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S U M M A R Y 

Minimum-phase properties are well-understood for scalar functions where they can be used 

as physical constraint for phase reconstruction. Existing scalar applications of the latter in 

geophysics include, for example the reconstruction of transmission from acoustic reflection 

data, or multiple elimination via the augmented acoustic Marchenko method. We re vie w 

scalar minimum-phase reconstruction via the conventional Kolmogorov relation, as well as 
a less-known factorization method. Moti v ated to solve practice-rele v ant problems beyond 

the scalar case, we investigate (1) the properties and (2) the reconstruction of minimum- 
phase matrix functions. We consider a simple but non-trivial case of 2 × 2 matrix response 
functions associated with elastodynamic wavefields. Compared to the scalar acoustic case, 
matrix functions possess additional freedoms. Nonetheless, the minimum-phase property is 
still defined via a scalar function, that is a matrix possesses a minimum-phase property if 
its determinant does. We re vie w and modify a matrix factorization method such that it can 

accurately reconstruct a 2 × 2 minimum-phase matrix function related to the elastodynamic 
Marchenko method. Ho wever , the reconstruction is limited to cases with suf ficientl y small 
differences between P - and S -wave traveltimes, which we illustrate with a synthetic example. 
Moreover , we sho w that the minimum-phase reconstruction method by factorization shares 
similarities with the Marchenko method in terms of the algorithm and its limitations. Our 
results reveal so-far unexplored matrix properties of geophysical responses that open the door 
towards novel data processing tools. Last but not least, it appears that minimum-phase matrix 

functions possess additional, still-hidden properties that remain to be e xploited, for e xample 
for phase reconstruction. 

Key words: Fourier analysis; Inverse theory; Numerical solutions; Time-series analysis; 
Wave propagation; Wave scattering and diffraction. 
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 I N T RO D U C T I O N  

hase reconstruction can be found in various fields of science and
ngineering (Shechtman et al. 2015 ). It is the process of finding a
unction given its Fourier amplitude spectrum or some multidimen-
ional generalization thereof. The result is not unique but can be
etter constrained given some a priori knowledge of the function.
he focus of this work lies on a special class called minimum-phase

econstr uction. It per tains to inver tib le functions w here the function
nd its inverse are characterized by energy concentrated close to the
emporal origin. 

In geophysics, minimum-phase is often thought to be a property
f the seismic wavelet in marine acquisition (Yilmaz 2001 ), aside
rom complications resulting from band-limitation (Lamoureux &

argra ve 2007 ). How ever, minimum-phase is a more general prop-
rty which can be a characteristic of response functions that relate
C © The Author(s) 2023. Published by Oxford University Press on behalf of The Roy
avefields measured at different spatial locations. For example,
herwood & Trorey ( 1965 ) as well as Claerbout ( 1968 ) demon-
trate that full-bandwidth 1-D acoustic transmission responses and
heir inverses form pairs of minimum-phase signals when measured
rom the onset of the signal. The aforementioned work distinguishes
ransmission from reflection responses. This is often reasonable in
xploration geophysics when considering a section of the subsurface
mbedded between top and bottom boundaries. For simplicity, we
ssume these boundaries are perfectly absorbing. Contrary to trans-
issions, reflection responses are generally not minimum-phase. 
To date, the properties and the reconstruction of multidimensional
inimum-phase signals remain poorly understood. Here, multi-

imensional signals refer to response functions that are associated
ith 1.5-D elastodynamic or 2-D/3-D acoustic wavefields as op-
osed to scalar functions associated with 1.5-D acoustic wavefields.
his topic remains a rele v ant geophysics prob lem w hich has been
al Astronomical Society. 1 
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studied by only few authors (Claerbout 1998 ; Fomel et al. 2003 ). 
As a result, multidimensional minimum-phase signal reconstruc- 
tion remains a barrier for numerous applications such as retriev- 
ing transmission from reflection responses (Wapenaar et al. 2003 ), 
or internal multiple elimination using the augmented Marchenko 
method (e.g. Dukalski et al. 2019 ). The research of this paper has 
been moti v ated b y the augmented Marchenko method and its gen- 
eralization to elastodynamic waves (this method is not discussed 
here, but details can be found in Reinicke et al. 2020 ). 

In this work, we study the minimum-phase properties and re- 
construction of 2 × 2 matrix response functions. In Section 2, we 
re vie w existing theory of minimum-phase properties and two re- 
construction algorithms for the scalar case. Moreover, we discuss 
geophysical response functions and show an example of minimum- 
phase reconstruction for the acoustic dereverberation operator of 
the Marchenko method. In Section 3, we discuss why elastody- 
namic response functions are matrices instead of scalars, and anal- 
yse the minimum-phase property as well as its reconstruction for 
the matrix case. In Section 4, we present two numerical examples 
of minimum-phase matrix reconstruction based on the factoriza- 
tion algorithm by Wilson ( 1972 ) with a modification inspired by 
the Marchenko method. The two examples include a case with an 
accurate solution as well as another case with artefacts to highlight 
remaining limitations. Finally, we discuss our insights in Section 5 
and highlight similarities between minimum-phase reconstruction 
and the Marchenko method. 

2  M I N I M U M - P H A S E  P RO P E RT Y  A N D  

R E C O N S T RU C T I O N :  S C A L A R  C A S E  

In this section, we re vie w existing work to prepare the discussion 
of the main result of this paper. In particular, we, 

(2.1) re vie w the scalar minimum-phase property and how it can 
be used for phase reconstruction via the Kolmogorov relation, 

(2.2) show a factorization method for scalar phase-reconstruction 
under a minimum-phase condition, 

(2.3) introduce our notation and geophysical responses. 

In Section 2.3, we focus on a minimum-phase function that is 
rele v ant for the Marchenko method. Ho wever , the analysis does not 
require in depth knowledge of the Marchenko method. 

