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Summary

Green’s functions and propagator matrices are both solutions of the wave equation, but whereas Green’s
functions obey a causality condition in time (G=0 for t&It;0), propagator matrices obey a boundary
condition in space. Marchenko-type focusing functions focus a wave field in space at zero time. We
discuss the mutual relations between Green’s functions, propagator matrices and focusing functions,
avoiding up-down decomposition and accounting for propagating and evanescent waves. We conclude
with discussing a Marchenko-type Green’s function representation, which forms a basis for extending
the Marchenko method to improve the imaging of steeply dipping flanks and to account for refracted
waves.
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On Green’s functions, propagator matrices, focusing functions and their mutual relations

Introduction

An acoustic Green’s function is the causal response to an impulsive point source. It is a solution of the
wave equation, supplemented with a causality condition in time. A propagator matrix is a matrix which
‘propagates’ a wave field from one depth to another. It is a solution of a matrix-vector wave equation,
supplemented with a boundary condition in space. A Marchenko-type focusing function is a wave field
that focuses at a designated point in space at zero time. In this paper we briefly review these concepts,
discuss their mutual relations and indicate applications of these relations. In particular we discuss a
Marchenko-type Green’s function representation which avoids up-down decomposition and accounts
for propagating and evanescent waves. This representation is the basis for extending the Marchenko
method to improve the imaging of steeply dipping flanks and to account for refracted waves.

Matrix-vector wave equation

Acoustic Green’s functions and Marchenko-type focusing functions are most conveniently defined as so-
lutions of a scalar wave equation in the space-time (X,#) domain. Propagator matrices, on the other hand,
are usually defined as solutions of a matrix-vector wave equation in the space-frequency (X, @) domain.
To facilitate the discussion of the mutual relations between Green’s functions, propagator matrices and
focusing functions, our starting point is the acoustic matrix-vector wave equation in the space-frequency
domain. This equation reads (Corones, 1975; Ursin, 1983; Fishman and McCoy, 1984)

where d5 stands for differentiation in the vertical direction and where q(x, ®), d(x, ®) and A(x, ®) are
the wave-field vector, source vector and operator matrix, respectively, which are defined as follows

_(P _ /3 - 0 iop
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Here dy (for oo = 1,2) stands for differentiation in the horizontal directions, p(x,®) and v3(x,®) are
the acoustic pressure and vertical component of the particle velocity, g(x,®) and fi(x,®) (for k =
1,2,3) are the volume injection-rate density and external force density, p(x) and k(x) are the mass
density and compressibility of the 3D inhomogeneous medium, and i is the imaginary unit. We assume
that the medium is lossless, hence p and Kk are real-valued and frequency-independent. For notational
convenience, we drop the argument @ in the remainder of this paper.

Green’s matrix
We define the Green’s matrix G(x,Xs) for a 3D inhomogeneous medium as the solution of matrix-vector
wave equation (1), with the source vector replaced by a unit point source matrix, hence

83G—AG:IS(X—X5), (3)

where xg = (x1 5,x2.5,%3 5) denotes the position of the source and I is the identity matrix. To get a unique
solution, the time-domain version of the Green’s matrix is enforced to be zero at negative time, i.e.,

G(x,x5,t <0) =0, 4)

where O is a zero matrix. We call this the causality condition. Since equations (1) and (3) are linear in
terms of q and G, respectively, we can use Huygens’ superposition principle to express (x) in terms of
G and d, according to (Rayleigh, 1878; Bleistein, 1984)

a) = | G(x,xs)d(xs)d’xs, )

where Dy denotes the domain in which the source function d(x) is non-zero. More general representa-
tions using matrix G are reviewed by Wapenaar (2022). The Green’s matrix is partitioned as follows

Grt  Gpr4
G(vaS) = <Gv7f Gv7q> (X7XS)‘ (6)
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Figure 1 (a) Horizontally layered medium. (b) Green’s function G f (81,X3,%3,5,T).

From equations (2), (5) and (6) it follows that the first superscripts (p and v) refer to the wave-field
quantities in q(x) and that the second superscripts (f and g) refer to the source quantities in d(Xs).

We present an example of the component G”/(x,Xs) of the Green’s matrix for the horizontally layered
medium of Figure 1(a). We apply plane-wave decomposition into the horizontal slowness-intercept time
(s1,7) domain, hence, we consider the transformed Green’s function G?/ (s ,X3,x3.5,T). The causality
condition of equation (4) transforms to G? f (s1,x3,%3,5,7 < 0) = 0. We choose the source at the upper
boundary, hence x3 5 = 0. Moreover, we consider a single slowness s; = 1/3500 s/m. This implies
that the wave field in the thin layer with velocity 3600 m/s becomes evanescent. The Green’s function,
convolved with a Ricker wavelet with a central frequency of 50 Hz, is shown in Figure 1(b). The vertical
green line at T = 0 indicates the aformentioned causality condition (i.e., the field left of this line is zero).
This figure shows the evolution of the Green’s wave field through space and time, including all primary
and multiple reflections, and tunneling through the thin high-velocity layer.

