20013.7(67%) -1
700 L2 933777 636168 256529 27271 8038 1347 4423 96 58 9 31 29483.4 45423.0(77%) 11

1000 L⋆
0 1017669 692260 189822 62025 8146 0 850 101 41 16 43 − − −

1000 L0 1028896 713804 245254 60155 8333 0 1349 101 39 15 45 136.3 43698.0(74%) -1
1000 L1 1021288 697265 253339 61216 8192 0 1275 101 40 15 44 39740.6 39115.2(68%) 0
1000 L2 931311 643213 243915 32493 7892 1202 2595 104 50 12 37 82678.7 49847.9(84%) 7

1300 L⋆
0 1042481 704457 196548 58404 8336 0 1974 103 42 16 41 − − −

1300 L0 1057678 722566 262007 62183 8494 0 2426 102 41 17 41 232.6 30366.8(51%) -1
1300 L1 1053422 711026 268448 62944 8392 0 2611 100 42 17 40 25422.0 35414.2(60%) -1
1300 L2 1016902 690033 244096 39575 8410 1214 33572 102 52 10 37 25292.9 41472.2(68%) 2

1600 L⋆
0 1020075 671262 201825 62765 7961 0 408 100 43 21 37 − − −

1600 L0 1032359 689402 268823 65788 8129 0 217 100 42 20 37 345.0 47730.8(78%) -1
1600 L1 1031410 686880 270284 65872 8112 0 260 100 42 19 37 45326.4 32501.3(54%) -1
1600 L2 1009904 706790 237215 40799 8449 898 15752 103 48 13 37 29850.2 49071.6(78%) 0

R: number of requests; L: flexibility level; L⋆
0: benchmark; L0: flexibility Level 0, i.e., same with benchmark; L1: flexibility Level 1, i.e., trucks are flexible; L2: flexibility Level 2, i.e., trucks and barges

are flexible; F : total cost, F1: transit cost, F2: transfer cost, F3: storage cost, F4: carbon tax, F5: waiting cost, F6: delay penalty, barge: proportion of requests served by barge, train: proportion of requests
served by barge, truck: proportion of requests served by barge, initial: running time of the initial solution, best: running time of the best solution, and the percentage in bracket equals the running time of
the best solution divided by the total running time;
size of segment: 20 iterations; cooling rate c = 0.99; 200 iterations; time limit: 48 hours.
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2. Costs:

(a) Higher degree of flexibility usually leads to more cost savings, but sometimes
ALNS at L1 cannot find better solutions than ALNS at L0 when the solution
space is larger but the better solution is harder to find, as in the cases with 400,
700, and 1600 requests in Table 3.8.

(b) The cost savings increase when the number of requests increases from 5 to 200
requests. When there are more than 200 requests, the cost savings decrease be-
cause of two reasons: (i) the solutions are tighter due to limited capacities; (ii)
ALNS cannot find (near) optimal solutions in a limited time due to the complex-
ity of larger size instances.

(c) By using flexible vehicles, cost savings of up to 24% (200 requests at L2) and
170,000e (400 requests at L2) are obtained compared with the cost without
flexible vehicles. On average, the proposed model at L2 reduces the cost by
14% compared with the best solutions without flexibility. It is worth noting that
the cost savings are related to parameters and may differ from one instance to
the other.

(d) The cost savings mainly come from the reduction in transit cost, storage cost,
and carbon tax. The transfer cost, waiting cost, and delay penalty usually in-
crease slightly when the total cost decreases because more transshipments and
more barges are used.

(e) The carbon tax decreases when there are more flexibilities because more barges
are used. This insight is obtained when there is no restriction on the schedules
of barges. If the schedules were very restricted we would not be able to have
emissions reductions as we would be stuck with trucks in many cases.

3. Number of vehicles and mode share:

(a) At Level 1, trucks are flexible but the mode share of trucks will decrease and the
mode share of trains and barges will increase in most cases. Using more trucks
will not reduce cost, but flexible trucks increase the possibilities of using more
trains and barges by intermodal transport. The number of used vehicles may
decrease because fewer trucks are used.

(b) At Level 2, the requests will be shifted from trucks to barges. However, the num-
ber of used vehicles sometimes increases compared with Level 1, especially for
instances with 1000 to 1600 requests, because more barges and transshipments
are used.

(c) Using more barges may cause more waiting time and a little delay, but will
reduce costs significantly.

4. Computation time:

(a) For instances with 5-30 requests, the best solution is found in 3 s, 30 s, and
8 min at L0, L1, L2, respectively. For instances with 50-400 requests, the best
solution is found in 5 h, 3 h, and 10 h at L0, L1, L2, respectively. This time
is 41 h, 40 h, and 39 h for instances with 700-1600 requests. Therefore, for
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small instances, a higher degree of flexibility means longer computation time.
For large instances, using limited resources to serve a large number of requests
in the most appropriate way is difficult when no flexibility is considered. More
alternatives are provided when more flexibility is considered, therefore the best
solution may be found in a shorter time compared with the lower degree of
flexibility.

(b) When using the best solution of the problem with fewer flexibilities as the initial
solution, the total computation time is obviously longer than the other ways
because it spends significant time to obtain the initial solution. However, the
running time of the best solution (time after the initial solution is found) is less
than other methods for large instances, although the best solution may not be
better than other methods.

(c) For small instances, the best solution is found in the early iterations of ALNS.
When the instance size increases, more iterations are needed.

(d) The computation time of large instances reflects the real-time optimization abil-
ity of the proposed model. Take the instance with 50 requests as an example,
the best solution can be found in less than 15 min, which means the proposed
model is able to handle 50 changed requests every 15 min under the same hard-
ware used in this study.

At L0 and L1, ALNS is stable and the differences among multiple optimization runs
of ALNS are usually less than 1%. At L2, the differences of runs are bigger due to larger
solution space and limited running time. Figure 3.12 shows the box plots of different num-
bers of requests at L2. The cost savings compared with the benchmark is calculated and
different methods for the initial solution are compared. The proposed model provides better
solutions on all instances at L2 when using methods R and M to obtain the initial solution.
When using method S, all solutions are better except for the instance with 1300 requests.
When there are 5 to 400 requests, the proposed model with flexible vehicles reaches at least
4% and up to 24% cost savings. When there are 700 to 1600 requests, the cost savings are
between 0% and 16% except for the instance with 1300 requests and the S method. From
the perspective of overall performance, method M performs better than the other two meth-
ods in cost savings. For instances with 10 and 50 requests, method S is the best one. For
instances with less than 100 requests, method R has very stable performance, although it
performs worst. For instances with 200 requests to 1000 requests, methods S and R have
similar performances. When there are more than 1300 requests, method R performs better
than method S but not stable. According to the results, adjusting the original plan (method
M) is more appropriate than making a plan from scratch (methods R and S) for transport
operators who consider flexible services.

3.6.5 Evaluations on the customized operators
As illustrated in Section 3.5.2, a new Swap operator is proposed and some operators are
customized depending on the characteristics of ST. Using instances with 5-100 requests in
Section 3.6.4, Figure 3.13 shows the comparison on the (a) results with and without Swap
operator and (b) results of inserting one/multiple request(s) in one construction step in Re-
gret Insertion operator. In Figure 3.13(a), the cost and computation time of the optimal
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Figure 3.12: Box plots of different numbers of requests at L2. The y-axis is the cost savings
compared with the benchmark.

solution are compared. In Figure 3.13, solutions are obtained by the Regret Insertion op-
erator from scratch and only results of the initial solution are presented to avoid influences
from other operators. Figure 3.13(a) shows that the cost with Swap operator is always lower
than without Swap operator, except the instance with 5 requests, where the costs are the
same. Moreover, the cost gap is increasing with the number of requests and reaches 35% on
the instance with 100 requests. The reason behind it is that the Swap operator inserts more
requests into better positions for a larger instance. Therefore, it is shown that the Swap
operator has an important role in obtaining superior solutions, although it slightly increases
the computation time. Figure 3.13(b) shows that inserting one request in Regret Insertion
operator does not always obtain a lower cost than inserting multiple requests, such as in-
stances with 10 requests and 30 requests. In contrast, the computation time is decreased
dramatically by inserting multiple requests in one step, especially on large instances. For
example, the computation time is reduced by 92% on the instance with 100 requests.

3.6.6 Summary

By comparing with the exact approach, the results verify that ALNS reduces computation
time significantly. Compared with existing models in the literature (Demir et al. 2016, Guo
et al. 2020), the proposed model provides considerable cost savings by using flexible vehi-
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(a) (b)

Figure 3.13: Evaluations on the customized operators. (a) Comparison on results with and
without Swap operator; (b) Comparison on inserting one/multiple request(s)

in Regret Insertion operator.

cles. When allowing flexibility, the requests will be shifted to low-cost and low-emission
modes, especially inland waterways. The cost savings are mainly due to the better utiliza-
tion of capacities of low-cost vehicles, such as trains and barges. Additional cost savings
for small instances are usually obtained by avoiding unnecessary trips and transshipments.
For large instances, reducing storage costs by flexible vehicles is another important source
of cost savings.

The proposed model performs well under different weights for the individual objectives
and generates better solutions compared with solutions in the literature (Demir et al. 2016).
When there are congestions, the proposed model can mitigate the impact of congestions by
using flexible vehicles. In large instances, solutions with lower costs (benchmark by Guo
et al. (2020)) can always be found when allowing flexibility. Moreover, the proposed model
performs consistently well on different transport networks published in the literature.

In addition, the results show that the ALNS with customized operators performs better
than those without these operators.

3.7 Conclusions

In order to address the research question Q1, a novel MILP model is formulated and a cus-
tomized Adaptive Large Neighborhood Search (ALNS) is proposed to solve the problem
efficiently. The features of synchromodal transport, such as multiple modes, transshipment,
the mix of fixed and flexible vehicles, complex schedules, and synchronization are consid-
ered in the proposed model. To achieve flexible synchromodal transport, vehicle and request
routes are planned simultaneously. In order to benefit from the proposed model for realis-
tic size instances, several customized operators are designed and performance improvement
methods are proposed in ALNS. The proposed model performs well under different weights
for individual objectives and can mitigate congestions by using flexible vehicles. When at-
tributes of requests change, the proposed model can also switch transport modes flexibly in
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(near) real-time according to the latest information. By comparing with models published
in the literature, the results demonstrate that the proposed model can reduce cost by 14% on
average when using flexible vehicles. Moreover, the proposed model performs consistently
well on large instances and different transport networks. Mode share of barges increases ob-
viously and the carbon tax is reduced when using flexible vehicles, therefore the proposed
model is promising for green transportation.

The proposed model provides an optimization framework for synchromodal transport
with flexible services and shows promising potential for cost savings and emissions reduc-
tion by exploiting the flexibility. The transport operators can use the proposed model to
make schedules for the mix of fixed and flexible vehicles and achieve economic and sus-
tainable transport operations. Based on the experimental results, the following managerial
insights are obtained:

1. Utilizing service flexibility can reduce costs under given resources and enables the
transport operator to be more competitive. More cost savings need a higher degree
of flexibility, which allows containers to be shifted to low-cost modes by utilizing the
capacity of barges and trains. However, blindly pursuing low cost will cause delays
and longer waiting times. The proposed model can be used to make decisions taking
into account the trade-off between costs, emissions, delays and waiting times.

2. Flexible services facilitate the modal shift in synchromodal transport. When trucks
are flexible, the mode share of trucks will decrease because it increases the possibili-
ties of using more trains and barges by transshipments. Moreover, flexible barges are
necessary for reducing emissions because many requests are still stuck with trucks
when only trucks are flexible.

3. Considering the types of cargoes and the characteristics of companies, different trans-
port operators have different preferences about transportation. Many of them consider
multiple objectives to optimize, yet, the importance of different objective terms may
be different. Satisfying one sub-objective is often detrimental to other sub-objectives,
while flexible services make the detriment as low as possible.

4. When there are congestions, especially severe congestions, the impacts can be allevi-
ated more with a higher level of flexibility because more options are provided.

5. Compared with planning from scratch, adjusting the transport plan with predefined
schedules is the best way for transport operators to adopt flexible services, which will
not change the original plan significantly and provide more cost savings.

This chapter focuses on static synchromodal transport planning. Uncertainties exist
in the operations of synchromodal transport. Transport operators might be able to handle
uncertainties in a better way by allowing flexibility. For example, when unexpected events
occur at terminals, the request cannot be served or only be served at high delay penalty by
predefined schedules but can be served without delay when considering flexible routes of
vehicles. Therefore, Chapter 4 develops a dynamic planning approach to handle uncertainty.





Chapter 4

Re-planning under service time
uncertainty with reinforcement
learning

Chapter 3 has studied static synchromodal transport planning. However, as discussed in
Chapters 1 and 2, the service time uncertainty creates challenges in the implementation of
the solutions derived from static synchromodal transport planning. The service time uncer-
tainty can result in delays, inefficiencies, and reduced satisfaction for shippers. Therefore,
this chapter aims to address research question Q2: How can a real-time planning approach
be developed for carriers to provide reliable services while taking into account uncertainties
in service time?

This chapter is organized as follows: Section 4.1 introduces the service time uncertainty
in synchromodal transport. Section 4.2 presents a brief literature review. Section 4.3 for-
malizes the studied problem. Section 4.4 proposes the model-assisted RL approach for the
synchromodal transport re-planning. In Section 4.5, simulation experiments and results are
provided, and the ability of the approach to handle unexpected events in different scenarios
is evaluated. Section 4.6 concludes this chapter.

4.1 Introduction
Synchromodal transport planning is often faced with various uncertainties, such as service
time uncertainty, which can significantly impact the transportation system’s efficiency (Del-
bart et al. 2021, SteadieSeifi et al. 2014). Service time in synchromodal transport refers to
the duration of picking up, delivering, or transferring goods at terminals, including time for
loading/unloading and related activities. Synchromodal transport strives for seamless and
efficient transfer of goods between modes, however, the service time uncertainty at termi-
nals caused by unexpected events poses a significant challenge to achieving this goal. Un-
expected events, such as congestion, bad weather, and equipment malfunctions, can cause
long waiting times or changes in the duration of service, leading to uncertainty in service
time. This uncertainty can trigger delays and infeasible transport plans, causing low effi-

65
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ciency, high cost, and request cancellation. One necessary task of synchromodal transport
is to adapt to service time uncertainty at terminals (including ports, train/truck stations, and
transshipment terminals).

To tackle transport planning problems under uncertainty, most of the existing approaches
in the literature are based on robust optimization (Abbassi et al. 2019), re-planning (Hrušovskỳ
et al. 2021), or stochastic programming (Guo et al. 2021b). Robust optimization evaluates
the solutions using worst-case realizations of uncertain parameters and may generate un-
used excess capacities (Gabrel et al. 2014). Re-planning refers to adjusting transport plans
and schedules in response to unexpected events. The re-planning is usually carried out af-
ter significant delays without predicting when and how long a delay will be. Stochastic
programming approaches rely on prior assumptions on probability distributions for travel
times or demands. They do not account for possible deviations from an assumed distribu-
tion (Farahani et al. 2021). These approaches usually assume that distribution information
about the uncertainty is available a priori before an action is taken. This is not always
a realistic assumption because the information about uncertainty is usually incrementally
revealed during the transport process. Moreover, using historical distributions without de-
tecting changes in an environment, the planning performance may decline (Phiboonbanakit
et al. 2021). Therefore, a dynamic learning ability that updates the planning model is re-
quired for dealing with uncertainty in the environment.

Online scheduling and routing problems arise naturally in many application areas and
have received increasing attention in recent years. Contrary to offline optimization, data is
not assumed available a priori in online optimization. Rather it is collected during algorithm
execution (Bent and Van Hentenryck 2005). Thanks to the development of digital platforms
and the rise of concepts such as synchromodal transport, a carrier is more and more able to
collect real-time information from the transport network (through port authorities, terminal
operators and/or sensors) about uncertainties.

The complexity and size of a transport network make it difficult for carriers to retain
and learn from events. Advanced models and algorithms, specifically deep Reinforcement
Learning (RL), have the potential to be instrumental in handling unexpected events. RL has
been proven to be able to achieve human or superhuman skill in tasks such as Atari games
(Mnih et al. 2015) and the game Go (Silver et al. 2018). In synchromodal transport, the
pattern of service time uncertainty refers to the regularities or associations that are related
to factors that have an impact on the duration of service. Such factors include but are not
limited to the mode of transport, current time, terminal, and type of event. The collected
information from port authorities, terminal operators, and sensors can be used to learn the
pattern of uncertainties by RL. By learning online, RL can handle the uncertainty and help
operators take better decisions in a re-planning framework. As opposed to traditional meth-
ods of re-planning that lack an adaptive learning component, the utilization of RL for re-
planning enables learning from experience and adjusting transport plans accordingly using
continuously updated policy.

It is widely recognized that RL algorithms can be challenging to implement due to the
“curse of dimensionality” (Gosavi 2009). This term refers to the difficulty of training RL
agents when the dimension of the environment state or control action is high. This challenge
is compounded in the context of synchromodal transport planning, which involves a large
state space due to the need to consider routing and scheduling across multiple transport
modes, as shown in Figure 4.1. The decisions in synchromodal transport are also complex,
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which include both discrete actions (e.g., vehicle selection) and continuous actions (e.g.,
shipment scheduling). To address these challenges and enhance the convergence of RL
training, we propose a model-assisted RL approach in this paper. Instead of relying solely on
the RL agent to make control decisions without guidance, we integrate a transport planning
model to provide assistance. Specifically, we employ Adaptive Large Neighborhood Search
(ALNS) to aid the RL, which helps to reduce the size of both actions and states and thus
accelerates the training process. In this way, an optimization algorithm that has the domain
knowledge for synchromodal transport and a machine learning technique for unexpected
events are integrated to handle the synchromodal transport re-planning under service time
uncertainty.
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Figure 4.1: Synchromodal transport planning under service time uncertainty.

As shown in Figure 4.1, there are delays in terminals due to unexpected events, such
as congestion, bad weather, and equipment malfunctions, and the carriers need to take ap-
propriate actions when such delays occur. The problem is that a carrier usually does not
know how long an unexpected event will last. Therefore, a model-assisted RL approach is
proposed to find suitable actions by learning from the historical experiences of all vehicles
in the transport network. The proposed RL is not provided with any transportation infor-
mation in advance. It learns from nothing but the state input, the reward, and the taken
actions—just as a carrier in practice would. In Figure 4.1, when the RL is not implemented,
requests r1 and r2 are scheduled for transportation from terminals A and C to terminals E
and G, respectively. However, unexpected events at terminals A, B, C, and D result in ser-
vice time uncertainty and both requests arrive with a delay. When RL is implemented, new
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requests r′1 and r′2 need to be transported with the same origin and destination as r1 and r2.
The RL adjusts the transport modes and routes based on its experience with requests r1 and
r2. The mode of transportation between terminals B and E for request r′1 is changed from
train to truck for improved speed. The route for request r′2 is altered from C-D-G to C-F-
G to avoid service time uncertainty in terminal D. Both requests r′1 and r′2 are eventually
delivered without delay. By using RL, our approach is able to adapt to unexpected events
and make decisions in real time based on the current state of the transportation system. We
demonstrate the effectiveness of our approach through a series of simulation experiments,
illustrating that the approach could significantly improve the efficiency of synchromodal
transport re-planning compared to traditional non-learning methods.

The main contributions of this paper are summarized as follows: (a) we introduce a syn-
chromodal transport re-planning problem under service time uncertainty; (b) we propose a
synchromodal transport re-planning framework that can accommodate different strategies;
(c) under the re-planning framework, we develop a model-assisted RL approach to han-
dle the service time uncertainty online; (d) we evaluate the performance of the proposed
approach under different scenarios using a realistic transport network, including scenarios
with disturbance and disruptions, scenarios with multiple types of events, and scenarios
with perfect and imperfect severity level.

4.2 Literature review

We first review existing studies for synchromodal transport planning under uncertainty and
then review the learning approaches under uncertainty in vehicle routing problems.

4.2.1 Synchromodal transport planning under uncertainty

At the operational level, synchromodal transport is required to adapt to uncertainty in a
dynamic environment (SteadieSeifi et al. 2014). Therefore online planning is needed based
on real-time information that becomes available over time (Yee et al. 2021). In the literature,
some studies do re-planning when an unexpected event occurs, while the uncertainty is not
considered. For example, Van Riessen et al. (2015c) measure the effect of a disturbance and
update suitable paths in an intermodal transport network to adapt to occurring disturbances,
such as early or late service departure and cancellation of services. Li et al. (2015b) use
the receding horizon intermodal container flow control approach to control and reassign
intermodal container flows under disturbances in transportation demand and travel time.
Qu et al. (2019) re-plan the synchromodal transport by shipment flow rerouting, service
rescheduling, and transshipment when the release time, container volume, and travel time
change.

Some studies consider demand uncertainty. For example, Van Riessen et al. (2016)
adopt decision trees to make real-time container transport planning based on offline obtained
optimal solutions. Rivera and Mes (2017) propose a look-ahead planning method for the
intermodal long-haul round-trips under the uncertainty of the arrival of new orders.

Travel time uncertainty is an important issue related to the efficiency of transportation.
Different approaches have been developed to handle it, including stochastic programming
(Demir et al. 2016, Guo et al. 2021b), Markov decision process (Yee et al. 2021), and RL
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(Guo et al. 2022). Most of them focus on travel time on transport arcs, including roads, rail-
ways, and waterways. In synchromodal transport, the service time uncertainty at terminals,
including ports, train/truck stations, and transshipment terminals, is very common due to
unexpected events, such as congestion, weather conditions, late arrivals of services, and late
releases of empty containers. However, the service time uncertainty does not attract enough
attention and few studies (Demir et al. 2016) propose approaches to handle it.

4.2.2 Learning approaches for vehicle routing problems under uncer-
tainty

In vehicle routing problems with uncertainty, studies mainly use RL to handle the demand
uncertainty. Basso et al. (2022) use RL to learn the stochastic demand and energy consump-
tion offline for an electric vehicle routing problem. Pan and Liu (2023) design a real-time
decision support system that consists of a deep neural network and an RL algorithm to con-
trol the value function of the VRP with demand uncertainty. Balaji et al. (2019) propose
an RL benchmark for a VRP of an on-demand delivery driver, where orders are generated
with a constant probability. Phiboonbanakit et al. (2021) use RL to discover strategies for
VRP with delivery incidents and the results show that RL can quickly adapt to demand
uncertainty by identifying patterns of abnormalities and rearranging shipments.

The Vehicle Routing Problem with Stochastic Travel Times (SVRP) has received con-
siderable attention in the operations research (OR) community since its introduction by
Laporte et al. (1992). Recently, the computer science (CS) community also found that RL is
a potentially ideal approach to solve the SVRP, especially for dynamic SVRPs (Hildebrandt
et al. 2021). The OR methodology can be used to model the SVRP with as much practical
consideration as possible, such as time windows, capacity, precedence constraints, etc. The
CS methodology can tackle the challenging stochastic part of the SVRP with a learning ap-
proach. In this way, a hybrid approach that combines methodologies from both OR and CS
communities can provide a powerful tool to search the action space and evaluate actions in
SVRP efficiently.

4.2.3 Summary

Table 4.1 provides a summary of the reviewed papers. In synchromodal/intermodal trans-
port, only Demir et al. (2016) consider service time uncertainty, while they do not propose
an online planning approach. Service time is crucial in synchromodal transport because a
delay at one terminal could propagate to other terminals due to transshipment, hence caus-
ing numerous consequences, such as delays and reductions in shipper/customer satisfaction.
Previous studies in synchromodal transport have focused on predefined arcs or paths, with-
out considering the flexibility of vehicle routing (Zhang et al. 2022b). However, in this
study, the ability to choose routes and switch to available vehicles under uncertainty freely
is taken into account, which is a critical characteristic of synchromodal transport (Giusti
et al. 2019, Tavasszy et al. 2017). In VRP, although integrating RL from CS and approaches
from OR is promising, handling the uncertainties of the transport environment using RL has
not been well-addressed, and existing studies mainly focus on dealing with demand uncer-
tainty (Hildebrandt et al. 2021, Phiboonbanakit et al. 2021). Moreover, most studies require
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prior information, such as distribution and historical demands, while the proposed approach
learns online and does not need such information.

Guo et al. (2022) is the most similar study to our work. Guo et al. (2022) use the
Q-learning algorithm to learn the policy of matching a shipment with a service in synchro-
modal transport. There are five differences that distinguish our work from Guo et al. (2022):
(a) we tackle the service time uncertainty at terminals, while Guo et al. (2022) consider the
travel time uncertainty on arcs; (b) Guo et al. (2022) assume that probability distributions of
uncertainties are available, while the proposed model in our work does not need the distri-
bution to train the RL; (c) Guo et al. (2022)’s RL approach uses offline simulation to learn,
while our model utilizes online learning, allowing it to adapt and improve as new informa-
tion is revealed during transportation. This enables our model to better handle uncertainty
in real-world scenarios; (d) Guo et al. (2022) use a tabular Q-learning approach and the
obtained policy cannot be generalized to events that have never been encountered before,
while our model can handle events with similar features by using a deep neural network as a
function approximator to estimate the action-value function; (e) our study proposes a model-
assisted RL, which integrates a heuristic with RL to let RL only focus on the uncertainty
part, and the size of the state is reduced compared to Guo et al. (2022).

Table 4.1: Comparison between the proposed model and existing approaches in the literature.

Problem characteristics Methodologies
Vehicle Event Required prior

Article Mode Problem routing Uncertainty location Approach Learning Re-planning information

Synchromodal transport
Li et al. (2015b) road, railway, in-

land waterway
STP – – RHC – periodical –

Van Riessen et al. (2016) road, railway, in-
land waterway

STP demand – DT ✓, offline real-time historical re-
quests

Demir et al. (2016) road, railway, in-
land waterway

STP travel/service
time, demand

arcs SO – –

Rivera and Mes (2017) road, inland wa-
terway

STP demand – MDP periodical distribution

Yee et al. (2021) road, railway, in-
land waterway

STP travel time arcs MDP periodical distribution

Qu et al. (2019) road, railway, in-
land waterway

STP – – LP real-time –

Guo et al. (2021b) road, railway, in-
land waterway

STP travel time and
demand

arcs SO periodical distribution

Guo et al. (2022) road, railway, in-
land waterway

STP travel time arcs RL ✓, offline periodical distribution

Vehicle routing problems
Balaji et al. (2019) road VRP ✓ demand – DRL ✓, online – none
Pan and Liu (2023) road VRP ✓ demand – DRL ✓, online real-time none
Basso et al. (2022) road VRP ✓ demand – RL ✓, offline real-time historical data

This research road, railway, in-
land waterway

STP ✓ service time terminals model-assisted DRL ✓, online real-time none

–: in the “Required prior information” column, it means that no information is required as uncertainty is not taken into account; in other columns, it means that the relevant item is not
mentioned in the article.
RHC: Receding horizon control; STP: Synchromodal transport planning; VRP: Vehicle Routing Problem; MDP: Markov decision process; DT: Decision trees; LP: Linear programming

model; SO: Stochastic optimization.

4.3 Problem Description

Besides the problem setting in Chapter 3, we consider service time uncertainty in this chap-
ter. During the transportation, unexpected events ue may occur with starting time tue and
ending time tue. The starting and ending times are unknown when designing the initial trans-
portation plan. Due to unexpected events, the duration of service time at each terminal i∈N
is uncertain. If a vehicle k arrives at terminal i and cannot transport request r as planned, the
request r is an affected request. If the vehicle k continued as originally planned, the delivery
time of request r could exceed bd(r) and a delay penalty will be charged. To avoid delay, the
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best action needs to be taken. Specifically, the following questions need to be considered:

1. Should the affected requests be served by the current vehicle?

2. If not, which vehicles can be used for serving them?

In question 1, if request r is served by one vehicle, only the schedule of the current
vehicle needs to be evaluated. If two or more vehicles are used, the schedules of subsequent
vehicles also need to be considered. If the request is removed from the schedule of a vehicle,
then question 2 is considered. After inserting the removed request into a new route of vehicle
k′, the schedules of vehicle k′ and vehicles that have transshipment operations with k′ need
to be re-evaluated. Since multiple requests could be influenced by the same unexpected
event, the above re-evaluation needs to be iterated until all affected requests have either
been confirmed to keep the original plan or have been re-planned.

The severity of unexpected events may differ. Some events may cause severe disruptions
and some may only disturb the schedules of vehicles. For different terminals, the factors
that influence the duration of unexpected events are various, such as weather conditions,
equipment malfunctions, or traffic congestion. Therefore, the duration of unexpected events
at different terminals may be of different types. Multiple events of different types may
happen in a single terminal. Moreover, the severity level of the event may be provided by
the port authority or terminal operator (for example based on the source of the event), and
the severity level may be inaccurate. The performance of the model under severity level
with inaccurate information needs to be evaluated. Therefore, different scenarios need to be
considered to evaluate the effectiveness of the proposed approach.

4.4 Proposed planning approach
Solving vehicle routing problems by RL is challenging because the size of the state is very
large, especially for synchromodal transport with multiple modes and transshipment (Guo
et al. 2022). RL can be computationally expensive and may not always find the optimal so-
lution, especially in such large and complex environments. Different from approaches that
solely use RL to solve vehicle routing problems (James et al. 2019, Nazari et al. 2018, Stead-
ieSeifi et al. 2021), this study integrates RL and ALNS to make use of the strengths of both,
namely the data-driven strength of the former and the domain knowledge from the latter, as
shown in Figure 4.2. ALNS is a metaheuristic optimization algorithm that is widely used to
solve vehicle routing problems, and the ALNS used in this study is extended from Chapter
3. ALNS can be very effective in finding good solutions quickly when uncertainty is not
considered. By integrating RL and ALNS, we can potentially make use of the strengths
of both approaches. ALNS can provide efficient search and optimization capabilities for
the static problem, while RL can provide real-time adaptability and decision-making capa-
bilities under uncertainty. This can potentially allow the integrated approach to find good
solutions quickly and adapt to unexpected events in real-time. Different from the ALNS in
Chapter 3, in this study, ALNS is used to build schedules, provide information on states,
check feasibility to provide rewards and guide RL operators by prioritizing vehicles. Ben-
efiting from combining ALNS, the RL approach can focus on the uncertainty in real-time
and the size of the state in RL can be reduced by only keeping critical factors that influence
decisions.
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Figure 4.2: Model-assisted RL.

Section 4.4.1 introduces a re-planning framework that considers different strategies, one
of which is the model-assisted RL. Section 4.4.2 presents the details of the model-assisted
RL.

4.4.1 Synchromodal transport re-planning framework

This section presents a re-planning framework that accommodates different strategies: (a)
waiting strategy, (b) average duration strategy, and (c) model-assisted RL strategy. The
mathematical model for synchromodal transport planning under service time uncertainty is
extended from Chapter 3. The objective of synchromodal transport planning is minimizing
cost (Euro), as same as the objectives (3.1)-(3.7) in Chapter 3. When an unexpected event
ue occurs prior to the planned service start time (tue < t ′kr

i ), the service should start when
the unexpected event ue is resolved, as shown in Constraints (4.1):

t ′kr
i � tue ∀i ∈ N, ∀k ∈ Kue, ∀r ∈ R (4.1)

However, the event ending time tue in Constraints (4.1) is uncertain, which influences
requests served by vehicle k at terminal i. If appropriate action is not taken, it may cause
a long waiting time twait

ki at terminal i and hence severe delay tdelay
r at the delivery terminal

d(r).
With an event-triggered mechanism, the framework consists of two phases: re-planning

when the unexpected event occurs at time step tue and evaluation/learning when the unex-
pected event ends at time step tue. In order to address the two questions outlined in Section
4.3, the re-planning phase contains two sub-phases: the removal phase and the insertion
phase. Three strategies (a), (b), or (c) are employed to determine the actions in these sub-
phases. In the removal phase, the actions are to either wait or remove a request from the
vehicle’s schedule. In the insertion phase, the actions are to either insert a request into the
schedule or not insert it.