2.1 Minimum-phase in a nutshell 

We start by discussing linear time-invariant (LTI) systems. Given 
an arbitrary input, one can obtain the output of an LTI system 

via temporal convolution with its impulse response. For example, 
seismic reflection data can be represented as a temporal convolution 
of the source signature with the impulse response of the subsurface. 
This representation assumes that the subsurface remains unchanged 
during the experiment. For con venience, con volutions in the time 
( τ ) domain are often formulated as multiplications in the frequency 
( ω) domain, for example, 

output ( ω) = g( ω) input ( ω) , (1) 

where g( ω) denotes an impulse response. In the following, we imply 
that all operations, such as products or divisions, are performed per 
frequency component unless explicitly mentioned. Moreover, we 
refer to impulse responses as responses or functions, while they 
may also be known as transfer functions. 
The minimum-phase property is a mathematical characteristic 
associated with a special class of functions. Using a qualitative 
definition, a function possesses a minimum-phase property if the 
following conditions are satisfied (Bode et al. 1945 ; Sherwood & 

Trorey 1965 ; Berkhout 1973 ; Skingle et al. 1977 ). 

(i) The sum of all absolute time components is finite (stability). 
(ii) The function vanishes for ne gativ e times (causality). 
(iii) The inverse exists and satisfies (i) and (ii). 

An important consequence is that the product of minimum-phase 
functions produces a result with a minimum-phase property. The 
term ‘minimum-phase’ suggests that some attribute is minimized, 
which is true for special cases, where the group delay is minimized. 
Ho wever , this definition is not used in our analysis. 

We illustrate the minimum-phase property using an example. 
Consider the causal functions (i.e. τ 1 > 0), 

A ( ω) = 1 + αe −i ωτ1 , (2) 

B( ω) = α + e −i ωτ1 = 

(
A ( ω) 

)∗
e −i ωτ1 , (3) 

where α is a constant smaller than one. The variable i and the su- 
perscript ‘ ∗’ denote the imaginary unit and complex-conjugation, 
respecti vel y. Hence, the functions have identical amplitude spec- 
tra, C( ω) = | A ( ω) | = | B( ω) | . Moreov er, we use sev eral common
operators, which are defined in the appendix (see Table A1 ). The 
analysis of causality depends on the definition of the Fourier trans- 
form (sign choice of the exponent) which we define according to 
eqs ( A1 ) and ( A2 ). The phase of the functions can be visualized as 
an angle in the complex plane spanned between a complex number 
and the real axis (see F ig. 1 a, w here α = −0.6 and τ = 0 . 04 s ),
or as a function of frequency (see Fig. 1 b). It can be easily seen 
that the functions A ( ω) and B( ω) satisfy conditions (i) and (ii) (see 
Fig. 1 c). Their inverses exist and can be found using the geometric 
series and eq. ( 3 ), 

(
A ( ω) 

)−1 = 

∞ ∑ 

k= 0 
( −α) k e −i ωτ1 k , (4) 

(
B( ω) 

)−1 = 

((
A ( ω) 

)−1 
)∗

e i ωτ1 = 

∞ ∑ 

k= 0 
( −α) k e i ωτ1 ( k+ 1) . (5) 

Moreover , the in verses are stable due to convergence of the geomet- 

ric series in eqs ( 4 ) and ( 5 ). Ho wever , only the in verse 
(

A ( ω) 
)−1 

is causal whereas the inverse 
(
B( ω) 

)−1 
is acausal (see Fig. 1 c). 

Hence, the function A ( ω) satisfies conditions (i)–(iii) and possesses 
a minimum-phase property, but the function B( ω) does not. The 
amplitude spectrum C( ω) has a smaller phase (zero-phase) than the 
function A ( ω) but it violates the causality condition (ii), and hence 
is not minimum-phase (see Fig. 1 c). In the following, we omit the 
dependency on frequencies except for ne wl y introduced functions. 

Minimum-phase reconstruction is the retrie v al of a minimum- 
phase function from its amplitude, or po wer , spectrum. In general, 
phase reconstruction carries a degree of freedom e i � ( ω) , (

A e i � ( ω) 
)∗

A e i � ( ω) = A 

∗ A = | A | 2 . (6) 

Ho wever , it can be shown that the aforementioned freedom vanishes 
under the minimum-phase conditions (i)–(iii). Thus, minimum- 
phase functions possess a unique amplitude–phase relationship, 
which can be formulated, for example via the Kolmogorov rela- 
tion (e.g. Skingle et al. 1977 ), 

log ( A 

) = log ( | A | ) + i Arg [ A ] 

= log ( | A | ) − i H [ log ( | A | ) ] . (7) 
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(a)

(b)

(c)

Figure 1. Illustration of the functions A , B , C (left-hand column) and their inverses (right-hand column) defined in eqs ( 2 )–( 5 ) using α = −0.6 and τ1 = 0 . 04 s . 
The panels show (a) Argand diagrams, (b) phase spectra and (c) time domain representations. The axes of the Argand diagram correspond to the real ( R ) and 
imaginar y ( � ) par t of the functions in the frequency domain. The phase of a complex number is illustrated in the top right-hand panel. Moreover, there is one 
legend per column and we denote f = 

ω 

2 π . The minimum-phase function A and its in verse follo w trajectories in the complex plane that have winding numbers 
around the origin equal to zero. Ho wever , the trajectory of the function B and its inverse wind five times around the origin of the complex plane (deduced from 

the phase spectra π×10 
2 π = 5 , or ω max τ1 

2 π = 125 Hz × 0 . 04 s = 5 ). 
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ere, we denote the phase by Arg[ A ], the natural logarithm by
og( ·), and the Hilbert transform by H [ ·] . 

.2 Minim um-phase r econstruction by factorization 

ilson ( 1969 ) formulates minimum-phase reconstruction as a re-
ursive factorization prob lem, w hich we call the Wilson algorithm.
his method will be important when generalizing the minimum-
hase property and reconstruction from scalars to matrices in Sec-
ion 3.2. Since the Wilson method might be less-known than the
olmogorov in eq. ( 7 ), we summarize its scalar formulation in
ore detail. 
Consider an arbitrary minimum-phase function A ( ω) . The start-

ng point is a relation between the amplitude spectrum | A | , an esti-
ate after n iterations A n and its update A n + 1 (see eq. 6 in Wilson

969 ), 

A n A 

∗
n + 1 + A n + 1 A 

∗
n = A n A 

∗
n + AA 

∗. (8) 

ultiplication by ( A n ) −1 and 
(

A 

∗
n 

)−1 
leads to, 

A 

∗
n + 1 

(
A 

∗
n 

)−1 + 

( A n ) 
−1 A n + 1 = 1 + 

( A n ) 
−1 AA 

∗ (
A 

∗
n 

)−1 
. (9) 
t follows from the minimum-phase-property of the desired so-
ution A that eq. ( 9 ) contains a superposition of a strictly
ausal term, ( A n ) −1 A n + 1 , with its time-reverse. The acausal term,
( A n ) −1 A n + 1 ] ∗, can be removed by applying a temporal mute � [ ·] .
ext, the result is rearranged to obtain a recursive algorithm, 

A n + 1 = A n � 

[ 
1 + 

( A n ) 
−1 | A | 2 (A 

∗
n 

)−1 
] 
. (10) 

ere, the mute represents multiplication by the Heaviside function
 ( τ ) in the time domain, 

( τ ) = 

⎧ ⎨ 

⎩ 

1 , τ > 0 , 
1 
2 , τ = 0 , 
0 , τ < 0 . 