Propagator matrix
We define the propagator matrix W(x,x4) for a 3D inhomogeneous medium as the solution of matrix-
vector wave equation (1), with the source vector set to zero, hence

W — AW = O, @)

where x4 = (x1.4,X2.4,%34) denotes a position in space. To get a unique solution, we imply a boundary
condition at the horizontal boundary dD4 (defined as x3 = x3 4), i.e.,

W(Xa XA) |)C3I)C3AA - IS(XH - XH,A), (8)

where Xy = (x1,x2) and Xy 4 = (x1.4,X2,4) are the horizontal coordinates of x and x4, respectively. Using
Huygens’ superposition principle again, we can express ¢(X) in terms of W and q at dD,, according to
(Kennett, 1972; Woodhouse, 1974)

ax) =/ W(x,X4)q(X4)d*x4, )

assuming there are no sources for ( in the region between x3 4 and x3. This representation accounts for

all propagation angles and for evanescent waves. Similarly, the Green’s matrix can be expressed as

G(X7XS) = D W(X>XA)G(XA7XS)d2XA7 (10)
A

assuming x and Xg lie at opposite sides of dD4. More general representations using the propagator
matrix W are given by Wapenaar (2022). The propagator matrix is partitioned as follows

WP WP
W(X,XA) = (Wv,p Wv7v> (vaA)' (11)
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Figure 2 (a) Propagator matrix component WP (s1,x3,x3 4,7T). (b) Component WP (s1,x3,X34, 7).

From equations (2), (9) and (11) it follows that the first superscripts (p and v) refer to the wave-field
quantities in q(x) and that the second superscripts (p and v) refer to the wave-field quantities in q(x4).
We present an example of the components W”?(x,x4) and W?"(x,X,) of the propagator matrix for the
horizontally layered medium of Figure 1(a). In the (s, 7) domain, the boundary condition of equation
(8) transforms for these components to W7 (s;,x3 4,x3.4,7) = 6(7) and WP (s1,x34,x34,7) = 0. We
choose x3 4 = 0 and s; = 1/3500 s/m. The two components, convolved with the same Ricker wavelet,
are shown in Figures 2(a) and 2(b). The horizontal Green lines at x3 = 0 indicate the aforementioned
boundary conditions. These figures show the evolution of the propagator matrix through space and time,
including all primary and multiple reflections, and tunneling through the thin high-velocity layer.

Focusing functions

Consider a 3D inhomogeneous lower half-space, below a homogeneous upper half-space, separated by
dDy,. For this situation we previously defined a flux-normalised focusing function f>(x,X4,?), with x4
at dD4, which focuses as f>(X,X4,?)[x;—x;, = O(XH — XH,4)0(f) and subsequently propagates upward
in the homogeneous upper half-space (Wapenaar et al., 2013). Here we define a pressure-normalized
focusing function F”(x,x4,t) with the same conditions. For the horizontally layered medium of Fig-
ure 1(a), its transformed version F”(s1,x3,x34,7) is shown in Figure 3(a). Note that it resembles a
part of the propagator matrix component W””(sy,x3,x3 4,7) of Figure 2(a). As a matter of fact, if we
add its time-reversed version F”(s1,x3,x34,—7) (shown in Figure 3(b)) we get WPP(s),x3,X34,T) =
%{Fp(sl,xg,xm,‘c) + FP(s1,x3,x34,—7)}, or, after a transform from 7 to @, WP (s1,x3,x34,®) =
R{FP(s1,x3,%34,®)}, where R denotes the real part. For a 3D inhomogeneous lower half-space, ignor-
ing evanescent waves at and above dDy, this can be generalised in the space-frequency domain as

oxa) = (Wrrowen - (R{FP(xxa)} —iwpoH 1 (x4)S{FP(x,%4)}
wom = (3 e ) 030 = (SE o i)+ 02

where 3 denotes the imaginary part, py is the mass density of the homogeneous upper half-space,
FY(x,x,) is the particle velocity counterpart of the pressure-normalised focusing function F”(x,x4)
and 7 is the square-root of the Helmholtz operator @?/ c(z) + dy 9y, With ¢ the propagation velocity of
the upper half-space (for the derivation of equation (12) and subsequent equations, see Wapenaar (2022),
but note that F(x,x,) is defined differently there). Conversely, the focusing functions F” and F" can
be expressed in terms of the components of the propagator matrix as follows

1
F"(x,X4) :Wn’p(X,XA)—@%(XA)WH’V(X,XA), (13)
0
where superscript n stands for p or v. Finally, focusing and Green’s functions are mutually related via
267 (x,x5) = / FP(x,Xa)R(Xa,Xs)d*x4 + FP* (X, Xs), (14)
Iy

where R(x4,Xg) is the reflection response at dD4 of the 3D inhomogeneous lower half-space.
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Figure 3 (a) Focusing function F?(s1,x3,X3 4, 7). (b) Its time-reversed version FP(s|,x3,X34,—7).

Discussion and conclusions

In our previous work on the Marchenko method we derived expressions like equation (14) under the as-
sumption that the focusing functions and Green’s functions at x inside the medium can be decomposed
into downgoing and upgoing components, and that evanescent waves can be ignored. Recently, Diek-
mann and Vasconcelos (2021) and Wapenaar et al. (2021) showed that up-down decomposition can be
avoided and that evanescent waves can be taken into account. Here, we explicitly expressed the focusing
functions in terms of components of the propagator matrix, which account for all propagation angles and
evanescent waves (we only ignored evanescent waves at and above the boundary dID4). Hence, the rep-
resentation of equation (14) forms a basis for extending the Marchenko method to improve the imaging
of steeply dipping flanks and to account for refracted waves. Our current work deals with developing
such methods and with pushing the limits of the Marchenko-type representations even further, by also
accounting for evanescent waves in the upper half-space and for acoustic and elastic media with losses
(Dukalski et al., 2022; Wapenaar et al., 2022).
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