
 
 

Delft University of Technology

Faulty or Ready? Handling Failures in Deep-Learning Computer Vision Models until
Deployment
A Study of Practices, Challenges, and Needs
Balayn, Agathe; Rikalo, Natasa; Yang, Jie; Bozzon, Alessandro

DOI
10.1145/3544548.3581555
Publication date
2023
Document Version
Final published version
Published in
CHI 2023 - Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems

Citation (APA)
Balayn, A., Rikalo, N., Yang, J., & Bozzon, A. (2023). Faulty or Ready? Handling Failures in Deep-Learning
Computer Vision Models until Deployment: A Study of Practices, Challenges, and Needs. In CHI 2023 -
Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems Article 11 Association
for Computing Machinery (ACM). https://doi.org/10.1145/3544548.3581555
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3544548.3581555
https://doi.org/10.1145/3544548.3581555


Faulty or Ready? Handling Failures in Deep-Learning Computer 
Vision Models until Deployment: A Study of Practices, Challenges, 

and Needs 
Agathe Balayn 

a.m.a.balayn@tudelft.nl 
Delft University of Technology 

the Netherlands 

Jie Yang 
j.yang-3@tudelft.nl 

Delft University of Technology 
the Netherlands 

ABSTRACT 
Handling failures in computer vision systems that rely on deep 
learning models remains a challenge. While an increasing number 
of methods for bug identifcation and correction are proposed, lit-
tle is known about how practitioners actually search for failures 
in these models. We perform an empirical study to understand 
the goals and needs of practitioners, the workfows and artifacts 
they use, and the challenges and limitations in their process. We 
interview 18 practitioners by probing them with a carefully crafted 
failure handling scenario. We observe that there is a great diver-
sity of failure handling workfows in which cooperations are often 
necessary, that practitioners overlook certain types of failures and 
bugs, and that they generally do not rely on potentially relevant 
approaches and tools originally stemming from research. These 
insights allow to draw a list of research opportunities, such as 
creating a library of best practices and more representative for-
malisations of practitioners’ goals, developing interfaces to exploit 
failure handling artifacts, as well as providing specialized training. 

CCS CONCEPTS 
• Computing methodologies → Computer vision; • Human-
centered computing → Empirical studies in HCI; • Software 
and its engineering → Software development methods. 

KEYWORDS 
practices, machine learning testing, debugging, explainability 

ACM Reference Format: 
Agathe Balayn, Natasa Rikalo, Jie Yang, and Alessandro Bozzon. 2023. Faulty 
or Ready? Handling Failures in Deep-Learning Computer Vision Models 
until Deployment: A Study of Practices, Challenges, and Needs. In Proceed-
ings of the 2023 CHI Conference on Human Factors in Computing Systems 
(CHI ’23), April 23–28, 2023, Hamburg, Germany. ACM, New York, NY, USA, 
20 pages. https://doi.org/10.1145/3544548.3581555 

This work is licensed under a Creative Commons Attribution International 
4.0 License. 

Natasa Rikalo 
natasa.rikalo@gmail.com 

Delft University of Technology 
the Netherlands 

Alessandro Bozzon 
a.bozzon@tudelft.nl 

Delft University of Technology 
the Netherlands 

1 INTRODUCTION 
Deep learning models are the basis for many computer vision ap-
plications12. Yet, safely using models is still challenging, as they 
sufer from issues such as spurious correlations, brittleness, and 
overftting, leading to erroneous and harmful outputs [93]. Plenty 
of recent accidents testify of this challenge. For instance, models 
that distinguish between benign and malignant moles have been 
found to be inaccurate when used in practice for dark skin colors 
due to data biases [55], even though they seemed to be correctly 
built and perform well in the development phase. 