(11) 

ince most operations in this work are formulated in the frequency
omain, the mute opertator � [ ·] includes Fourier transforms be-
ween the frequency and time domains. In Section 3, the mute
perator will be generalized from a Heaviside function to a more
eneral step function. Wilson ( 1969 ) shows that the recursive al-
orithm in eq. ( 10 ) converges to the desired solution A using the
implest minimum-phase function as initial estimate, A 0 = 1 (in

art/ggad111_f1.eps
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Figure 2. Parameters of the three models used in this work. The density 
ρ and the P -wave velocity c P are identical for all models. An acoustic 
case is defined by setting the S -wave velocity to zero c S = 0. The Elastic 
#1 case is defined with a non-zero S -wave velocity c S �= 0. The Elastic 
#2 case is defined by reducing the S -wave velocity in one of the layers. 
The one-way traveltimes within each layer are integer-multiples of the time 
sampling interval ( 	τ = 4 ms ) for all models and for P / S waves associated 
with p x = 2 × 10 −4 s m 

−1 . This choice simplifies the interpretation of the 
medium responses in the time domain because all e vents perfectl y coincide 
with a time sample, that is it avoids smearing of indi vidual e vents across 
several time samples. In this setting, we can accurately apply temporal 
mutes which allows us to verify the accuracy of the discussed algorithms up 
to numerical noise (in the order of 1 × 10 −15 for double-precision). 
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the frequency domain). The scaling by 1 
2 at time zero (see eq. 11 ) 

handles the overlap of the causal and acausal terms in eq. ( 9 ). It can 
also be seen as a termination condition that ensures convergence, 
that is the solution is not updated for A n = A , 

A n + 1 = A n � 

[ 
1 + 

( A n ) 
−1 | A | 2 (A 

∗
n 

)−1 
] 

= A n � [ 1 + 1 ] = A n . (12) 

2.3 Geophysical scalar functions and minimum-phase 

We briefly introduce our notation, define the dereverberation oper- 
ator and show a numerical example of the Wilson algorithm. 

In geophysics, transfer functions are often used to relate wave- 
fields at different locations. For simplicity, we consider horizontally 
layered media in the x –z space, where wavefields decouple per hor- 
izontal ray-parameter, p x = 

sin ( α) 
c (see eq. A3 for definition of the 

domain transformation). Here, the angle α is formed by the wave 
front and the x -axis, and c denotes the local propagation velocity 
of a given wave type ( P , or S which will be rele v ant in the elastic
case). 

The term response refers to a Green’s function associated with 
a plane-wave dipole source and a monopole receiver. Hence, a re- 
sponse is a function that relates the wavefields at the source and re- 
ceiver locations via a product per frequency. We consider an acous- 
tic medium that is homogeneous except for a section between the 
depth levels z on top, and z ′ at the bottom. Moreover, the medium is 
source-free below the upper boundary at depth z . In this configura- 
tion, one can relate the wavefields on the boundaries z and z ′ using 
a scalar response D( p x , z ′ , z, ω) (as opposed to a matrix response) 
according to, 

q( p x , z 
′ , ω) = D( p x , z 

′ , z, ω) q( p x , z, ω) . (13) 

Here, the quantity q( p x , z, ω) denotes an acoustic pressure wave- 
field. We assume all coordinates are fixed except for the frequency 
and use a detail-hiding notation that omits coordinates, for example 
q below = Dq above (similar to Berkhout 1982 ; Wapenaar & Berkhout 
1989 ). 

For all numerical examples in this paper, we consider the 
four layer model in Fig. 2 and a single ray-parameter p x = 

2 × 10 −4 s m 

−1 . We use three models that are identical except for 
the S -wave velocity c S including an acoustic model ( c S = 0) and 
two elastic ones ( c S �= 0). 

Next, we introduce a specific transfer function namely the dere- 
verberation operator which is the desired solution of the Marchenko 
equation. It can be used to remove internal multiples from seismic 
reflection data (e.g. van der Neut & Wapenaar 2016 ; Dukalski & 

de Vos 2022 ), ho wever , multiple elimination is not rele v ant for our 
anal ysis. The dere verberation operator is defined via the transmis- 
sion response T 

↓ that relates the wav efields abov e and below a 
scattering medium ( q below = T 

↓ q above ). In the acoustic case, it can 
be written as, 

V 

+ = T 

↓−1 T 

↓ 
dir = I + V 

+ 
coda . (14) 

Here, the transmission T 

↓ is split in its direct and coda parts indi- 
cated by the subscripts ‘ dir ’ and ‘ coda ’, respectively, 

T 

↓ = T 

↓ 
dir + T 

↓ 
coda , (15) 

and the inverse transmission T 

↓−1 is often referred to as a focus- 
ing function f + (Wapenaar et al. 2014 ). Transmissions and their 
inverses are minimum-phase functions, except for a positive and 
ne gativ e time shift, respectiv ely (Claerbout 1968 ). These time shifts 
mutually cancel when evaluating the product in eq. ( 14 ). Hence, the 
dereverberation operator possesses a minimum-phase property. For 
example, the function A in eq. ( 2 ) is a dereverberation operator of an 
acoustic medium with two reflectors that are separated by the trav- 
eltime 1 

2 τ1 , and the factor α represents the product of the reflection 
coefficients of the two interfaces. 

We illustrate the scalar Wilson algorithm with an example consid- 
ering the acoustic model shown in Fig. 2 . The power spectrum of the 
dereverberation operator | V 

+ | 2 (see Fig. 3 a) is modelled anal yticall y 
(Dukalski et al. 2022 ) and used to e v aluate eq. ( 10 ) with A = V 

+ .
Figs 3 (b)–(f) show the solution V 

+ 
n and its error, V 

+ 
n − V 

+ , as a 
function of iterations ( n ). The convergence in Fig. 4 reveals that the 
Wilson algorithm finds the true solution up to numerical accuracy 
within seven iterations. 