As presented in Algorithm 3, in strategy (a), all vehicles just wait during the unexpected
event mimicking the traditional planning in practice. When an unexpected event finishes,
if there is a delay and re-planning is possible, the affected request will be re-planned. As



4.4.1 Synchromodal transport re-planning framework 73

presented in Algorithm 4, strategy (b) collects the duration of unexpected events online and
then assumes that the current expected event’s duration equals the average duration of these
records and is updated as more information is received. This strategy mimics carriers who
also learn from experience, but in a simpler way compared to RL.

Strategy (c) integrates re-planning and learning using a model-assisted RL, as presented
in Algorithm 5. The re-planning phase stores information about the situation at time step tue.
Since RL cannot immediately receive a reward for its actions when events occur, we allow
the RL agent to learn when events end. As illustrated in Figure 4.3, when an event begins,
the situations faced by all vehicles at different terminals are stored. When the event ends,
RL is trained by simulating the situation when the event occurred. Since the duration of
the event is known at the end, the reward for the taken action can be calculated. During the
learning phase, the re-planning process relies on ALNS. For strategy (c), we also consider
RL with and without severity level in the state.

Algorithm 3: Waiting strategy

Input: K, R, G; Output: X , Rpool; // X/Rpool represents the
solution/request pool.

obtain the initial routes by the static ALNS in Chapter 3 (Zhang et al. 2022b);
if an event ue finishes then

get the set of affected requests Rue;
add the event duration to schedules of Rue and check feasibility of Rue’s
schedules;

if requests in Rue cannot be delivered on time and re-planning is possible,
re-plan using Algorithms 6 and 7 and update solution X

end

Event endsEvent begins
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UnexpectedUnexpectedUnexpected
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requests

UnexpectedUnexpected
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Figure 4.3: Data storage and learning.
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Algorithm 4: Average duration strategy

Input: K, R, G; Output: X , Rpool; // X/Rpool represents the
solution/request pool.

obtain the initial routes by the static ALNS in Chapter 3 (Zhang et al. 2022b);
set the average duration DU as zero;
if an event ue occurs and enough historical durations are collected then

get the set of affected requests Rue;
for r in Rue do

add average duration DU to r’s schedule;
check feasibility of request r’s schedule;
if r’s schedule is infeasible then

remove and reinsert request r using Algorithms 6 and 7 and update
solution X

end
end

end
if an event ue finishes then

the average duration DU is updated with the event duration;
get the set of affected requests Rue;
add the event duration to schedules of Rue and check feasibility of Rue’s
schedules;

if requests in Rue cannot be delivered on time and re-planning is possible,
re-plan using Algorithms 6 and 7 and update solution X ;

end

Re-planning when the unexpected event occurs

The initial solution for the synchromodal transport re-planning is generated using ALNS
(Zhang et al. 2022b). However, unexpected events during transportation may require the
initial solution to be modified through re-planning. The synchromodal transport re-planning
process proceeds as follows:

1. Find affected requests Rue: When an unexpected event ue occurs at terminal i at time
tue, the first step is to determine which transport mode wue is affected by the event.
Then, for each vehicle k in the set Kwue , the process checks whether the vehicle passes
terminal i. If it does, the process identifies all requests Ri

k that have operations at i. For
each request r in Ri

k, if the planned service start time is larger than the event occurring
time (t ′kr

i > tue), then the request is added to the set of requests Rue that are affected
by the unexpected event.

2. Collect RL state information: If the RL strategy is being used, for each request r in
Rue, the process collects the state information as described in Section 4.4.2.

3. Take action: For strategy (a), the waiting action is always taken when an unexpected
event occurs and the schedules are not changed. For strategy (b), the average duration
is added to the schedules, and the feasibility is checked. If the request is infeasible,
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Algorithm 5: RL strategy

Input: K, R, G; Output: X , Rpool; // X/Rpool represents the
solution/request pool.

obtain the initial routes by the static ALNS in Chapter 3;
if an event ue occurs and RL is mature then

get the set of affected requests Rue;
for r in Rue do

send the state of request r to RL and obtain the action from RL;
if the action is removal then

remove request/segment r using Algorithms 6 and update solution X ;
for k in suitable vehicles K′ for request/segment r do

try to insert r to vehicle k using Algorithm 7; send the state of k and
r to RL and receive action from RL;

if the action is insertion then
keep the insertion, update solution X , and break the loop;

end
end

end
end

end
if an event ue finishes then

update the RL’s policy using the approach in Section 4.4.2;
get the set of affected requests Rue;
add the event duration to schedules of Rue and check feasibility of Rue’s
schedules;

if requests in Rue cannot be delivered on time and re-planning is possible,
re-plan using Algorithms 6 and 7 and update solution X ;

end

it is removed and re-inserted using Algorithms 6 and 7. For strategy (c), RL is used
to make decisions (see details in Section 4.4.2). The ALNS sends the state to RL
and waits for the action from RL. If the action is waiting, the process evaluates the
next affected request. If the action is removal, the process uses Algorithms 6 and 7 to
remove and insert the request/request segment, respectively. When strategies (b) and
(c) are not implemented, the vehicles will wait.

4. The above steps are repeated until all requests have been delivered.

Evaluation/learning when the unexpected event finishes

When unexpected event ue finishes, the duration is known. The RL agent can then learn
from the experience of affected requests Rue during the event. All routes, unserved requests,
and state st are retrieved from the data storage to simulate the same situation at time step t.
The ALNS sends the state st to RL and RL gives the action. Similar to the procedures in
the previous section, if the action is removal, the request/request segment is removed and
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re-inserted using Algorithms 6 and 7. If the action is non-removal, the vehicle will wait
until the event finishes. After the action is taken, the reward is determined by the methods
in Section 4.4.2 and sent to RL for learning.

If RL is implemented, the performance of the action at taken by RL is evaluated. For
each affected request r in Rue, the routes, removal action at and insertion action a′t (if any)
at time step t are restored to recreate the same situation. The reward is then determined by
checking the feasibility after taking the action at using the approaches in Section 4.4.2.

If strategy (b) is used, the duration is collected. The performance of strategies (a) and
(b) are evaluated in a similar way to the evaluation of RL.

Removal and insertion methods

There are two types of synchromodal transport re-planning: re-planning for requests with
and without transshipment. Requests without transshipment involve the transportation of
goods using only one mode of transportation. If an unexpected event occurs at a terminal
along the route of a vehicle transporting such a request, the vehicle may need to wait at the
terminal until the event is resolved. This can cause delays in the delivery of the goods and
may result in decreased efficiency and increased costs. In this case, re-planning may in-
volve adjusting the route or waiting at the terminal until the event is resolved, depending on
the specific situation. Requests with transshipment in synchromodal transport involve the
transfer of goods from one mode of transportation to another at a specific terminal. If an un-
expected event occurs at the transshipment terminal, it may affect the availability of the next
mode of transportation or the transfer of goods between modes. Therefore, the re-planning
for requests with transshipment also needs to consider the case where only a segment of the
request is affected, meaning that only the request segment after the transshipment terminal
needs to be re-planned. This helps to minimize the impact of the re-planning on the initial
plan. The cases of these two types are shown in Figures 4.4 and 4.5, respectively.

The key to successful re-planning is to identify the current location ik of the vehicle k
and the terminal iue with the unexpected event ue, and determine the possible actions. If ik
is a terminal after iue, vehicle k is not affected by the event ue. Except in the case where
ue occurs at the delivery terminal, only the re-planning from iue is considered in order to
minimize changes to the initial plan.

On the route of vehicle k, if iue is a previous terminal of the pickup terminal p(r) or
is p(r), then it is case 1 in Figure 4.4. In this case, the entire request r will be removed
to Rpool and re-planned. For case 2, iue is in the middle of p(r) and d(r), and the request
can be segmented by iue and delivery time tr

iue
at iue if the request cannot be delivered on

time. This results in the request r being segmented into two segments: r1
iue

, which needs
to be picked up in the time window [ap(r),bp(r)] at terminal p(r) and delivered in the time
window [ap(r), tr

iue
] at transshipment terminal iue, and r2

iue
, which needs to be picked up in the

time window [tr
iue
,bd(r)] and delivered in the time window [ad(r),bd(r)]. The planning for r1

iue

remains unchanged, while r2
iue

is removed to Rpool and re-inserted. In case 3, the unexpected
event occurs at the delivery terminal d(r). If ik is a previous terminal of d(r), the request
can be removed or segmented by ik in a similar way as in cases 1 and 2. Otherwise, the
request cannot be rescheduled.

There are five cases to consider when request r is transferred at transshipment terminal
j, as shown in Figure 4.5. In case 4, similar to case 1, the unexpected event influences



4.4.1 Synchromodal transport re-planning framework 77

Request r Pickup/transshipment/
delivery

Terminal

Case 1

Case 2

Unexpected 
event

Unexpected 

1×

1×

1×

vehicle k

Case 3

1×

Reschedulable 
part

Figure 4.4: Reschedulable part when there is no transshipment.

the entire transportation of request r, and the request can be fully removed and re-planned.
Cases 5 and 6 are similar to case 2, with the unexpected event occurring at a terminal
between p(r) and j (case 5) or at transshipment terminal j (case 6), resulting in the request
segment from the affected terminal to d(r) being removable. In case 7, the unexpected event
occurs at a terminal between j and d(r), and the request segment from the affected terminal
to d(r) can be re-planned, potentially requiring the use of three or more vehicles to serve
the request. In case 8, the unexpected event occurs at the delivery terminal, and the request
can be removed or segmented as in cases 4-7, depending on the location of vehicle k.

The removal and insertion algorithms are presented in Algorithms 6 and 7. Algorithm 6
removes the request or request segment based on the case it belongs to, while Algorithm 7
inserts the request into a route until the feasibility, as evaluated by ALNS/RL, is achieved.

Algorithm 6: Removal algorithm

Input: K, r, Xcurrent, Rpool, case; Output: Xremoval, Rpool; // Xcurrent/Xremoval
means the current solution/the solution after removal.

if case == 1 or case == 4 then
for k in K do

if k serves r then
remove r from k’s schedule in Xcurrent and obtain Xremoval

end
end
add r to Rpool;

else
remove the request segment from relevant routes of vehicles and obtain Xremoval;
add the request segment to Rpool;

end
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Figure 4.5: Reschedulable part when there is transshipment.

Algorithm 7: Insertion algorithm

Input: k, r, Xcurrent, Rpool; ; // k is the vehicle that is trying to be
used, and r could be a request or a request segment.

Output: Xinsertion, Rpool;; // Xcurrent/Xinsertion means the current
solution/the solution after insertion.

for position pos in all possible positions in k’s route in Xcurrent do
insert r to the position pos;
check feasibility of the inserted route by the ALNS or RL;
if the solution after insertion is feasible then

keep the insertion and obtain Xinsertion;
remove r from Rpool;
stop

else
remove r from position pos;
try next position

end
end
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4.4.2 Model-assisted Reinforcement Learning

The RL agent interacts with an environment E at each of a sequence of discrete time steps,
t = 0,1,2,3, . . .. Besides the planning of all vehicles and requests, E contains the uncertain
duration of the service time at terminals. For the unexpected event ue occurring at each
time step tue, the RL agent receives a state st and chooses an action at from a set of possible
actions A according to its policy π = P(at |st). When the event finishes, the actual duration
is known. ALNS checks the feasibility of schedules after adding the duration and gives the
RL agent a scalar reward rt . The goal of the RL agent is to maximize cumulative rewards
Rt by selecting appropriate actions from each state st :

Rt = rt + γrt+1 + γ
2rt+2 + ...=

∞

∑
k=0

γ
krt+k (4.2)

where γ is a discount factor.
In this RL approach, the state includes important information about the current time

t, passed terminals that have unexpected events Nue, the travel time τk
i j between adjacent

terminals i, j ∈ Nue, and the delay tolerance t tolerance
r of the request. The current time t helps

the RL agent to evaluate how long the unexpected event will last. The decision for one
request must consider not only the unexpected event at the current terminal but also events
at later terminals. Therefore, we include all passed terminals that have unexpected events
Nue and the travel time τk

i j in the state. The delay tolerance t tolerance
r represents the maximum

possible delay time and should not be smaller than the duration of the unexpected event,
otherwise, there will be a delay in delivering the request and the request may need to be
switched to another vehicle. As shown in Figure 4.6, there are two cases when calculating
the delay tolerance. In both cases, the delay tolerance includes the duration between the
latest delivery time and the planned delivery time bd(r)− tdelivery

r . In case 1, the event begins
after the service start time t ′kr

i , so the delayed time is equal to the duration of the event. In
case 2, the event begins before t ′kr

i , and part of the duration t ′kr
i − tue does not affect the

service, which needs to be added to the delay tolerance. Therefore, the delay tolerance is
calculated by:

t tolerance
r = (t ′kr

i − tue)
++(bd(r)− tdelivery

r ). (4.3)

In order to provide more information about the event that is causing the service time
uncertainty, we also consider the severity level of the event as a part of the state in the
RL approach. The severity level is a measure of the impact of the event on the transport
operation and can be obtained from the terminal operator or other sources. The severity
level may not always be accurate due to incomplete information and measurement errors,
therefore, the consideration of imperfect severity level is also incorporated. The inclusion
of the severity level is only applied in complex scenarios, as demonstrated in Section 4.5.2.

Figure 4.7 shows the flowchart of the model-assisted RL, where dashed lines mean the
interactions between ALNS and RL. When a request is influenced, firstly the RL agent de-
cides whether the current vehicle is suitable to serve it or not in the removal phase. The first
step involves generating the route for the request and sending the relevant state information
to the RL agent. The RL agent then makes a decision about whether the request should be
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Figure 4.6: Delay tolerance in the state.

removed or if the vehicle should wait until the event finishes. ALNS then evaluates the fea-
sibility of the original route based on the action taken by the RL agent and sends a reward
to the RL agent based on whether or not the action avoided delay. If the action was removal
and there was a delay when the event finished, or if the action was waiting and there was no
delay when the event finished, the reward is 1. Otherwise, the reward is 0.

If the action in the removal phase is removal, RL will determine which vehicle is the
most suitable for the affected request in the insertion phase. The insertion phase includes
the following steps:

1. ALNS ranks the vehicles based on their unit cost. For each vehicle, it inserts the
removed request into the route using the ALNS greedy insertion operator (Zhang
et al. 2022b), and then sends the resulting state to RL. RL then returns an action,
which can be either non-insertion (1) or insertion (0).

2. ALNS evaluates the action by checking the feasibility of the original route and sends
a reward to RL. If the action is non-insertion (1) and there is a delay, or if the action
is insertion (0) and there is no delay, the reward is 1. Otherwise, the reward is 0.

3. If the action is an insertion, the insertion phase is stopped and the affected request is
inserted into the chosen vehicle. If the action is non-insertion, the process continues
with the next vehicle until the request is inserted or there is no suitable vehicle left.

The actions and rewards in the insertion phase have a similar meaning to those in the
removal phase but are referred to by distinct names. Therefore, the same RL approach can
be utilized for both phases. If the action in the removal phase is waiting, then the insertion
phase is not necessary. If the action is to remove the request, it may be necessary to perform
additional iterations in the insertion phase to identify a suitable vehicle.

Once the RL approach has reached a certain level of maturity or a predetermined number
of iterations, it will be used to make decisions for requests that are affected by uncertainty,
while the ALNS heuristic will continue to handle constraint checking. As the RL approach
continues to interact with the environment, it will continue to learn and improve its decision-
making capabilities.
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Figure 4.7: The flowchart of the model-assisted RL.
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The proposed model-assisted RL framework can be built upon any RL algorithm. In this
paper, we use the deep Q-network (DQN) (Mnih et al. 2015), a representative RL technique,
as the RL algorithm. The action value Qπ(s,a) = E[Rt |st = s,a] is the expected return for
selecting action a in state s and following policy π. The optimal value function Q∗(s,a)
gives the maximum action value for state s and action a for any policy. The Q∗(s,a) obeys
the Bellman equation:

Q∗(s,a) = Es′ [r+ γmax
a′

Q∗(s′,a′)|s,a]. (4.4)

where s′ and a′ are the state and action at the next time step. The Bellman equation
means that the optimal policy is to choose the action maximizing the expected value of
r+ γmaxa′Q∗(s′,a′) if Q∗(s′,a′) of s′ is known for all possible actions a′. In practice, find-
ing Q∗(s,a) is computationally expensive. Therefore, the DQN uses deep neural networks,
called Q-network, as a nonlinear function approximator with parameters θ to estimate the
action value function: Q(s,a;θ)≈ Q∗(s,a).

The algorithm for training DQN to approximate the optimal action-value function Q∗(s,a)
is presented in Algorithm 8. A target network Q̂(s,a;θ−) is cloned from Q using an older
set of parameters θ− in every C iterations and is used to generate the Q-learning targets y
for the following C iterations. In the beginning, both Q and Q̂ are initialized with random
parameters θ. Then, for each iteration t, the DQN receives state st and selects an action at
according to an ε-greedy policy (ε = 0.05). The action is sent to ALNS and reward rt and
state st+1 is received. The target Q-value y is calculated using the Bellman equation (4.4)
with Q̂:

y = rt + γmax
a′

Q̂(s′,a′;θ
−
t ). (4.5)

The predicted Q-value is obtained using the current parameters θt in the network Q(s,a;θt).
At each iteration t, the Q(s,a;θt)’s parameters θt are updated to minimize the mean-squared
error between the target and predicted Q-values, i.e., the loss function:

Lt(θt) = Es,a,r,s′ [(y−Q(s,a;θt))
2] (4.6)

Differentiating (4.6) with respect to θt , we obtain the following gradient:

∇θt L(θt) = Es,a,r,s′ [(y−Q(s,a;θt))∇θt Q(s,a;θt)]. (4.7)

These gradients are then used by optimization algorithms like stochastic gradient descent
used in this study to update the parameters in a direction that minimizes the loss.

Besides, the DQN also makes use of different techniques to stabilize the learning with
neural networks, including the replay buffer and gradient clipping, as introduced by Mnih
et al. (2015).

The process of how the RL agent learns to make decisions in the presence of unexpected
events is illustrated in Figure 4.8. A request is initially planned to be transported by truck
and then transferred to a barge via transshipment. However, an unexpected event occurs
at the transshipment terminal, requiring the RL agent to determine whether to remove the
request from the barge and whether to insert it onto the train service as an alternative. If
the request is removed from the barge and inserted onto the train, there will be no delay in
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Algorithm 8: Deep Q-network

Initialize the Q-network Q parameters θ randomly;
Initialize the target Q-network Q̂ parameters θ− = θ;
repeat

Receive state s1 from ALNS;
for t = 1,2, ...,T do

Select at = argmaxa Q(st ,a;θ) or a random action at with probability ε;
Send action at to ALNS and receive reward rt and state st+1;
Calculate the target Q-value using the Bellman equation (4.5) and the
predicted Q-value using Q(s,a;θ);

Compute the loss function (4.6) as the mean squared error between target
and predicted Q-values;

Perform a gradient descent step using equation (4.7) and update θ using
stochastic gradient descent to minimize the loss function;

Reset Q̂ = Q in every C iterations;
if the RL is mature then

Return: Trained Q-network
end

end
until the number of episodes is reached;
Return: Trained Q-network

its transportation. In the removal phase, the RL agent receives a reward for removing the
request from the barge service, as remaining on the barge would result in a delay. Through
training, the RL agent continually tries different actions and receives rewards, eventually
learning to make the decision to remove the request. Similarly, in the insertion phase, the RL
agent is trained to ultimately make the decision to insert the request onto the train service.
The required number of training iterations for effective learning depends on the size of
instances. Further details can be found in Section 4.5.2.

4.5 Case Study

The European Gateway Services (EGS) network is selected as the real-world case to eval-
uate the effectiveness of the proposed planning approach. EGS network is located at the
Rhine-Alpine corridor, which constitutes one of the busiest freight routes in Europe, around
138 billion tonne-kilometers of freight is transported along this corridor annually, account-
ing for 19% of the total GDP of the EU. Figure 4.9 presents the overall network of this study
(Guo et al. 2020). It contains three terminals in the Port of Rotterdam and seven inland ter-
minals in the Netherlands, Belgium, and Germany. In total 116 vehicles are used in the case
study, which includes 49 barges, 33 trains, and 34 truck fleets. We assume a truck service is
a fleet with an unlimited number of trucks and truck services are available between any of
the two terminals. The origins and destinations of requests are distributed randomly among
deep-sea terminals and inland terminals, respectively. Requests have random origins and
destinations among deep-sea and inland terminals. The container volumes of requests are
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Figure 4.8: An example of how RL learns.

Figure 4.9: Transport network of EGS (source: Guo et al. (2020)).

drawn independently from a uniform distribution with range [10, 30] (unit: TEU). The ear-
liest pickup time ap(r) of requests is drawn independently from a uniform distribution with
range [1, 120]; the latest delivery time bd(r) = ap(r) + LDr, where LDr is the lead time and
it is independently and identically distributed among 24, 48, 72 (unit: hours) with probabil-
ities 0.15, 0.6, 0.25. Moreover, we set bp(r) and ad(r) equal to bd(r) and ap(r), respectively.
Detailed information on how the instances are generated can be found in Guo et al. (2020).
To evaluate the approach, instances with 5, 10, 20, 30, 50, and 100 shipment requests are
designed. The time horizon of the transport planning is eight days. Before the transport, the
model is used to generate transport plans for all requests. If unexpected events occur during
the transportation, the model will be triggered for the re-planning of influenced schedules.
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We consider scenarios with different types of unexpected events, which moreover follow
different duration distributions. A duration distribution is a statistical representation of the
distribution of time periods for a specific type of event. It describes the likelihood of the
event taking a certain amount of time. In order to generate realistic unexpected events,
we use truncated normal distributions to exclude negative durations, which are commonly
used in the literature (Soltani-Sobh et al. 2016, Srinivasan et al. 2014). These distributions
are not known to the RL algorithm. In terms of the severity level information in the state
of RL approach, we have three cases: no severity level information, perfect severity level
information (the level is accurate), and imperfect severity level (where some levels are not
as expected). In Section 4.5.1, there is no severity level information. In Section 4.5.2,
because the scenario with multiple events is complex, perfect and imperfect severity levels
are considered.

Unless otherwise specified, the maximum number of iterations in the learning phase is
set to 5000, and the RL is evaluated every 100 iterations. During the evaluation, the RL is
tested 10 times and the rewards are recorded. If the average reward is greater than 0.9 for
five consecutive evaluations, we consider the RL to be mature and ready for implementation.
During the implementation phase, the RL is used to make decisions for 200 iterations.

The performance is evaluated using two indicators: average reward of all iterations and
total delay over all requests in the implementation phase. The performance indicators are
evaluated from the carrier’s perspective and consider all vehicles in the transport network.
Rewards are given for actions that avoid delay (referred to as “correct actions”). A higher
reward and lower delay indicate better performance. However, a high reward does not
necessarily mean a low delay, as incorrect actions can result in substantial delays even if
the majority of actions are correct and result in a high average reward. We also evaluate
the proportion of rewards obtained through removal, waiting, non-insertion, and insertion
actions, with higher proportions being favorable.

4.5.1 Results under disruptions and disturbances

To test the model under different types of unexpected events, several scenarios are designed,
including (a) disturbances, (b) severe disturbances, (c) disruptions, and (d) a mix of disrup-
tions and disturbances. The distributions used in each scenario are illustrated in Figure 4.10.
In scenario (a), the mean value µ of the duration distribution is set to a small value of 5h,
and the standard deviation σ is set to 1. This represents a situation where the duration of
unexpected events is generally short but still somewhat variable. In scenario (b), the distri-
bution is defined by the parameters [µ, σ] = [40, 20] or [40, 1]. In scenario (c), the mean
value µ of the distribution is set to 80h, and the standard deviation σ is set to 40, 20, or 1.
This allows us to evaluate the performance of the proposed approach under different levels
of variability in the duration of unexpected events. In scenario (d), the terminals are divided
into two groups. The first group (terminals 1-5) and the second group (terminals 6-10) ex-
perience different types of events in scenarios (a), (b), and (c). The information on these
distributions is unknown to RL.

Figure 4.11 shows the proportion of actions and rewards among various strategies. Each
rectangle of a distinct color represents a specific action, with the size of the rectangle in-
dicating the proportion of that action. The filled portion of each rectangle represents the
proportion of rewards obtained through the corresponding action, while the blank portion
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(a) (b)

Figure 4.10: Normal distributions used in different scenarios (unknown to RL). These
distributions are truncated at zero to avoid negative duration.

represents the proportion of the action that does not result in a reward. Across all scenar-
ios, the RL strategy (strategy (c)) consistently performs the best, while the waiting strategy
(strategy (a)) consistently performs the worst. The waiting strategy performs well only in the
presence of disturbances in Figure 4.11(a), where the wait time is sufficient in most cases.
As the severity of unexpected events increases, the waiting strategy performs increasingly
poorly. The average duration strategy (strategy (b)) performs worse as the variation in the
unexpected events becomes larger, as it becomes more difficult to utilize average duration to
determine the optimal action in such circumstances. In the presence of disruptions, the pro-
portion of non-insertion and removal actions increases as the strategy attempts to mitigate
the disruptions and subsequent delays. The RL strategy uses more insertion and waiting
actions compared to the average strategy, even in the presence of disruptions, because it
is able to identify situations in which requests can still be serviced by vehicles despite the
disruptions occurring frequently at terminals. This capability allows the RL strategy to earn
more rewards compared to the other two strategies. The RL strategy also exhibits superior
performance in terms of its ability to accurately recognize and execute non-insertion and
removal actions.

Figure 4.12 compares the delay (in hours) of different strategies under various numbers
of requests and scenarios where the duration of unexpected events at all terminals follows
the same distribution. It is observed that the delay of the waiting strategy is higher than other
strategies in 75% of the cases. The RL strategy is relatively insensitive to increases in the
variations or stochasticity of the duration of the events, and the total delay is the lowest in
all scenarios, including disturbances, severe disturbances, and disruptions. As the severity
of the events increases, the maximum delay for the waiting and average duration strategies
increases significantly, while the maximum delay for the RL strategy remains below half of
the maximum delay for the other strategies in the majority of cases. The delay of the RL
strategy is lower than the other two strategies in 80% of the cases. In the remaining cases,
the RL strategy performs better than at least one of the other two strategies in five out of
seven cases. On average, the RL strategy reduces delay compared to the average duration
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(a) disturbances (b) severe disturbances

(c) severe disturbances with medium variations (d) disruptions

(e) disruptions with medium variations (f) disruptions with high variations

Figure 4.11: Proportion of actions and rewards under disturbances or disruptions.

strategy by 9.6% and the waiting strategy by 53.8%. This suggests that the RL approach
is more effective at handling unexpected events and minimizing the delay compared to the
waiting and average duration strategy.

Figure 4.13 depicts the distribution of actions and rewards under scenarios in which
different types of events occur at different terminals. In Figure 4.13(a), the waiting strat-
egy only effectively handles half of the cases in the scenario with both disturbances and
severe disturbances. The average duration strategy performs better than the waiting strategy
as it uses historical information, although it is still less accurate and yields fewer rewards
compared to the learning strategy. In Figure 4.13(b), the performance of the waiting and
average duration strategies is similar to that observed in Figure 4.13(a). In Figures 4.13(c)
and 4.13(d), when disruptions occur at some terminals, the waiting strategy’s performance
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(a) disturbances (b) severe disturbances

(c) severe disturbances with medium variations (d) disruptions

(e) disruptions with medium variations (f) disruptions with high variations

Figure 4.12: Total delay over all requests under disturbances or disruptions.

deteriorates significantly as it is unable to avoid delays caused by disruptions in the ma-
jority of cases. In contrast, the learning strategy is able to handle a mixture of disruptions
and disturbances effectively, utilizing a range of actions appropriately based on the specific
circumstances it encounters, and consistently earning the highest rewards.

Figure 4.14 presents the total delay over all requests under scenarios in which different
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(a) disturbances and severe disturbances (b) disturbances and severe disturbances with a medium
variation

(c) disturbances and disruptions (d) disturbances and disruptions with a medium varia-
tion

Figure 4.13: Proportion of actions and rewards under different types of events occurring at
different terminals.

terminals experience different types of events. In 21 out of 24 cases, the RL strategy outper-
forms the other two strategies, while in the remaining three cases, the RL strategy performs
comparable to the waiting or average duration strategy that has a better performance. De-
spite the presence of various types of events, including disturbances, severe disturbances,
and disruptions, at different terminals, the RL strategy is able to effectively identify and im-
plement strategies to avoid delay based on the terminal and its accumulated experiences at
that terminal. The results indicate that when either the waiting or average duration strategy
is the best-performing strategy, the RL strategy is able to obtain similar results. In cases
where these strategies are not optimal, the RL strategy is able to devise a superior approach.
On average, the RL strategy reduces delay compared to the average duration strategy by
22.1% and the waiting strategy by 73.8%.

4.5.2 Results under multiple events with perfect and imperfect severity
level

In previous experiments, we assumed that there was only one type of event at each terminal.
However, it is possible for multiple types of events to occur at the same terminal, with some
events causing disruptions and others causing disturbances. To tackle this issue, we created
five scenarios incorporating 2-6 types of events occurring at the same terminal. In each
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(a) disturbances and severe disturbances (b) disturbances and severe disturbances with a medium
variation

(c) disturbances and disruptions (d) disturbances and disruptions with a medium varia-
tion

Figure 4.14: Total delay over all requests under different types of events occurring at
different terminals.

scenario, 12 cases are generated with different events, randomly chosen from the following
types ([µ, σ]): disturbance ([5, 1]), severe disturbance [µ, σ], severe disturbances with a
higher standard deviation ([40, 20]), disruption ([80, 5]), and disruptions with a higher
standard deviation ([80, 40]). In majority of the cases, the types of events differ, but there
are cases that contain the same type of events.

Figure 4.15 presents the average rewards obtained by all actions of the RL strategy
with varying numbers of training iterations under scenarios involving different numbers of
events occurring at the same terminal. It is observed that in the scenario with two events
(Figure 4.15(a)), the RL’s average rewards reach 0.9 when the number of training iterations
is 10000, indicating that the RL is able to choose correct actions in more than 90% of
cases. However, as the number of events increases, the performance of the RL declines,
with the average reward unable to reach 0.8 in scenarios with six events. This suggests
that the problem becomes increasingly complex as the number of events increases, and the
RL is unable to effectively solve it without additional information. In order to measure the
performance of RL in complex scenarios with multiple events at the terminal, the state has
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been augmented with the inclusion of a severity level. The severity level is labeled from 1
to 6 and is defined as follows: Level 1: duration time ≤ 20, Level 2: duration time ∈ (20,
40], Level 3: duration time ∈ (40, 60], Level 4: duration time ∈ (60, 80], Level 5: duration
time ∈ (80, 100], Level 6: duration time > 100. The RL is only informed about the level
as a label but does not know the duration. Figure 4.15 also presents the average rewards
for scenarios after adding a severity level to the state. The results indicate that the average
reward is able to reach 0.8 in most cases when the number of training iterations is 1000, and
approaches or exceeds 0.9 when the number of training iterations is 5000. This suggests
that incorporating a severity level into the state is beneficial in enabling the RL to choose
correct actions, as it can help to differentiate between events with different levels of impact
and allow for more informed decision-making.

(a) Two events without severity levels (b) Two events with severity levels

(c) Three events without severity levels (d) Three events with severity levels

Figure 4.15: Average rewards under multiple types of events at the same terminal.
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(e) Four events without severity levels (f) Four events with severity levels

(g) Five events without severity levels (h) Five events with severity levels

(i) Six events without severity levels (j) Six events with severity levels

Figure 4.15: Average rewards under multiple types of events at the same terminal (cont.).