The computer vision lifecycle is composed of many activities that 
might all introduce or mitigate faults in the models. While we can-
not study all these activities at once, we note that growing eforts 
from machine learning, data management, human-computer inter-
action, and software engineering communities focus on proposing 
materials for “debugging” the failures of a model, i.e., testing the 
presence of potential issues, and mitigating the ones of interest, be-
fore deploying this model [36]. These materials are frameworks to 
test the performance of a model or to automatically mitigate infer-
ence errors [22, 52, 76, 94, 132], tools to trace issues in the outputs of 
the models back to problems in the code [38, 74], user-interfaces that 
highlight issues during model development [4, 95, 99, 100, 126, 131], 
and explainability methods [12, 34, 60, 96, 113]. It remains unknown 
how much these materials are used in practice, and to what extent 
they ft the hitherto unknown needs and processes of practition-
ers. It is even unclear whether the stated goal of these materials 
(typically increasing model accuracy) is aligned with the goals of 
practitioners. Hence, in this paper, we focus on practices for han-
dling failures in the frst crucial phase of a model: its development 
phase until the decision of deploying it. 

One could argue that no research on failure handling practices in 
computer vision models has been conducted because there already 
exists works around software debugging [7, 26, 32, 40, 65, 66, 121], 
and computer vision applications are a type of software. Yet, identi-
fying and mitigating failures in computer vision models is poten-
tially more challenging than for non-data driven software systems, 
due to the opaque nature of the inference process, and the unlimited 

CHI ’23, April 23–28, 2023, Hamburg, Germany 1https://www.grandviewresearch.com/industry-analysis/computer-vision-market 
© 2023 Copyright held by the owner/author(s). 2https://www.globaldata.com/media/thematic-research/global-computer-vision-
ACM ISBN 978-1-4503-9421-5/23/04. market-will-reach-nearly-33-billion-2030-driven-larger-data-sets-advanced-deep-
https://doi.org/10.1145/3544548.3581555 learning-models-says-globaldata/ 

https://orcid.org/0000-0003-2725-5305
https://doi.org/10.1145/3544548.3581555
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3544548.3581555
https://www.grandviewresearch.com/industry-analysis/computer-vision-market
https://www.globaldata.com/media/thematic-research/global-computer-vision-market-will-reach-nearly-33-billion-2030-driven-larger-data-sets-advanced-deep-learning-models-says-globaldata/
https://www.globaldata.com/media/thematic-research/global-computer-vision-market-will-reach-nearly-33-billion-2030-driven-larger-data-sets-advanced-deep-learning-models-says-globaldata/
https://www.globaldata.com/media/thematic-research/global-computer-vision-market-will-reach-nearly-33-billion-2030-driven-larger-data-sets-advanced-deep-learning-models-says-globaldata/
mailto:a.bozzon@tudelft.nl
mailto:natasa.rikalo@gmail.com
mailto:j.yang-3@tudelft.nl
mailto:a.m.a.balayn@tudelft.nl
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3544548.3581555&domain=pdf&date_stamp=2023-04-19


CHI ’23, April 23–28, 2023, Hamburg, Germany Balayn, et al. 

set of inputs to the models [48, 67, 122, 132]. Hence, we shall study 
specifc difculties with computer vision failure handling. 

In this work, we ask: (RQ1) which goals (i.e., types of failures to 
prevent) do practitioners aim at fulflling before deploying their mod-
els? ; and (RQ2) how do they proceed in terms of workfows, artifacts, 
and tools to do so? These questions allow to refect on the limita-
tions within existing practices, on the challenges faced by practi-
tioners, and on the (mis)alignment between research and practice. 
We perform 18 semi-structured interviews with machine learning 
practitioners having diferent levels of experience in computer vi-
sion, but all currently working in industry or public organisations 
as data scientists, data engineers, or software engineers for ma-
chine learning, for at least three years. We task them to investigate 
a hypothetical model to decide on deploying it or on mitigating 
its failures. We investigate their objectives, workfows, challenges, 
and needs, summarized through the questions they answer in the 
process. We further analyse the extent to which they use existing 
methods and tools, and limitations in their practices, which allows 
us to surface opportunities for future work. 