3  M I N I M U M - P H A S E  P RO P E RT Y  A N D  

R E C O N S T RU C T I O N :  M AT R I X  C A S E  

In this section, we, 

(3.1) Introduce matrix functions and their link to elastodynamic 
wavefields. 

(3.2) Analyse the minimum-phase property of matrices. 
(3.3) Re vie w normal products and explore how minimum-phase 

matrices can be reconstructed from their normal products by fac- 
torization. For the reconstruction step, we focus on the special case 

art/ggad111_f2.eps
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 3. All responses are shown in the time domain. (a) Autocorrelation 
of the dereverberation operator associated with the acoustic model shown in 
Fig. 2 . Ne gativ e times are not shown because (scalar) autocorrelations are 
symmetric in time, ( | V + | 2 ) ∗ = | V + | 2 . Panels (b)-(f) show the dereverbera- 
tion operator as it is recursi vel y reconstructed via the Wilson algorithm in 
eq. ( 10 ) ( V + n in black) and its error ( V + n − V + in red). The initial estimate 
( n = 0) is an identity, that is a single spike at time zero. After seven iterations 
the true solution is retrieved up to numerical noise (see Fig. 4 ). For better 
illustration, strong events are clipped and their amplitudes are indicated with 
labels. 
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Figure 4. Convergence of the scalar and matrix Wilson algorithms in 
eqs ( 10 ) and ( 30 ) associated with the dereverberation operators ( V + and 
V 

+ ) of the acoustic and elastic models in Fig. 2 , respecti vel y. The conver- 
gence is defined as the relative error with respect to the true solution as 
indicated by the legend. For the acoustic and the Elastic #1 case, the Wilson 
algorithm converges up to numerical noise within seven iterations. For the 
Elastic #2 case, the relative error converges to approximately 10 per cent. 

c  

t
 

f  

t  

t  

a

q

w

D

T  

v  

t  

fi  

t  

e  

t  

m  

i

�

N  

m  

e  

b  

p  

s  

t

3

T  

y  

l  

r
 

C  

w  

m  

�  

s  

wards. 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/235/1/1/7081314 by TU

 D
elft Library user on 02 June 2023
.1 Geophysical matrix functions 

e briefly introduce matrix functions. The literature distinguishes
etween transfer functions with (1) a single input and a single output
SISO) corresponding to the scalar case discussed above, as well as
2) multi-inputs and multi-outputs (MIMO; Johansson 1997 ). The
atter can be represented by frequency-dependent matrices, where
he number of rows and columns corresponds to the number of
utput and input v ariables, respecti vel y. Hence, they are referred
o as matrix functions. Compared to the scalar case, mathematical
perations are generalized which can lead to pre viousl y unexplored
hallenges, for example scalar products and divisions become ma-
rix multiplications and matrix inverses, respecti vel y. 

Elastodynamic responses can be represented by 2 × 2 matrix
unctions. Here, we consider the configuration discussed in Sec-
ion 2.3 but generalize acoustic to elastic media. One can formulate
he elastic extension of the wavefield-response relation in eq. ( 13 )
s follows, 

 ( p x , z 
′ , ω) = D ( p x , z 

′ , z, ω) q ( p x , z, ω) , (16) 

ith, 

 = 

(
D P,P D P,S 

D S,P D S,S 

)
, and, q = 

(
q P 
q S 

)
. (17) 

he subscripts denote P / S waves and we use bold font to distinguish
ectors and matrices from scalars. In this context, the matrix func-
ion D is an elastodynamic response defined in the P –S space. The
rst and second subscripts of its matrix elements denote the wave

ype at the receiver- and source-side, respectively. For example, the
lement D P , S relates S waves at the source location to P waves at
he receiver location. Next, we generalize the temporal mutes to
atrices such that they operate, and can differ per matrix element

n the P –S space, 

 [ D ] = 

(
� P,P 

[
D P,P 

]
� P,S 

[
D P,S 

]
� S,P 

[
D S,P 

]
� S,S 

[
D S,S 

]). (18) 

e xt, we will inv estigate how to define and reconstruct the
inimum-phase property for matrices, for example per matrix el-

ment or per matrix. Moreover, we will analyse the mathematical
ehaviour of minimum-phase matrices, for example whether their
roperty is preserved by matrix products or changes of basis. De-
pite focusing on 2 × 2 matrices, we do not exclude generalizations
o larger ones. 

.2 Minimum-phase matrix property 

he concept of minimum-phase is significantly more difficult be-
ond scalar functions where several assumptions break. In the fol-
owing, we discuss the minimum-phase property of matrices by
e vie wing findings from other areas (e.g. control theory). 

Diagonal matrices are a trivial extension from scalars to matrices.
onsider the scalar minimum-phase functions, A ± = 1 ± αe −i ωτ1 ,
ith | α| < 1 and τ 1 > 0. By arranging them in a diagonal
atrix denoted by diag( ·) we obtain the minimum-phase matrix,
 = diag ( A −, A + ) . In contrast to this intuitive example, we will

how less obvious cases of minimum-phase matrices further on-

art/ggad111_f3.eps
art/ggad111_f4.eps


6 C. Reinicke, M. Dukalski and K. Wapenaar 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/235/1/1/7081314 by TU

 D
elft Library user on 02 June 2023
Existing literature defines matrices as minimum-phase if their 
determinants are minimum-phase (Wiener 1955 ; Rosenbrock 1969 ; 
Horowitz et al. 1986 ). Hence, the determinant of a minimum-phase 
matrix satisfies the Kolmogorov relation (analogously to eq. 7 ). 
This definition is consistent with the special case of scalar functions 
which are 1 × 1 matrices. It is also consistent with the simple matrix 
e xample abov e, � , where the determinant is equal to the product of 
the minimum-phase diagonal elements, det ( � ) = A − A + , producing 
by definition a minimum-phase result. 