Figure 4.16 presents the average rewards of the three strategies under various numbers
of requests in scenarios with multiple events and severity levels. Across all cases, the RL
strategy’s average rewards of handling all requests are higher than the waiting and average
duration strategies. Figure 4.17 provides the proportions of actions and the corresponding
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rewards obtained by each action. This figure more clearly demonstrates the RL’s ability to
accurately utilize different actions in complex cases involving up to six events at a single
terminal. Figure 4.18 compares the delay experienced by the different strategies. In 25
out of 30 cases, the RL strategy performs the best among the three strategies, and in the
remaining four out of five cases, the RL’s performance is similar to that of the other two
strategies. The only exception is in the case with 100 requests under the scenario with four
events (Figure 4.18(c)), where the RL strategy experiences a significantly larger delay due
to a single incorrect action. On average, the RL strategy reduces delay compared to the
waiting and average duration strategies by 52.8% and 29.0%, respectively.

(a) two events (b) three events

(c) four events (d) five events

(e) six events

Figure 4.16: Average rewards of strategies under multiple events at the same terminal.
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(a) two events (b) three events

(c) four events (d) five events

(e) six events

Figure 4.17: Proportion of actions under multiple events at the same terminal.
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(a) two events (b) three events

(c) four events (d) five events

(e) six events

Figure 4.18: Total delay over all requests under multiple events at the terminal.
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While incorporating severity levels can improve the performance of the RL, it is impor-
tant to recognize that such knowledge may be imperfect, potentially incomplete or outdated,
subject to interpretation, or prone to measurement errors. In these cases, the RL may make
suboptimal decisions or take longer to learn an optimal policy. To assess the RL’s perfor-
mance under imperfect knowledge of severity levels, we designed scenarios that include
random severity levels with a probability ranging from 0 to 0.5. The RL approach is eval-
uated under scenarios with two and six events, and the results are shown in Figure 4.19.
For the scenario with two or six events, as the probability increases, the average reward de-
creases, but still reaches 0.8 or 0.7 with sufficient training iterations when half of the severity
levels are randomly provided. The incorporation of imperfect knowledge can increase the
complexity of the problem for the RL, requiring it to consider multiple potential states and
incorporate uncertainty into its decision-making process. However, the use of deep neu-
ral networks in the RL allows the agent to adapt to changes in the environment, even with
imperfect knowledge of the state, making it particularly useful in complex synchromodal
transport environments where other methods may be ineffective.

(a) two events, probability of imperfect levels: 0.2 (b) six events, probability of imperfect levels: 0.2

(c) two events, probability of imperfect levels: 0.3 (d) six events, probability of imperfect levels: 0.3

Figure 4.19: Average rewards under multiple events with imperfect severity levels (12
cases with different colors).



4.5.3 Analysis of other performance indicators: served requests, costs, emissions,
waiting time, and training time 97

(e) two events, probability of imperfect levels: 0.4 (f) six events, probability of imperfect levels: 0.4

(g) two events, probability of imperfect levels: 0.5 (h) six events, probability of imperfect levels: 0.5

Figure 4.19: Average rewards under multiple events with imperfect severity levels (12
cases with different colors) (cont.).

4.5.3 Analysis of other performance indicators: served requests, costs,
emissions, waiting time, and training time

Besides delay and reward, there are several additional performance indicators that need to
be considered, such as the number of served requests, costs, emissions, waiting time, and
training time. The waiting strategy serves all requests even at the cost of a high delay
penalty. The average duration and RL strategies may selectively unserve a limited number
of requests in order to optimize overall performance in instances where delays are unavoid-
able and alternate services are more appropriate for other requests. In the average duration
strategy, all requests are served in 91.2% of the experiments, in 7% of the experiments only
one request is not served, and in the remainder 1.8% of the cases two requests are left un-
served. The RL strategy has a higher rate of served requests, with all requests being served
in 93.9% of the experiments, only one request being unserved in 5.7% of the experiments
and two being unserved only in 0.4% of the cases. It is noteworthy that the experiments
with unserved requests are mostly the larger ones such as those with 100 requests.

The performance indicators including average cost per request, average emissions, and
average waiting time are presented in Figures 4.20, 4.21, and 4.22, respectively. These
results are derived from the evaluation of different strategies under a variety of scenarios,
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including disturbance, severe disturbance, disruption, and mixed events in various termi-
nals as discussed in Section 4.5.1, as well as multiple events at a single terminal in Section
4.5.2. In the scenario with multiple events, the RL strategy with severity level is used.
The performance of the different strategies in terms of cost is shown in Figure 4.20. The
average duration and RL strategies have demonstrated an improvement over the waiting
strategy, reducing costs by 26.8% and 44.0%, respectively. This is attributed to the better
handling of service time uncertainty, leading to a reduction in delay penalties and the ef-
fective adjustment of transport plans, avoiding the use of more expensive trucks in the late
stages. Handling service time uncertainty not only leads to cost reduction, but also results
in a decrease in emissions, particularly under scenarios with disruptions, mixed events, and
multiple events, as shown in Figure 4.21. The waiting strategy, which only implements re-
planning upon the occurrence of a significant delay, often leads to high-cost, high-emission
vehicles to mitigate the delay at the last minute. On the other hand, the average duration
and RL strategies reduce emissions by switching the shipment request to a suitable vehicle
in the presence of unexpected events and reducing the need for high-emission vehicles at
the last minute. As illustrated in Figure 4.22, the waiting time is significantly reduced when
compared to the waiting strategy. The average duration and RL strategies have resulted in
a reduction of 13.2% and 24.5%, respectively. The efficient handling of service time uncer-
tainty allows for a more agile and flexible allocation of resources, leading to the avoidance
of unnecessary wait times and the prompt adjustment of shipment requests to suitable vehi-
cles. These results highlight the benefits of efficient handling of service time uncertainty, as
it reduces the risk of missing the best time to switch vehicles and reduces costs, emissions,
and waiting time. The training time for the RL strategy is presented in Figure 4.23. The total
duration of training is no more than one hour when the size of the instance is small, such as
the instance with 5 requests. The total training time increases proportionally with the size of
the instance. The average training time per iteration is calculated to be a few seconds, with
the longest being less than three minutes for the largest instance. As the duration of service
time in the field of synchromodal transport often requires several hours, the training can be
completed during this period and can be done online. Additionally, the time required for the
RL approach to make a decision is less than 1 ms when the RL approach is implemented,
making it an efficient solution for real-time decision-making.

(a) waiting strategy (b) average duration strategy

Figure 4.20: Average cost per request in different scenarios with different strategies.
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(c) RL strategy

Figure 4.20: Average cost per request in different scenarios with different strategies (cont.).

(a) waiting strategy (b) average duration strategy

(c) RL strategy

Figure 4.21: Average emissions per request in different scenarios with different strategies.
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(a) waiting strategy (b) average duration strategy

(c) RL strategy

Figure 4.22: Average waiting time per request in different scenarios with different
strategies.

(a) total training time (b) average training time of each iteration

Figure 4.23: Training time of RL strategy in different scenarios
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4.6 Conclusions
It is important to consider the challenges of managing synchromodal transport operations in
the presence of service time uncertainty due to unexpected events at terminals. Unexpected
events, such as disruptions or disturbances, can have a significant impact on the efficiency
and effectiveness of transportation processes, resulting in delays, high costs, and high emis-
sions. These events are often difficult to predict and can be caused by a variety of factors,
including weather, accidents, or maintenance issues. As a result, it is crucial for transport
operators to have tools and strategies in place to mitigate the impact of such events and
maintain the smooth operation of the transportation system.

To address research question Q2, we have proposed a Reinforcement Learning (RL)
approach for online synchromodal transport planning that can handle uncertainty and deter-
mine whether requests should be switched to different vehicles in case of delays. The RL
approach is assisted by an Adaptive Large Neighborhood Search (ALNS) heuristic, which
provides state and reward information, makes changes on the transport plans, and checks the
feasibility of schedules. The model-assisted RL approach learns in real time and adapts its
recommendations for carriers dynamically based on the uncertain service time conditions in
the environment. This approach can be used by synchromodal transport carriers through a
digital platform, where the carrier receives information about unexpected events from port
authorities and terminal operators.

Several scenarios that varied in the type and severity of unexpected events and the level
of variability in their duration are investigated. The performance of each strategy was mea-
sured in terms of average reward and total delay. The results of this study indicate superior
performance of RL on unexpected events, as it is able to adapt to unexpected events and
effectively handle complex scenarios, resulting in significantly reduced delays and higher
rewards compared to other strategies. The waiting strategy, on the other hand, is unable to
effectively mitigate the impact of disruptions or severe disturbances. The RL strategy out-
performs the waiting and average duration strategies in the majority of cases, particularly
when dealing with disruptions, a mix of disruptions and disturbances, and multiple events in
a single terminal. The efficient handling of service time uncertainty, as demonstrated by the
RL approach, leads to a reduction in costs, emissions, and waiting time by reducing delay
penalties, avoiding the use of more expensive and high-emission trucks, and allowing for
a more agile and flexible allocation of resources. Therefore, transportation managers may
consider implementing the RL strategy in their decision-making process to reduce delays
and increase efficiency in their operations. It is worth noting that the RL strategy requires
a longer training period compared to the other two strategies, but this is compensated by
its superior performance in the long run. Therefore, transportation managers should also
consider investing sufficient training time to fully optimize the RL strategy’s performance.

The potential of incorporating knowledge of event severity into the decision-making
process is a key managerial insight from this study. The results indicate that providing
this type of information to the RL algorithm can significantly improve its performance.
Transportation managers should prioritize regularly updating and accurately assessing event
severity information in order to optimize their management systems. However, it is impor-
tant to note that imperfect information on event severity is inevitable in complex synchro-
modal transport systems due to various factors such as outdated or incomplete information,
subjective interpretation, or measurement errors. Despite this, the proposed RL approach is
able to handle imperfect information and still achieve good performance.





Chapter 5

Transport planning considering
carriers’ preferences

The approaches for static and dynamic planning of carriers are discussed in Chapters 3
and 4. However, the preferences of carriers, which are crucial to synchromodal transport
planning, have not been considered. This chapter considers the preferences of carriers. This
chapter, in conjunction with Chapter 6, aims to answer research question Q3: How can
the heterogeneous and vague preferences of shippers and carriers be incorporated into the
planning approach?

This chapter is organized as follows: Section 5.1 introduces the carriers’ preferences
in synchromodal transport. Section 5.2 reviews the preference-based multi-objective opti-
mization techniques and multi-objective optimization studies in synchromodal transport. In
Section 5.3, we first present the ALNS for multi-objective optimization in Section 5.3.1 and
then consider vague preferences in Section 5.3.2. In Section 5.4, experimental settings and
results are provided. Section 5.5 concludes this chapter.

Parts of this chapter have been published in Zhang et al. (2022a)1.

5.1 Introduction
In synchromodal transport, carriers have different preferences toward different objectives.
Typically, the primary objective of carriers is to minimize the transport cost. Transport
time also plays an important role in transport route optimization because it influences both
cost and reliability. Moreover, the government stimulates stakeholders to minimize the to-
tal CO2 emissions. To achieve synchromodal transport, it is necessary to consider multiple
objectives and preferences and synthesize the best attributes of different modes in the op-
timization model for carriers. As shown in Figure 5.1, the carrier needs to find the most
appropriate routes of multiple modes, including barges, trains, and trucks, according to the
preferences. For example, when the carrier needs to transport perishable cargo for shippers,

1Zhang, Y., Atasoy, B., & Negenborn, R. R. (2022). Preference-based multi-objective optimization for syn-
chromodal transport using Adaptive Large Neighborhood Search. Transportation Research Record, 2676(3), 71-
87.
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the time objective is important and the proportion of fast modes (such as trains and trucks)
in transport planning will be higher. However, in the literature, most scholars ignore the dif-
ferent objectives and preferences of carriers in synchromodal transport (Van Riessen et al.
2015b, Zhu et al. 2014).

Terminal (transshipment 
between truck and barge 

is possible)

Route of barge/
train/truck

Possible route of 
barge/train/truck

The carrier with 
preferences on 
three objectives

Figure 5.1: Vehicle routing for synchromodal transport considering preferences and
synchronization

5.2 Literature Review

5.2.1 Preference-based multi-objective optimization
Wang et al. (2017) provide a summary of methods on how to incorporate preferences into
multi-objective optimization (MOO), such as weighted sum method, reference point, refer-
ence direction, utility function, etc. According to Coello et al. (2007), preference-based
MOO approaches (PMOO) are divided into three categories: Priori (Li and Liu 2015,
Szlapczynska and Szlapczynski 2019), Progressive (Battiti and Passerini 2010, Gören et al.
2016), and Progressive (Ghodsi et al. 2016) Preference Articulations, which mean mak-
ing decisions before, during, and after search, respectively. In synchromodal transport, it
may be impractical for a carrier to completely specify their preferences before any alterna-
tives are known. However, the carrier has at least a rough idea about reasonable trade-offs
between different objectives, which is called vague preferences. For example, Szlapczyn-
ska and Szlapczynski (2019) propose a MOO model in ship weather routing, considering
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vague preferences of carriers in the form of weight intervals. Therefore, the Priori Prefer-
ence Articulations approach is used in this paper and Pareto optimal solutions are obtained
according to preferences. To solve the conflicts between objectives and obtain preferred
solutions, the weight interval method proposed by Szlapczynska and Szlapczynski (2019)
is used to add vague preferences to the MOO model.

The ε-constraint method is often used for multi-objective problems, which is based on
minimizing/maximizing one of the objectives and restricting the rest of the objectives within
predefined values (Kalinina et al. 2013). For heuristic approaches, evolutionary algorithms,
such as NSGA-II (Nondominated Sorting Genetic Algorithm II) (Deb et al. 2002), are of-
ten used in MOO problems. Besides evolutionary algorithms, ALNS can also be used to
solve the MOO problem. ALNS is more suitable for this study because it has been success-
fully applied to VRP and performs robustly in different instances due to its adaptive nature
(Masson et al. 2013).

5.2.2 Multi-objective optimization for synchromodal transport

For synchromodal transport planning, two types of problems are considered in the literature.
Service Network Design (SND) problem relates to choosing services and optimizing vehi-
cle frequencies in the transport network. Route Optimization (RO) involves the planning
decisions of routes and modes. The methods for solving MOO used in different articles
are different. Table 5.1 provides a summary of models in the literature in order to position
our work. As mentioned before, the vehicle routing component has many benefits, taking
synchronization into account is conducive to making full use of limited resources, and con-
sidering preferences is important to solve the conflicts among objectives. However, vehicle
routing, synchronization, and preferences are rarely considered in the literature and these
are the core contributions of our paper. Furthermore, we use an ALNS algorithm to solve
the problem and the procedures within ALNS are tailored specifically to the synchromodal
case which is another distinction of our paper.

Table 5.1: Comparison with models in the literature.

Problem Vehicle Synchro- Prefer- Solution
Article definition Objectives routing nization ences method

Kalinina et al. (2013) SND c, e, t × × × ε

Xiong and Wang (2014) RO c, t × × × GA
Baykasoğlu and Subulan (2016) SND c, e, t × × ✓ CP, FGP

Ji and Luo (2017) SND c, t × × × HEDA
Mnif and Bouamama (2017) SND c, t × × × FA

Chen et al. (2019) RO c, t, cc × × × NNCM
Our paper RO c, e, t ✓ ✓ ✓ ALNS

c: cost; e: emission; t: time; cc: container usage cost; RO: Route Optimization; SND: Service Network
Design; GA: Genetic Algorithm; FA: Firework Algorithm; HEDA: Hybrid Estimation of Distribution Algo-
rithm; NNCM: Normalized Normal Constraint Method; ε: ε-constraint method; CP: Compromise program-
ming; FGP: Fuzzy goal programming approach
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5.3 Proposed approach

Compared with single-objective optimization, conflicts between objectives need to be con-
sidered in MOO. By taking preferences into account, the problem may be addressed. Carri-
ers in synchromodal transport usually can not provide accurate preferences. Therefore, how
to represent the vague preferences of carriers should be considered.

This section proposes approaches for the above research problem. Solving the MOO
problem to optimality by the exact approach often needs multiple runs for different objec-
tives and a long computation time. Therefore, the ALNS heuristic is used to solve MOO in
Section 5.3.1. In order to consider vague preferences, the weight interval method is used in
Section 5.3.2.

5.3.1 ALNS algorithm for PMOO

The considered multiple objectives are given by the Equations (5.1)-(5.3). Three objectives,
i.e., minimizing cost, CO2 emissions, and time, are considered as Equations (5.1)-(5.3)
show. The cost objective consists of transportation cost of containers, fuel cost, transship-
ment cost, and cost associated with waiting, service, and transshipment time. The time
objective includes the time on the route and waiting time at terminals. The constraints are
identical to those in Chapter 3 except for constraints on time-dependent travel times, which
are not considered in this study.
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Solving the MOO problem to optimality by the exact approach often needs multiple
runs for different objectives and a long computation time. To solve the MOO problem and
reduce the computation time, a preference-based ALNS is proposed, as shown in Algorithm
9.

The adaptive mechanism and insertion/removal procedures are the same as in Chapter 3.
The distinction lies in the comparison of solutions during and after the search process. At the
end of the iteration, the current solution Xcurrent obtained in this iteration will be compared
with the last solution Xlast obtained in the last iteration. If the current solution is worse than
the last solution, it will be accepted with a probability p, which gradually declines in order
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Algorithm 9: ALNS algorithm for PMOO

Input: K, R, N, A; Output: Xnd ;
set Xinitial as empty routes of K; set X and Xnd as empty sets; Rpool = R;
[Xinitial ,Rpool] = GreedyInsertion(Xinitial ,Rpool);
while Rpool is not empty do

[Xinitial ,Rpool] = RandomRemoval(Xinitial);
[Xinitial ,Rpool] = GreedyInsertion(Xinitial ,Rpool);

end
Xlast ← Xinitial ; Add Xlast to X;
repeat

refresh weights and choose operators at the beginning of every s iterations;
Xcurrent ← Xlast ;
while Rpool is not empty do

[Xcurrent ,Rpool] = RemovalOperator(Xcurrent);
[Xcurrent ,Rpool] = InsertionOperator(Xcurrent ,Rpool);

end
if ∑

n
i=1 Gi(Xcurrent ,Xlast)> 0 then
Xlast ← Xcurrent ;

else
Xlast ← Xcurrent with probability p;

end
Add Xlast to X;

until a predefined iteration number;
for X in X do

nd = 1 ; // the solution is non-dominated solution when nd = 1
for X ′ in X−X ; // X−X means the solution set without X.
do

end
if ∑

n
i=1 Gi(X ′,X)> 0 then
nd = 0; break ; // X is dominated by X ′, break current loop

end
if nd == 1 then

Add X to Xnd ;
end

end

to avoid local optima (Ropke and Pisinger 2006), as the following equation shows:

p = e
∑

n
i=1 Gi(Xcurrent ,Xlast )·∑

n
n=1 Fi(Xcurrent)

Ttemp (5.4)

where Ttemp > 0 is a cooling down temperature with a cooling rate, c. n is the number of
objectives and Fi(Xcurrent) is the ith objective of Xcurrent . ∑

n
i=1 Gi(Xcurrent ,Xlast) represents

the dominance degree between Xcurrent and Xlast , which will be defined in Equation (5.7)
when introducing the weight interval method.
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After all solutions are obtained and stored in the solution set X, Xnd is obtained by
comparing all solutions through the dominance rule.

5.3.2 Weight interval method

MOO aims to yield a set of non-dominated solutions presenting the optimal trade-offs be-
tween different objectives. These solutions are obtained by the Pareto improvement, which
means a change to a different solution that makes at least one objective better off with-
out making any other objective worse off. When plotted in the objective space, the set of
non-dominated solutions is called Pareto frontier (Bechikh et al. 2015). Figure 5.2 gives
the Pareto frontier of bi-objective optimization for synchromodal transport, where different
carriers have different preferred solutions. Carrier A mainly wants to minimize the cost,
carrier C prefers to reduce the transport time, and carrier B wants to balance cost and time.
Based on their preferences, they will choose their preferred solutions in the Pareto frontier.

Cost

Time Preferred solutions of 
decision maker

A
B
C
A and B
B and C
No one

Pareto Frontier

Figure 5.2: The Pareto frontier of bi-objective optimization for synchromodal transport

Integrating preferences into the MOO approach and guiding the search towards solutions
that are considered relevant by the carrier may yield two important advantages:

1. Instead of a set of diverse solutions, many of which clearly irrelevant to the carrier,
search guides toward the carrier’s preferences will yield a more fine-grained and suit-
able selection of alternatives.

2. By focusing the search onto the relevant part of the search space, the objective space
and the computation time can be reduced, especially when solving real-life MOO
problems (Branke and Deb 2005, Szlapczynska and Szlapczynski 2019).
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Using the weight interval method proposed by Szlapczynska and Szlapczynski (2019),
the vague preferences are added to ALNS. The weight interval which is assigned to ith
objective is:

wi ∈ (wmin
i ,wmax

i ) (5.5)

where 0 ≤ wmin
i < 1, 0 < wmax

i ≤ 1, and wmin
i ≤ wmax

i . The weight interval can represent
vague preferences, such as linguistic terms. Under the vague preferences, the Pareto domi-
nance rule is extended from traditional Pareto dominance (Szlapczynska and Szlapczynski
2019). In this chapter, solution X dominates X ′ when:

n

∑
i=1

Gi(X ,X ′)> 0, (5.6)

where:

Gi(X ,X ′) =

{
wmin

i (Fi(X ′)−Fi(X)), Fi(X ′)−Fi(X)≥ 0
wmax

i (Fi(X ′)−Fi(X)), Fi(X ′)−Fi(X)< 0
(5.7)

and n is the number of objectives.
In ALNS, vague preferences are considered when comparing solutions. Before compar-

ison, all objectives are normalized.

5.4 Case Study
The transport network information is obtained from Contargo company 2, which is a promi-
nent intermodal container hinterland logistics network in Europe. It plays a leading role in
integrating container transport between the western seaports, Germany’s North Sea ports,
and the European hinterland.

The parameters in ALNS need to be tuned before the optimization. In order to do
that, the Pareto frontiers need to be compared in MOO instead of solutions comparison
in the parameter tuning of single-objective optimization. The average value of all non-
dominated solutions’ objective function values represents the Pareto frontier in the frontiers
comparison, as Equation (5.8) shows:

P =
∑

m
j=1 ∑

n
i=1 Fi(X j)

m
(5.8)

where P is the value which represents Pareto frontier, m is the number of non-dominated
solutions, n is the number of objectives, and Fi(X j) is the ith normalized objective value of
non-dominated solution X j. The parameters which generate minimum value P will be used
in the optimization.

The parameters to be tuned include the total iteration number, number of iterations for
refreshing weights, initial temperature, and cooling rate. For example, the iteration number

2https://www.contargo.net/

https://www.contargo.net/
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influences the quality of results, as shown in Figure 5.3, which shows Pareto frontiers for 10
requests and 5 vehicles under two objectives (cost and emission). Because P3000iterations is
less than P50iterations, the Pareto frontiers with 3000 iterations are better than frontiers with
50 iterations. It’s worth noting that these findings are only for this specific instance. Ideally,
the parameters need to be tuned for each instance before the optimization.

40000 50000 60000 70000 80000 90000
Cost (euro)

38000

40000

42000

44000

46000

48000

50000

Em
iss

io
ns

 (k
g)

Compare on Pareto frontiers (regular)

c=0.999 50iterations (1)
c=0.999 50iterations (2)
c=0.999 3000iterations (1)
c=0.999 3000iterations (2)

(a)

50000 60000 70000 80000
Cost (euro)

38000

40000

42000

44000

46000

48000

Em
iss

io
ns
 (k

g)

Compare on Pareto frontiers (s1c1)

c=0.999 50iterations (1)
c=0.999 50iterations (2)
c=0.999 3000iterations (1)
c=0.999 3000iterations (2)

(b)

40000 45000 50000 55000 60000 65000 70000 75000
Cost (euro)

38000

40000

42000

44000

46000

48000

50000

52000

Em
iss

io
ns
 (k

g)

Compare on Pareto frontiers (s1c2)

c=0.999 50iterations (1)
c=0.999 50iterations (2)
c=0.999 3000iterations (1)
c=0.999 3000iterations (2)

(c)

45000 50000 55000 60000
Cost (euro)

40000

41000

42000

43000

44000
Em

iss
io
ns

 (k
g)

Compare on Pareto frontiers (s1c3)

c=0.999 50iterations (1)
c=0.999 50iterations (2)
c=0.999 3000iterations (1)
c=0.999 3000iterations (2)

(d)

45000 50000 55000 60000 65000 70000 75000
Cost (euro)

38000

39000

40000

41000

42000

43000

Em
iss

io
ns
 (k

g)

Compare on Pareto frontiers (s2c1)

c=0.999 50iterations (1)
c=0.999 50iterations (2)
c=0.999 3000iterations (1)
c=0.999 3000iterations (2)

(e)

42000 44000 46000 48000 50000 52000 54000 56000 58000
Cost (euro)

41000

42000

43000

44000

45000

46000

47000

48000

Em
iss

io
ns
 (k

g)

Compare on Pareto frontiers (s2c3)

c=0.999 50iterations (1)
c=0.999 50iterations (2)
c=0.999 3000iterations (1)
c=0.999 3000iterations (2)

(f)

Figure 5.3: Pareto frontiers of bi-objective optimization under 50 iterations and 3000
iterations. (a) Regular Pareto frontier, (b) Cost&Emission: [0.1, 0.9], (c)

Cost&Emission: [0.25, 0.75], (d) Cost&Emission: [0.33, 0.66], (e) Cost:[0.1,
0.5], Emission:[0.5, 1.0], (f) Cost:[0.5, 1.0], Emission:[0.1, 0.5].

The results for one of the experiments with 5 vehicles, 10 requests and 10000 itera-
tions of ALNS are given in Figure 5.4. In this experiment, the objectives include cost and
emissions. The requests and vehicles are randomly generated, and in total 19 terminals
are used. The regular Pareto frontier, i.e., Pareto frontier without preferences, is shown in
Figure 5.4(a). The other five figures compare the Pareto frontiers under different weight
intervals with the regular Pareto frontier. Figures 5.4(b) to 5.4(d) show the results when the
weight interval narrows down from [0.1, 0.9] to [0.33, 0.66]. As the weight interval narrows
down, the relative importance of cost and emissions are similar to each other and therefore
the trade-off between the objectives is more obvious. Figures 5.4(e) and 5.4(f) show two
opposite situations. In Figure 5.4(e), the carrier prefers to reduce emissions. In contrast, the
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carrier favors reducing cost in Figure 5.4(f).
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Figure 5.4: Pareto frontiers of bi-objective optimization. (a) Regular Pareto frontier, (b)
Cost&Emission: [0.1, 0.9], (c) Cost&Emission: [0.25, 0.75], (d)

Cost&Emission: [0.33, 0.66], (e) Cost:[0.1, 0.5], Emission:[0.5, 1.0], (f) Cost:
[0.5, 1.0], Emission:[0.1, 0.5].

It is interesting to investigate the following research question: What mode/route will
the carriers with different preferences choose? To answer this research question, a case
study is designed and 5 terminals are used, including 2 seaports (Rotterdam and Antwerp)
and 3 inland terminals (Duisburg, Worth, and Basel). Almost all modes can run between
all terminals except for one situation: there is no train between Rotterdam and Antwerp.
Tables 5.2 and 5.3 show the vehicle and request information, respectively. To guarantee that
all modes have a similar chance to serve requests, different modes have the same number of
vehicles, and there is no time window because vehicle speeds are different. Three objectives
are considered, including cost, emissions, and time.

Ten instances are generated from ten requests, i.e., the ith instance includes i request(s).
For example, the 5th instance includes requests 0-4. Table 5.4 shows regular (means no pref-
erences) non-dominated solutions with request 1. Except for Truck1 in Solution 5, which is
empty from Antwerp to Rotterdam, other vehicles transport request 1 on their routes. So-
lution 1 is also the best solution for cost minimization (single-objective optimization) and
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the barge is used in this solution. From these non-dominated solutions, we can see that
different modes and routes are used after emission and time objectives are considered. This
insight is useful to see the impact of different policies on transportation networks in terms
of environmental considerations.

Table 5.2: Vehicle information

Vehicle Capacity (TEU) Speed (km/h) Begin depot Fixed route
Barge1 100 15 Antwerp free
Barge2 100 15 Rotterdam free
Truck1 50 75 Antwerp free
Truck2 50 75 Rotterdam free
Train1 75 45 Antwerp Antwerp-Duisburg

-Worth-Basel
Train2 75 45 Rotterdam Rotterdam-Duisburg

-Worth-Basel

Table 5.3: Request information

Request Pickup terminal Delivery terminal Time window Load
0 Antwerp Duisburg free 25
1 Rotterdam Duisburg free 50
2 Antwerp Worth free 25
3 Rotterdam Worth free 50
4 Antwerp Basel free 25
5 Rotterdam Basel free 50
6 Duisburg Worth free 25
7 Duisburg Basel free 50
8 Worth Basel free 25
9 Antwerp Rotterdam free 50

Table 5.4: Regular non-dominated solutions

Solution Cost (euro) Time (h) Emission (kg) Vehicles and rotues
1 4379,309 27,16 2158,728 Barge1: Antwerp→Duisburg
2 5979,755 10,387 2968,251 Train1: Antwerp→Duisburg
3 6756,684 15,831 2753,751 Barge1: Antwerp→Rotterdam;

Train2: Rotterdam→Duisburg
4 6004,381 23,716 2373,228 Train1: Antwerp→Rotterdam;

Barge2: Rotterdam→Duisburg
5 11394,345 10,254 6935,071 Truck1: Antwerp→Rotterdam→Duisburg;

Train1: Antwerp→Rotterdam
6 10351,813 7,032 8365,071 Truck1: Antwerp→Duisburg
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Besides the regular case, 2 scenarios (each scenario includes 3 cases) with preferences
are designed. The weight intervals of three objectives in the first scenario are the same but
narrow down from case s1c1 (means scenario 1 case 1) to s1c3. The weight intervals of
s1c1, s1c2, and s1c3 are [0.1,0.9], [0.25,0.75], and [0.33,0.66], respectively. In the second
scenario, each case prefers one objective. Cases s2c1, s2c2, and s2c3 prefer minimizing
cost, emissions, and time, respectively. The weight interval of the preferred objective is
[0.5,1.0], and weight intervals of the other two objectives are [0.1,0.5]. For example, the
weight intervals of s2c1 are Cost: [0.5,1.0], Emission&Time: [0.1,0.5].

Each experiment is repeated three times (30 experiments in total) and all results of these
instances with different preferences are obtained. The share of used modes is calculated for
every case, as shown in Table 5.5. The results show that the solution tends to be better when
the weight narrows down in the first scenario (s1c1, s1c2, and s1c3) as the cost, emissions,
and time reduce. The share of the barge of s1c3 is larger than s1c2 because s1c3 sacrifices
time in exchange for better cost and emission, thus making the overall result better. In
the second scenario, the minimum value of each objective is in line with preferences. The
parameters used in this chapter set the barge has the lowest cost, emissions, and speed, and
the truck is the fastest but needs the highest cost and emissions. Therefore, the barge is used
the most when costs or emissions are prioritized. Nevertheless, when time is minimized
(s2c3) the train’s share becomes the highest because the barge speed is too low and the
truck’s cost and emissions are high. The results are sensitive to the cost, emissions, and time
parameters. When the parameters change in reality, the share of modes may also change. In
inland waterway transport, there are more uncertainties than in other modes, such as long
waiting times, lock/bridge open time, and changing water level. In the meantime, compared
with other modes, there may be limited depth and inadequate air draft in inland waterway
transport. Therefore, although the results in this chapter show the advantages of barges and
encourage carriers to choose barges, barges are not utilized as frequently in reality.