Our results reveal that the process of making a model ready for 
deployment is subjective and not standardized, and that it is not a 
lonely process but involves various stakeholders. Our results also 
show that machine learning “debugging” literature is not known 
by most practitioners despite its potential usefulness for certain 
steps of their process. Practitioners can identify and correct failures 
and bugs to a certain extent, yet pain-points and limitations, e.g., 
missed model bugs, are often observed. While we do not argue for 
standardization as the process is highly use-case dependent, our 
work highlights the need for more guidance and more comprehen-
sive failure handling tools addressing various bugs (e.g., dataset 
content bugs) and failures (e.g., brittleness). These observations 
also highlight changes needed to support an education on aspects 
broader than machine learning algorithms, and to facilitate the com-
munication of relevant information to the stakeholders involved in 
the process. 

In summary, our work contributes: a) a structured understanding 
of computer vision model failure handling practices towards model 
deployment, synthesized into a framework (Figure 3) and a list of 
questions one might ask during the process (Table 4); b) an analysis 
of the relation between existing methods for failure handling such 
as explainability methods, and the practice of handling failures in 
computer vision model; and c) a critical refection about the needs 
of practitioners highlighting several design opportunities. 

2 RELATED WORK 
In this section, we present key works on model failure handling, 
from which we extract the main concepts (Table 1), and working 
assumptions (summarized in Figure 1, and highlighted in bold in 
the text) we investigate next. We also relate our work to studies 
around software debugging and machine learning practices. 

2.1 Failures & bugs in machine learning systems 
Similarly to software engineering, in this paper, we talk about a 
model failure to designate “an external, incorrect behavior [of the 
model] with respect to the requirements.” [5, 58], and about a bug 
or fault to designate the root cause of a failure. The literature on 

Table 1: Main concepts identifed around failure handling in 
computer systems. 

Concept Description 

Failure The observable manifestation of an issue (diference be-
tween expected and observed behavior). [5, 58] 

Bug The cause of the issue, and hence the place where to 
correct for it. “Any imperfection in a machine learning 
item that causes a discordance between the existing and 
the required conditions.” [132] 

Artifact Tangible information one might use in order to search for 
a bug or verify its validity. The approaches from literature 
all rely on various artifacts. [15, 20, 22, 95, 126, 131] 

Precautionary The attitude that one has when performing failure han-
attitude dling, geared solely towards explicit failures, or also 

searching for less obvious failures. [7, 40, 65, 121] 
Workfow The steps taken in order to identify and mitigate a failure. 

[7, 65, 121] 

machine learning failures discusses multiple types of failures and 
bugs. When a script doesn’t execute, the failure is due to a program 
implementation issue [22, 67, 112, 114, 132, 134]. Instead, when a 
script runs, according to the machine learning testing literature 
[132], one can observe failures that revolve around inference 
outputs (correctness, robustness, fairness) or around processes 
(security, privacy, efciency). In this case, the failure has two possi-
ble causes reported in the literature: a faulty confguration of the 
data and of the machine learning model itself, or a faulty translation 
from the intended data and model confguration to the implementa-
tion [49, 89] (e.g., unintentionally transforming the image features 
that represent the inputs to the model into the wrong format). 

We focus on issues of the confguration nature, as they are ar-
guably challenging to handle and novel compared to software engi-
neering, and to existing literature on model failure handling prac-
tices. Confguration issues [67, 132] relate to the design of the 
model architecture, i.e., the choice of architecture itself and its 
hyperparameters. For example, convolutional neural networks – 
CNNs– are often used for image classifcation applications; there 
are several CNN architectures one can choose from, each bearing 
diferent (dis)advantages depending on one’s goals and constraints 
[57]. Other confguration issues relate to the design of the training 
datasets (e.g., too small dataset for the model architecture leading 
to overftting, diferent ways of pre-processing and fltering the 
data might impact diferently the accuracy of a model [92]); or the 
choice of training procedure through which the training dataset is 
used to train the weights of the model architecture (e.g., a number 
of training "tricks" and "tweaks" can signifcantly improve model 
performance [42]). Typical terminology to designate confguration-
bugs include structural bugs (“sub-optimal model structures such 
as the number of hidden layers, the number of neurons”), and train-
ing bugs (“the mis-conducted training process, e.g., using biased 
training inputs”) [49, 76]. 