In a general case, defining minimum-phase matrices via their 
determinant has several consequences: 

(1) Matrix multiplications and matrix inverses preserve the 
minimum-phase property. This can be seen by considering the de- 
terminants of arbitrary minimum-phase matrix functions A and B , 

det ( AB 

) = det ( A 

) det ( B 

) , (19) 

det 
(
A 

−1 
) = 

( det ( A 

) ) −1 . (20) 

The determinants, det( A ) and det( B ), are minimum-phase scalar 
functions. Hence, the right-hand sides of eqs ( 19 ) and ( 20 ) show 

that the matrix product AB and the inverse matrix A 

−1 possess a 
minimum-phase property. 

(2) The minimum-phase property is basis-independent, 

det ( D 

) = det 
(
QDQ 

−1 
)
, (21) 

where Q is an arbitrar y inver tible matrix of the same size as D . 
Hence, minimum-phase is a physical property that is independent 
of the coordinate system or domain. 

(3) Minimum-phase matrices are not fully consistent with the 
qualitative conditions (i)–(iii) in Section 2.1. The invertibility cri- 
terion (iii) is satisfied because minimum-phase determinants are 
non-zero. Ho wever , it is less clear how to interpret causality and 
stability for a matrix [criteria (i) and (ii)]. In particular, minimum- 
phase determinants do not guarantee causality of individual matrix 
elements. For example, suppose the matrix, 

Q = 

(
1 − 2 αe −i ωτ1 1 

1 + αe i ωτ1 1 + αe i ωτ1 

)
, (22) 

is used to apply a frequency-dependent basis transformation to the 
minimum-phase matrix, � = diag ( A −, A + ) . The resulting matrix, 

Q � Q 

−1 = 

(
2 − αe −i ωτ1 − 1 −2 αe −i ωτ1 

1 + αe i ωτ1 

1 + αe i ωτ1 αe −i ωτ1 

)
, (23) 

is still minimum-phase but its matrix elements are not such as the 
acausal element 1 + αe i ωτ1 . 

(4) Minimum-phase matrices do not necessarily possess 
minimum-phase eigenvalues. A minimum-phase determinant con- 
strains the phase spectra of the eigenvalues up to a frequency- 
dependent freedom, η = η( ω ), 

Arg [ λ1 ] = −H [ log ( | λ1 | ) ] + η, (24) 

Arg [ λ2 ] = −H [ log ( | λ2 | ) ] − η. (25) 

There are special cases where all eigenvalues observe a minimum- 
phase property (i.e. η = 0), for example the aforementioned matrix 
� , or transmission-like responses of 2-D laterally invariant acoustic 
media (see examples by Wapenaar et al. 2003 ; Elison et al. 2020 ). 
This work focuses on more general minimum-phase matrices, where 

scalar solutions per eigenvalue no longer suffice. 
3.3 Minim um-phase r econstruction by normal-product 
factorization: matrix case 

In this section, we extend minimum-phase reconstruction from 

scalars to matrices. First, we define normal products as general- 
ized power spectra, and we demonstrate why unique minimum- 
phase matrix reconstruction is significantly more challenging than 
its scalar version. Secondly, we modify the minimum-phase matrix 
reconstruction method by Wilson ( 1972 ) considering the special 
case of the elastodynamic dereverberation operator V 

+ . Thirdly, we 
discuss similarities of this reconstruction method to the Marchenko 
method. We will illustrate our analysis numerically in Section 4. 

3.3.1 Normal products: generalized power spectra 

The normal product is defined as the product of a quantity, with its 
complex-conjugate transpose, for example | D | 2 for scalars, or DD 

† 

for matrices (e.g. Dukalski 2020 ). Scalar normal products may be 
better known as autocorrelations in the time domain and are often 
interpreted physically as power spectra in the frequency domain be- 
cause their phase vanishes Arg[ | D | 2 ] = 0. Following this physical 
interpretation, retrieving the scalar solution D from its normal prod- 
uct | D | 2 is often described as a phase reconstruction, while math- 
ematically, it is a factorization problem. In Section 2, w e show ed 
that this generally non-unique factorization can be constrained for 
minimum-phase scalar functions (see eqs 6 and 7 ). Ho wever , the 
matrix case is more complicated. 

There are several differences between scalar power spectra and 
matrix normal products. For example, consider, 

DD 

† = 

(
D P,P D P,S 

D S,P D S,S 

)(
D 

∗
P,P D 

∗
S,P 

D 

∗
P,S D 

∗
S,S 

)
= 

(
δ ε∗

ε ζ

)
, (26) 

with δ = | D P , P | 2 + | D P , S | 2 , ε = D 

∗
P,P D S,P + D 

∗
P,S D S,S , and ζ =

| D S , P | 2 + | D S , S | 2 . The off-diagonal elements of the normal product 
are identical except for a sign-inverted phase that is not necessarily 
zero Arg[ ε] = −Arg[ ε∗]. Nonetheless, we keep the physical inter- 
pretation from the scalar case, that is ‘power spectra’ and ‘phase 
reconstruction’ refer to normal products and the retrie v al of the 
solution D from its normal product, respecti vel y. Since matrix mul- 
tiplications do not commute, there are two normal products, which 
are generally not equal DD 

† �= D 

† D . Counting matrix elements 
as equations, the two normal products provide indi viduall y up to 
three (see eq. 26 ), and together up to six independent equations 
(for 2 × 2 matrices). Hence, if both normal products are known, 
there are more equations to constrain the reconstruction of the ma- 
trix D . Ho wever , we assume only one normal product is avail- 
ab le w hich describes a challenge of the elastodynamic augmented 
Marchenko method (details are not needed here but can be found in 
Reinicke et al. 2020 ). 

Compared to the scalar case, the factorization of a (single) normal 
product has additional degrees of freedom. The normal product of 
the matrix D is preserved upon multiplication by an arbitrar y unitar y 
2 × 2 matrix U 2 , 

DU 2 ( DU 2 ) 
† = DD 

† , (27) 

due to the unitary property U 2 [ U 2 ] † = I (here I denotes an identity 
matrix). The U 2 element can be represented as follows (the term 

‘element’ is commonly used in the rele v ant literature, e.g. Cornwell 
1997 ), 

U 2 = 

( 

e −i γ+ α
2 cos 

[
β

2 

] −e i 
γ−α

2 sin 
[

β

2 

]
e −i γ−α

2 sin 
[

β

2 

]
e i 

γ+ α
2 cos 

[
β

2 

]
) 

e i � , (28) 
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here α, β and γ are Euler angles (Hamada 2015 ). The freedom
 

i � can be constrained via the minimum-phase property of the
eterminant det( D ) (shown in chapter 5 of Reinicke 2020 ), 

 = −1 

4 
H 

[
log 

(| det ( DD 

† ) | )] . (29) 

nfortunately, the minimum-phase determinant only constrains � ,
hat is one out of four free parameters. Due to this limitation, we
eek for an alternative method, which is discussed next. 