Table 5.5: Average objectives and mode shares of different cases

Average Average Average Share of Share of Share of
Name cost (euro) emission (kg) time (h) barge train truck
regular 35710.5 31635.6 95.2 49.87% 39.58% 10.55%
s1c1 30283.7 28549.2 96.0 64.93% 33.97% 1.1%
s1c2 29628.0 28367.4 94.4 62.08% 37.40% 0.53%
s1c3 27546.1 27457.4 98.6 73.37% 26.16% 0.48%
s2c1 26966.5 27195.0 100.8 72.14% 27.86% 0
s2c2 28306.0 27068.6 103.0 72.13% 27.39% 0.48%
s2c3 33250.9 30068.9 85.7 42.57% 54.75% 2.68%

average 30241.7 28620.3 96.3 62.44% 35.30% 2.26%

5.5 Conclusions
To address research question Q3, a preference-based multi-objective optimization (PMOO)
model is developed to address the conflicts among multiple objectives of carriers in synchro-
modal transport. The weight interval is incorporated into Adaptive Large Neighborhood



114 5 Transport planning considering carriers’ preferences

Search to represent the vague preferences of carriers. Vehicle routing and synchronization
in synchromodal transport are also considered. The case study in the Rhine-Alpine corri-
dor verified that the proposed model provides non-dominated solutions which reveal carrier
preferences. Under different preferences in this chapter, the barge is the most popular trans-
port mode due to its low cost and low emission. When carrier prefers to minimize transport
time, transport modes with higher speed are used more frequently. It’s worth noticing that
which mode is used is dependent on the input parameters. When these parameters changed
in another instance, the mode share may be different.

In a word, the proposed model is able to target a selected part of the Pareto frontier based
on the carrier’s vague preferences. It is a significant advantage for carriers in synchromodal
transport because they can just enter their linguistic preferences and then obtain solutions
that reveal their preferences. Using the proposed model, carriers do not need to struggle
to solve conflicts between their objectives from a huge amount of solutions with different
modes and routes. Compared with MOO without preferences, this model not only reduces
the number of alternatives but also chooses solutions that are preferred by carriers.

The proposed model can be encapsulated in a software application in the synchromodal
transport domain. Carriers enter transport network information, requests, and preferences
into the software and then they will obtain preferred solutions. The model is designed
for synchromodal transport, but it can also be applied to other transport domains if the
shipments are non-splittable, i.e., they must remain intact as a whole and cannot be divided
into multiple parts during transportation.



Chapter 6

Transport planning considering
shippers’ preferences

Ignoring shippers’ preferences will negatively impact satisfaction and lead to the loss of
shippers in the longer run. This chapter considers the preferences of shippers, and addresses
the research question Q3: How can the heterogeneous and vague preferences of shippers and
carriers be incorporated into the planning approach?

This chapter is organized as follows: Section 6.1 introduces the preferences in syn-
chromodal transport. Section 6.2 presents a brief literature review. Section 6.3 describes
the studied problem. In Section 6.4, we provide the mathematical model and Multiple At-
tribute Decision Making (MADM) approaches. Section 6.5 proposes a customized ALNS.
In Section 6.6, experimental settings and results are provided, and the ability of the model
to handle multiple attributes and different shippers is evaluated. Section 6.7 concludes this
chapter.

Parts of this chapter have been published in Zhang et al. (2022d)1.

6.1 Introduction
Synchromodal transport involves different stakeholders, including shippers, freight for-
warders, and carriers, and their relationship is illustrated in Figure 6.1. A shipper is the
entity that is responsible for starting the movement of cargo and making the decision on
the total freight price. The freight forwarder organizes shipments for shippers to transport
containers from origin to destination and usually plays a role between shippers and carriers.
A carrier is the entity that actually transports cargo. This study proposes an optimization
model for the freight forwarder. In cases where shippers work directly with carriers without
a freight forwarder, the user of our proposed model could also be the carrier. In practice, the
freight forwarder could be the third-party logistics provider, transport operator, or transport
platform, and we refer to them collectively as “freight forwarder” in this study.

1Zhang, Y., Li, X., van Hassel, E., Negenborn, R. R., & Atasoy, B. (2022). Synchromodal transport planning
considering heterogeneous and vague preferences of shippers. Transportation Research Part E: Logistics and
Transportation Review, 164, 102827.
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Transshipment 
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Figure 6.1: The relationships between shippers, carriers, and the freight forwarder in
synchromodal transport.

Considering the preferences of shippers becomes more important in the context of syn-
chromodal transport due to the modal-free booking nature. In synchromodal transport,
transport plans can change dynamically to better match actual transport demand (Delbart
et al. 2021, Tavasszy et al. 2017). It is therefore hard (and undesirable) for shippers to
make mode choices and routing decisions. According to a large survey among global ship-
pers (Khakdaman et al. 2020), two-thirds of shippers in synchromodal transport are willing
to hand over control of the mode to freight forwarders. In other words, shippers in syn-
chromodal transport accept a mode-free booking and only determine the price and quality
requirements (Behdani et al. 2014). Freight forwarders with network-wide freedom can
then fully utilize their authority on mode and route control to maximize the overall perfor-
mance. However, it does not mean that freight forwarders will neglect the requirements and
preferences of shippers. One aim of synchromodal transport is to provide demand-driven
transport services by combining several transport modes (Khakdaman et al. 2020, Tavasszy
et al. 2017), while considering shippers’ preferences can match services and demands in a
better way and improve the service level by utilizing advantages of different modes.

Over time, with the competition in product and service markets, shippers became con-
cerned about service attributes such as cost, time, reliability, risk of damage, and sustain-
ability (Kurtuluş and Çetin 2020). A freight forwarder works with multiple shippers with
heterogeneous preferences due to their characteristics, such as product type, company size,
firm location, etc. The most appropriate transport plan needs to be adopted based on a
full understanding of the taste heterogeneity of service requirements from shippers. The
term “taste heterogeneity” reflects that the shippers take different attributes into account or
value the same attributes differently (Arunotayanun and Polak 2011). A full understanding
of preferences will not only reduce unnecessary costs, but also improve the service level
by the provision of customized services. However, understanding preferences is not easy
because the preference information provided by shippers is usually subjective and vague
due to the shippers’ limited attention, time pressure, and lack of data. A rational approach
toward decision-making should take into account human subjectivity, e.g., using fuzzy set
theory to handle the vagueness of preferences (Chen and Hwang 1992). Furthermore, the
freight forwarder also needs to resolve conflicts between the freight forwarder’s objectives
and shippers’ preferences. Although much progress has been made on how to generate
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synchromodal services in a more efficient manner, less research focuses on how to bet-
ter understand shippers’ preferences and make the transport plan based on the preferences
(Giusti et al. 2019, SteadieSeifi et al. 2014).

In a word, shippers’ heterogeneous and vague preferences pose difficulties in setting up
an appropriate transportation solution for freight forwarders in synchromodal transport. To
improve the service level of freight forwarders and the satisfaction of shippers, this research
establishes an optimization model. The focus of this research is to make synchromodal
transport plans considering heterogeneous and vague preferences of shippers. The proposed
model includes two parts: (a) synchromodal transport planning and (b) preference modeling.
In part (a), a mathematical model is formulated for the synchromodal transport planning
problem. In part (b), a MADM model is developed based on fuzzy set theory to handle
heterogeneous and vague preferences. According to the preferences and actual values of
attributes, the satisfaction of shippers is calculated. Part (a) incorporates part (b) by setting
satisfaction as constraints, therefore the transport plans generated by part (a) are in line with
shippers’ preferences in part (b). Moreover, a heuristic algorithm, i.e., ALNS, is proposed
to reduce the computation time.

The main contributions of this chapter are summarized as follows: (a) we develop a
mathematical model for synchromodal transport planning and introduce the MADM inte-
grating fuzzy set theory to capture heterogeneous and vague preferences; (b) we propose
the ALNS algorithm to reduce the computation time; (c) we apply the proposed model to
different scenarios using real-world data. In the case study, we compare results without
preferences, with homogeneous preferences, and with heterogeneous preferences. Five at-
tributes, i.e., cost, time, reliability, risk, and emissions, are considered. The attribute values,
mode shares, and satisfaction values are also compared in these scenarios. Moreover, the
performance of the ALNS is evaluated and the results of re-planning are analyzed.

6.2 Literature review

The number of studies that research optimization considering preferences in synchromodal
transport is still limited (Delbart et al. 2021, SteadieSeifi et al. 2014). To the best of our
knowledge, there is no study considering shippers’ preferences at the operational level in
the context of synchromodal transport planning.

Table 6.1 compares this study and the relevant studies in the literature. In road transport,
such as package delivery, preferences of customers are considered at the operational level.
Dumez et al. (2021), Los et al. (2018) consider the delivery location preferences by provid-
ing multiple options. Los et al. (2018) minimize the sum of costs and dissatisfaction values
and Dumez et al. (2021) set the satisfaction of preference levels as constraints. Afshar-
Bakeshloo et al. (2016), Baniamerian et al. (2018), Ghannadpour et al. (2014) take the fuzzy
or soft time window preferences of customers into account and consider the satisfaction of
customers in the objective. Zhang et al. (2013) use customer service level constraints to
ensure the on-time shipment delivery preferences of customers.

Compared with customers in road transport who are recipients and focus on the delivery
location or time, shippers in maritime, railway, or intermodal/synchromodal transport care
more about the performance of the whole itinerary, such as cost, time, reliability, etc. Cheng
and Wang (2021) address the container liner shipping network design and take shippers’
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Table 6.1: Comparison between the proposed model and existing models in the literature.

Preferences Preferences
Article Field Level Problem Heterogeneity Vagueness of whom on what

Road transport (parcel delivery)
Zhang et al. (2013) Road Operational SVRPSTW ✓ recipient On-time shipment delivery
Ghannadpour et al. (2014) Road Operational DVRPFTW ✓ recipient Time window
Afshar-Bakeshloo et al.
(2016)

Road Operational S-GVRP ✓ recipient Time window

Los et al. (2018) Road Operational GPDPTWP recipient Delivery location
Baniamerian et al. (2018) Road Operational VRPCDTWS recipient Time window
Dumez et al. (2021) Road Operational VRPDO recipient Delivery location

Maritime, railway, or intermodal/synchromodal transport
Duan et al. (2019) Railway Tactical SNDP ✓ shipper Time and Reliability
Zhang et al. (2020c) Intermodal Tactical SNDP ✓ shipper Cost, Time, Emission, Reliability,

Frequency, Safety, Flexibility, and Traceability
Jiang et al. (2020) Maritime Tactical LSSD freight forwarder Ship arrival time

and shipper
Cheng and Wang (2021) Maritime Tactical CLSNDP shipper Freight rate, Cost, and Time
Shao et al. (2022) Intermodal Operational IFRP ✓ shipper Cost, Timeliness, Reliability, and Flexibility
This chapter Synchromodal Operational STPP-HVP ✓ ✓ shipper Cost, Time, Reliability, Risk of damage, and

Emissions

SVRPSTW: Stochastic Vehicle Routing Problem with Soft Time Window constraints; DVRPFTW: Dynamic Vehicle Routing Problem with Fuzzy Time Windows; S-GVRP: Satisfactory-Green Vehicle Routing
Problem; GPDPTWP: Generalized Pickup and Delivery Problem with Time Windows and Preferences; VRPCDTWS: Vehicle Routing Problem with Cross-Docking and Time Windows considering customer
Satisfaction; VRPDO: Vehicle Routing Problem with Delivery Options; SNDP: Service Network Design Problem; LSSD: Liner Shipping Schedule Design; CLSNDP: Container Liner Shipping Network Design
Problem; IFRP: Intermodal Freight Routing Problem; STPP-HVP: Synchromodal Transport Planning Problem with Heterogeneous and Vague Preferences.

preferences on freight rate, cost, and time into account. Jiang et al. (2020) consider pref-
erences on the weekly ship arrival times of big customers (freight forwarders and shippers)
in near-sea container shipping. Duan et al. (2019) solve a railway service network design
problem with heterogeneous preferences for transport time and reliability, and the Value of
Time (VOT) and Value of Reliability (VOR) are taken into account in the objective. Zhang
et al. (2020c) optimize the China Railway express network and homogeneous and heteroge-
neous preferences of shippers are considered. Their results show that the sustainability and
service level of the network is improved by recognizing the heterogeneous preferences of
shippers. Duan et al. (2019) and Zhang et al. (2020c) consider heterogeneous preferences,
which is similar to this study. However, there are three main differences between this study
and their studies: (a) Duan et al. (2019) and Zhang et al. (2020c) solve the service network
design problem at the tactical level and the routing optimization model in this chapter is
at the operational level; (b) Duan et al. (2019) and Zhang et al. (2020c) do not consider
vague preferences, while our study proposes approaches to model them; (c) although Zhang
et al. (2020c) consider road transport, Duan et al. (2019) and Zhang et al. (2020c) focus
on rail transport, and this chapter studies synchromodal transport with three modes (wa-
terway, railway, and road). Shao et al. (2022) also consider preferences at the operational
level. The context of their study is intermodal transport, while this study is in the context of
synchromodal transport. Shippers express preferences in different ways in intermodal and
synchromodal transport. The shippers in Shao et al. (2022) express their preferences during
the optimization by accepting or rejecting solutions. However, in synchromodal transport,
shippers hand over modal control to the freight forwarder, which allows flexible selection
and real-time switching of modalities for the freight forwarder. Therefore, it’s a mode-free
booking and shippers usually express vague preferences to the freight forwarder in synchro-
modal transport. Our study uses fuzzy set theory to capture vague preferences of shippers,
which is not considered in their study. In addition, the maximum number of requests in their
case study is five, while our study considers instances with 100 requests.

In the decision-making domain, preferences are often considered in Multiple Criteria
Decision Making (MCDM), which can be divided into Multiple Objective Decision Mak-
ing (MODM) and Multiple Attribute Decision Making (MADM) (Kahraman 2008). The
MADM is associated with problems where alternatives have been predetermined and the
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decision-maker is to select/prioritize/rank a finite number of courses of action. On the other
hand, in MODM the alternatives have not been predetermined and the decision maker’s
primary concern is to design the “most” promising alternative with respect to limited re-
sources (Chen and Hwang 1992). In synchromodal transport, most studies build MODM
models considering the freight forwarder/carrier’s preferences rather than shippers’ prefer-
ences (Baykasoğlu and Subulan 2016, Zhang et al. 2020a, 2022a). The decision-making
process considering shippers’ preferences belongs to MADM because the freight forwarder
needs to evaluate predetermined alternatives provided by the optimization model. There-
fore, this study is a combination of routing optimization and MADM.

6.3 Problem description

The main research problem of this study is Synchromodal Transport Planning Problem with
Heterogeneous and Vague Preferences (STPP-HVP) for the freight forwarder. The STPP-
HVP is an optimization problem for synchromodal transport considering time windows, ca-
pacity, multiple modes, transshipments, and preferences. As shown in Figure 6.2, the STPP
is formulated as a mathematical model and HVP is modeled by the MADM integrating
fuzzy set theory. To reduce the computation time, the STPP-HVP is solved by a customized
ALNS. For each shipper, a number of alternatives could be obtained by the ALNS. The
satisfaction values of alternatives are calculated by the MADM integrating fuzzy set theory
according to shippers’ preferences. Alternatives with low satisfaction will be filtered and
rejected by the ALNS. The chosen alternatives will constitute the overall transport plan.
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Figure 6.2: The research problem and proposed methodology.

Figure 6.3 gives an example of such an STPP-HVP problem. Requests 1 and 2 of ship-
pers 1 and 2 are transported by two and three vehicles, respectively. Besides transports with
transshipments, using only one vehicle to transport containers from origination to destina-
tion is also possible.



120 6 Transport planning considering shippers’ preferences

Pick up 
request 1

Deliver 
request 1

Transfer 
requests 1 and 2requests 

Truck k with 
request 1 2

Train l with 
request  1

Truck k’ with 
request 2

Pick up
request 2

Train l’ with 
request  2

Barge m’ with 
request  2 Deliver 

request 2
Transfer 
request 2

Figure 6.3: An example of the STPP-HVP.

The solution also needs to respect preferences of shippers. For example, in Figure 6.3,
the solution is only accepted by the freight forwarder if the preferences of both shippers
are respected after satisfaction calculation. In synchromodal transport, the preferences of
shippers are usually expressed linguistically and vaguely. For example, the importance level
of attribute 1 is “very high”, while attribute 2 has a “low” level of importance. Assume that
there are n shippers served by the freight forwarder and that there are m attributes that
characterize the services provided by the freight forwarder. Each shipper r expresses vague
preferences w̃r

i towards attribute i. The value of attribute i for shipper r is f r
i . Whether

preference w̃r
i is satisfied or not is judged according to the value f r

i . Take the cost attribute
as an example, if w̃r

i is level 2, which means the shipper thinks the cost is important, and f r
i

is 0.3, which means the unit cost is 0.3 euro/km/TEU and is very low, then the shipper will
be satisfied with a high probability. The attribute values and heterogeneous preferences are
represented by the following matrices:

[ ]
f 1
1 f 1

2 · · · f 1
m

w̃1
1 w̃1

2 · · · w̃1
m

[ ]
f 2
1 f 2

2 · · · f 2
m

w̃2
1 w̃2

2 · · · w̃2
m

[ ]
f n
1 f n

2 · · · f n
m

w̃n
1 w̃n

2 · · · w̃n
m

Vague preferences are linguistic terms provided by shippers, such as “I would like to
transport cargoes timely” or “I think the transport time is important”, and quantifying the
vague preferences is the first challenge for the freight forwarder. Shipper’s satisfaction
towards an alternative for a request r need to be calculated. When the satisfaction is less than
a predefined satisfaction benchmark, this alternative will not be chosen. Another challenge
is considering heterogeneous preferences on multiple attributes of shippers as well as the
freight forwarder itself. The term “attributes” may be referred to as “goals” or “criteria”,
which could be cost, time, reliability, etc. Among attributes, there may be conflicts because
of the inherent interdependence, e.g., reducing transport time usually means choosing an
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expensive mode. Conflicts also exist among shippers because the resources owned by the
freight forwarder are limited. Considering shippers’ preferences, e.g., low-risk transport,
may increase the transport cost of the freight forwarder. Therefore, there are also conflicts
between the freight forwarder and shippers. An appropriate approach needs to be developed
to solve these conflicts.

6.4 The proposed model for the STPP-HVP
To optimize the transport plan considering preferences, the STPP is formulated as a mixed-
integer programming problem and HVP is modeled by the MADM integrating fuzzy set
theory.

6.4.1 The mathematical model for the STPP-HVP

There are two objectives. One objective (F1) is to maximize the number of served requests,
and another objective (F2) is minimizing cost, which consists of transport cost, transfer cost,
storage cost, carbon tax, waiting cost, and delay penalty, as illustrated in Chapter 3. The
emissions are calculated using an activity-based method by Demir et al. (2016) and the
amount of emissions is related to vehicle type, distance, and amount of containers. The
model will choose the solution with a higher objective value of F1, and the solution with a
lower objective value of F2 will be chosen if objective values of F1 are the same. In this way,
the model will try to serve as many as requests in the first place and choose the solution with
minimum costs thereafter.

Objective:

max F1 = ∑
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Constraints (6.3)/(6.4) ensure that absolute/relative preferences are respected (the mean-
ings of absolute/relative preferences will be introduced in Section 6.4.2). Si and S are the
predefined satisfaction benchmarks of attribute i and overall satisfaction benchmark, and
they are set as 50 and 8.1, respectively.

Sr
i ⩾ Si ∀r ∈ R, ∀i ∈ I (6.3)

Sr ⩾ S ∀r ∈ R (6.4)
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Because this chapter allows unserved requests if the preference cannot be respected,
the Constraints 3.13 and 3.14 in Chapter 3 are replaced by the Constraints 6.5 and 6.6 to
ensure that containers for each served request must be picked and delivered at its pickup
and delivery terminal, respectively.

∑
k∈K

∑
j∈N

ykr
p(r) j ⩽ 1 ∀r ∈ R (6.5)

∑
k∈K

∑
j∈N

ykr
jd(r) ⩽ 1 ∀r ∈ R (6.6)

Other constraints in Chapter 3, except for Constraints (3.41) to (3.48) that take care of
time-dependent travel time, are also considered in this chapter and not repeated.

6.4.2 Satisfaction calculation for HVP
This section aims to obtain the satisfaction Sr

i /Sr in Constraints (6.3)/(6.4) according to
preferences of shippers. The fuzzy set theory can be used to handle linguistic preferences.
Fuzzy set theory captures the subjectivity of human behavior and model imprecision arising
from mental phenomena which are neither random nor stochastic (Chen and Hwang 1992).
Compared with simple value ranges, which obtain results following crisp “true”/“false”
logic, fuzzy set theory expresses the “truthiness” as partially true or partially false.

Different shippers may express their preferences over attributes by means of different
linguistic terms. The given preference information could typically be of two types: abso-
lute and relative preferences. The absolute preferences mean that shippers give concrete
preferences on attributes, e.g., they need containers to be transported in a “low-cost” (Cost
attribute) and “very reliable” (Reliability attribute) way. Relative preferences mean that
shippers express the importance of different attributes, e.g., they may say minimizing cost
and emissions are “very important” and reducing risk is “not important” for them. The
ranking of attributes is one type of relative preferences, for example, the first-ranked and
second-ranked attributes can be regarded as “very important” and “important”, respectively.
This section presents the steps to calculate satisfaction under absolute and relative prefer-
ences.

Multiple attributes and fuzzy variables

Figure 6.4 shows the multiple attributes and fuzzy variables with linguistic terms and fuzzy
sets. Shipper r has vague preferences w̃r

i towards attribute i. We obtain attribute value f r
i

for each attribute, then calculate satisfaction value Sr
i /Sr through MADM approaches.

An attribute i can be defined as a fuzzy variable, such as Cost or Time. The fuzzy
variable has a predefined value range and several linguistic terms that are used to describe
the variable. We use l j

i to represent the j-th linguistic term of attribute i. Take the cost
attribute as an example, its value range could be [0, 1.8], and linguistic terms are adjectives
like “low-cost”, “medium”, and “expensive”. The value in the value range is called crisp
value, which is how we think of the variable numerically, e.g., 1 euro/km/TEU for the cost
attribute. A linguistic term l j

i corresponds to a fuzzy set A j
i , which is a pair (U,µ), where U

is referred to as the universe of discourse and µ is a membership function. For each x ∈U ,
the value µ(x) is called the grade of membership of x, which means the degree of truth to the
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Figure 6.4: Multiple attributes and fuzzy variables.

term. For example, 1 euro/km/TEU’s grades to “expensive” and “very expensive” could be
0.8 and 0.2, respectively. The trapezoidal and triangular membership functions are used in
this chapter, where the triangular membership function is a special trapezoidal membership
function. The trapezoidal membership function is given in Equation (6.7) with a trapezoidal
fuzzy number (a,b,c,d), whereby a ≤ b ≤ c ≤ d and b = c for the triangular membership
function:

µ(x) =




0, x < a

(x−a)
(b−a)

, a ≤ x ≤ b

1, b ≤ x ≤ c

(d − x)
(d − c)

, c ≤ x ≤ d

0, x > d

(6.7)

In this research, important attributes in synchromodal transport are selected according
to two surveys and an interview, as shown in Table 6.2. In the interview and surveys, we
receive a total of 13 responses from shippers, freight forwarders, and carriers in differ-
ent intermodal/synchromodal transport companies, and the results are shown in Table 6.2.
Cost and Reliability are the two most important attributes, followed by the Time attribute.
Compared with passenger transportation, the probability of damage on the cargoes is quite
higher because of multiple handling operations during freight transportation, especially at
transshipment terminals. Therefore, Risk of damage is also an important attribute, and
the “number of transferred containers” is used here to represent it because more transship-
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ments may cause more cargo damage. For the Emission attribute, respondents agree that
it is important if there is a sustainability policy from the government, especially for large
companies. Both Europe and China have such policies (European Commission 2011, State
Council of China 2021a). The proposed model can be extended to work with other attributes
(such as flexibility and frequency) when needed.

Table 6.2: The chosen attributes in this study.

Attribute Definition Unit Importance⋆ Sources
1: Cost The cost of shipping one TEU (20-foot euro 71% L1, 29% L2 survey 2,

container)one km from origin to destination interview
2: Time The ratio of actual time between the origin percentage 46% L1, survey 1&2,

and destination to expected time 31% L2, 23% L3 interview
3: Reliability The ratio of the delay time to total travel percentage 77% L1, 23% L2 survey 1&2,

time interview
4: Emissions CO2 emitted per container per km kg 23% L2, 39% L3, survey 1&2,

15% L4, 23% L5 interview
5: Risk of damage The number of containers transferred TEU 29% L1, survey 2,

from one vehicle to another vehicle 57% L3, 14% L4 interview
⋆: the importance evaluation is from respondents in all related sources.
L1, L2, L3, L4, and L5: importance levels representing extremely, very, moderately, slightly, and not at all important, respectively.
survey 1: in the “Novel inland waterway transport concepts for moving freight effectively” (NOVIMOVE) project, we designed the

first survey and received six reactions from shippers/freight forwarders (Ramos et al. 2020).
survey 2: we designed the second survey (https://freeonlinesurveys.com/s/DZS7QlrE) and received three responses from a shipper

in FAW-Volkswagen Automotive Co. Ltd, a shipper in China Railway Materials Trade company, and a carrier in China International
Marine Containers (Group) Co. Ltd.
interview: we interviewed three freight forwarders in China Railway Container Transport Co. Ltd. and one shipper in China National

Fisheries Corporation.

For request r, the actual travel time is:

tr = max{tkr
i ykr

i j : ∀(i, j) ∈ A, ∀k ∈ K}−min{t ′kr
i ykr

i j : ∀(i, j) ∈ A, ∀k ∈ K} (6.8)

The values of five attributes are calculated according to Equations (6.9) to (6.13).

f r
1 = Fr

2 /(qr ∑
k∈K

∑
(i, j)∈A

dk
i jy

kr
i j ) (6.9)

f r
2 = tr/(d

average
p(r)d(r)/vaverage) (6.10)

f r
3 = max{0,(tdelay

r −max{tkr
i ykr

i j : ∀(i, j) ∈ A, ∀k ∈ K})}/tr (6.11)

f r
4 = ∑

k∈K
∑

(i, j)∈A
ekykr

i j qrdk
i j/(qr ∑

k∈K
∑

(i, j)∈A
dk

i jy
kr
i j ) (6.12)

f r
5 = ∑

k,l∈K,k ̸=l
∑
i∈T

skl
ir qr (6.13)

where Fr
2 is the overall cost of request r and the calculation of Fr

2 is similar to Equation
(6.2). The expected travel time is calculated by the average travel distance of all vehicles
daverage

p(r)d(r) divided by the average speed of all vehicles vaverage.

https://freeonlinesurveys.com/s/DZS7QlrE
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Satisfaction calculation under absolute preferences

The satisfaction value of each attribute Sr
i is calculated when shippers express absolute

preferences:

Sr
i = Fuzzy( f r

i , w̃
r
i ) (6.14)

where Fuzzy() represents the MADM approach for absolute preferences. The satisfaction
value Sr

i is obtained according to the following steps.
Step 1: handle the shipper’s vague preferences toward attributes. We define five

levels for linguistic terms l j
i of absolute preferences, as shown in Figure 6.5(a). For example,

Level 1 for Cost/Reliability attribute means “very low cost”/“very reliable”, and Level 4 for
Time/Risk of damage attribute means “slow”/“high risk”. Figure 6.5(a) also shows the
membership function µ for five levels. The membership functions of attributes are different
because the value ranges U of attributes are different.

Step 2: obtain the actual attribute value’s level. After obtaining the attribute value
f r
i , the memberships to levels are determined. Specific fuzzy numbers of levels used in this

chapter are shown in Table 6.4 in Section 6.6.
Step 3: link the preference, attribute value, and satisfaction. The satisfaction is

also set as a fuzzy variable, as shown in Figure 6.5(b). Fuzzy variables for attributes and
satisfaction are linked by a set of fuzzy rules, which are IF-THEN statements. The same
attribute value may lead to different satisfaction because shippers have different preferred
levels. For example, if shipper 1 prefers “low” cost and shipper 2 prefers “medium” cost,
shipper 2 will be more satisfied than shipper 1 when the actual cost is “low”.

Degree of 
membership

0
Attribute 

value

100%

Level 1 Level 2 Level 5Level 4Level 3

Degree of 
membership

0 Satisfaction 
value

50 100

100%

Low Medium High
30 70

(b) The membership function for the overall satisfaction(a) The membership function for attributes

Figure 6.5: The membership functions for attributes and overall satisfaction.

When the preferred level is the highest level, the fuzzy rule is:
IF the level of the attribute i equals/is lower than the highest level w̃r

i , THEN the satis-
faction will be high/low.

When the preferred level is the lowest level, the fuzzy rule is:
IF the level of the attribute i is higher than/equals the lowest level w̃r

i , THEN the satis-
faction will be high/medium.

When calculating the satisfaction value for a specific attribute and the preferred level is
neither the highest nor lowest level, the fuzzy rule is:

IF the level of the attribute i is higher than/equals/is lower than the preferred level w̃r
i ,

THEN the satisfaction will be high/medium/low.
For the preference constraints, the satisfaction value of each attribute Sr

i is calculated
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by Equation (6.14) through fuzzy rules for one attribute. When calculating the satisfaction
value of h attributes, a set of rules for these attributes will be used, as shown in Equation
(6.15).

Sr = Fuzzy( f r
1 , w̃

r
1, · · · , f r

n , w̃
r
h) (6.15)

Step 4: calculate the satisfaction value by defuzzification. After defining fuzzy vari-
ables and fuzzy rules, the satisfaction value can be obtained using a defuzzification method,
such as Center of Gravity used in this chapter (Van Leekwijck and Kerre 1999).

Satisfaction calculation under relative preferences

When shippers express the relative importance of attributes, the linguistic terms represent
relative preferences among attributes. In this case, the overall satisfaction value of all at-
tributes Sr is:

Sr = Fuzzy′( f r
1 , f r

2 , f r
3 , f r

4 , f r
5 , w̃

r
1, w̃

r
2, w̃

r
3, w̃

r
4, w̃

r
5) (6.16)

where Fuzzy′() represents the MADM approach for relative preferences. The overall satis-
faction value Sr is obtained according to the following steps.

Step 1: handle the shipper’s vague preferences toward attributes. Five levels of
linguistic terms are used to describe the importance of each attribute. Table 6.3 presents
the attribute i’s j-th linguistics term l j

i and the corresponding fuzzy importance number w̃′ ji ,
where w̃′ ji = (a j

i ,b
j
i ,c

j
i ,d

j
i ), 1≤ j ≤ 5. The membership grades µ(x) are represented by real

number ranging from [0,1]. For request r and attribute i, the fuzzy importance number w̃r
i

is obtained based on the linguistic preference expressed by the shipper.

Table 6.3: Linguistic terms and trapezoidal fuzzy numbers on attributes and satisfaction.

Fuzzy importance Fuzzy satisfaction
Linguistic terms number w̃′ ji Linguistic terms number s̃′ ji

Very low importance [0, 0, 0.1,0.3] Very low satisfaction [0, 0, 1, 3]
Low importance [0.1, 0.3, 0.3, 0.5] Low satisfaction [1, 3, 3, 5]

Medium importance [0.3, 0.5, 0.5, 0.7] Medium satisfaction [3, 5, 5, 7]
High importance [0.5, 0.7, 0.7, 0.9] High satisfaction [5, 7, 7, 9]

Very high importance [0.7, 0.9, 1.0, 1.0] Very high satisfaction [7, 9, 10, 10]

Step 2: obtain the actual attribute value’s level. According to the actual attribute
value f r

i , the j-th level’s fuzzy satisfaction number s̃′ ji is given, where s̃′ ji = (ω
j
i ,β

j
i ,σ

j
i ,θ

j
i ),

1≤ j ≤ 5. When the attribute value f r
i is less than the expected value, it meets the relevant

satisfaction level, and the actual level s̃r
i is the highest level reached. The membership

grades µ(x) are represented by real numbers ranging from [0,10]. Table 6.3 also shows the
linguistic terms for satisfaction and their corresponding fuzzy number.