We investigate whether practitioners do consider these diferent 
kinds of failures and bugs, and more broadly how they judge that 
their process has reached a satisfaction point making the model 
ready for deployment. This is especially important to investigate 



Handling Failures in Computer Vision Models: A Study of Practices, Challenges, and Needs CHI ’23, April 23–28, 2023, Hamburg, Germany 

because the scientifc literature proposes diferent types of failures 
that can often be measured via diferent metrics, yet does not guide 
practitioners in choosing the eventual metric and its value under 
which one would consider the model failing. For instance, in terms 
of correctness, a model can never be completely accurate, and one 
needs to defne in practice under which accuracy metric, threshold, 
and evaluation dataset, they would consider their model failing, 
or ready for deployment. Besides, one might account for broader 
information than solely metrics evaluations. 

2.2 Approaches for failure handling 
As we did not fnd any study on confguration failure handling 
practices for computer vision models (only studies around program 
failures [134], or general machine learning with end-users [31]), 
we focus on failure handling methods and tools. In our study, we 
investigate the process followed by the practitioners, and whether 
they are aware of and use tools or relevant artifacts that are similar 
to those proposed in the literature, as literature assumes these 
could potentially be useful for their processes. In case they are not 
used, this would bring a number of future research opportunities 
to understand precisely the reasons for this, e.g., unawarenesss, 
technical or practical inadaptability, etc. 

End-to-end methods. Methods are developed to support various 
model confguration failure handling activities. To identify failures, 
existing works propose methods to generate test inputs that are 
likely to break a model [132], or to monitor its outputs based on 
human-defned assertions [52]. To identify components of a sys-
tem that might cause model failures, Lourenco et al. [74] develop 
a framework to systematically test diferent versions of the model 
training pipeline. Between the identifcation of failures and their 
bugs, Singla et al. [106] support the human exploration of training 
bugs: they help identify problematic model features by fnding vi-
sual attributes in the data that lead to poor performance. To correct 
failures, Ma et al. [76] automatically identify neurons responsible 
for certain inference errors, and gather relevant training samples 
that should increase the model performance. 

Tools & corresponding artifacts. A few user-interfaces [15, 20, 
95, 126, 131] and other tools [22] have been introduced to support 
the handling of correctness failures (although not necessarily for 
computer vision applications). They rely on displaying or automati-
cally checking diverse artifacts of a machine learning system, that 
might lead to a failure or bug. Around the model structure and 
training, UMLAUT [100] guides developers in proactively identi-
fying failures through warnings about the choice of training and 
model hyperparameters, while Cockpit [99] visualises curves and 
statistics of the trained model, that can indicate bugs in training 
hyperparameters. On the dataset side, ModelTracker [4] visualizes 
interactive distributions of images to facilitate the identifcation 
of bugs in the data, and Deblinder [20] provides tentative explana-
tions for each misclassifcation observed. Symphony [15] allows for 
further data and model analysis through interactions with various 
visual exploration components such as an interactive confusion 
matrix, and various functionalities to process the training data. The 
Amazon SageMaker Debugger [94] monitors a list of artifacts in 
diferent parts of the system design (e.g., poor initialization or too 
small updates for model weights, vanishing or exploding gradients, 
etc.) that help to reason about the existence of potential bugs. 

Explainability. Within our study, we give particular attention to 
the realm of explainability methods, that we assume would be 
one of the prominent tools stemming from research and used in 
practice. Indeed, they represent a consequent amount of research 
papers both in machine learning and human-computer interaction 
conferences, and they are recurrently argued to be useful tools 
for handling model failures (explanations can then be seen as a 
type of artifact). Besides, some studies [16, 44, 47, 113, 127] discuss 
“debugging” and model “validation” as purposes of explainability, 
however almost no work [11, 96] has rigorously verifed such a 
claim. Researchers have conducted user-studies around explana-
tions for certain stakeholders and data types [2, 24, 27, 51, 54, 127], 
but none involves computer vision failures. Explainability methods 
can be categorized in various ways [8, 68, 70, 108], based on their 
scope (e.g., a local explanation [37, 45, 85, 105] explains a prediction 
for a single input data sample, and a global explanation [12, 34, 60] 
explains the overall behavior of a model), medium (e.g., visual or 
textual hints), audience (e.g., developers of a model, model users, 
decision-subjects, etc.), faithfulness (explanations are known not 
to be equally accurate [107]), etc. We study for what purpose and 
to what extent practitioners use explanations for failure handling, 
and which categories of explanations are used. 