.3.2 Minimum-phase matrix reconstruction by factorization 

n the following, we re vie w a minimum-phase matrix reconstruction
ethod, introduce the elastodynamic dereverberation operator and
 ventuall y modify the reconstruction method for the dereverberation
perator. 

The scalar Wilson algorithm can be generalized to matrices. Wil-
on ( 1972 ) proposes a matrix extension of the recursive scalar al-
orithm which can be written as, 

 n + 1 = D n � 

[ 
I + 

( D n ) 
−1 DD 

† (D 

† 
n 

)−1 
] 
, (30) 

ith D 0 = I . The function � element-wise mutes acausal events
nd scales the time zero components of the diagonal elements by

1 
2 . Although the dereverberation operator V 

+ has a minimum-phase
eterminant (shown in the next section), it is not reconstructed
orrectl y b y the algorithm in eq. ( 30 ) with D = V 

+ . We will show
hat this limitation is due to the mute � [ ·] and can be overcome
sing a modified mute. 

For better illustration, we briefly define the elastodynamic dere-
erberation operator. One can generalize the acoustic definition in
qs ( 14 ) and ( 15 ) to the elastic case by replacing scalar with matrix
esponses in the P –S space (Reinicke et al. 2020 ), 

 

+ = T 

↓−1 T 

↓ 
dir = I + V 

+ 
coda . (31) 

he acoustic direct transmission T 

↓ 
dir generalizes to a forward-

cattered transmission T 

↓ 
dir that includes all non-reflected events

uch as transmitted mode-converted waves (Wapenaar 2014 ). As-
uming that many readers are unfamiliar with the dereverberation
perator, we explain its properties that are important for our analysis.
irst, the dereverberation operator has a finite number of events lim-

ted by the number of layers. This follows from the finite number of
vents of the inverse and forward-scattered transmissions (Dukalski
t al. 2022 ). Secondly, all events of the dereverberation operator
rrive within a well-defined time window that only depends on the
ne-wa y tra veltimes of P and S wa ves within each la yer (Reinicke
t al. 2020 ). Lastl y, and most importantl y, the onset of its matrix
lements in the time domain is not al wa ys at time zero. In particular,
ts off-diagonal elements typically have non-zero onset times that
an be acausal (shown by Reinicke et al. 2020 ). 

Given these properties, we modify the mute of the matrix Wil-
on algorithm to reconstruct the dereverberation operator from its
ormal product. We propose modifying the operator � [ ·] to mute
ll events in the time domain prior to the onset of the dereverbera-
ion operator per matrix component. This differs from the original

atrix Wilson algorithm which instead removes acausal events for
ll matrix elements. Using the modified mute � [ ·] in eq. ( 30 ), it
ppears that the matrix Wilson algorithm can accurately factorize
he normal product of the dereverberation operator (results will be
hown in Section 4). 
 N U M E R I C A L  E X A M P L E  

n this section, we show two examples of the matrix Wilson method
nd analyse determinants and eigenvalues numerically. These ex-
mples are associated with the models Elastic #1 and Elastic #2 ,
hich are identical except for the S -wave velocity in the second

ayer from the top (see Fig. 2 ). They are designed such that the
ilson method succeeds ( Elastic #1 ) and fails ( Elastic #2 ) to re-

onstruct the respective dereverberation operator correctly. In both
ases, we model the dereverberation operator analytically (Dukalski
t al. 2022 ) to calculate the normal product, and to provide a ref-
rence for the retrieved solution. For the matrix Wilson method,
e define the diagonal elements of the mute ( � P P [ ·] and � SS [ ·] )
ia the Heaviside function in eq. ( 11 ). The off-diagonal elements
 P S [ ·] and � S P [ ·] mute all events in the time domain prior to the

nset of the components V 

+ 
P S and V 

+ 
S P , respecti vel y. 

Firstly, we consider the successful case Elastic #1 . We use the
ormal product V 

+ V 

+ † shown in Figs 5 (a)–(d) to e v aluate eight
terations of the matrix Wilson algorithm, resulting in the solution
 

+ 
n = 8 in Figs 5 (e)–(h). The algorithm monotonically converges to

he true solution V 

+ up to numerical noise (see Fig. 4 ), hence, we
o not show the difference plot. Figs 5 (e)–(h) illustrate that the
ereverberation operator has a finite number of events in the time
omain that arrive within a well-defined time window as discussed
n Section 3.3.2. Here, the responses are zero outside the displayed
ime window, that is all events are shown. Figs 5 (e)–(h) also show
he identity term of the dereverberation operator (see eq. 31 ). More-
ver, the onset of the off-diagonal elements in the time domain
eviates from time zero and is even acausal for the SP element (see
ig. 5 g). 
Secondly, we modify the model until the proposed method for

ormal-product factorization becomes inaccurate (case Elastic #2 ).
ompared to the previous example, the traveltime difference be-

ween P and S waves increased, leading to acausal events in the
iagonal elements V 

+ 
P P and V 

+ 
SS . As a result, it is no longer clear

ow to define the diagonal elements of the mute � P P [ ·] and � SS [ ·] ,
hich also need to scale the time zero element by 1 

2 to ensure con-
ergence (see eq. 12 ). Here, we only adjust the off-diagonal ele-
ents of the mute, � P S [ ·] and � S P [ ·] , to account for the changed

nset of the dereverberation operator in the time domain. Then
e repeat the previous experiment using the normal product of

he dereverberation operator shown in F igs 6 (a)–(d). F igs 6 (e)–(h)
how the retrieved dereverberation operator after evaluating eight
terations of eq. ( 30 ) V 

+ 
n = 8 , and the difference with respect to the

odelled reference V 

+ . The convergence (see Fig. 4 ) indicates
hat the relative error of the retrieved solution is in the order of
0 per cent. 