Step 3: link the preference, attribute value, and satisfaction. After Steps 1 and 2, the
fuzzy importance number w̃r

i and the actual satisfaction level s̃r
i for request r and attribute i

are obtained. Using these fuzzy numbers, the fuzzy evaluation matrix can be constructed:
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(6.17)Sr = w̃r
1⊗ s̃r

1⊕ w̃r
2⊗ s̃r

2⊕ w̃r
3⊗ s̃r

3⊕ w̃r
4⊗ s̃r

4⊕ w̃r
5⊗ s̃r

5∅(w̃r
1⊕ w̃r

2⊕ w̃r
3⊕ w̃r

4⊕ w̃r
5)

= (z1,z2,z3,z4)

The operations⊗,⊕, and ∅ are defined by Chen and Niou (2011). Let ũ=(u1,u2,u3,u4)
and ṽ = (v1,v2,v3,v4) be two trapezoidal fuzzy number, where 0 ≤ u1 ≤ u2 ≤ u3 ≤ u4 and
0≤ v1 ≤ v2 ≤ v3 ≤ v4. The operations between ũ and ṽ are defined as:

ũ⊕ ṽ = (u1 + v1,u2 + v2,u3 + v3,u4 + v4) (6.18)

ũ⊗ ṽ = (u1× v1,u2× v2,u3× v3,u4× v4) (6.19)

ũ∅ṽ = (
u1

v4
,

u2

v3
,

u3

v2
,

u4

v1
) (6.20)

Step 4: calculate the satisfaction value by defuzzification. The satisfaction value Sr

is calculated by defuzzifying (z1,z2,z3,z4):

Sr = (z1,z2,z3,z4) =
z1 + z2 + z3 + z4

4
(6.21)

6.5 The ALNS heuristic for the STPP-HVP
The pseudocode of the ALNS that is developed for the research problem in this chapter
is extended from Algorithm 1. Compared with Algorithm 1, the ALNS in this chapter is
customized as follows: (a) requests are allowed not to be served if preferences can not
be met; (b) the synchronization methods considering time and preferences constraints are
added in the removal and insertion operators; (c) the best solution is judged according to
objectives F1 and F2 with a priority on F1.

The Algorithm 2 in Chapter 3 is also modified to consider preference constraints in the
synchronization, as shown in Algorithm 10.

6.6 Case study
This section evaluates the proposed model in various scenarios by comparing it with dif-
ferent benchmarks. Section 6.6.1 describes the settings in case studies and Section 6.6.2
analyzes results.

6.6.1 The transport network and instances
The same EGS transport network in Chapter 4 is used in this chapter. All instances and
detailed results are available at a research data website2.

According to the average attribute values of all modes in the EGS network, the fuzzy
numbers are set as in Table 6.4. For Cost, Time, and Emissions attributes, the values of
Levels 1, 3, and 5 are calculated according to the minimum, average, and maximum values
using any mode/mode combination, respectively. The values of Levels 2 and 4 are obtained

2https://figshare.com/s/e1631bc804deed885d43

https://figshare.com/s/e1631bc804deed885d43
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Algorithm 10: Synchronization considering time and preference constraints

Input: relevant routes; Output: feasibility;
for route k ∈ relevant routes do

update pickup/delivery time and extend/shorten the waiting or storage time of
influenced requests;

if route k does not satisfy time constraints then
return infeasible

else
for request r served by route k do

obtain the vehicles that serve request r;
calculate the satisfaction value of request r;
if request r does not satisfy the preference constraints then

return infeasible
end

end
obtain relevant routes of route k;
Synchronization(relevant routes)

end
end
return feasible;

based on other levels with a value interval of 0.3. For the Reliability attribute, a maximum
15% delay (Level 5) is allowed, and other Levels are obtained with a value interval of 3%.
Depending on the maximum number of containers in instances, we define the maximum
value (Level 5) of the Risk attribute as 150 and values at other Levels are obtained with a
value interval of 30. Experiments of using varying fuzzy numbers are also performed. Since
similar insights are obtained, this section only presents results using fuzzy numbers in Table
6.4 to avoid repetition.

Table 6.4: Trapezoidal fuzzy numbers w̃′ ji on specific levels.

Level Cost Time Reliability Emissions Risk of damage

Level 1 [0.0,0.0,0.3,0.5] [0.0,0.0,0.5,0.7] [0.00,0.00,0.01,0.03] [0.0,0.3,0.3,0.5] [0,0,10,30]
Level 2 [0.4,0.6,0.6,0.8] [0.6,0.8,0.8,1.0] [0.02,0.04,0.04,0.06] [0.4,0.6,0.6,0.8] [20,40,40,60]
Level 3 [0.7,0.9,0.9,1.1] [0.9,1.1,1.1,1.3] [0.05,0.07,0.07,0.09] [0.7,0.9,0.9,1.1] [50,70,70,90]
Level 4 [1.0,1.2,1.2,1.4] [1.2,1.4,1.4,1.6] [0.08,0.10,0.10,0.12] [1.0,1.2,1.2,1.4] [80,100,100,120]
Level 5 [1.3,1.5,1.8,1.8] [1.5,1.7,2.2,2.2] [0.11,0.13,0.15,0.15] [1.3,1.5,1.8,1.8] [110,130,150,150]

Several scenarios are designed to analyze the impact of considering shippers’ prefer-
ences in the freight forwarder’s transport planning, including a benchmark where prefer-
ences are ignored, five scenarios of homogeneous preferences on five attributes, and six
scenarios of heterogeneous preferences. In the benchmark scenario, Constraints (6.3)/(6.4)
are not applied. In each scenario, results under hard constraints, fuzzy constraints, and the
satisfaction objective are compared. Under hard constraints, if the attribute value of an alter-
native is lower than the middle value in the fuzzy number, the alternative is accepted by the
ALNS, otherwise is rejected. Take the Cost attribute in Table 6.4 as an example, the middle
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values for Level 1 to Level 5 are 0.3, 0.6, 0.9, 1.2, and 1.5, respectively. In the literature, be-
sides studies like our study that improve service levels by setting preferences as constraints
(Dumez et al. 2021, Zhang et al. 2013), some studies consider preferences in the objec-
tive by minimizing the sum of costs and dissatisfaction (Baniamerian et al. 2018, Los et al.
2018). It is interesting to compare these two ways of handling preferences. Therefore, we
have compared the proposed method with the method in Los et al. (2018) and Baniamerian
et al. (2018) (it is called the satisfaction objective method hereinafter). When considering
preferences in the objective, Constraints (6.3)/(6.4) are not considered and the objective F2
is replaced by the objective F3:

F3 = normal(F2)−normal(∑
r∈R

Sr) (6.22)

where normal() is the min-max normalization function that transforms costs and satisfac-
tion values to be on a similar scale.

The preference data are randomly generated according to the proportion of different
types of shippers, such as cost-sensitive and reliability-sensitive shippers. In the scenario
with homogeneous preferences, it is as if there is only one type of shipper, which means all
shippers have similar preferences, such as low-cost or fast transport. However, their prefer-
ences are not totally the same because some shippers have higher requirements than others.
In the scenario with heterogeneous preferences, there are different proportions of shippers
with heterogeneous preferences depending on their cargo types or company features. Car-
goes requiring low-cost, fast, reliable, low-risk, and sustainable transport are mixed in all
requests. We consider six scenarios, i.e., heter. 1/2/3/4/5/6, which means the proportions
of shippers that prefer attributes are: [Cost, Time, Reliability, Risk of damage, Emissions]
= [0.2,0.2,0.2,0.2,0.2] / [0.5,0.1,0.1,0.1,0.2] / [0.2,0.5,0.1,0.1,0.1] / [0.2,0.1,0.5,0.1,0.1] /
[0.2,0.1,0.1,0.5,0.1] / [0.2,0.1,0.1,0.1,0.5]. The results in this section are obtained under a
setting that all vehicles have fixed services, i.e., all vehicles follow predefined routes and
schedules.

6.6.2 Results under absolute preferences
Table 6.5 shows the average computation time for different instances. There is a trend that
the computation time increases when the number of requests increases. The computation
time when using fuzzy constraints or satisfaction objective is usually higher than others be-
cause handling vague preferences needs more time. However, there is no obvious difference
between the computation time of experiments considering homogeneous and heterogeneous
preferences.

Based on the results in Figure 6.6, relationships between preferences and attributes
(Cost, Time, Reliability, Emissions, and Risk) are analyzed. The attribute value is improved
when the shipper has a higher requirement on this attribute. For example, in Figure 6.6(a),
when a shipper wants fast transport because the product is perishable, more trucks are used
and the transport time decreases compared with the benchmark which ignores preferences.
Under heterogeneous preferences in Figure 6.6(b), the freight forwarder needs to trade-off
the different preferences of shippers. Therefore, the results do not have as significant as an
improvement on a specific attribute compared with results under homogeneous preferences.



130 6 Transport planning considering shippers’ preferences

Table 6.5: Average computation time (seconds).

Number of Homogeneous preferences Heterogeneous preferences

requests ignore hard fuzzy obj ignore hard fuzzy obj

5 0.2 0.3 1.7 3.3 0.3 0.2 2.2 3.3
10 0.7 2.9 72.7 45.4 0.7 1.2 28.8 31.3
20 1.7 1.4 13.1 70.7 1.6 1.5 12.7 82.8
30 4.0 25.0 16.7 194.6 3.3 7.7 785.4 243.1
50 10.2 26.2 29.2 463.0 5.5 78.3 594.4 509.2

100 51.8 200.0 4332.5 638.8 15.8 247.5 2076.5 388.9

ignore: experiments that ignore preferences; hard/fuzzy: experiments considering hard/fuzzy con-
straints; obj: experiments with the satisfaction objective.

When shippers have requirements on conflicting attributes, the freight forwarder will find a
trade-off between these attributes by making each attribute better without making any other
attribute worse than the expectation of shippers. Attributes may reinforce each other. Both
low-cost and fast transport needs unimodal transport (barge or truck), so there are fewer
transshipments and lower risk of damage, and their risks are even lower than the case when
shippers prefer low-risk transport, as shown in both Figures 6.6(a) and 6.6(b). The costs
under fuzzy attributes are higher than costs under the satisfaction objective except for the
case that all shippers prefer low-cost transport. However, the values of preferred attributes
are lower under fuzzy attributes and shippers are more satisfied.

Figure 6.7 shows mode shares (Barge, Train, Truck) across different preferences. In
Figure 6.7(a), compared with other preferences, the mode shares of barges and trains are
larger when shippers prefer low-cost and sustainable transport. When all shippers prefer
fast transport in Figure 6.7(a), the mode shares of trains and trucks, especially trucks, in-
crease substantially compared with the benchmark. When shippers prefer reliable transport
in Figure 6.7(a), the mode share of trucks increases compared with low-cost and sustain-
able transport, but the increase is not as significant as the fast transport, because reliable
transport focuses on delay rather than total time. When considering preferences, the mode
share of barges is smaller than the benchmark because barges not only have advantages
(low-cost and low-emissions) but also disadvantages (slow), which make barges unsuitable
to resolve conflicts. Under fuzzy constraints, the freight forwarder has more room to re-
duce costs when satisfying the preferences of shippers, therefore the mode share of barges
is usually higher than under hard constraints. Satisfaction is no longer the constraint under
the satisfaction objective method. Solutions that have lower costs and higher dissatisfaction
rather than higher cost and lower satisfaction are chosen, therefore the mode share of barges
under the satisfaction objective method is always higher than other methods. When 50% of
shippers prefer low-cost (heter. 2) or sustainable transport (heter. 6) in Figure 6.7(b), more
trucks are used compared with the mode share under homogeneous preferences in Figure
6.7(a), because there are the remaining 50% of shippers with other preferences under the
heterogeneous case. The fast transport scenarios in Figures 6.7(a) and 6.7(b) show the oppo-
site phenomenon. In summary, based on our parameter settings, using more trucks benefits
fast, reliable, and low-risk transport, whereas low-cost and sustainable transports need more
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(a) Homogeneous preferences

(b) Heterogeneous preferences

Figure 6.6: Radar charts of five attributes across homogeneous and heterogeneous
preferences.

barges, and trains are preferred when considering conflicting attributes or preferences.

(a) Homogeneous preferences (b) Heterogeneous preferences

Figure 6.7: Mode shares under homogeneous and heterogeneous preferences. The three
bars from left to right of each instance are results under hard constraints, fuzzy

constraints, and the satisfaction objective, respectively.

Figure 6.8 shows the number of served requests (N), the number of requests that satisfy
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fuzzy constraints (F), and those that satisfy hard constraints (H) across different preferences.
All requests can be served when preferences are not considered. This is not the case un-
der hard preferences and N is in between the two under fuzzy constraints. When using
fuzzy constraints, the proportion of satisfied shippers is the largest. Both F and H increase
after considering preferences except Figure 6.8(b), where N decreases because of hard con-
straints. H under fuzzy constraints is usually less than H under hard constraints due to two
reasons: (i) more requests are served under fuzzy constraints, but the used resources are
the same with hard constraints, therefore service quality for each request is not as high as
before; (ii) the freight forwarder has more room to minimize cost under fuzzy constraints,
which deteriorates service quality a bit. Compared with considering preferences in con-
straints, the number of served requests (N) is higher under the satisfaction objective, while
the number of requests that respect shippers’ preferences (F and H) is lower.

(a) each attribute is pre-
ferred by 20% of ship-
pers

(b) all shippers prefer
low-cost

(c) 50% shippers prefer
low-cost

(d) all shippers prefer
fast

(e) 50% shippers prefer
fast

(f) all shippers prefer
reliable

(g) 50% shippers prefer
reliable

(h) all shippers prefer
low-risk

(i) 50% shippers prefer
low-risk

(j) all shippers prefer
sustainable

(k) 50% shippers prefer
sustainable

The number of 
served requests (N)
The number of requests 
which satisfy fuzzy 
constraints (F)
The number of 
requests which satisfy 
hard constraints (H) 

Figure 6.8: Proportion (%) of served requests across different preferences. “No”, “Hard”,
“Fuzzy”, and “Obj” mean results under no preference constraints, hard
constraints, fuzzy constraints, and the satisfaction objective, respectively.
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The average satisfaction values (S) are shown in Figure 6.9. Under hard constraints,
only those requests that can be fully satisfied are served, therefore S is always 100 and
is not shown in Figure 6.9. When considering preferences, satisfaction values of shippers
increase significantly compared with the cases that ignore preferences (N). S under fuzzy
constraints (F) is less than 90 because the freight forwarder wants to minimize transport
costs when the shippers’ vague preferences are satisfied, which usually reduces the quality
of services. Therefore, the freight forwarder’s objective of minimizing cost is not ignored in
the proposed model, especially when using fuzzy constraints. The satisfaction values under
the satisfaction objective (O) are usually lower than the ones under fuzzy constraints (F)
because satisfaction is sacrificed to obtain a lower cost when satisfaction is considered in
the objective instead of constraints. Therefore, when the freight forwarder wants to ensure
shippers’ satisfaction, it is better to consider preferences in constraints.

Figure 6.9: Satisfaction values under no preference constraints (N), fuzzy constraints (F),
and the satisfaction objective (O) across different preferences.

6.6.3 Results under relative preferences

Similar to Section 6.6.2, scenarios for shippers with homogeneous and heterogeneous pref-
erences are designed. In the homogeneous preferences scenario (A), five sub-scenarios, i.e.,
the most important attribute is Cost (A-1), Time (A-2), Reliability (A-3), Risk of damage
(A-4), and Emissions (A-5), are considered. For the heterogeneous preferences scenario
(B), different preferences will be assigned to each request randomly. For the three sub-
scenarios with heterogeneous preferences (B-1, B-2 & B-3), the preference proportions of
five attributes, i.e., [Cost, Time. Reliability, Risk of damage, and Sustainability], are [30,
0, 20, 10, 40], [20, 20, 10, 30, 20], and [30, 40, 10, 10, 10] for cases B-1, B-2, B-3, re-
spectively. For the ease of writing, in this section, we use a similar expression with Section
6.6.2, e.g., “low-cost preference” means “the most important attribute is Cost”. Since the
proportion of served requests is not high in some cases in Section 6.6.2, this section tries
a setting with more flexibility, i.e., barges and trucks with flexible services, and trains with
fixed services. Based on the studied transport network, the expected value of each linguistic
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term of satisfaction is given in Table 6.6.

Table 6.6: Expected values of each attribute.

Linguistic terms Expected value

of satisfaction Cost Time Reliability Emissions
Risk of
damage

Very high [0, 0.8] [0, 0.8] [0, 0.05] [0, 0.5] [0, 10]
High (0.8, 1.2] (0.8, 1.2] (0.05, 0.1] (0.5, 0.9] (10, 20]
Medium (1.2, 1.6] (1.2, 1.6] (0.1, 0.15] (0.9, 1.3] (20, 30]
Low (1.6, 2.0] (1.6, 2.0] (0.15, 0.20] (1.3, 1.7] (30, 40]
Very low (2.0, + 8] (2.0, + 8] (0.20, + 8] (1.7, + 8] (40, + 8]

Results with an instance with 100 requests are shown in Table 6.7. The satisfaction and
attribute values are improved by incorporating preferences. In low-cost transport (A-1), the
unit cost reduces by 10% from 0.51 to 0.46. In the fast transport scenario (A-2), the reduc-
tion of time ratio is 59%. Risk of damage increases in the low-emission transport scenario
(A-5) because more sustainable transport modes are selected and more transshipments are
needed. As for scenario B, because of the heterogeneous preferences of shippers, the im-
provement on certain attributes is not significant. Mode shares of the barge, train, and truck
are presented in Figure 6.10. In the homogeneous preferences scenario, the usage of ve-
hicles can reflect their corresponding preferences. In low-cost, reliable and low-emissions
transport cases, truck shares a low percentage compared with the other two modes. In the
fast transport case, the barge is not the preferred mode. For the heterogeneous preferences
scenario, the mode shares vary among cases.

Table 6.7: Experiment results under relative preferences (100 requests).

Scenario R #r S Total cost Cost Time Reliability Emission Risk t(s)

benchmark 100 100 – 196130.69 0.51 1.51 0 0.35 1.59 -

A-1 100 82 9.60 (6.77∗) 174637.14 0.46 1.38 0 0.34 1.09 1333.15
A-2 100 66 9.93 (5.96∗) 168207.16 0.70 0.62 0 0.59 0.76 4098.90
A-3 100 100 9.43 (9.43∗) 196130.69 0.51 1.51 0 0.35 1.59 3582.21
A-4 100 100 9.38 (8.20∗) 196299.25 0.50 1.41 0 0.38 0.1 4740.46
A-5 100 89 9.38 (6.84∗) 181896.14 0.45 1.66 0 0.28 1.89 240.62

B-1 100 95 9.38 (7.62∗) 198095.42 0.52 1.55 0 0.33 2.14 280.98
B-2 100 98 9.43 (7.38∗) 198090.03 0.54 1.45 0 0.38 1.49 412.35
B-3 100 98 9.49 (7.69∗) 209791.81 0.54 1.23 0 0.40 1.77 473.68

R: number of total requests; #r: number of served requests; S: satisfaction value; Cost: unit cost(/km/TEU); Time:
time ratio (%); Reliability: delay ratio (%); Emission: unit emission cost (/km/TEU); Risk: number of transferred
containers (TEU); t(s): computation time (seconds). The value with ∗ means satisfaction of the benchmark when
considering relevant preferences.

6.7 Conclusions
To address research question Q3, in this chapter, an optimization model is established for
the Synchromodal Transport Planning Problem with Heterogeneous and Vague Preferences
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Figure 6.10: Mode share under relative preferences (100 requests).

(STPP-HVP). Two typical types of linguistic terms, i.e., absolute and relative preferences
are considered. The mathematical model is proposed to formulate the STPP-HVP and Mul-
tiple Attribute Decision Making integrating fuzzy set theory is used to model heterogeneous
and vague preferences. A customized Adaptive Large Neighborhood Search is developed
to solve the STPP-HVP. We address conflicts between the freight forwarder and shippers by
setting the preferences of the freight forwarder and shippers as objectives and constraints,
respectively. The objectives of the freight forwarder are to maximize the number of served
requests and minimize the transport cost. Shippers’ satisfaction is calculated by fuzzy set
theory according to attribute values, and satisfaction values are limited to be higher or equal
to a predefined value. In this way, the freight forwarder will try to find the solution with the
lowest cost while ensuring service quality. Moreover, compared with using hard constraints,
using fuzzy constraints gives more room to resolve conflicts between the freight forwarder
and shippers. Compared with setting the objective as the sum of costs and dissatisfaction,
the satisfaction values are higher when using fuzzy constraints. In the results, when the
freight forwarder considers shippers’ preferences that have conflicts with minimizing over-
all transport cost, the freight forwarder satisfies shippers with minimal cost by choosing
more suitable modes and routes. The results also show that the proposed model improves
shippers’ satisfaction significantly by utilizing multiple transport modes and addresses con-
flicts between shippers by balancing the satisfaction levels.

Based on the experimental results, the following managerial insights are obtained:

1. In synchromodal transport planning, considering preferences is conducive to provid-
ing customized services by using the advantages of different modes. The shippers are
more satisfied when their preferences are considered because corresponding attribute
values are improved.

2. The conflicts between the freight forwarder and shippers are resolved by improving
the service quality at the minimum cost. The transport reaches a trade-off between
conflicting preferences of shippers by allocating appropriate services to specific re-
quests without compromising any other’s preferences.
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In practice, freight forwarders in synchromodal transport can use the proposed model to
improve their service quality and competitiveness by providing customer-oriented services.
In the meantime, the cost, time, emissions, delay, and risk of damage could be reduced when
considering related preferences using the proposed model. In this chapter, we work with
container shippers in the context of synchromodal transport. Nevertheless, the proposed
methodologies are applicable in the case of other shippers as well if the importance of
attributes is given. The proposed model can also be used to solve similar problems, such
as pickup and delivery problems with transshipment and preferences, by simplifying the
objectives and constraints related to multiple modes.



Chapter 7

Collaborative planning with
eco-label preferences

The previous chapters focused on transport planning for a single carrier. However, in reality,
multiple carriers may collaborate to allocate shipment requests to the most appropriate car-
rier by sharing requests and services. This type of collaboration can help reduce emissions
and consider sustainability preferences. This chapter addresses research question Q4: What
types of collaborative planning should be adopted and what is their effect on the considera-
tion of preferences?

This chapter is structured as follows. Section 7.1 introduces collaborative planning in
synchromodal transport. Section 7.2 presents a review of the relevant literature. Section
7.3 describes the studied problem. Section 7.4 provides the approach for handling vague
preferences, the mathematical model and heuristic algorithm for transport planning of each
carrier, and the collaborative planning approach for multiple carriers. Section 7.5 describes
the experimental settings and the results from the case study. Section 7.6 concludes this
chapter.

Parts of this chapter have been published in Zhang et al. (2022c)1.

7.1 Introduction
While synchromodal routings are often triggered by potential cost reductions, they are also
considered as a means for more sustainable transport solutions. For example, Heinold and
Meisel (2018) show in a comprehensive simulation study for Europe that 90% of the ship-
ments have a lower environmental impact if they are routed in a rail-road connection instead
of using a road-only connection. For shippers, such considerations play an increasing role
as transportation contributes to “almost a quarter of Europe’s greenhouse gas emissions and
is the main cause of air pollution in cities” (European Commission 2020). According to
surveys and expert interviews conducted in Zhang et al. (2022d), reducing emissions is im-

1Zhang, Y., Heinold, A., Meisel, F., Negenborn, R. R., & Atasoy, B. (2022). Collaborative planning for
intermodal transport with eco-label preferences. Transportation Research Part D: Transport and Environment, 112,
103470.
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portant for carriers and shippers when the government releases policies or sets emission
reduction goals. Shippers and transport companies will need to comply with regulations
and they will become motivated to keep track of their footprint. Moreover, with the raising
awareness of global warming, more and more carriers and shippers will want to contribute to
sustainable transportation. Therefore, several approaches and policies have been proposed
to reduce the environmental impact of logistics, such as low-emission zones for heavy vehi-
cles (Fensterer et al. 2014), emission reduction targets (Chen and Wang 2016), or emission
trading systems (Demailly and Quirion 2008). Recently, the concept of eco-labels has been
proposed to achieve a more sustainable freight transportation (Heinold and Meisel 2020,
Kirschstein et al. 2022). Thereby, eco-labels use a traffic light-colored preset scheme to
indicate a shipment’s relative environmental impact. For example, an eco-label “A” indi-
cates that emissions caused in a transport process are very low whereas somewhat higher
emissions lead to eco-label “B”, and so on. Eco-labels can then be used as an indicator for a
shipper’s environmental preference, e.g., by requesting for a shipment that it is transported
in accordance to a certain label.

The services of each transport carrier (operators of transport modes) are limited and
may not be sufficient to achieve sustainable transport, especially when emission reduction
requirements are high. Collaborative planning may then help in reducing emissions. Collab-
orative planning is becoming more and more prevalent due to the intensive competition in
the transport market (Li et al. 2015a). There are different types of collaborative planning and
collaboration partners can be shippers, receivers, or carriers (Pan et al. 2019). This study
focuses on collaborative planning among carriers by exchanging shipment requests from
shippers. Figure 7.1 shows an example of non-collaborative and collaborative planning. In
this example, there are three synchromodal transport carriers and each carrier has two re-
quests with high requirements on sustainability. When carriers do not collaborate, requests
are served by their own services and the environmental requirements of some requests are
not reached. For example, request a is served by carrier 1’s truck service, and request f is
served by carrier 3’s train and truck services with transshipment. In collaborative planning,
carriers decide which requests they are willing to share or serve. After collaboration, carrier
1’s request a is shared with carrier 2 and carrier 2/3’s requests d/ f are shared with carrier 1.
Thus, the capacity of low-cost and low-emission vehicles is better utilized and all carriers
improve service levels and avoid unnecessary trips.

In its essence, collaboration enables the aggregated consideration of each carrier’s de-
mand, which is placed by shippers who own or supply shipments that can then be transported
in a more efficient and sustainable way through a larger and more diverse logistics network.
Large vehicles in synchromodal transport, such as trains or barges, benefit from economies
of scale by increasing capacity which reduces costs and emissions per container. Therefore,
they are more profitable and sustainable if there is sufficient demand, which can be achieved
through collaboration among carriers (e.g., Groothedde et al. 2005). Collaborating carriers
can make better use of their vehicles’ capacity and avoid empty trips, which then leads
to cost and emission reductions, service improvements, and market share increases (e.g.,
Cruijssen et al. 2007, Krajewska and Kopfer 2006, Schmoltzi and Wallenburg 2011).

To achieve a more sustainable synchromodal transport, we present a collaborative plan-
ning model with eco-labels. The considered carriers each operate networks on their own
that differ in structure. For example, the predominant mode might be trains in one network
and barges in another network. We consider shippers with different expectations regarding a
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Non-collaborative planning Collaborative planning

TerminalTruck/train/barge services of each carrier Shipment requests  of each carrier

Carrier 1:
Carrier 2:

Carrier 3:

Carrier 1:
Carrier 2:
Carrier 3:

a. b.
c. d.
e. f.

a. b.
b.

a.

a.c.

c. c.

c.d.

d.

d.

e.

e. f.

f.
f.

e.

e.

Figure 7.1: Example of non-collaborative and collaborative planning.

shipment request’s eco-label. However, integrating environmental preferences through eco-
labels for each request imposes additional challenges to the underlying transport planning
problem as well as to the collaborative planning model. The transport planning needs to han-
dle vague preferences on eco-labels, such as “around eco-label B is fine”. Appropriate col-
laborative planning approaches also need to be proposed to reach the required eco-label at
the lowest cost by using different modes of service of carriers. To address these challenges,
we provide a mathematical model and an ALNS heuristic for synchromodal transport plan-
ning considering vague preferences on eco-labels. We do not view eco-labels exclusively as
either “fulfilled” or “not fulfilled” but calculate the degree of how much a request’s routing
complies with its requested eco-label using fuzzy set theory. Regarding collaboration, we
consider centralized, collaborative, and non-collaborative approaches. An auction-based
mechanism is adopted for exchanging requests among carriers in collaborative planning.
We apply our model to a realistic case study in which we consider collaboration among
unimodal or synchromodal carriers along the European Rhine-Alpine corridor. Based on
obtained results, we provide insights on situations in which collaboration is beneficial out
of reasons of sustainability.

The main contributions to the existing literature are as follows. First, an optimization
model with eco-label preferences is developed considering characteristics of synchromodal
transport and vagueness of preferences. Second, we provide a conceptual framework for
horizontal collaborative planning in the context of sustainability. Finally, we perform an ex-
perimental study that investigates settings in which collaboration leads to more sustainable
solutions.
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7.2 Literature review

This chapter considers horizontal collaboration between synchromodal transport carriers
that principally offer the same service, namely, transporting a freight shipment from its
origin to its destination. Accordingly, this literature review comprises two fields: (i) collab-
orative planning in unimodal freight transportation and (ii) collaborative planning in syn-
chromodal transportation. A brief review of relevant literature in these fields is provided
in Sections 7.2.1 and 7.2.2, respectively. Note that the first field is very general but, in the
context of this study, comprises those papers on collaboration that do not belong to synchro-
modal transport but are considered as relevant for our study. A summary of the reviewed
literature is provided in Section 7.2.3.

7.2.1 Collaborative planning in freight transport

This section provides a review on collaborative planning in freight transportation. It starts
with a general overview of how collaborations can be classified and continues with a review
on collaboration in networks in which only a single mode of transportation is used. The
latter review is included as it introduces general concepts of collaborative planning in freight
transport. These concepts are used in Section 7.2.3 to highlight the distinct characteristics
of this study.

Gansterer and Hartl (2018) identify three major streams of research for collaborative ve-
hicle routing: centralized collaborative planning, decentralized planning without auctions,
and auction-based decentralized planning. If a central coordinator has full power on car-
riers, it is called centralized planning, otherwise called decentralized planning. Further
divided by the means of exchanging requests, decentralized planning can be non-auction or
auction-based.

Assuming a powerful central coordinator is not necessarily practical because carriers
may not be willing to give full information to such a party. Moreover, the optimization
problems in centralized collaborative planning are usually hard to solve because the over-
all transport network is of a large scale. Decentralized approaches without auctions typi-
cally involve various steps such as partner selection, request selection, and request exchange
(Gansterer and Hartl 2018). Compared to non-auction-based systems, the auction-based ap-
proaches are more complex due to the bidding procedure. However, it is in the nature of
auctions to address the reassignment of transport requests and the allocation of the profit
gained by carrier collaboration simultaneously (Berger and Bierwirth 2010).

The research on collaborative freight transportation for unimodal transport often fo-
cuses on road freight transport be it for Full Truckload (FTL, size of shipment equal to
vehicle capacity) or Less Than Truckload (LTL, size of shipment less than vehicle capac-
ity) services. Collaborative planning of FTL mainly benefits from avoiding empty trips
(Liu et al. 2010) and collaborative planning of LTL mainly benefits from making better use
of vehicle capacity (Dai and Chen 2012a, Wang and Kopfer 2014). Berger and Bierwirth
(2010) propose two solution approaches for the LTL request reassignment problem involv-
ing decentralized control and auction-based selection and exchange of requests. Dai and
Chen (2011) propose a multi-agent and auction-based framework for carrier collaboration
in LTL transport. Lai et al. (2017) propose an iterative auction approach in FTL trans-
port, which enables carriers to collaborate by exchanging their shipping requests iteratively.
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Wang et al. (2014) extend the pickup and delivery problem with time windows to collab-
orative transport planning, where both subcontracting and collaborative request exchange
are taken into account. There is also some research on collaborative planning in maritime
transport and inter-terminal transport. For example, Agarwal and Ergun (2010) study col-
laboration among carriers in liner shipping. Both tactical problems such as the design of
large-scale networks and operational problems such as the allocation of limited capacity on
a transport network among the carriers are discussed. Vojdani et al. (2013) focus on col-
laborative approaches in the empty container management. They demonstrate the potential
for cost savings through the use of container pooling in comparison to non-cooperative so-
lutions. For inter-terminal transports, Kopfer et al. (2016) evaluate by experiment scenarios
for isolated planning, central planning, and collaborative planning. Their results show there
are discrepancies in the collaboration profits of individual carriers.