2.3 Studies of debugging practices 
Software debugging. Software engineering literature around debug-
ging practices provides an additional lens to analyse our interviews. 
In terms of debugging goals, it describes three levels of precau-
tionary attitude towards failures: reactive correction of program 
implementation bugs when a failure is identifed [7, 40], proactive 
debugging when practitioners look for the existence of bugs while 
no explicit failure manifests, and broader software understanding 
for later on identifying failures [65, 121]. In terms of debugging 
approach, this literature describes a debugging workfow that 
consists of four steps [7, 65, 121] (the usual scientifc approach): 
1) gathering context to generate and formulate hypotheses, 2) in-
strumenting and 3) testing the hypothesis, 4) correcting the initial 
hypothesis, or applying a solution. We investigate further whether 
these objectives and workfow are refected within computer vision 
practices. For instance, while it is well-known that practitioners 
pay attention to explicit correctness failures through the use of 
accuracy metrics [14], it is not as clear whether practitioners might 
proactively investigate less visible failures, such as unknown un-
knowns or problematic features the model might have learned (cf. 
subsection 4.1). 

Machine learning model building. Recent works [6, 18, 20, 30, 
44, 47, 62, 69, 83, 91, 127, 130] investigate practices of developers 
in diferent steps of the machine learning or data science lifecy-
cles. Yet, they primarily focus on machine learning model building, 
but not on failure handling. Besides our method inspired by these 
works, relevant discussion points are outlined, such as the types of 
stakeholders involved in the lifecycle [47, 130] and the challenges 
of the communication between them [20, 62, 91], or the complex-
ity of evaluating models, e.g., for unfairness [30]. We investigate 
specifcally (confguration-type) failure handling during model de-
velopment, and specifcally for computer vision applications, as this 
is a type of model, failure, and lifecycle stage that might present 



CHI ’23, April 23–28, 2023, Hamburg, Germany Balayn, et al. 

Adopting mild precautionary attitude towards failures

Reactive, proactive, software understanding

Preventing output and inference process failures

Process: Security, privacy, efficiency
Output: Correctness, fairness, interpretability, robustness

Diagnosing & mitigating all types of bugs

Structural (architecture), training (data, hyperparameters)

Adoption of the software debugging workflow

1) Hypothesis formulation, 2) hypothesis instrumentation, 3) 
hypothesis testing, 4) hypothesis correction or solution application

Investigation of various artifacts as signals for failures & bugs

Training curves, performance metrics, heuristics, 
data statistics, data samples, inferences, explanations

Associations / contrasts / causality
Scope: local / global

In-/out- of domain
Static / interactive

Complexity
Faithfulness

Use of different explanation typesUse of methods & tools stemming from research outputs

End-to-end methods, user-interfaces, and other tools

RQ1: Which goals do practitioners aim at 
fulfilling before deploying their models?

RQ2: How do practitioners proceed 
in order to make sure their models fulfil their goals?

Reaching satisfaction point based on failure rates

Figure 1: Summary of the research questions, and of the related insights from literature used as initial guides for the exploration 
of the research questions, and as working assumptions to assess. Each working assumption (bold text in the light blue boxes) 
involves one major concept of the debugging literature (in italic) and its diferent instances (plain text in the white boxes), and 
is formulated solely based on the assumptions the literature seems to implicitly make about practices. 

particular challenges and methods, that have not been investigated 
yet. For instance, while research has focused on the behavior of 
machine learning models based on tabular data [54], that can be 
assumed to be relatively-easy to interpret thanks to the directly in-
terpretable features these models are trained on, it remains unclear 
to what extent and how the behavior of computer vision models 
is understood and its validity checked, as one cannot easily make 
sense of the model features (raw pixels). 