Lastl y, we anal yse the determinants and eigenv alues of the dere-
erberation operators. We verify that the determinants of the mod-
lled dereverberation operators det 

(
V 

+ ) satisfy the Kolmogorov
elation up to numerical noise (relative error in the order of 1 ×
0 −14 ) for both cases, Elastic #1 and Elastic #2 . Next, we inspect
he determinants of the retrieved dereverberation operators after
ight iterations det 

(
V 

+ 
n = 8 

)
(see Fig. 7 ). We observe that it satis-

es the minimum-phase conditions in the case Elastic #1 but it
iolates them in the case Elastic #2 . This violation can be easily
erified by the acausal events of the determinant (see close-up in
ig. 7 c). The phase error of the determinant can be corrected using
q. ( 7 ). Ho wever , the retrieved response V 

+ 
n = 8 carries an additional

rror represented by the Euler angles (see eq. 28 ) that cannot be
emoved. The eigenvalues of the dereverberation operators do not
atisfy the Kolmogorov relation for any of the tested cases. Even in
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5. (a)–(d) Normal product V 

+ V 

+ † of the dereverberation operator associated with the model Elastic #1 (see Fig. 2 ). The panels show the four elastic 
components analo gousl y to the 2 × 2 matrix in eq. ( 17 ). (e)–(h) Retrieved dereverberation operator after eight iterations. The grey areas indicate the time samples 
that are muted by the modified operator � [ ·] in eq. ( 30 ). We do not show a difference or reference plot because the retrieved and modelled dereverberation 
operators are identical up to numerical noise (see convergence in Fig. 4 ). All panels show responses in the time domain to facilitate the interpretation. 
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the successful case ( Elastic #1 ), the phase spectra of the eigenval- 
ues differ severely from their minimum-phase spectra defined via 
the Kolmogorov relation in eq. ( 7 ). This can be illustrated via the 
phase-freedom η defined in eqs ( 24 ) and ( 25 ), which is far from 

trivial (see Fig. 8 ). 

5  D I S C U S S I O N  

Our analysis has shown that the causality condition of minimum- 
phase functions can be less intuitive for matrix functions. The 
minimum-phase property does not necessarily hold for individual 
matrix elements but it does for the determinant. Hence, minimum- 
phase matrix functions can contain acausal matrix elements. Our 
numerical examples indicate that the matrix Wilson algorithm can 
accurately handle acausal off-diagonal elements, while acausal di- 
agonal elements appear to be an obstacle. This limitation is not 
obvious from the algorithm in eq. ( 30 ). In the presented examples, 
the temporal mute suppresses acausal events on the diagonal, but 
not on the off-diagonal, elements. Hence, the subsequent matrix 
multiplication by D n could still introduce acausal events on the 
diagonals (see eq. 30 ). It remains undetermined whether normal- 
product factorization of minimum-phase matrices is limited to cases 
with strictly causal diagonal elements, or, whether a more general 
algorithm remains to be discovered. 

Our interest in minimum-phase matrices is moti v ated b y the 
Marchenko method. The latter formulates internal multiple elim- 
ination for seismic reflection data as an inverse problem. It aims 
to retrieve the dereverberation operator and it is often undercon- 
strained in practice. Existing work demonstrates for the scalar case 
ho w tw o additional constraints can be used to accurately reconstruct 
the dere verberation operator. Firstl y, the normal product of the dere- 
verberation operator is retrieved via energy conserv ation. Secondl y, 

art/ggad111_f5.eps
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6. Idem as Fig. 5 but associated with the model Elastic #2 (see Fig. 2 ). In this case, the dereverberation operator has acausal events on the diagonals 
( PP and SS components). The acausal events on the diagonals appear to be an issue for the Wilson algorithm. The dereverberation operator is reconstructed 
only up to a relative error in the order of 10 per cent (see Fig. 4 ), instead of numerical noise as in the previous example in Fig. 5 . 
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he dereverberation operator is reconstructed from its normal prod-
ct by exploiting its minimum-phase property (Dukalski et al. 2019 ;
lison et al. 2020 ; Peng et al. 2022 ). In previous work, we tried to
eneralize this strategy to the elastic case where the dereverberation
perator is no longer a scalar but a 2 × 2 matrix, and identified two
hallenges (Reinicke et al. 2020 ): 

(1) Once the normal product of the elastodynamic dereverbera-
ion operator is retrieved, it remains unclear how to reconstruct the
perator uniquely from its normal product using its minimum-phase
roperty. 

(2) Energy conservation provides the normal product of the in-
erse transmission. The dereverberation operator V 

+ is minimum-
hase but the inverse transmission T 

↓−1 (also known as F 

+ ) is not.
his is not an issue for scalars, because the scalar normal-products of

he inverse transmission and the dereverberation operator are iden-
ical up to a frequency-independent constant. This holds because
he acoustic direct transmission is a single pulse, T 

↓ 
dir = αe −i ωτdir ,
ith traveltime τ dir , 

 

+ V 

+∗ = T 

↓−1 T 

↓ 
dir T 

↓−1 ∗T 

↓∗
dir = T 

↓−1 T 

↓−1 ∗| α| 2 . (32) 

o wever , this relation is more complicated for the elastic case where
he direct transmission generalizes to a forward-scattered transmis-
ion including mode conversions T 

↓ 
dir . Moreover, eq. ( 32 ) cannot be

xtended from the scalar to the matrix case because matrix multi-
lications do not commute. 

In this paper, we focused on the first challenge. Addressing the
econd one is beyond the scope of this work. 

We notice similarities between the Marchenko method and the
ere-discussed matrix Wilson method. Both methods use the same
ngredients including temporal convolutions and correlations as
ell as temporal mutes. The modified mute of the matrix Wilson
ethod � [ ·] is inspired by, and is nearly identical to, one of the

wo mutes of the Marchenko method P B [ · ] (see eq. 16 in Reinicke
t al. 2020 ). The two mutes onl y dif fer at time zero of the diagonal

art/ggad111_f6.eps
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(a)

(b)

(c)

Figure 7. Determinants of the retrieved dereverberation operators (black) 
and the difference with respect to the modelled solutions (red). The panels 
are associated with the (a) Acoustic , (b) Elastic #1 , and (c) Elastic #2 , 
cases shown in Figs 3 , 5 and 6 , respecti vel y. In the Acoustic case, the 
dereverberation operator is a scalar function, and hence, identical to its 
determinant. Nonetheless, it is shown for completeness. For the Elastic 
#2 case, the determinant of the retrie ved dere verberation operator is not 
minimum-phase, which can be easily seen via the acausal events shown 
in the magnified box in blue. The difference plot indicates that acausal 
events are absent in the determinant of the true solution, which possesses a 
minimum-phase property. 