7.2.2 Collaborative planning in synchromodal transport

Compared to the literature on collaboration in single-mode networks, there is a lack of re-
search on collaborative planning for synchromodal transport (Gumuskaya et al. 2020, Pan
2017). In the last decade, some scholars researched cooperation in synchromodal trans-
port at a strategical level from a business model perspective (Lin et al. 2017, Saeed 2013).
Nevertheless, very few research effort has been spent on the collaborative planning of in-
dependent players in a synchromodal transport chain at the tactical and operational level,
see the survey of Gansterer and Hartl (2018). The recent study of Gumuskaya et al. (2020)
presents a framework for such collaboration but no decision support model. An example
of a more decision-oriented study is Puettmann and Stadtler (2010), who investigate the
coordination of a long-haul carrier and a drayage carrier in an intermodal transport chain.
The carriers are allowed to keep their private planning information and critical data. The
focus of this chapter is on analyzing the impact of stochastic demand. Di Febbraro et al.
(2016) propose a multi-actor system for cooperation in intermodal freight transport. They
decompose the optimization problem into a set of sub-problems, each of them represent-
ing the operations of one actor. A Lagrangian-based Network Communication Coordinator
is employed in this approach to establish a framework for sharing information and coor-
dinating operations among various actors. Each actor receives information from both its
preceding and successive actors, allowing them to optimize their local operations accord-
ingly. The dynamics of synchromodal transport are studied by developing a discrete event
model based on the concept of a rolling horizon. Li et al. (2017) investigate cooperative
planning among multiple carriers that connect deep-sea ports and inland terminals where
the transport networks of these carriers are interconnected with each other. Li et al. (2017)
investigate service networks that are non-overlapping and the cooperative planning is done
at the tactical flow level by all operators.

Only a few papers have studied the auctioning of requests in synchromodal transport
collaboration. Xu et al. (2015a) study intermodal transport auctions for B2B (Business to
Business) e-commerce logistics with transaction costs. Sun et al. (2019) focus on intermodal
transport service procurement problem in the context of the “Belt and Road Initiative”,
where a shipper contains a bundle of requests in different lanes (origin-destination pairs) and
each carrier may cover either one or multiple lanes. The results indicate that the auctioneer
should decrease transaction costs, increase the numbers of shippers/carriers, control the
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types of shipper demand, and induce true biding prices of bidders.

7.2.3 Summary
Table 7.1 provides a summary of the reviewed papers. All papers are divided by their re-
search domains, i.e., FTL road transport, LTL road transport, Road Freight Transport (RFT)
without specifying FTL/LTL, Maritime Freight Transport (MFT), Inter Terminal Transport
(ITT), Inland Waterway Transport (IWT), and Synchromodal Transport (ST). The collab-
oration approaches (CA) are divided by the categories proposed by Gansterer and Hartl
(2018), i.e., Centralized Planning (CP), Non-auction-based Decentralized Planning (DP),
Auction-based Decentralized Planning (ADP). The table furthermore reports if papers con-
sider features such as transshipments (T), fixed timetables (FT), overlapping transport net-
works (OTN), or sustainability preferences (S).

Table 7.1: Summary of the literature review.

Literature Domain CA T FT OTN S
Liu et al. (2010) FTL DP
Li et al. (2015a) FTL ADP
Lai et al. (2017) FTL ADP
Dai and Chen (2011) LTL ADP
Dai and Chen (2012a) LTL CP
Wang and Kopfer (2014) LTL ADP
Berger and Bierwirth (2010) RFT ADP ✓
Wang et al. (2014) RFT ADP
Özener (2014) RFT – carrier
Agarwal and Ergun (2010) MFT DP ✓ ✓
Vojdani et al. (2013) MFT DP ✓
Kopfer et al. (2016) ITT ADP ✓
Puettmann and Stadtler (2010) ST ADP ✓ ✓
Xu et al. (2015a) ST ADP
Di Febbraro et al. (2016) ST DP ✓ ✓
Li et al. (2017) ST DP ✓ ✓
Sun et al. (2019) ST ADP
Liotta et al. (2014) ST CP carrier
This research ST ADP ✓ ✓ ✓ shipper

As shown in Table 7.1, there are many studies on collaborative vehicle routing in uni-
modal road freight transportation (including RFT, LTL and FTL). However, there are sig-
nificant differences between unimodal and synchromodal settings. For example, in many
studies on road freight transport, the carrier has only one type of vehicles (homogeneous
fleet). In synchromodal transport, the carrier potentially owns vehicles of multiple modes
and different characteristics. In particular, vehicles can be very large, which has various
implications such as that the emissions of barges and trains are highly influenced by their
actual load. Furthermore, the requests in synchromodal transport can be segmented and
transported by multiple vehicles, while requests in the road mode usually just comprise one
vehicle. When a request is segmented, it will be transferred between vehicles at transship-
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ment terminals. Therefore, synchronization at transshipment terminals needs to be consid-
ered in synchromodal transport. Furthermore, synchromodal carriers often have specific
terminals and operating areas where trains and ships typically follow fixed timetables and
predefined routes, which is hardly the case in traditional road freight transportation.

The research in RFT/LTL/FTL, MFT, and ITT only considers one transport mode, ei-
ther trucks or ships. Some research has been done in ST, however, the carriers in these
papers are hardly modelled realistically. For instance, the carriers assumed by Puettmann
and Stadtler (2010) and Li et al. (2017) can control different transport networks whereas in
reality a transport network may be occupied by multiple carriers. When considering carriers
that serve the same or at least overlapping parts of a transport network, horizontal collab-
oration approaches become relevant (Cleophas et al. 2019). Moreover, most papers ignore
the individual sustainability preferences of carriers or shippers. Some papers regard reduc-
ing emissions as an objective from the perspective of carriers (Liotta et al. 2014, Özener
2014). However, they do not study how carriers take shippers’ sustainability preferences
into account.

7.3 Problem description

We consider a problem in which multiple synchromodal transport carriers are willing to
achieve increased sustainability through collaboration. Eco-labels are used to evaluate the
relative environmental impact of transporting a shipper’s order from its origin to its desti-
nation. We measure this impact by subsuming relevant greenhouse gases, such as carbon
dioxide (CO2), methane (CH4) or nitrous oxide (N2O), resulting from transportation under
the term ‘emissions’ and evaluate their impact on global warming relative to CO2, the most
important greenhouse gas (United States Environmental Protection Agency 2022). With
this, we use the single measure CO2e to state the amount of CO2-equivalents resulting from
transportation, and use those emissions (kgCO2e) per container and per kilometer (km) as
a sustainability measure and refer to it as emission rate (kgCO2e/(TEU·km)). Thereby, we
assume that each container corresponds to one twenty-foot equivalent unit (TEU) of 13 tons
(Heinold and Meisel 2018). The eco-labeling scheme is derived from a large-scale simu-
lation study in Europe’s synchromodal rail/road network (Heinold and Meisel 2018) and
consists of three classes A, B, and C with emission rate limits as shown in Figure 7.2.

Figure 7.3 shows a conceptional sketch of the considered problem. In this figure, there
are two requests in the request pool and three carriers. Each carrier needs to solve a Syn-
chromodal Transport Planning Problem with Sustainability Preferences (ITPP-SP) to match
its offered services with the placed requests. In these services, combinations of modes and
routes can be used to serve requests while distinct combinations result in distinct emis-
sions. If the carrier cannot match the services with the preferred eco-label of request r, r

0.39 kgCO2e/(TEU·Km)

0.65 kgCO2e/(TEU·Km)

> 0.65 kgCO2e/(TEU·Km)

A
B

C

Figure 7.2: Eco-labeling scheme.
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Intermodal Transport Planning Problem with Sustainability Preferences
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Collaborative Planning Problem in Intermodal Transport with Sustainability Preferences

Figure 7.3: Conceptional sketch of the considered problem.

will be shared with other carriers. In this case, the Collaborative Planning Problem in Syn-
chromodal Transport with Sustainability Preferences needs to be solved to find a suitable
carrier.

Each carrier c ∈ C owns a set of heterogeneous vehicles Kc of capacity uk and speed
vk, and receives a set of requests Rc with preferred eco-labels from shippers. We use elr
(A, B, or C) to express the eco-label of request r, where emission rates per eco-label level
elr can be found in Figure 7.2. To provide more sustainable transport and better services,
carriers collaborate by exchanging requests, i.e., horizontal collaboration. Carriers only
share requests when they cannot match requirements by themselves because they want to
serve shippers and gain additional profits. The shared requests can be served by any other
carrier as long as the required eco-label is respected.

7.4 Modeling and solution approach

This section presents the modeling and heuristic algorithm to solve the ITPP-SP together
with a framework for the collaborative planning approach. Firstly, we introduce how emis-
sions are calculated and how to handle vague sustainability preferences by fuzzy logic the-
ory in Section 7.4.1. Then, the mathematical model and an ALNS heuristic for the ITPP-SP
of an individual carrier are presented in Section 7.4.2. Finally, the collaborative planning
framework is described in Section 7.4.3.

7.4.1 Emissions calculation and vague preferences

To analyze whether or not a request is shipped in accordance with its eco-label we have
to measure the emissions that are emitted while shipping the request from its origin to
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destination. For this, two kinds of transport-related emissions need to be considered for a
request r: first, emissions from the vehicles that are transporting requests on the arcs (earcs

r ),
and, second, emissions from transshipment operations at the nodes that are required in a
synchromodal transport setting (enodes

r ).

Regarding emissions from vehicles, several emission estimation models have been pro-
posed in the literature. We refer to Demir et al. (2011) and Heinold (2020) for studies
comparing models for trucks and trains, respectively. Generally, the models differ in the
level of detail of the required input data, with microscopic models requiring granular data
inputs (e.g., speed profiles) and macroscopic models requiring only a few rough data inputs
(e.g., average speed). For our purpose, we use a macroscopic methodology proposed by the
EcoTransIT World Initiative (2019), the so-called ETW model. The model provides calcu-
lation procedures for all of our considered transport modes: trucks, trains, and barges. The
model is further in accordance with the European norm EN 16258 (European Committee for
Standardization 2012) on the calculation of freight transport related greenhouse gas emis-
sions. Generally, the ETW method uses empirically-based functions that take the vehicle’s
load qk

i j (in TEU) and traveled distance dk
i j (in km) between terminals i and j as the main

input to estimate emissions. Thereby, various sources are used to come up with realistic
functions like the average annual energy consumption of rail freight transport companies
or surveys among transport companies. With this, the model considers emissions from the
driving of vehicles as well as from the idling of vehicles (e.g., Rahman et al. 2013). In
our problem, we consider emissions that relate to a regular 40-ton truck (Euro VI norm), a
typical diesel train with “sgis” cars, and a standard European barge. We refer to EcoTransIT
World Initiative (2019) for details on the model’s methodology and data of the parameters
that are used for these vehicle types. Further emission estimation model parameters are set
as follows: the empty trip factor is set to 0.2, the slope profile is set to 1, and the well-to-
wheel emission factor is set to 3.90 (kgCO2e/kg) for regular diesel and to 3.92 (kgCO2e/kg)
for marine diesel (see European Committee for Standardization (2012)). With this, the con-
densed formulas to calculate emissions eki j

w (in kgCO2e) of vehicle k travelling between
terminals i and j in one of the three modes w ∈ {truck, train, barge} are shown in Equations
(7.1) to (7.3), respectively.

eki j
truck = 0.7233 ·dk

i j +0.1872 ·dk
i j ·qk

i j (7.1)

eki j
train = 22.6278 ·dk

i j ·qk
i j · (123+13 ·qk

i j +23 · ⌈qk
i j ·13/40⌉)−0.62 (7.2)

eki j
barge = 35.9525 ·dk

i j +0.0819 ·dk
i j ·qk

i j (7.3)

These emissions are then allocated among the requests based on each request’s contri-
bution to a service’s overall load between terminals i and j:

eki j
r = eki j

w ·qr/qk
i j (7.4)

The emissions of request r using vehicle k is the sum of emissions of all trips served by k:

ek
r = ∑

(i, j)∈Ac
ykr

i j eki j
r (7.5)
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The total emissions on arcs of request r is:

earcs
r = ∑

k∈Kc
r

ek
r (7.6)

Regarding emissions from transshipment processes at ports (i.e., transshipments involv-
ing barge l), the values of ekl are 6.3, 19.6, and 11.2 kgCO2e/TEU when vehicle k is a truck,
a train, and a barge, respectively, as reported in an analysis of two container terminals in the
Port of Rotterdam (Geerlings and van Duin 2011). For all other transshipment operations
(e.g., from truck to train and vice versa), we assume the value of ekl is 2.6 kgCO2e/TEU.
This value is based on the energy consumption of such processes as reported for the Eu-
ropean synchromodal rail/road network by Kim and van Wee (2009). The emissions of
request r during transshipment between vehicles k and l can be obtained by the following
equation:

ekl
r = qr(ekl + elk) (7.7)

The total emissions at nodes of request r are:

enodes
r = ∑

k,l∈Kc,k ̸=l
∑

i∈T c
skl

ir ekl
r (7.8)

The total emissions of request r are:

er = earcs
r + enodes

r (7.9)

The unit emissions of request r are:

e′r = er/(qr ∑
k∈K

∑
(i, j)∈A

dk
i jy

kr
i j ) (7.10)

Shippers’ sustainability preferences are usually vague, such as “around eco-label B is
fine” or “eco-label C is enough”, i.e., a shipper’s satisfaction is still relatively high when
the emission value does not perfectly match the required eco-label but is very close to it.
Therefore, simple rules like only accepting services with lower emissions than the eco-label
are not necessarily appropriate for the evaluation of shippers’ satisfaction. Instead, we use
the fuzzy set theory to capture such vague preferences. Fuzzy set theory is a methodol-
ogy that does not express the “truthiness” in a discrete manner as either true or false but
instead also allows for partially true or partially false. Accordingly, whether an emission
value belongs to a particular eco-label or not is also expressed as (partially) true or false
in our study. For this, emissions can be represented by a fuzzy variable, which has a pre-
defined value range and eco-labels are used to describe it. The value in the value range is
called crisp value, which is how we think of the variable using normal mathematics, e.g.,
0.4 kgCO2e/(TEU·km). Each eco-label has a membership function that defines the degree
of truth of a crisp value that belongs to the eco-label on a scale of 0 to 1. For example,
0.4 kgCO2e/(TEU·km)’s membership to eco-label A and eco-label B could be 0.8 and 0.2,
respectively.

Based on request r’s actually caused unit emissions e′r and the emission boundary elr
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of the requested eco-label, the satisfaction value Sr will be obtained by fuzzy set theory:

Sr = Fuzzy(e′r,elr) (7.11)

where Fuzzy() represents the fuzzy set theory approach used in this study as is described
next.

The membership function of emissions e′r and satisfaction Sr are shown in Figure 7.4.
The trapezoidal and triangle fuzzy numbers are used in the membership function, where the
triangular membership function is a special trapezoidal membership function. The trape-
zoidal membership function is given in Equation (7.12) for the trapezoidal fuzzy number of
e′r involving scalar parameters a,b,c,d, whereby a≤ b≤ c≤ d and b = c for the triangular
membership function. For the fuzzy number of Sr, we use the same type of function.

µ(e′r) =



0, e′r < a

(e′r−a)
(b−a)

, a≤ e′r ≤ b

1, b≤ e′r ≤ c

(d− e′r)
(d− c)

, c≤ e′r ≤ d

0, e′r > d

(7.12)
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1
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(a) The membership function for emissions e’r (b) The membership function for satisfaction Sr

0.52 0.78

Figure 7.4: Membership functions for emissions and satisfaction.

Fuzzy variables for the emissions and satisfaction can be linked using a set of rules,
which are IF-THEN statements that describe how one variable relates to another. The used
fuzzy rules are as follows:

1. When the shipper prefers eco-label A, IF the obtained eco-label equals/is worse than
A, THEN the satisfaction will be high/low.

2. When the shipper prefers eco-label B, IF the obtained eco-label is better than/equals/is
worse than B, THEN the satisfaction will be high/medium/low.



148 7 Collaborative planning with eco-label preferences

3. When the shipper prefers eco-label C, IF the obtained eco-label is better than/equals
C, THEN the satisfaction will be high/medium.

After defining fuzzy variables and fuzzy rules, the satisfaction value Sr can be obtained
using a defuzzification method, such as Center of Gravity used in Van Leekwijck and Kerre
(1999). The same emissions may lead to different satisfaction because preferred eco-labels
are different for different shippers. For example, if shipper 1 prefers eco-label B and shipper
2 prefers eco-label C, shipper 2 will be more satisfied than shipper 1 when the actual eco-
label is B.

7.4.2 Mathematical model and ALNS for ITPP-SP

This section presents the mathematical model for one carrier c. In this model, we try to
ensure shippers’ satisfaction while minimizing the carrier’s costs. There are two levels of
objectives. The upper-level objective (F1) is to maximize the number of served requests
of the considered carrier c. The lower-level objective (F2) is minimizing the carrier’s cost,
which consists of transport cost, transfer cost, storage cost, carbon tax, waiting cost, and
delay penalty. For the lower-level objective (F2), we refer to Chapter 3. In practice, it is
important to serve as many requests as possible for long-term trust. Shippers will not opt
for a less costly service when it is not reliable. Therefore, the model will choose the solution
with the highest objective value of F1. If several solutions have the same optimal value for
F1, the solution with a lower objective value of F2 among these is selected. There are also
other ways to model the objective function, e.g., the objective (7.13) can be weighted by a
penalty and added to the objective function (7.14). The results of this alternative approach
are compared in Section 7.5.3.

Objective:

max F1 = ∑
r∈Rc

∑
k∈Kc

∑
j∈Nc

ykr
p(r) j (7.13)

min F2 = ∑
k∈Kc

∑
(i, j)∈Ac

∑
r∈Rc

(c1
kτ

k
i j + c1′

k dk
i j)qrykr

i j + ∑
k,l∈Kc,k ̸=l

∑
r∈Rc

∑
i∈T c

(c2
k + c2

l )qrskl
ir

+ ∑
k∈Kc

∑
(i, j)∈Ac

p

∑
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c2
kqrykr

i j + ∑
k∈Kc

∑
(i, j)∈Ac

d

∑
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c2
kqrykr
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+ ∑
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∑
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p

∑
r∈Rc

c3
kqrykr

i j (t
′kr
i − ap(r))

+ ∑
k∈Kc

∑
r∈Rc

c4
kek

r + ∑
k,l∈Kc,k ̸=l

∑
r∈Rc

∑
i∈T c

qrskl
ir (c

4
kekl + c4

l elk)

+ ∑
k∈Kc

b&t

∑
i∈Nc

c5
ktwait

ki + ∑
r∈Rc

cdelay
r qrtdelay

r

(7.14)

Constraints (7.15) ensure that preferences are respected. S is a preset satisfaction bench-
mark. It is set as 50 in our experiments, which means “medium satisfaction”. Only when



7.4.3 Collaborative planning approach 149

the satisfaction value Sr reaches satisfaction benchmark S, the solution for request r is con-
sidered acceptable.

Sr ⩾ S ∀r ∈ Rc (7.15)

Other constraints are consistent with those outlined in Chapter 3.
The operators and adaptive mechanism of ALNS are illustrated in detail in Chapter

3. As these papers did not involve eco-labels, we briefly sketch here how this feature is
incorporated into the ALNS. The emissions in this study are load-dependent, which means
the load of barges/trains will influence the emissions allocated to a transported request.
Therefore, it is difficult for ALNS to “predict” which vehicle is more suitable to reduce
the emissions because the final load of the vehicle is not yet known while constructing a
solution. For example, when ALNS inserts a new request to a route of an empty barge, it
will obtain a very high emission. But later in the solution process, this barge may serve
many requests with a high load factor, and the emissions allocated to a single request are
then much lower. To alleviate the impact of the load-dependent emissions, we expect large
capacity vehicles will be utilized at the end and set the load factors of trains and barges as
60% during each iteration of ALNS when computing emissions. By doing so, requests may
be added to these large-capacity vehicles already when these vehicles are quite empty. After
each iteration, the preference Constraints (7.15) are then rechecked using the actual load,
and requests will be removed when Constraints (7.15) cannot be satisfied due to a too low
load factor.

7.4.3 Collaborative planning approach

In the following, we consider three approaches of a (non-)collaboration of the carriers in set
C, namely: (a) a centralized approach, (b) an auction-based collaborative approach, and (c)
a non-collaborative approach. Since carriers do not want to reveal private information (such
as costs) to their competitors, we assume there is a neutral coordinator in approaches (a) and
(b). In reality, the coordinator could be a collaborative planning platform in synchromodal
transport. In approach (a), the coordinator conducts the routing and scheduling for carriers.
In approach (b), carriers make decisions by themselves and the coordinator only plays a role
in connecting carriers and providing request and bid pools.

More precisely, in approach (a), shippers send requests, including lanes (origin-destination
pairs), time windows, amounts of containers, and requested eco-labels, to carriers which
then forward this information to the coordinator. Furthermore, carriers send their transport
network information including terminals, vehicle fleets, and associated parameters to the
coordinator, as shown in Figure 7.5(a). The coordinator solves a single holistic ITPP-SP
and optimizes the overall synchromodal network based on this information, then assigns
requests to carriers and reports costs to shippers either directly or via the carriers.

In approach (b), when a carrier has unserved requests, they will be exchanged with
others via the coordinator as shown in Figure 7.5(b). This is done through an auction as
is explained later in this section. In approach (c), carriers receive requests from shippers
and do not share them with others. Each carrier solves an ITPP-SP and optimizes schedules
only using their own services, and some requests might be rejected when their requirements
cannot be met by the carrier who received these requests.
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Figure 7.5: Collaboration approaches (a) and (b), which are centralized approach and
auction-based collaborative approach, respectively.

In approaches (a) and (c), solutions are obtained by the ALNS directly where approach
(a) optimizes schedules based on requests and resources of all carriers C, i.e., XC

best, RC
pool

= ALNS(KC, RC, NC, AC, XC
best) and approach (c) optimizes the operations individually

for each carrier c ∈C. For approach (b), a request exchanging mechanism is needed and an
auction-based approach is adopted in this study because auctions can respect the preferences
of participants by bidding (Gansterer and Hartl 2018, Li et al. 2015a). For example, consider
two carriers A and B that bid for requests in an auction pool. The bidding of carrier A is
based on costs and the bidding of carrier B is based on both costs and emissions. The
auction will then reveal the carriers’ preferences as they only place a bid if it is reasonable
to add a request to the current routing with respect to their individual criteria. Specifically,
we use a sealed-bid first-price iterative auction, where bidders submit sealed bids and the
bidder submitting the lowest cost wins the request and charges this cost to the shipper. In an
iterative auction, there are multiple rounds until a stopping criterion is reached and bidders
can adapt their bids during the iterative process. The flowchart of the iterative auction
procedure in collaborative planning is shown in Figure 7.6, where dashed arrows represent
the exchange of information between carriers and the coordinator.

In an auction round, there are three steps for each carrier c:

1. Obtain an initial solution: Based on the Kc, Nc, Ac, and the carrier’s own requests Rc,
each carrier solves an ITPP-SP and the routes are optimized by the ALNS. Then, the
carrier sends unserved requests Rc

pool to the coordinator.

2. Try and bid: The carrier obtains requests CPRC\c
pool shared by other carriers from the

coordinator and sets CPRC\c
pool as Rc

pool. Then the carrier tries to insert these requests

into its routes by Algorithm 11. If the carrier can serve requests Rc
try = CPRC\c

pool \Rc
pool

and finds a better solution than before, the carrier submits bids Bidc to the coordinator
with costs of these requests Rc

try.

3. Insert new requests: For those bids Bidc
win ⊆ Bidc that carrier c won through the



7.4.3 Collaborative planning approach 151

Start

Input: Kc,Rc,Nc,Ac

Optimize routes
and obtain Rc

pool

Send Rc
pool to

coordinator

Get CPRC\c
pool

from coordinator

Try optimiza-
tion with CPRC\c

pool

Interested in any r?

Submit bids Bidc

for interested r

Obtain winning
bids Bidc

win

Won a bid?

Optimization
with Bidc

win

Send served new
r to coordinator

Auction stop?

Output: routes

Stop

Start

Input: C

Set empty
CPRpool, Bidpool

Update CPRpool
with Rc

pool

Send CPRC\c
pool

to carriers

Waiting for
bids of c ∈ C

Add Bidc to Bidpool

Group and rank
bids in Bidpool

Waiting for opti-
mization of c ∈ C

Delete served r
in CPRpool, set

Bidpool as empty

Auction stop?

Output: End

Stop

CarrierCarrierCarrier Coordinator

yes

no

yes

no

yes

no

yes

no

Figure 7.6: Flowchart of the iterative auction procedure in collaborative planning.
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auction, requests in Bidc
win are set as Rc

pool and the carrier inserts these requests into
its routes by Algorithm 11. It is worth noting that maybe a request r that can be served
in Step 2 cannot be served in Step 3, because it can only be served in combination
with some other requests in the failed bids. In this case, r will be added to Rc

pool and
considered in the next round of the auction. Finally, the carrier sends the information
of served new requests Rnew to the coordinator.

Algorithm 11: Re-planning with shared requests.

Input: Kc, Rc
pool, Nc, Ac, Xc

best; Output: Xc
best;

Obtain served requests Rc
serve in Xc

best;
Combine Rc

pool and Rc
serve as a set of requests Rc;

Rc
pool, Xc

best = ALNS(Kc, Rc, Nc, Ac, Xc
best)

return Rc
pool, Xc

best;

From the perspective of the coordinator, the procedure is as follows: The coordinator
operates two pools, i.e., a collaborative planning request pool (CPRpool) and a bids pool
(Bidpool). The coordinator adds or deletes requests in CPRpool when receiving related in-
formation from carriers. Before an auction starts, the coordinator sets these two pools as
empty and then receives unserved requests Rc

pool of each carrier c ∈ C. Request r ∈ Rc
pool

will be added in CPRpool if r /∈ CPRpool. After receiving all carriers’ Rc
pool and updating

CPRpool, the coordinator sends unserved requests of other carriers CPRC\c
pool to each carrier c

and waits for bids. After receiving bids from carriers, the coordinator groups bids according
to requests and ranks them depending on the cost. Then, the coordinator sends winning bids
to carriers and waits for the final optimization of carriers. Finally, the served requests are
removed from CPRpool and Bidpool is set empty to prepare for the next round of the auction.

The auction will stop either when no carrier wants to exchange further requests or a
predefined number of rounds is reached. This mechanism aims to provide carriers enough
chances to share requests.

7.5 Case study
A network with three carriers along the European Rhine-Alpine corridor is considered as
a real-world case to test the proposed model. The three carriers are European Gateway
Services (EGS), Contargo, as well as Haeger & Schmidt Logistics (HSL) which are all
synchromodal transport carriers that provide barge, train, and truck services from seaports
(Rotterdam and Antwerp) to inland terminals. Figure 7.7 presents the transport networks
of these carriers. In this case study, EGS, Contargo, and HSL provide services among
10, 20, and 15 terminals/ports, respectively. A total of 11 terminals are shared by two or
three carriers (there are multiple terminals in the seaport). The three carriers can share
their requests in the overlapping transport network. Services’ information is obtained from
schedules on their websites (Contargo 2021, EGS 2021, HSL 2021), and EGS, Contargo,
and HSL operate 49/33/34, 38/23/95, and 41/8/70 barge/train/truck services, respectively,
according to this data. For the distances between terminals of different modes, we use the
same data sources as in Shobayo et al. (2021).
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Figure 7.7: Transport networks of EGS, Contargo, and HSL.

The origins and destinations of requests are distributed randomly among deep-sea ter-
minals and inland terminals, respectively. The container volumes of requests are drawn
independently from a uniform distribution with range [10, 30] (unit: TEU). According
to services of EGS/Contargo/HSL, the earliest pickup time ap(r) of requests is drawn in-
dependently from a uniform distribution with range [1, 120]/[1, 140]/[1, 140]; the latest
delivery time bd(r) = ap(r) + LDr, where LDr is the lead time and it is independently and
identically distributed among 24, 48, 72 (unit: hours) with probabilities 0.15, 0.6, 0.25.
Moreover, to define pickup and delivery time windows, we set bp(r) and ad(r) equal to bd(r)
and ap(r), respectively. Parameters for vehicles are taken from the literature and shown
in Table 7.2. In the objective function (7.14), the transport cost is a linear function of
the travel time τk

i j and distance dk
i j. We use different unit costs c1

k and c1′
k for τk

i j and dk
i j,

which makes it possible to handle differences in the speed of vehicles. For trucks and
trains, as reported in Li et al. (2015b), we set c1

truck/c1′
truck as 30.98 euro/(TEU·h)/0.2758

euro/(TEU·km) and 7.54 euro/(TEU·h)/0.0635 euro/(TEU·km). According to the used type
of barges and the database of an inland shipping community (Association of the inland
shipping 2010), the parameters of the Large Rhine Vessel (Va class) are used. Considering
the labor, capital, maintenance, total sailing hours in a year, and occupancy rate, the time-
related cost for barges c1

barge is set as 0.6122 euro/(TEU·h). Based on the fuel consumption,

the distance-related cost unit c1′
barge is set as 0.0213 euro/(TEU·km). According to Sun and

Lang (2015b), the loading/unloading costs c2
k for trucks, trains, and barges are set as 3, 18,

and 18 euro/(TEU·h). The CO2e is converted into carbon tax using a price c4
k of 8 euro

per ton, based on the price of the EU emission allowance (Van Riessen et al. 2015b). As
reported in Guo et al. (2020) and Zhang et al. (2022b), the vehicle can wait for containers
with a waiting fee, and containers can be stored in the terminal with a storage fee. We use
the same storage and waiting unit costs c3

k and c5
k of 1 euro/(TEU·h).

We generate six instances for each carrier with 5, 10, 20, 30, 50, and 100 requests, re-
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Table 7.2: Vehicle parameters used in this chapter (Guo et al. 2020, Li et al. 2015b,
Van Riessen et al. 2015b).

parameter value parameter value parameter value
c1

truck 30.98 c1
train 7.54 c1

barge 0.6122
c1′

truck 0.2758 c1′
train 0.0635 c1′

barge 0.0213
c2

truck 3 c2
train 18 c2

barge 18
c3

k 1 c4
k 8 c5

k 1

spectively. Each instance contains three sub-instances with homogeneous preferences, i.e.,
all shippers prefer the same eco-label (A, B, or C), and one sub-instance with heterogeneous
preferences (labeled as H), i.e., shippers have different preferred eco-labels. Under hetero-
geneous preferences, the eco-label for each request is obtained randomly from a uniform
distribution over eco-labels A, B, and C.

We consider two scenarios of collaborative planning. Scenario 1 is the collaboration
among unimodal transport carriers and each carrier operates one of three modes (inland
waterway, railway, and road). Scenario 2 is the collaboration among synchromodal trans-
port carriers and each carrier offers services in all three modes. In scenario 1, services of
unimodal transport carriers are based on the transport network of EGS with varying total
numbers of requests [5, 10, 20, 30, 50, 100] across instances. In scenario 2, the synchro-
modal transport carriers are EGS, Contargo, and HSL and the total numbers of requests are
[15, 30, 60, 90, 150, 300]. To ensure the accuracy of experimental results, all experiments
are repeated five times and the results are averaged.

7.5.1 Results analysis

Table 7.3 shows the average computation time of instances with different numbers of re-
quests under centralized, collaborative, and non-collaborative approaches with preferences
(a, b, c) and without (a∗, b∗, c∗) preferences. The computation time in scenario 2 is shorter
than the computation time in scenario 1 because scenario 2 has more requests, more vehi-
cles, and a larger transport network. Due to the communication time used in collaboration,
approach (b)/(b∗) needs more computation time than approach (a)/(a∗) in most cases. On
some exceptionally large instances, such as the instance with 300 requests in scenario 2,
approach (b)/(b∗) uses less computation time than approach (a)/(a∗), because the collabora-
tive approach (b)/(b∗) saves computation time by parallel computation which compensates
the communication time. The computation time with preferences is usually larger since it
is harder to find feasible solutions when preferences are incorporated. In most cases, the
computation time is less than 2h even in large instances.