3 RESEARCH METHOD 
We conduct our study in three steps. We study literature to under-
stand the state-of-the-art research around computer vision failure 
handling (section 2). This provides us with working assumptions 
related to our research questions, whose validity in practice is to 
evaluate. We then perform semi-structured interviews to collect 
practices, test the assumptions, and identify broader themes that 
answer our research questions. Finally, we analyse the results to 
synthesize a failure handling framework, and to surface limitations 
in practices, and research opportunities. 

3.1 Semi-structured interview participants 
We recruited our participants through our network and searches 
on professional social networks, and by snowball sampling strategy. 
Their experiences span a wide variety of felds, from automated 
diagnostics based on X-Ray images, to the automated surveillance 
of luggage at the airport, to applications in banking and business 
analytics, and automatic fraud detection with natural language 
processing. They have at least three years of experience within 
industry or public organizations, e.g., hospitals, (17 diferent ones 
in total) currently working as data scientists, data engineers, or 
software engineers. We made sure that they all have experience 
with machine learning classifcation tasks, for them to understand 
the basic concepts around model failures. In total, we recruited 18 
participants (13 males, 5 females), and categorized them based on 
their level of experience with computer vision (CV). Low-CV expe-
rience participants (4) have developed a CV model only a few times; 
mid-CV experience participants (7) have less than 4 years of model 
development experience; and high-CV experience participants (7) 

have more. We span such diversity of experiences not to bias our 
study towards highly-experienced practitioners, as the level of ex-
perience is one of the factors impacting failure handling practices. 
Before each interview, we asked the participant for agreement on 
recording the interview. We then transcribed the recordings into 
anonymized transcripts, and destroyed the recordings. The inter-
view process has been approved by the ethics committee of our 
institution. No fnancial compensation was given to the participants, 
who were intrinsically motivated to participate to our work. 

3.2 Interview guide 
We performed semi-structured interviews that lasted around one 
hour each, and went as follows. Step 1. After briefy introducing 
our project, we enquired about the machine learning-related back-
ground of the participants. Step 2. Then, we presented the partici-
pants with a design brief of a failure handling scenario, and asked 
them to describe out loud the approach they would follow to answer 
the brief (RQ2), and the reasons for this method, as well as how 
they would decide the model is ready for deployment (RQ1). We 
further questioned the reasons for focusing on certain types of bugs 
and failures. Step 3. At the end, we looked back at their workfow, 
and questioned assumptions and gaps that had not been discussed. 
Especially, we questioned neglected steps of the debugging process, 
reasons for using failure handling tools, and explainability methods. 
We also showed slides with examples of model explanations (cf. 
Figure 4) to elicit further uses of explainability, e.g., saliency maps 
[105], SECA [12], TCAV [60]. We also prompted the participants for 
additional remarks, e.g., challenges they have to overcome, imagi-
nary tools that could improve their process. The design brief and 
questions were fnalised after performing two pilot studies. These 
studies informed us on how well the participants could relate to 
our brief and the way to present it in a concise manner, on the 
type of information about the machine learning model (e.g., data 
processing methods, previous experiments performed, etc.) the par-
ticipants expect to know, and on questions useful to prompt the 
participants about their workfows. 

3.2.1 Design brief. Our design brief (described in Figure 2) presents 
a scenario where one is developing a model, and has to decide 



Handling Failures in Computer Vision Models: A Study of Practices, Challenges, and Needs CHI ’23, April 23–28, 2023, Hamburg, Germany 

whether it can be deployed or whether failures should frst be 
handled3. Our brief is inspired from prior studies [28, 100] on the 
development and debugging of machine learning models, where the 
researchers build a simple model in which they inject various kinds 
of bugs, that the study participants are tasked to explore. The brief 
is typical and simple enough for participants to refect on their own 
practices without envisioning entirely new workfows. Choosing 
a scene classifcation model allows for an easy discussion without 
requiring domain expertise. The brief is kept vague voluntarily to 
investigate what practitioners naturally do when asked to decide 
whether a model is ready for deployment, or to “debug” it for po-
tential failures. This brief conveniently prompts for both reactive 
and proactive “debugging”. Next to the brief, we presented the par-
ticipants with a blank template (see Figure 5) to trigger them to 
think about their workfow. We also showed them example dataset 
images (e.g., images in Figure 2), along the corresponding model 
predictions and ground truth. We describe in the following how 
these images are created. 