Figure 8. Phase-freedom η of the eigenvalues of the dereverberation op- 
erator shown in Figs 5 (e)–(h), which is associated with the model Elastic 
#1 (also see eq. 24 ). The horizontal axis denotes the temporal frequency 
f = 

ω 
2 π . 

for future research. 
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elements, where the Wilson mute scales its argument by 1 

2 instead 
of 1 to ensure conv ergence. Moreov er, both methods face limita- 
tions related to the mutes. It has been shown that the Marchenko 
method fails to reconstruct the desired solution in the presence of 
fast-multiples. The latter are multiples that have shorter traveltimes 
than some of the converted but non-reflected arri v als. As a result, 
fast-multiples introduce temporal overlaps between signals that the 
Marchenko method ought to separate with the mute. These tem- 
poral overlaps are due to acausal events in the diagonal elements 
of the dereverberation operator V 

+ 
P P and V 

+ 
SS . This limitation of 

the Marchenko method coincides with the cases where the matrix 
Wilson method fails to retrieve the correct solution. The question 
is whether fast multiples pose a fundamental limitation, or whether 
there is another, more robust solution strategy for the Marchenko 
and matrix Wilson methods. Despite the remaining challenges, the 
matrix Wilson algorithm could potentially help to retrieve a better 
estimate of the desired dereverberation operator. For example, Peng 
et al. ( 2022 ) show that the 2-D acoustic augmented Marchenko 
method can reconstruct the correct dereverberation operator, even 
though they apply a scalar, instead of a matrix minimum-phase 
reconstruction. They propose a recursive application of the 2-D 

Marchenko method and a scalar minimum-phase correction. Sim- 
ilarly, one could attempt to recursively apply the elastodynamic 
Marchenko method and the matrix Wilson algorithm ignoring the 
challenge of fast multiples. 

Minimum-phase matrices and normal-product factorization pro- 
vide physical relationships that remain mostly unexplored, espe- 
cially in geophysics. For example, the results of this work could 
bring new momentum to the research on reconstructing transmis- 
sion from reflection data in the multidimensional acoustic or elastic 
case (i.e. beyond the work of Wapenaar et al. 2003 ). Moreover, we 
illustrated that normal-product factorization has four (real-valued) 
unknown parameters (for 2 × 2 matrices) but the determinant pro- 
vides a single phase. Despite the mismatch in number of unknowns 
and equations, we demonstrated that the modified matrix Wilson al- 
gorithm can reconstruct a special class of minimum-phase matrices. 
This raises the question whether there are additional, so-far unex- 
plored fundamental properties of minimum-phase matrices. If so, 
the follow up question is whether these properties allow for a unique 
factorization of normal products in more general cases, for example 
including fast-multiples. Answering these questions is beyond the 
scope of this paper but it is a matter of ongoing research. Last but 
not least, we investigated the simplest non-trivial matrix case, that 
is 2 × 2 matrices, but generalizations are not excluded. It would be 
particularly interesting to analyse multidimensional acoustic cases 
which will be subject of future work. 

6  C O N C LU S I O N  

Minimum-phase properties become significantly more complicated 
when stepping from scalar to matrix functions. Since the minimum- 
phase property of a matrix only imposes conditions on its deter- 
minant, there are no constraints on individual matrix elements, for 
e xample the y can be acausal. 

Our analysis has been motivated by challenges of the Marchenko 
method. Hence, we focused on the minimum-phase properties of 
the elastodynamic dereverberation operator, which is a solution of 
the Marchenko method. We showed that this 2 × 2 minimum- 
phase matrix function can be uniquely reconstructed from its nor- 
mal product using a modified version of the matrix Wilson al- 
gorithm. Compared to the original Wilson method, we modified 
the temporal mute that curiously is identical to one of the two 
mute operators of the Marchenko method, except for the time zero 
element. 

Ho wever , the proposed solution appears to be limited to derever- 
beration operators with causal diagonal elements. Thus, the method 
excludes cases with fast-multiples that can occur in the presence 
of large P - and S -wave velocity differences. Moreover, the derever- 
beration operator can be seen as a special class of minimum-phase 
matrices, that is the proposed factorization method does not neces- 
sarily generalize for other minimum-phase matrices. 

The presented results suggest that the minimum-phase property 
of matrices could play an important role in physics-driven data pro- 
cessing. This work scratches the surface of minimum-phase matri- 
ces in the context of geophysics and indicates interesting directions 
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P P E N D I X :  N O TAT I O N  

e use the following Fourier transforms (per ray-parameter) where
he real-part is denoted by R , 

 ( p x , z, ω) = 

∫ ∞ 

−∞ 

q ( p x , z, τ )e −i ωτ dτ, (A1) 

 ( p x , z, τ ) = 

1 

π
	 

[∫ ∞ 

0 
q ( p x , z, ω )e i ωτ dω 

]
. (A2) 

n this work, all equations are formulated for plane waves, that is per
he ray-parameter p x . We define the transformation from the offset-
ime domain q ( x , z , t ) to the ray-parameter intercept-time domain
 ( p x , z , τ ) as, 

 ( p x , z, τ ) = 

∫ ∞ 

−∞ 

q ( x, z, τ + p x x)dx . (A3) 

able A1. Definition of additional operators used in this paper. All operators
re applied per ray-parameter, p x , and per frequency, ω , except for the
ilber t transfor m and the L 2 nor m which take into account all frequencies.
hen applied to matrices, the operators act in the P –S space, except for the

perations marked with ‘ 
’ which act per matrix element. The L 2 norm is
alculated using all frequencies and all wavefield components, that is a single
nd four components for acoustic and elastodynamic waves, respectively. 

ymbol Operation 

uperscript ‘ ∗’ Complex-conjugate 
uperscript ‘ † ’ Complex-conjugate transpose 
uperscript ‘ −1’ Inverse 

og( · ) Natural logarithm 

et( · ) Determinant 
 · ‖ 2 L 2 norm 

 · | 
 Absolute value 
 

[ · ] /cos[ · ]/sin[ · ] 
 Exponential/cosine/sine function 
 [ ·] 
 Hilber t transfor m 

rg[ · ] 
 Phase spectrum 
A

T
E

D

T
c
t

R

B

B

B

C

C

C

D

D

D

D

E

F

H

H

J

L

P

R

R

R
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