Figure 7.8 shows the resulting emissions across different approaches, scenarios and eco-
label settings. Under eco-label A, no requests are served in the instances with 5/15 requests
because the sustainability requirement is high and load factors of sustainable vehicles are
still too low to reach the requirement. For the instances with more requests, the average
unit emissions for eco-label A, B, C, and H under scenario 1/2 are 0.29/0.24, 0.47/0.47,
0.92/0.84, 0.86/0.62 kgCO2e/(TEU·km), respectively. The corresponding solutions meet
the requested eco-labels and it is observed that higher requirements on eco-labels indeed
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Table 7.3: Computation time (s).

Scenario 1 Scenario 2

Approach 5 10 20 30 50 100 15 30 60 90 150 300
a 2.3 13.6 52.4 135.5 434.8 3041.1 36.0 534.1 1824.8 3976.5 6145.3 34646.2

a∗ 0.7 3.3 12.3 14.3 92.2 604.1 17.7 119.8 2299.0 4247.0 7065.0 22697.7
b 284.4 399.7 906.6 1767.5 2467.2 7667.3 801.5 1192.3 3129.9 4467.0 12309.3 13282.7

b∗ 178.4 172.8 324.4 513.3 711.5 1544.7 182.4 184.6 276.6 495.3 603.3 2225.8
c 0.3 0.9 1.9 3.1 27.7 92.2 4.5 55.2 162.4 505.7 1897.0 5385.4

c∗ 0.2 0.6 1.4 1.7 31.9 68.2 3.4 3.4 23.4 364.9 1004.7 3188.4

lead to lower average emissions. The emissions under eco-label A are reduced by around
70% compared with eco-label C. Under eco-label C, more requests lead to lower emissions
due to the high load factor of vehicles, but they still cannot reach the same level as eco-
labels B and A. Scenario 2 has a better performance compared with scenario 1 under the
same eco-label due to the additional services.

(a) Scenario 1 (unimodal carriers) (b) Scenario 2 (synchromodal carriers)

Figure 7.8: Emissions comparison across approaches and eco-labels.

Figure 7.9 shows a cost comparison across approaches and eco-labels. We compare so-
lutions based on cost per TEU·km rather than total cost as the number of served requests
may differ in the solutions, which means that their total cost cannot be compared suitably
with each other. In scenario 1, the average unit costs under eco-labels A, B, C, and H (het-
erogeneous preferences) are 0.85, 0.88, 0.93, and 0.74 euro/(TEU·km), respectively. In sce-
nario 2, these average unit costs are 0.95, 0.62, 0.51, and 0.69 euro/(TEU·km), respectively.
From eco-labels A to C, the emissions restriction decreases, while costs under scenario 1
increase. Scenario 2 shows the opposite trend. The truck carrier will keep requests when
sustainability requirements are low, and requests will only be shared with train and barge
unimodal carriers under high sustainability requirements. Therefore, for unimodal carriers
under scenario 1, higher eco-labels could decrease costs because more low-cost vehicles
are used due to emissions constraints. However, for synchromodal carriers with all three
modes, costs will be minimized and barges will be used as much as possible when they
do not consider sustainability preferences, therefore cost under eco-label C is the lowest.
When sustainability requirements are high, more requests will be served by trains, which
are more expensive than barges, hence costs increase. In some cases, the cost under the
centralized approach is higher than the collaborative approach because the served requests
are different under these two approaches, and the transshipment and storage costs vary for
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different requests. In some other cases, the collaborative approach has higher costs which
happen more in scenario 1. The reason behind this is that truck carriers in scenario 1 serve
requests by themselves with a high cost when the eco-label requirement is not high, such
as the instance with 30 requests under eco-label B and instances with 20, 30, 50, and 100
requests under eco-label C. Therefore, unimodal carriers, especially truck carriers, need to
share more requests in collaborative planning to reduce the overall cost and achieve a similar
performance as centralized planning.

(a) Scenario 1 (unimodal carriers) (b) Scenario 2 (synchromodal carriers)

Figure 7.9: Costs comparison across approaches and eco-labels.

Figure 7.10 shows the share of transport modes under both scenarios. Under eco-label
A, trains dominate, especially in scenario 1, because using unimodal truck transport cannot
reach the requirement of eco-label A and barges are sustainable only when the load factor
is high. Under eco-label B, trucks serve more requests than trains and the reason behind is
different for scenarios 1 and 2. In scenario 1, emissions of trucks with full truckload reach
the requirement of eco-label B, hence part of the requests are served by trucks from which
the load factors of trains become low. Then, trains are used less due to higher emissions than
trucks. In scenario 2, trucks can not only transport containers by unimodal transport but also
be combined with trains in synchromodal transport to reach a lower cost. Therefore, the
share of trucks is also higher than trains in scenario 2 under eco-label B. Under eco-labels
C and H, more barges are used to serve requests because barges are sustainable and have a
lower cost when the load factor is high. Furthermore, Figure 7.11 shows the proportions of
served requests by carriers in scenario 2. Compared with HSL, EGS, and Contargo serve
more requests under eco-label A, because they operate more trains than HSL. Under eco-
labels B, C, and H, the proportions are similar.

Figure 7.12 shows proportions of served requests, requests that satisfy fuzzy constraints,
and requests that satisfy hard constraints under approaches with environmental preferences
(a, b, c) and without preferences (a∗, b∗, c∗). For the results without preferences, the
eco-labels are ignored, i.e., Constraints (7.15) are not considered. The higher the sustain-
ability requirement is, the less the proportion of served requests is. Almost all requests can
be served when sustainability preferences are not considered. The proportion of requests
that satisfy fuzzy or hard constraints is in most cases higher when considering preferences
compared to the approaches that ignore preferences. In some others, e.g., in scenario 2
under eco-label A, more requests satisfy fuzzy or hard constraints when preferences are
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(a) Scenario 1 (unimodal carriers) (b) Scenario 2 (synchromodal carriers)

Figure 7.10: Mode share comparison across approaches and eco-labels. There are three
bars (left, middle, and right) for each instance, which represent mode shares

under approaches (a), (b) and (c), respectively.

Figure 7.11: Proportions of served requests by carriers in scenario 2. There are three bars
(left, middle, and right) for each instance, which represent mode shares under

approaches (a), (b), and (c), respectively.

not considered because more requests are served and load factors of sustainable vehicles
are high. However, this relies on the sacrifice of requests that have high emissions. Us-
ing fuzzy constraints, the number of served requests is increased by an average of 10%
compared with using hard constraints since the fuzzy constraints give the model flexibility
to find a more suitable solution. For unimodal carriers (scenario 1), centralized and col-
laborative approaches increase the number of served requests significantly compared with
non-collaboration, because unimodal carriers need the services of others to satisfy emis-
sion preferences, especially under high sustainability requirements. Compared with the
non-collaborative approach, the proportion in the collaborative approach is increased by an
average of 65%, 53%, 33%, and 41% under eco-labels A, B, C, and H, respectively. For
synchromodal carriers (scenario 2), such an increase is not significant under eco-labels B, C,
and H, because carriers own enough services. However, the increase is still significant under
eco-label A (29%). In both scenarios, the proportions of served requests of centralized and
collaborative approaches are similar.

Figure 7.13 shows satisfaction values Sr across approaches with and without respect-
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ing preferences, i.e. with and without Constraint (7.15) for the satisfaction benchmark. As
expected, considering preferences in the planning improves satisfaction significantly, espe-
cially under eco-label A. However, under eco-label C, satisfaction is slightly better when
preferences are ignored since more requests can be served, which increases the load fac-
tors and in turn reduces the emissions. In Figures 7.13(b) and (d), the satisfaction under
eco-label B is lower than under eco-label A because more trucks are used due to reasons
mentioned in the analyses of Figure 7.10.

(a) Scenario 1 (unimodal carriers) (b) Scenario 2 (synchromodal carriers)

Figure 7.12: Proportions of served requests and requests that meet fuzzy/hard constraints.

(a) Unimodal carriers without preferences (b) Unimodal carriers with preferences

(c) Synchromodal carriers without preferences (d) Synchromodal carriers with preferences

Figure 7.13: Satisfaction Sr comparison across approaches with and without preferences.
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7.5.2 Sensitivity analysis and convergence of the ALNS
Due to the different infrastructure in terminals and types of vehicles, the costs may be dif-
ferent. Advances in technology may also change the structure of the costs across different
modes. Therefore, a sensitivity analysis is needed for the parameters presented in Table
7.2 to evaluate the influence of potential changes on the benefit of our proposed approach.
We conduct sensitivity analysis comparing centralized, collaborative, and non-collaborative
approaches to check whether the obtained insights still hold when the parameter values
vary. The costs per km may be different for vehicles with different loads and types and
the carbon tax may differ in different countries/regions, therefore distance cost c1′

barge and
carbon tax c4

k are interesting parameters to conduct the sensitivity analysis. The worst case
of c1′

barge relates to the possibility of having a higher cost than the truck distance cost with
a very low load on the barge. When it comes to c4

k , according to (Yan et al. 2021), the
carbon tax will increase to 80 euro per ton by 2030 and this could be higher to reach net
zero emissions by 2050. Considering the best- and worst-case scenarios, we vary c1′

barge and
c4

k in [0, 0.32] and [0, 128], respectively. The results are displayed in Figure 7.14 and as
expected, when c1′

barge or c4
k increases, the costs under all approaches rise. However, the

cost gaps between different approaches stay similar due to the nature of approaches. The
centralized approach obtains the lowest cost and the collaborative approach has a better cost
than the non-collaborative approach. The emission gaps of these approaches are similar in
most cases, while they change in extreme cases, e.g., the carbon tax is 128 euro per ton,
where all approaches have to reduce emissions as much as possible to minimize the total
cost. The number of served requests does not change for all approaches. The centralized
and collaborative approaches can serve all requests, while one-quarter of requests cannot be
served in the non-collaborative approach. Therefore, the proposed model is robust and the
obtained insights still hold under reasonable changes in parameters.

We use instances with different numbers of requests to illustrate the convergence of the
ALNS heuristic. Figure 7.15 shows the costs and emissions of the best solution over 200
iterations. The cost could increase when there are more served requests and the cost is
minimized when the number of served requests is stable. Figure 7.15 shows that ALNS
clearly converges before terminating it on all instances. For small instances (R = 5, 10, and
20), ALNS converges rapidly in early iterations. For large instances (R = 30, 50, and 100),
no better solutions are found in the final 90 iterations.

7.5.3 Results under different objectives and preferences
In practice, the transportation cost and time are important for shippers, and there are two
methods to consider preferences on cost and time, i.e., (a) incorporate them as part of the ob-
jective function together with the number of served requests, (b) consider these preferences
in a similar way as eco-labels.
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(a) Cost under varying c1′
barge (b) Cost under varying c4

k

(c) Emissions under varying c1′
barge (d) Emissions under varying c4

k

(e) Number of served requests under varying c1′
barge (f) Number of served requests under varying c4

k

Figure 7.14: Sensitivity analysis on distance cost c1′
barge and carbon tax c4

k under different
approaches.
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(a) (b)

(c) (d)

(e) (f)

Figure 7.15: Convergence of ALNS on instances with preferences.

In method (a), we minimize F3, which is the sum of the costs F2 and the penalty for
unserved requests:

min F3 = F2 + ∑
r∈Rc

grλrFr
truck, (7.16)
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where gr is a binary variable indicating whether request r is served or not and λr is a pa-
rameter that controls the size of the penalty for each unserved request r. The variable gr
respects the following constraints:

gr ⩾ ∑
(i, j)∈Ac

ykr
i j ∀k ∈ Kc, ∀r ∈ Rc, (7.17)

gr ∈ {0,1} ∀r ∈ Rc. (7.18)

When a request cannot be served by available vehicles, spot-market trucks can usually be
used. Therefore, the penalty is calculated by Fr

truck, which is the cost of transporting request
r using trucks:

(7.19)Fr
truck = (c1

truckτ
truck
p(r)d(r) + c1′

truckdtruck
p(r)d(r))qr + 2c2

truckqr + c4
trucketruck

r .

Figure 7.16 shows results for the instance with 30 requests. Similar insights are obtained
from results of other instances and therefore not presented. The size of the penalty needs
to be set according to the importance of requests. We vary it from 0 to 100 to evaluate
the performance of method (a) in different scenarios. In the extreme case of λr = 0, serving
requests is not important and the carrier only cares about minimizing cost F2. The number of
served requests is then significantly less than in other cases. Compared to using objectives
F1 and F2 hierarchically as proposed in this chapter, minimizing F3 could obtain solutions
with lower unit cost or emissions by not serving requests with high cost/emissions in some
scenarios, such as results when λr = 0.5, λr = 1, and λr = 2 in Figure 7.16(b). Nevertheless,
in order to reach those results, one needs to tune the penalty term thoroughly for each
instance with different numbers of requests, problem parameters, etc. When the penalty λr
is large, i.e., λr = 5, λr = 10, and λr = 100, the number of served requests is the same as
the proposed approach with similar costs and emissions. Except for the scenario in which
λr = 0, these two ways of modeling the objective function have similar performance when
eco-label preferences are ignored, because all requests can be served and the objective is
essentially translated into the minimization of costs (F2).

For method (b), the proposed model can be extended easily to consider cost-label and
time-label. For the cost-label, the unit cost of shipping one TEU for request r is calculated
by:

c′r = Fr
2 /(qr ∑

k∈K
∑

(i, j)∈A
dk

i jy
kr
i j ) (7.20)

where Fr
2 is the overall cost of request r and the calculation of Fr

2 is similar to objective
(7.14).

For the time-label, we use the ratio of actual time to expected time to evaluate how fast
the transportation is, calculated by:

t ′r = tr/(d
average
p(r)d(r)/vaverage), (7.21)

where daverage
p(r)d(r)/vaverage is the average travel distance/speed of all vehicles and tr is the actual

travel time:

tr = max{tkr
i ykr

i j : ∀(i, j) ∈ A, ∀k ∈ K}−min{t ′kr
i ykr

i j : ∀(i, j) ∈ A, ∀k ∈ K}. (7.22)
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(a) Number of served requests under varying sizes of
penalty (R = 30, considering preferences)

(b) Cost and emissions under varying sizes of
penalty (R = 30, considering preferences)

(c) Mode shares under varying sizes of penalty (R =
30, considering preferences)

(d) Number of served requests under varying sizes of
penalty (R = 30, ignoring preferences)

(e) Cost and emissions under varying sizes of
penalty (R = 30, ignoring preferences)

(f) Mode shares under varying sizes of penalty (R =
30, ignoring preferences)

Figure 7.16: Comparison of results with different objectives (R = 30)



164 7 Collaborative planning with eco-label preferences

The rates of cost-label/time-label A, B, and C are set as 0.6/0.8, 0.9/1.1, and 1.2/1.4,
respectively. Then, we can adopt a similar method as in Section 7.4.1 to obtain the satisfac-
tion value Sr and set constraints for Sr to ensure that the solutions are in line with cost or
time preferences of shippers.

Table 7.4 shows the results under different preferences on the instance with 30 requests,
where the related cost, time, or emission of the obtained solution is reduced according to
the required labels. For example, when shippers prefer low-cost transport, the cost is the
lowest and the mode shares of low-cost modes (barges and trains) are the largest compared
with other solutions. Column T shows the frequency of using the objective function F2, and
it is used on average in 47% iterations out of 200 iterations when both objective functions
F1 and F2 are considered. Therefore, F2 plays an important role in the optimization and the
model finds solutions with the same number of served requests frequently.

Table 7.4: Results under different preferences.

Objective N Cost Time Emissions Barge Train Truck S T
low-cost transport (cost-label A)

F1,F2 16 0.48 1.18 0.43 28.57 38.10 33.33 77 70
fast transport (time-label A)

F1,F2 28 0.83 0.53 0.78 0.00 21.62 78.38 80 126
sustainable transport (eco-label A)

F1,F2 18 0.52 1.33 0.44 20.00 44.00 36.00 78 85
N: number of served requests; Cost: average cost of shipping one TEU one km; Time: average time ratio;

Emissions: average emissions per TEU per km; Barge/Train/Truck: mode share of used barges/trains/trucks;
S: average satisfaction value; T: Times of using objective function F2 in total 200 iterations.

7.6 Conclusions

In this chapter, we have proposed a collaborative planning model for carriers in synchro-
modal transport. It addresses the research question Q4: What types of collaborative plan-
ning should be adopted and what is their effect on the consideration of preferences? An
auction mechanism is proposed for collaborative planning. Three approaches are compared
using realistic transport networks and schedules. It opens up a way to route more ship-
ments in accordance with their requested eco-label and, ultimately, to achieve a more sus-
tainable overall transport solution. The eco-labels requested by shippers are considered in
the optimization of carriers, and carriers exchange requests that cannot be served by them-
selves. The experimental results show that collaboration can lead to 48%/11% increases in
proportions of served requests for unimodal/synchromodal carriers, and the highest/mixed
eco-labels reduce 70%/15% emissions compared with ignoring preferences. Based on the
experimental results, the following managerial insights are obtained: (a) Considering eco-
label preferences reduces emissions significantly. (b) Compared with the scheme without
eco-label preferences, considering eco-labels reduces the emissions at the expense of de-
creasing the number of served requests. (c) For collaboration among unimodal carriers,
high eco-labels reduce more costs than schemes with low eco-labels or ignoring eco-labels
because requests of the truck carrier will be served by train and barge carriers, who can
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provide both low-emissions and low-cost services. For collaboration among synchromodal
carriers, satisfying high eco-labels requires more trains, and ignoring eco-labels increases
barge use. Therefore, higher eco-labels cause more costs as using trains is more expen-
sive than barges. (d) When minimizing the sum of costs and penalty of unserved requests,
high-cost/-emissions requests cannot be served with a low penalty. Whereas, the solutions
under high penalty are similar to those obtained with the proposed approach. (e) Compared
with non-collaborative planning, collaborative planning supports both synchromodal and
unimodal carriers to provide more sustainable services and serve more requests, especially
under high eco-label requirements. (f) Compared with synchromodal carriers, unimodal
carriers can benefit more from collaborative planning and need a higher degree of collabo-
ration (i.e., sharing more requests) to reduce both emissions and costs. (g) Using fuzzy set
theory gives carriers more room to find a more suitable solution and the number of served
requests is increased compared with using hard constraints. Therefore, from the policy-
making perspective to develop synchromodal transport, the policy makers can set incentives
for collaborative planning and use eco-labels to achieve sustainable synchromodal trans-
port. The proposed model provides a basis for further research analysis in policy making
implications. Using the proposed model with transport networks to be analyzed, the policy
maker can simulate scenarios with different carriers, different degrees of collaboration, and
different levels of eco-labels to determine the degree of collaboration for each carrier and
the needed eco-label to achieve emission reduction goals.

The proposed model has some limitations. To gain more profits, carriers may compete in
the auction and have strategic behaviors in the bidding. The proposed model only assumes
that carriers share unserved requests; it does not consider further competition among car-
riers. The methodology proposed in this study relies on eco-label preferences provided by
each shipper. The preferences might not be easy to obtain in real life and even so shipper’s
stated preferences may differ from actual preferences. Therefore, the behavior of shippers
needs to be observed and preferences can be learned from their behavior.





Chapter 8

Conclusions and future research

This thesis is dedicated to achieving synchromodal transport planning by filling gaps in cur-
rent literature, including flexibility in static planning, handling service time uncertainty in
real-time planning, preference-based planning, and horizontal collaborative planning. From
static and centralized planning to dynamic and collaborative planning, this thesis proposes
a series of approaches to improve the efficiency, reliability, sustainability, and attractiveness
of synchromodal transport.

This last chapter concludes the thesis. The answers to research questions and managerial
insights are summarized in Section 8.1. Subsequently, directions for future research are
recommended in Section 8.2.

8.1 Conclusions
The main objective of this thesis is to answer the main research question:

How can flexible, real-time, and collaborative transport planning approaches be devel-
oped considering the heterogeneous and vague preferences of carriers and shippers?

This thesis answers the main research question by proposing a mathematical model and
a heuristic algorithm for flexible synchromodal transport planning, developing a model-
assisted Reinforcement Learning (RL) approach to handle service time uncertainty, intro-
ducing multi-objective optimization and multi-attribute decision making for capturing het-
erogeneous and vague preferences, and proposing a conceptual framework for horizontal
collaborative planning. The proposed approaches and models are validated using real-world
data and computational experiments. The results indicate the benefits of introducing flex-
ibility, reliability, preference, and collaboration in synchromodal transport. This research
has implications for shippers, freight forwarders, carriers, and policymakers in the logis-
tics industry, as it provides practical and innovative solutions for more efficient, reliable,
flexible, and sustainable transport operations.

8.1.1 Key research questions
Under the main research question, four subquestions were defined which are answered
through Chapters 3, 4, 5, 6, and 7.

167
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1. Q1: How can routes be optimized for the carrier to provide flexible services?

In Chapter 3, a mixed-integer linear programming model was developed for synchro-
modal transport planning with flexible services. Both routing of shipments and vehi-
cles are modeled, which allows flexible services depending on demand and specific
situations. In order to solve the optimization problem efficiently, an Adaptive Large
Neighborhood Search (ALNS) heuristic algorithm is adopted. The proposed model
is compared to existing models in the literature using real transport networks. Case
studies on small instances verified that the proposed model with flexibility performs
better in all scenarios, including scenarios with different weights for the individual
objectives and scenarios under congestion. On large instances (up to 1600 shipment
requests), the proposed model with flexibility reduces the cost by 14% on average
compared with the existing models in the literature.

2. Q2: How can a real-time planning approach be developed for carriers to provide
reliable services while taking into account uncertainties in service time?

In Chapter 4, an online model-assisted RL is proposed to handle the service time
uncertainty. It learns from real-time information in a synchromodal transport re-
planning framework. The performance of the proposed planning approach is eval-
uated in the European Rhine-Alpine corridor under various scenarios with different
types and severities of unexpected events. The results demonstrate that the RL ap-
proach consistently outperforms the other strategies by effectively handling service
time uncertainty, leading to reduced costs, emissions, waiting time, and delays as
well as improved rewards through accurate decision-making and agile transport re-
planning. For example, compared to the waiting strategy, the RL strategy reduces
costs, delay, and waiting time by 44.0%, 60.1%, and 24.5% on the tested instances,
respectively. This study also found that incorporating event severity information im-
proves the average reward obtained by the RL approach in scenarios involving multi-
ple types of events.

3. Q3: How can heterogeneous and vague preferences of carriers and shippers be in-
corporated into the planning approach?

In Chapters 5 and 6, carriers’ and shippers’ preferences are incorporated into the
transport planning, respectively.

Carriers’ preferences are considered in a multi-objective optimization model. The
preferences of carriers are usually expressed as linguistic terms, hence weight inter-
vals, i.e., minimum and maximum weights, are assigned to objectives to represent
such vague preferences. A preference-based ALNS is used to obtain non-dominated
solutions in the Pareto frontier. For instance, when a carrier prefers minimizing the
time for transporting perishable goods, solutions that utilize faster vehicles are of-
fered. The results show that the proposed approach provides non-dominated solutions
which are in line with preferences. Moreover, the mode share under different prefer-
ences is analyzed, which signals that different sustainability policies in transportation
will influence the mode share.

Shippers’ heterogeneous and vague preferences are modeled by multiple attribute
decision-making approaches that integrate fuzzy set theory. The proposed model has
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an upper-level objective, i.e., maximizing the number of served requests, and a lower-
level objective, i.e., minimizing the transportation cost. Shippers’ preferences are
set as constraints such that preferred levels for each attribute need to be respected.
The case studies in the Rhine-Alpine corridor demonstrate that the proposed model
can provide solutions that are more attractive to shippers compared with optimization
which ignores preferences. Under various scenarios, the attributes, such as cost, time,
emissions, reliability, and risk of damage, are analyzed and the (near) optimal modes
and routes are suggested according to preferences. Moreover, the results show that
the conflicts among attributes, conflicts among shippers, and conflicts between the
freight forwarder and shippers are balanced by improving the benefit for one actor
without compromising any other actor’s preferences.

4. Q4: What types of collaborative planning should be adopted and what is their effect
on the consideration of preferences?

Chapter 7 establishes a collaborative planning model for synchromodal transport and
uses eco-labels (a series of different levels of emission ranges) to reflect shippers’ sus-
tainability preferences. The fuzzy set theory is used to model the preferences towards
eco-labels. For multiple carriers, an auction-based collaborative planning approach is
proposed and compared with non-collaborative and centralized planning. Real data
from barge, train, and truck carriers in the European Rhine-Alpine corridor is used
for extensive experiments where both unimodal carrier collaboration and synchro-
modal carrier collaboration are analyzed. Compared with non-collaborative planning
without eco-labels, the number of served requests increases and emissions decrease
significantly in collaborative planning with eco-labels as transport capacity is better
utilized. Collaboration between carriers leads to significant increases in served re-
quests (up to 48% for synchromodal and 11% for unimodal). Considering eco-label
preferences also leads to emissions reductions of up to 70% for the highest eco-label
and 15% for mixed eco-labels. For example, when a truck carrier is unable to accom-
modate shippers with high eco-label requirements, the truck carrier can collaborate
with a barge carrier to fulfill these requests. This results in higher utilization of capac-
ity and additional emission reductions due to the barge carrier being able to transport
the goods with a higher load factor.

8.1.2 Managerial insights

This thesis provides managerial insights for managers and policy-makers to improve opera-
tions in synchromodal transport in practice, as listed below:

1. Flexible services:

(a) The utilization of service flexibility can bring about cost savings (14% on aver-
age for large instances) and increased competitiveness for transport operators.

(b) Flexible services can facilitate modal shifts in synchromodal transport, reducing
emissions and providing more alternatives.

(c) In case of congestions, a higher level of flexibility can provide more options and
alleviate the impacts.
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(d) Adjusting existing transport plans with predefined schedules is the best way to
adopt flexible services.

2. Dynamic planning under service time uncertainty:

(a) The efficient handling of service time uncertainty by RL leads to cost savings
(44%), delay reduction (60.1%), and reduced waiting time (24.5%). RL strat-
egy proves to be a superior approach compared to waiting and average duration
strategies in handling unexpected events.

(b) Incorporating knowledge of event severity into the decision-making process can
further improve the performance of RL, although imperfect information is in-
evitable.

(c) Adequate training time and computational resources are crucial for maximizing
the performance of reinforcement learning. However, once the reinforcement
learning model has matured, it can be deployed in real-time transport operations.

3. Preference-based planning:

(a) By considering preferences, freight forwarders in synchromodal transport can
improve their service quality and competitiveness by providing customized ser-
vices.

(b) Trucks benefit fast, reliable, and low-risk transport, while low-cost and sustain-
able transport requires more barges, and trains are preferred when considering
conflicting attributes or preferences.

(c) Freight forwarders strive to balance cost minimization with shipper satisfaction
in transportation planning. The approach taken depends on the priority: cost or
satisfaction. If cost reduction is the priority, the satisfaction objective method
may result in lower costs, but also lower satisfaction for part of shippers. To
prioritize shipper satisfaction, using constraints can guarantee a minimum ser-
vice level for shippers, while using fuzzy constraints serves more shippers but
the quality of services is lower compared to hard constraints.

(d) Conflicts between the freight forwarder and shippers can be resolved by find-
ing an optimal balance between cost efficiency and improved service quality.
Conflicts between shippers’ heterogeneous preferences can be balanced by al-
locating appropriate services to specific requests without negatively impacting
other shippers’ preferences.

4. Collaborative planning:

(a) Considering eco-label preferences leads to significant emissions reduction. The
highest eco-label can lead to a reduction of up to 70%, while mixed eco-labels
can contribute to a reduction of 15%. However, this comes at the cost of a
reduced number of served requests.

(b) Collaborative planning among carriers results in more sustainable services and
an increased number of served requests (up to 48% for synchromodal carriers
and 11% for unimodal carriers), especially under high eco-label requirements.
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(c) Policy-makers can use incentives for collaboration and eco-labels to achieve
sustainable transport goals.

(d) Unimodal carriers benefit more from collaborative planning but require a higher
degree of collaboration compared to synchromodal carriers.

8.1.3 Limitations
This thesis has the following limitations:

1. In the static planning approach, this thesis focuses on transport operators and shippers.
However, it does not explicitly consider terminal operators, who also have influence
over routing and scheduling. The open time windows of terminals are considered,
but in reality, the terminal operators may play a more significant role in transport
planning. For example, flexible services need the collaboration of terminal operators.

2. The proposed dynamic planning approach in this thesis is reactive in nature, meaning
that re-planning actions are triggered in response to unexpected events in the transport
network. While combining predictive and reactive strategies can effectively address
dynamic transportation planning under uncertainty, this thesis does not consider such
integration.

3. We assume eco-label preferences are provided by each shipper. The preferences
might not be easy to obtain in real life and shippers’ stated preferences may differ
from actual preferences. Therefore, the behavior of shippers needs to be observed
and preferences can be learned from their behavior.

4. This thesis focuses on collaborative planning among carriers that exchange requests,
known as horizontal collaboration. However, it does not consider collaboration among
carriers that serve the same requests in different sections of the transport chain, which
is referred to as vertical collaboration.

5. To gain more profits, carriers may compete in the auction and have strategic behaviors
in the bidding. The proposed collaboration approach considers that carriers share
unserved requests, without taking into account additional competition among carriers.

8.2 Future research directions
With respect to the proposed methodological framework and its applications addressed in
this thesis, challenging issues that require future research are:

1. Developing a multi-agent system that considers the preferences and objectives of mul-
tiple stakeholders (Rădulescu et al. 2020), including government agencies, freight
forwarders, carriers, and shippers. These stakeholders may have both cooperative
and competitive relationships, and game theory (Owen 2013) could be used to model
and analyze these interactions. Such a system could provide a more comprehensive
view of the synchromodal transport ecosystem, and could help to identify more effi-
cient and sustainable solutions that take into account the needs and preferences of all
involved parties.
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2. Investigating ways to more accurately capture and incorporate the preferences of
shippers in the planning process. Currently, many approaches rely on either stated
preferences, which are explicit declarations of preference made by the shipper, or
revealed preferences, which are inferred from historical data on the shipper’s past
transport decisions. However, both of these methods have limitations and may not
accurately reflect the shipper’s true preferences in real time. A promising avenue for
future research would be to explore ways to incorporate real-time data on the shipper’s
transport decisions into the planning process, potentially through the use of machine
learning techniques (Fürnkranz and Hüllermeier 2010), in order to more accurately
reflect the shipper’s evolving preferences and make more informed transport planning
decisions.

3. Integrating big data or data-driven technology with synchromodal transport planning
(Barua et al. 2020). There are the following sub-research directions: (a) Predic-
tive modeling for demand forecasting: Using large data sets collected from various
sources (e.g., GPS tracking, social media, and e-commerce platforms), machine learn-
ing algorithms can be utilized to build predictive models for demand forecasting and
allocate resources accordingly. (b) Real-time monitoring and optimization: The inte-
gration of real-time data from devices and sensors can be used to monitor the perfor-
mance of the transport network in real-time. (c) Network analysis and visualization:
Big data analytics tools can be utilized to visualize and analyze the transport network,
providing insights into the flow of goods, bottlenecks, and potential inefficiencies. (d)
Dynamic pricing and pricing optimization: With the help of big data, dynamic pric-
ing algorithms can be used to set the optimal prices for different services offered by
the transport network, taking into account real-time demand, costs, and other relevant
factors.

4. Designing the profit-sharing mechanism in collaborative planning. The profit margins
resulting from collaboration need to be fairly shared among carriers (Dai and Chen
2012b). Determining a fair allocation mechanism will attract more carriers to join
such a collaboration.

In addition to these topics, more general, fundamental future research directions are:

1. Examining the impact of different regulatory and policy frameworks on the ability to
achieve synchromodal transport planning.