3.2.2 Machine learning model. The dataset images are selected 
with the idea of simulating explicit (low accuracy) and implicit 
(e.g., irrelevant model features) failures and bugs. While no prior 
study has focused extensively on diferent types of confguration 
failures and bugs, we select the kinds of bugs to inject into the 
model based on the gathered scientifc literature (section 2), and 
follow proposed procedures for dataset skewing to inject these bugs. 
Feature bugs are introduced by simulating a) potential data shifts 
between training and deployment data [61], and b) statistical biases 
in the data [11, 12, 28, 60, 103]. For a), we hint in the brief and images 
shown at a distribution shift between the training dataset (fancy-
looking scenes, high-resolution images) that is not realistic for the 
target application, and the deployment data (pictures of simpler 
rooms taken from simple cameras). During the sessions, we only 
show training dataset images, but insist on the fact that they were 
collected from the Web (a Web query retrieves higher-resolution, 
professional images), and that the deployment data would come 
from daily-life pictures taken by the users of the system, in order 
to observe whether the participants refect on the content of the 
datasets and the distribution shifts. For b), content biases are both 
around class-specifc features (e.g., all living room images with a 
television and none of the other classes with one in training, and 
changing this in deployment), and less-specifc features (e.g., cats 
present in all the pictures of certain classes). Other typical errors 
are also included, e.g., living room images wrongly predicted as 
bedroom all contain a bed-like sofa. This allows to investigate the 
awareness of the practitioners towards a diversity of issues. 

3.3 Analysis of the results 
We analyse the results of the interviews by coding the answers in 
a mix of inductive and deductive thematic analysis following the 
process outlined by Braun and Clark [19]. We defned initial cate-
gories of codes based on the structure of the interviews, for instance 
the background of the participant, on our working assumptions 

3Scene classifcation is a common task in the computer vision literature with appli-
cation to accessibility [1, 25, 39, 50, 117], although we recognize the existence of a 
multitude of assistive tools for visually-impaired individuals beyond vision-based 
techniques. 

and additional information related to the research questions that 
appeared during the interviews, and on our broader readings of the 
literature, e.g., stakeholders. Within each category, subcategories of 
codes are annotated inductively by identifying the response decli-
nations relative to each interviewee (e.g., not considering structural 
bugs), and grouped into broader meaningful themes (e.g., limited 
attention towards specifc bug categories). For that, the two inter-
viewers independently coded the 10 frst interviews, and discussed 
to reconcile the codes (e.g., choice of more or less fne-grained 
codes), and refne them. They then went on to re-code all the in-
terviews, and discussed new emerging codes. Overall, we created 
the codes to be all-inclusive, not excluding any part of the response 
declinations, and mutually exclusive, as each example could not 
fall into two declinations of the same category. Multiple categories 
of codes were applied simultaneously to show the chronology and 
co-occurrence of process steps, goals, artifacts, and stakeholders. 
A total of 197 codes are identifed, clustered into 30 groups, that 
are themselves grouped into 14 themes. The resulting codes are 
analysed with a focus on co-occurrence within steps, main failure 
handling concepts, and in relation to specifc typologies of users. 

4 RESULTS 
In this section, we describe the themes resulting from our inter-
views, that we organize into four macro-themes (each subsection) 
in relation to the two research questions. We start with the goals of 
the participants in terms of failures and more broadly how they de-
cide the model is ready for deployment (RQ1), and then describe the 
workfows they followed and artifacts they used to address these 
failures, with a specifc focus on the use of explainability methods 
(RQ2). We mark with an asterisk * the themes that (in)validate 
working assumptions from section 2. 