2. Examining the impacts of external factors, such as market conditions, regulations,
and societal values, on synchromodal transport planning.

3. Investigating the role of new technologies, such as autonomous vehicles or blockchain,
in enabling more efficient and collaborative synchromodal transport.

4. Investigating the role of human behavior and cognition in preference formation and
decision-making in synchromodal transport planning. This could involve studying
how individuals and groups perceive and evaluate different transport options, and
how these perceptions and evaluations change over time.



Appendix A

Performance improvements for
mathematical model and ALNS

A.1 Valid inequalities for mathematical model

The valid inequalities are divided into three categories and the reduced variables are indi-
cated in brackets.

1. Valid inequalities related to requests (ykr
i j ):

(a) Terminal i or j cannot be dummy depot.

ykr
i j = 0 ∀k ∈ K, ∀r ∈ R, ∀i ∈ O, ∀ j ∈ N (A.1)

ykr
i j = 0 ∀k ∈ K, ∀r ∈ R, ∀i ∈ N, ∀ j ∈ O (A.2)

(b) Kr
small ⊆ K represents set of vehicles with a capacity that cannot accommodate

request r, i.e., violate capacity constraints (3.15).

ykr
i j = 0 ∀k ∈ Kr

small, ∀r ∈ R, ∀(i, j) ∈ A (A.3)

(c) Kr
early ⊆ Kfix represents set of fixed vehicles whose latest departure time bk

i is
earlier than request r’s earliest pickup time ap(r), i.e., violate Constraints (3.36).

ykr
i j = 0 ∀k ∈ Kr

early, ∀r ∈ R, ∀(i, j) ∈ A (A.4)

(d) Kr
late ⊆ K represents set of vehicles whose earliest departure time at pickup ter-

minal, i.e., the time from begin depot to pickup terminal plus loading time, later
than request r’s latest pickup time bp(r). Kr

late will be removed due to Constraints
(3.36).

ykr
i j = 0 ∀k ∈ Kr

late, ∀r ∈ R, ∀(i, j) ∈ A (A.5)
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2. Valid inequalities related to vehicles (xk
i j):

(a) A vehicle k ∈ K cannot go to other vehicles’ dummy depots.

xk
i j = 0 ∀k ∈ K, ∀i ∈ O\o(k),∀ j ∈ N (A.6)

xk
i j = 0 ∀k ∈ K, ∀i ∈ N,∀ j ∈ O\o′(k) (A.7)

(b) If there is a dummy depot in xk
i j, it must be together with a depot.

xk
o(k) j = 0 ∀k ∈ K, ∀ j ∈ N \o(k) (A.8)

xk
io′(k)

= 0 ∀k ∈ K, ∀i ∈ N \o′(k) (A.9)

(c) Begin depot cannot be j when i is not dummy begin depot; end depot cannot be
i when j is not dummy end depot.

xk
io(k) = 0 ∀k ∈ K, ∀i ∈ N \o(k) (A.10)

xk
o′(k) j = 0 ∀k ∈ K, ∀ j ∈ N \o′(k) (A.11)

(d) Dummy begin depot cannot be j in xk
i j; dummy end depot cannot be i in xk

i j.

xk
io(k) = 0 ∀k ∈ K, ∀i ∈ N (A.12)

xk
o′(k) j

= 0 ∀k ∈ K, ∀ j ∈ N (A.13)

(e) Remove xk
i j when there is no compatible ykr

i j .

xk
i j ⩽ ∑

r∈R
ykr

i j ∀k ∈ K, ∀(i, j) ∈ A (A.14)

3. Valid inequalities related to transshipment (skl
ir ):

(a) A transshipment only happens when request r can be transported by both vehi-
cles k and l at transshipment terminal i.

skl
ir ⩽ ∑

j∈N
ykr

ji ∀r ∈ R, ∀i ∈ T, ∀k, l ∈ K (A.15)

skl
ir ⩽ ∑

j∈N
ylr

i j ∀r ∈ R, ∀i ∈ T, ∀k, l ∈ K (A.16)

(b) Request r’s pickup/delivery terminal cannot be transshipment terminal i.

skl
p(r)r = 0 ∀r ∈ R, ∀k, l ∈ K (A.17)

skl
d(r)r = 0 ∀r ∈ R, ∀k, l ∈ K (A.18)

(c) For a fixed vehicle k, the terminals in the predefined route should contain trans-
shipment terminal i when k is used to transfer a request. Kr

noT represents set in
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which vehicles cannot meet the mentioned requirements.

skl
ir = 0 ∀r ∈ R, ∀k ∈ Kr

noT, ∀l ∈ K, ∀i ∈ T (A.19)

skl
ir = 0 ∀r ∈ R, ∀k ∈ K, ∀l ∈ Kr

noT, ∀i ∈ T (A.20)

(d) When request r is transferred from vehicle k to vehicle l trough transshipment
terminal i, vehicle k’s begin depot and l’s end depot cannot be i.

skl
o(k)r = 0 ∀r ∈ R, ∀k, l ∈ K (A.21)

skl
o′(l)r = 0 ∀r ∈ R, ∀k, l ∈ K (A.22)

(e) When request r is transferred from vehicles k to vehicle l trough transshipment
terminal i and both vehicles k and l have fixed time schedules, l’s departure time
cannot be earlier than k’s arrival time at i. KearlyT represents set in which vehicle
combinations violate this rule.

skl
ir = 0 ∀r ∈ R, ∀(k, l) ∈ Ki

earlyT, ∀i ∈ T (A.23)

Moreover, the other variables, such as zk
i j and tkr

i , are reduced when there is no compat-
ible variables xk

i j, ykr
i j , or skl

ir .

A.2 Feasibility checking on time constraints
Before calculating times, the vehicle’s start time needs to be defined. If the vehicle is a
fixed vehicle and not a truck, its start time at begin depot is ak

o(k). Otherwise, there are two

situations: (a) if o(k) is pickup terminal pr1 , assign ap(r1) to tk
o(k); (b) if o(k) is transshipment

terminal Tr1 of the first served request, assign delivery time at transshipment terminal T dr1
o(k)

to tk
o(k). If it does not belong to any above situations, the vehicle will start from begin depot

at time 0.
Flow Chart A.1 shows the flexibility check for the barge (or train) k when it is at ter-

minal j. The different situations of fixed/flexible vehicles and transshipments are also dis-
tinguished. Flow Chart A.2 shows how to assign time to the truck fleet. useT means the
request is transferred before and T pr

i means request r’s pickup time at transshipment termi-
nal i. There are no waiting times and infeasible situations when using trucks because trucks
can serve requests immediately and delay is allowed.

A.3 Performance improvements for ALNS
Although the ALNS is a powerful heuristic, it is still hard to solve the proposed problem
efficiently in real-life instances due to the complexity brought by characteristics mentioned
in Section 3.3. Therefore, several methods are used to improve the performance of ALNS, in
which preprocessing heuristics are used to reduce the solution space before the optimization
and both hash table and bundle insertion are used to speed up the search process during the
optimization.
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Figure A.1: Barge and train’s time at pickup/delivery/transshipment terminal in ALNS

A.3.1 Preprocessing heuristics

Similar to the valid inequalities in Appendix A.1, we designed some preprocessing
heuristics to reduce the solution space of ALNS. Some new sets are used in ALNS. Knk

r
represents vehicle combinations that can serve the same request r. The K1k

r is the set of
vehicles that can serve request r by itself. K p

r represents vehicles that can pick up request r.
Ki

r (i ∈ T ) represents vehicles that serve request r with specific transshipment terminal i. In
ALNS, these sets are used when the related type of vehicle is needed to serve requests. The
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Figure A.2: Truck’s time at pickup/delivery/transshipment terminal in ALNS

preprocessing heuristics are divided into two categories and the reduced sets in ALNS are
indicated in brackets. The reference to valid inequalities in Appendix A.1 will be given if
the meaning of the preprocessing heuristic is as same as the valid inequalities.

1. Preprocessing heuristics related to requests (K1k
r , Knk

r and K p
r ):

(a) k in Appendix A.1 1b, 1c, and 1d will be removed from related K1k
r , Knk

r , and
K p

r .

(b) For k ∈ Kfix∩K1k
r ∩K p

r , its route should contain arc (p(r),d(r)). For k ∈ Kfix∩
Knk

r ∩K p
r , its route should contain p(r)/d(r) if it is used to pick up/deliver r.

Moreover, when two fixed vehicles serve the same request r in succession, their
routes should contain the same transshipment terminal. Vehicles that violate the
above rules will be removed from related K1k

r , Knk
r , and K p

r .

2. Preprocessing heuristics related to transshipment (Ki
r):

(a) k in Appendix A.1 3b, 3c, 3d, and 3e will be removed from Ki
r.

(b) Vehicles that use transshipment terminal i will be removed from Ki
r when using

terminal i increases too much distance, i.e., dk
p(r)i +dk

id(r) > ϕdk
p(r)d(r), where ϕ
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is a coefficient set according to the specific transportation network. As shown in
Figure A.3 (a), three transshipment terminals are considered for request 1, and
vehicles that use transshipment terminal C will be removed from Ki

r. However,
vehicles that use transshipment terminal C will be added to Ki

r during the opti-
mization of ALNS if the vehicle goes to nearby terminals, which is illustrated
in Figure A.3 (b) with request 2 that is nearby transshipment terminal C.

(c) The vehicle combinations which are not in Knk
r will be removed from Ki

r.

11

Vehicle route Pickup/delivery/transshipment terminal

A

C

B

❌

11

2

C

2

(a) (b)

Figure A.3: Reducing transshipment terminals

A.3.2 Hash table

When using insertion operators, it is typically necessary to evaluate the same move
repeatedly during the optimization. Avoiding these repetitive computations can significantly
reduce computation time, especially for large instances. Inspired by the idea proposed in
Qu and Bard (2012), a cache structure that uses hash tables is implemented. Specifically,
the hash table holds the best insertion positions and infeasible insertion positions for a given
request and route.

Tables A.1 and A.2 give an example and illustrate how to establish hash tables with
and without transshipment. The keys and values of hash tables of successful insertion are
shown in Table A.1. Table A.2 shows the components in keys and values. The first two
hash tables are for insertions without transshipment, which includes all possible positions
(All1k) and the best position (Best1k) during the search separately. Both of them have two
keys and therefore have three layers. The first layer is key (r,route), which includes the in-
serted request and route. r includes all information of the request except the index to avoid
unnecessary storage when there is the same request in the hash table. route includes all vis-
ited terminals i ∈ Nk, speed, capacity, time, and the label labeli of the visited terminal, e.g.,
delivery request 1. The second layer is key position1k, which is the inserted position (m,n)
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of pickup and delivery. The third layer is the value, which includes the route after insertion
and the cost of the inserted request. The other two hash tables are for insertion with trans-
shipment and they have four layers due to a new key T , which is the transshipment terminal.
T divides the request into two sub-requests, therefore position2k has two position tuples at
two routes. Correspondingly, value2k also has two routes and names of two vehicles. costr
in value2k is the cost of inserted request at both routes.

Similarly, the hash tables for failed insertion include the same keys but they don’t have
values because the solution is infeasible.

Table A.1: The keys and values in hash tables of successful insertion

name keys value
All1k (r,route), position1k value1k
Best1k (r,route), positionbest

1k valuebest
1k

All2k (r,route1,route2), T , positionbest
2k value2k

Best2k (r,route1,route2), T best, positionbest
2k valuebest

2k

Table A.2: The components in keys and values

name components
r (p(r),d(r),ap(r),bp(r),ad(r),bd(r),qr)

route (i,vk,uk, tk
i , t
′k
i , t

k
i , labeli), i ∈ Nk

position (m,n)
positionbest

2k ((m1,n1),(m2,n2))
value1k (routeinserted ,costr)
value2k (routeinserted

1 ,routeinserted
2 ,costr,k1,k2)

A.3.3 Bundle insertion

The requests with the same pickup and delivery terminals are called bundle requests.
The basic cost of request r includes request cost, loading/unloading cost and carbon tax,
which are not dependent on time, as the following equation shows:

Fbasic = ∑
k∈K

∑
(i, j)∈A

(c1
kτi j + c1′

k dk
i j)qrykr

i j + ∑
k,l∈K,k ̸=l

∑
i∈T

(c2
k + c2

l )qrskl
ir+

∑
k∈K

∑
(i, j)∈Ap

c2
kqrykr

i j + ∑
k∈K

∑
(i, j)∈Ad

c2
kqrykr

i j + ∑
k∈K

∑
(i, j)∈A

c4
kekqrdk

i jy
kr
i j

(A.24)

If there are no other costs, such as delay penalty, storage cost, and waiting cost, the insertion
cost of bundle requests will be the same for the same route(s). If the best position of a
request is found greedily, then it’s also the best position for bundle requests when there is
only the basic cost. After each insertion, the bundle requests will be inserted into the same
positions when it passes the feasibility check and there is only a basic cost. In this way,
the computation time can be saved by not considering other possible positions. However,
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maybe there are other requests more suitable for this vehicle. Therefore, not all bundle
requests will be inserted, which will avoid occupying too much capacity of this vehicle.
The number of inserted requests in the bundle is randomly chosen based on distribution
[x1,x2, ...,x3] for [1,2, ...,m], where m is the number of requests in the bundle, x1 = 1/ς and
xi = xi−1/ς when i > 1, where ς is a parameter for adjusting the distribution.
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Glossary

List of symbols and notations
Below follows a list of the most frequently used symbols and notations in this thesis.

Sets:
W Set of modes indexed by w.
R Set of requests indexed by r.
N Set of terminals indexed by i and j.
O⊆ N Set of depots indexed by o and o.
P/D/T ⊆ N Set of pickup/delivery/transshipment terminals.
T w2

w1 Set of terminals that allows transshipment between mode w1 and
mode w2.

K Set of vehicles indexed by k and l.
Kb&t ⊆ K Set of barges and trains.
Ktruck ⊆ K Set of truck fleets.
Kw ⊆ K Set of vehicles of mode w.
Kfix ⊆ K Set of vehicles that have predefined routes and schedules.
Kue ⊆ K Set of vehicles that affected by unexpected event ue.
A Set of arcs. For i, j ∈ N, the arc from i to j is denoted by (i, j) ∈ A.
Ap/Ad ⊆ A Set of pickup/delivery arcs. For (i, j) ∈ Ap, i ∈ P. For (i, j) ∈ Ad , j ∈ D.
Aw ⊆ A Set of arcs for mode w.
Ak

fix ⊆ A Set of arcs for a fixed vehicle k ∈ Kfix.
I Set of attributes.
C Set of carriers indexed by c.
Parameters:
uk Capacity (TEU) of vehicle k.
qr Quantity (TEU) of request r.
τk

i j The travel time (in hours) on arc (i, j) for vehicle k.
[ap(r),bp(r)] The pickup time window for request r.
[ad(r),bd(r)] The delivery time window for request r.
[ak

i ,b
k
i ] The open time window for fixed vehicle k at terminal i.

t ′′ki The loading (or unloading) time (in hours) for vehicle k at terminal i.
tue/tue The beginning/ending time of unexpected event ue.
vk Speed (km/h) of vehicle k.
dk

i j Distance (km) between terminals i and j for vehicle k.
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ek CO2 emissions (kg) per container per km of vehicle k.
eki j

r The CO2e emissions (kg) of request r transported by vehicle k
between terminals i and j.

ek
r The CO2e emissions (kg) of request r transported by vehicle k.

ekl
r The CO2e emissions (kg) of request r during the transshipment between

vehicles k and l.
e′r The unit CO2e emissions (kg) of request r per TEU per km.
c1

k /c1′
k The transport cost (euro) per hour/km per container using vehicle k.

c2
k The loading (or unloading) cost per container.

c3
k The storage cost per container per hour.

c4
k The carbon tax coefficient per ton.

c5
k The cost per hour of waiting time.

c6
k The fuel cost per km of vehicle k.

cdelay
r The delay penalty per container per hour of request r.

tb The bth breakpoint of time-dependent travel time functions of trucks,
b ∈ {1,2, ...,B}, B is the number of breakpoints.

Tm The mth time period within a day, Tm = [tm, tm+1], m ∈ {1,2, ...,B−1}.
θm The slope of the travel time function for time period Tm.
ηm The intersection of the travel time function for time period Tm.
S Overall satisfaction benchmark.
Si Satisfaction benchmark of attribute i.
M A large enough positive number.
Variables:
xk

i j Binary variable; 1 if vehicle k uses the arc (i, j), 0 otherwise.
ykr

i j Binary variable; 1 if request r transported by vehicle k uses arc (i, j),
0 otherwise.

zk
i j Binary variable; 1 if terminal i precedes (not necessarily immediately)

terminal j in the route of vehicle k, 0 otherwise.
skl

ir Binary variable; 1 if request r is transferred from vehicle k to vehicle
l ̸= k at transshipment terminal i, 0 otherwise.

tkr
i /t ′kr

i /tkr
i The arrival time/service start time/service finish time of request r served

by vehicle k at terminal i.
tk
i /t ′ki /tk

i The arrival time/last service start time/departure time of vehicle k at
terminal i.

twait
ki The waiting time of vehicle k at terminal i.

tdelay
r The delay time of request r at delivery terminal.

t̃kr
i Normalized departure time of truck k ∈ Ktruck with request r at terminal i,

0 ⩽ t̃kr
i ⩽ 24.

τ′kr
i j The time-dependent travel time (in hours) on arc (i, j) for truck k ∈ Ktruck

with request r.
nkr

i An integer variable used for normalizing departure time of truck k ∈ Ktruck
with request r at terminal i.

ζb
irk A continuous variable used for linearizing the time-dependent travel time

function of truck k ∈ Ktruck, 0 ⩽ ζb
irk ⩽ 1, r ∈ R, i ∈ N,

and b means the bth breakpoint of time-dependent trave time
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function.
ξm

irk A binary variable used for linearizing the time-dependent travel time
function of truck k ∈ Ktruck, r ∈ R, i ∈ N, and m means the mth time
period within a day.

Sr
i Satisfaction value of request r and attribute i.

Sr Overall satisfaction value of request r.

List of abbreviations
The following abbreviations are used in this thesis:

ADP Auction-based Decentralized Planning
ALNS Adaptive Large Neighborhood Search
CA Collaboration Approach
CP Centralized Planning
DP Non-auction-based Decentralized Planning
DQN Deep Q-network
DRL Deep Reinforcement Learning
FTL Full Truckload
GA Genetic Algorithm
HVP Heterogeneous and Vague Preferences
ITT Inter Terminal Transport
IWT Inland Waterway Transport
LNS Large Neighborhood Search
LP Linear programming model
LTL Less Than Truckload
MADM Multiple Attribute Decision Making
MCDM Multi-criteria Decision Making
MCNF Minimum Cost Network Flow
MFL Maritime Freight Transport
MOO Multi-objective Optimization
PDP Pickup and Delivery Problems
PBND Path-based Network Design
PDPT PDP with Transshipment
PMOO Preference-based Multi-objective Optimization
RFT Road Freight Transport
RL Reinforcement Learning
RO Route Optimization
SNDP Service Network Design Problem
ST Synchromodal Transport
STP Synchromodal Transport Planning
STPP Synchromodal Transport Planning Problem
STPP-FS STPP with Flexible Services
STPP-HVP STPP with Heterogeneous and Vague Preferences
TEU Twenty-foot Equivalent Unit
VRP Vehicle Routing Problem



196 Glossary



Samenvatting

Vrachttransport heeft te maken met gelimiteerde beschikbaarheid van voertuigen, toene-
mende eisen voor efficiëntie in verplaatsing van goederen en de noodzaak om emissies te
reduceren in een steeds korter tijdspad. Om deze uitdagingen op te lossen, moet de trans-
portindustrie innoveren en nieuwe technieken en logistieke systemen in gebruik nemen, wat
onze huidige manier van goederentransport ingrijpend zal veranderen. Intermodaal trans-
port helpt om goederen efficiënt, kosteneffectief en duurzaam te vervoeren. Momenteel
zijn er echter nog een aantal drempels die grootschalig gebruik belemmeren. Dit zijn on-
der meer gebrek aan flexibiliteit, vertragingen veroorzaakt door onzekerheid en een gebrek
aan samenwerking tussen vervoersactoren. Synchromodaal vervoer zou deze barrières weg
kunnen nemen. Deze geavanceerde vorm van intermodaal transport past routes en modi
dynamisch aan terwijl grondstof gebruik geoptimaliseerd wordt door middel van synchro-
nisatie en samenwerking. Ondanks dat synchromodaal transport als veelbelovend gezien
wordt, zijn er nog steeds belangrijke onderzoeksvragen op het gebied van transportplanning.
Voorbeelden zijn hoe we planning zowel flexibel als dynamisch, gebaseerd op voorkeuren
en collaboratief kunnen maken. Dit proefschrift heeft tot doel op deze onderzoeksvragen
in te gaan door de ontwikkeling en evaluatie van een reeks innovatieve benaderingen, die
worden getest en gevalideerd met behulp van bestaande transportnetwerken. Het doel is
om vooruitgang te boeken op het gebied van synchromodale transportplanning, waardoor
flexibele, betrouwbare en duurzame diensten kunnen worden geleverd die voldoen aan de
behoeften van belanghebbenden.

Om de mate van flexibiliteit te onderzoeken, bevat dit proefschrift een wiskundig model
en een heuristisch algoritme (“Adaptive Large Neighborhood Search”, ALNS) voor gelijk-
tijdige planning van scheeps- en voertuigroutes. De voorgestelde aanpak maakt flexibele
routering en planning van voertuigen mogelijk, waarmee de algehele efficiëntie van een
transportsysteem, in een statische omgeving als proof-of-concept, kan worden verbeterd.
De resultaten van numerieke experimenten tonen aan dat het implementeren van de voorge-
stelde aanpak met flexibele diensten kan leiden tot 14% kostenreductie in vergelijking met
bestaande methoden die geen rekening houden met flexibiliteit.

Binnen dynamische planning richt dit proefschrift zich op de onzekerheid over de ver-
blijfsduur in terminals in synchromodaal transport. We maken gebruik van een online Rein-
forcement Learning (RL)-benadering, ondersteund door het ALNS-algoritme. Deze bena-
dering integreert RL en ALNS om zo de kracht van data-gedreven RL en ALNS domeinken-
nis te benutten. Zo omzeilt onze model-ondersteunde RL de “vloek van dimensionaliteit”,
die wordt veroorzaakt door de large state space and complex actions in synchromodaal
transport. De RL-benadering past zich dynamisch aan onverwachte gebeurtenissen bijbe-
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horende onzekerheid aan door te leren van real-time data. Het model heeft geen initiërende
distributies nodig en de real-time data is afkomstig van vervoerders, terminaloperators en
sensoren. De ALNS-RL aanpak is getest in verschillende scenario’s, waaronder verstorin-
gen, disrupties en een combinatie van verschillende gebeurtenissen. Vergeleken met traditi-
onele strategieën presteert de voorgestelde aanpak beter bij het verminderen van vertraging,
wachttijd, kosten en emissies.

Bij planning gebaseerd op voorkeuren, gaat dit proefschrift in op de uitdaging om reke-
ning te houden met de heterogene en onduidelijke voorkeuren van verladers en vervoerders.
Om rekening te houden met de voorkeuren van vervoerders, wordt een multi-objectieve
optimalisatie model voorgesteld dat rekening houdt met onduidelijke voorkeuren door mid-
del van gewicht intervallen. Het model genereert een Pareto-grens van oplossingen die het
best passen bij de voorkeuren van de vervoerders, waardoor ze weloverwogen beslissingen
kunnen nemen. Voor de voorkeuren van verladers maakt het proefschrift gebruik van mul-
ticriteria analyse en vage verzamelingentheorie om om te kunnen gaan met respectievelijk
de heterogeniteit en vaagheid van voorkeuren. De resultaten tonen aan dat het meewegen
van voorkeuren resulteert in een grotere tevredenheid onder verladers door oplossingen te
bieden die rekening houden met kosten, tijd, emissies, risico’s en vertragingen. Door de
tevredenheid van de verladers te verbeteren, kunnen vervoerders profiteren van meer klant-
loyaliteit en -behoud, wat leidt tot een concurrentievoordeel in de markt. Bovendien kan
het model, door rekening te houden met verschillende criteria, zoals kosten, tijd, emissies,
risico’s en vertragingen, vervoerders helpen beter geı̈nformeerde en duurzame beslissingen
te nemen, wat leidt tot betere milieuprestaties en naleving van regelgeving. Over het al-
gemeen kan het opnemen van voorkeuren in de planning resulteren in een win-winsituatie
voor zowel verladers als vervoerders, wat leidt tot verbeterde prestaties en een duurzaam
concurrentievoordeel.

Binnen het veld van collaboratieve planning onderzoekt dit proefschrift de voordelen
van horizontale samenwerking tussen vervoerders door het delen van verzoeken en door het
overwegen van ECO-labels. Het proefschrift bevat een op veilingen gebaseerd mechanisme
om samenwerking te faciliteren en decentrale planning mogelijk te maken. De resultaten
geven aan dat deze aanpak leidt tot een betere afhandeling van verzoeken, verbeterde duur-
zaamheid en lagere kosten in vergelijking met gecentraliseerde en niet-collaboratieve plan-
ningsbenaderingen. In de geteste cases kan samenwerking tussen vervoerders resulteren in
een aanzienlijke toename van het aantal afgehandelde verzoeken, met winsten van respec-
tievelijk 48% en 11% voor synchromodale en unimodale vervoerders. Bovendien kan, door
rekening te houden met voorkeuren voor ECO-labels, het gebruik van het hoogste label of
een mix van labels leiden tot emissiereducties van respectievelijk 70% en 15% ten opzichte
van benaderingen waarbij ECO-labels niet meewegen. In vergelijking met synchromodale
vervoerders moeten unimodale vervoerders, met name vrachtwagenvervoerders, meer ver-
zoeken delen in de gezamenlijke planning om de totale kosten te verlagen. Beleidsmakers
kunnen stappen ondernemen om de ontwikkeling van synchromodaal vervoer te bevorderen
door gezamenlijke planning en het gebruik van ECO-labels te stimuleren en zo tot duurzame
synchromodale vervoersoplossingen te komen.

Samenvattend biedt dit proefschrift antwoorden op onderzoeksvragen rond synchromo-
dale transportplanning door gebruik van innovatieve wiskundige modellen en algoritmen.
Deze benaderingen zijn bedoeld om de flexibiliteit, betrouwbaarheid en duurzaamheid van
vervoersdiensten te vergroten en tegelijkertijd kosten, tijd, emissies en vertragingen te ver-
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minderen. Bovendien houden de voorgestelde methodes rekening met de voorkeuren van
zowel verladers als vervoerders, waardoor een collaboratieve en milieuvriendelijke bena-
dering van transportplanning wordt bevorderd. De numerieke experimenten en casestudies
tonen de effectiviteit en superioriteit aan van de voorgestelde benaderingen in vergelijking
met bestaande methodes aan.





Summary

Freight transport faces a threefold challenge of limited resources, increasing demand for
efficient goods movement, and the pressing need to meet ambitious emissions reduction
targets in ever shorter timelines. To address these challenges, the industry requires urgent
innovation and the adoption of new technologies and logistics systems to change the way
goods are transported. The use of intermodal transport has been developed due to the need
for efficient, cost-effective, and sustainable freight transport. However, the current state of
intermodal transport still faces various barriers to its utilization, such as a lack of flexibil-
ity, delays caused by uncertainty, and a lack of cooperation among transport actors. The
proposal of synchromodal transport aims to address these barriers. Synchromodal transport
represents an advanced form of intermodal transport that dynamically adapts routes and
modes while optimizing resource utilization through synchronization and collaboration.
Despite the recognition of synchromodal transport as a promising solution, there are still
unaddressed gaps in the transport planning field, including the need for flexible, dynamic,
preference-based, and collaborative planning. This thesis aims to fill these gaps through the
development and evaluation of a series of innovative approaches, which are tested and vali-
dated using real-world transport networks. The goal is to advance the field of synchromodal
transport planning, enabling the provision of flexible, reliable, and sustainable services that
meet the needs of stakeholders.

In order to investigate the potential of flexibility, this thesis presents a mathematical
model and a heuristic algorithm (Adaptive Large Neighborhood Search, ALNS) for the
simultaneous routing of shipments and vehicles. The proposed approach enables flexible
routing and scheduling of vehicles, improving the overall efficiency of the transport system
in a static setting as a proof of concept. The results of numerical experiments demonstrate
that implementing the proposed approach with flexible services can result in 14% reduction
in costs compared to existing methods that do not consider flexibility.

In dynamic planning, this thesis tackles the issue of service time uncertainty in syn-
chromodal transport by using an online Reinforcement Learning (RL) approach, assisted by
the ALNS algorithm. The proposed model-assisted RL integrates RL and ALNS to lever-
age the data-driven strengths of RL and the domain knowledge of ALNS. In this way, the
model-assisted RL addresses the “curse of dimensionality” caused by the large state space
and complex actions in synchromodal transport. The RL approach dynamically adapts to
unexpected events that cause uncertainty by learning from real-time data collected from
transport operators, terminal operators, and sensors, without requiring any prior informa-
tion. The proposed approach was tested in various scenarios that included disturbances,
disruptions, and a combination of different types of events, and was found to perform bet-
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ter than traditional waiting and average duration strategies in reducing delay, waiting time,
cost, and emissions.

When it comes to preference-based planning, this thesis addresses the challenge of in-
corporating the heterogeneous and vague preferences of shippers and carriers. To account
for carriers’ preferences, a multi-objective optimization model that incorporates weight in-
tervals is proposed to handle vague preferences. The model generates a Pareto frontier of
solutions that best reflects the carriers’ preferences, allowing them to make informed de-
cisions. For shippers’ preferences, the thesis employs multiple attribute decision-making
and fuzzy set theory to address the heterogeneity and vagueness of preferences, respec-
tively. The results demonstrate that incorporating preferences results in improved satis-
faction among shippers by providing solutions with preferred attributes on cost, time, emis-
sions, risk, and delay. By improving shipper satisfaction, carriers can benefit from increased
customer loyalty and retention, leading to a competitive advantage in the market. Moreover,
by considering various attributes, such as cost, time, emissions, risk, and delay, the model
can help carriers make more informed and sustainable decisions, leading to improved en-
vironmental performance and compliance with regulations. Overall, incorporating prefer-
ences in planning can result in a win-win situation for both shippers and carriers, leading to
improved operational performance and a sustainable competitive advantage.

In collaborative planning, this thesis examines the benefits of horizontal collaboration
among carriers through the sharing of requests and the consideration of eco-labels. The the-
sis presents an auction-based mechanism to facilitate collaboration and enable distributed
planning. Results indicate that this approach leads to increased request fulfillment, im-
proved sustainability, and reduced costs compared to centralized and non-collaborative plan-
ning approaches. On the tested instances, the collaboration between carriers can result in
significant increases in the proportion of served requests, with gains of 48% and 11% for
synchromodal and unimodal carriers, respectively. Additionally, by taking into account
eco-label preferences, the use of the highest or mixed eco-labels can lead to emissions re-
ductions of up to 70% and 15%, respectively, compared to ignoring preferences. Compared
to synchromodal carriers, unimodal carriers, especially truck carriers, need to share more
requests in collaborative planning to reduce the overall cost. From a policy-making perspec-
tive, policymakers can take steps to promote the development of synchromodal transport by
implementing incentives for collaborative planning and utilizing eco-labels to achieve sus-
tainable synchromodal transport solutions.

In summary, this thesis provides solutions to address the gaps in synchromodal transport
planning by proposing innovative mathematical models and algorithms. These method-
ologies aim to increase the flexibility, reliability, and sustainability of transport services
while also reducing cost, time, emissions, and delay. Additionally, the proposed method-
ologies consider the preferences of both shippers and carriers, promoting a collaborative
and eco-friendly approach to transport planning. The numerical experiments and case stud-
ies demonstrate the effectiveness and superiority of the proposed approaches compared to
existing methodologies.
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