4.1 RQ1 - goals: Disparities in identifed failures 
and bugs 

Overall, our participants focused on a few types of machine learning 
failures, with various, arbitrary, subjective, qualitative judgements 
about their importance. Besides, they did not all choose to tackle 
the same instances of failures within each failure category, showing 
the existence of relevant sub-types that we outline below. 

4.1.1 * Failures: Model correctness. As found in scientifc publica-
tions, the primary focus was on correctness of the inferences, as 
this is the principal evaluation of the quality of the models. For 
instance, P3 high-CV4 started by searching where the model makes 
wrong predictions “The confusion matrix is where I start. This can 
give an idea of where the network might fail.” Diferences appeared 
for the exact failures to handle. Most participants focused on high-
rate failures (P10 low-CV) “I’m looking at this confusion matrix and 
think about which class is the most error-prone.” Instead, two experi-
enced participants started with rare issues as these pinpoint hard 
challenges for the model, and solving these issues could solve the 
high-rate ones (P16 high-CV) “I look at the rarest events, where the 
most information lies. It is handy because you can analyze everything 
going through the images.” A last participant saw both frequent and 

4We denote participants by “PX k-CV” with X the index of the participant and k the 
level of experience of the participant with computer vision. 



CHI ’23, April 23–28, 2023, Hamburg, Germany Balayn, et al. 

Context:
A company wants to develop a system to support blind people in understanding the spaces in which they live.
An intern has already developed a deep learning model for scene classification (bathroom, bedroom, dining
room, kitchen, living room). For this, he created a dataset by scraping images from the Web using Google
search engine, and applying some typical data augmentation methods (e.g. flipping and cropping images,
brightness transformation). He then fine-tuned a ResNet model pre-trained on ImageNet on this data.

Prediction: kitchen / GT: kitchen Prediction: kitchen / GT: kitchen Prediction: dining room / GT: kitchen

Prediction: dining room / GT: dining room Prediction: dining room / GT: dining room Prediction: kitchen / GT: dining room

Prediction: living room / GT: living room Prediction: bedroom / GT: living roomPrediction: living room / GT: living room

Prediction: bedroom / GT: bedroom Prediction: bedroom / GT: bedroom Prediction: living room / GT: bedroom

Your task:
Unfortunately, his internship has ended. The company asks you to take over his model, and
investigate whether the model can be deployed, or whether it needs improvement. In this case,
what issues should be improved on, and how? To start up your analysis, it is providing you
already with the test accuracy, the confusion matrix of the model, and examples of test data
(below).

Figure 2: Top: our design brief, inspired by the multitude of computer vision works on scene recognition, as support for 
visually-impaired individuals to create mental maps of their environment [1, 25, 39, 50, 117]. Bottom: example images of four 
dataset classes shown to the participants, next to their ground truth (GT) and the class inferred by the model (prediction). 
These examples indicate feature errors in the model. For instance, among all the kitchen images, only the one which received 
an incorrect prediction contains stools. This hints at the potential use by the model of this concept with a higher weight than 
for more relevant kitchen features such as the oven. 

rare issues as fundamental (P17 mid-CV) “I focus on the extremes, 
the very good ones and the very bad ones. It helps me to fnd features 
of interest.” 

4.1.2 * Failures: Other failures. Other types of output or process 
failures (e.g., model robustness to natural perturbations or adver-
sarial attacks, privacy, unfairness, unknown unknowns), although 
discussed in the literature, were mentioned by just a few practition-
ers. For instance, only two high-CV participants were concerned 
with the robustness of the model to natural perturbations, i.e., dis-
tribution shifts occurring unintentionally in the data [61] (e.g., the 
brightness of the training images is much higher than the one of 
deployment images, where users of the system might not be able to 
ensure a level of brightness for the pictures they take) (P4 high-CV) 
“I will fnd another dataset to check the model performance again. 
These images are always very bright. But this might not be the case in 
practice. It could be like using the phone to take the images. Also, if the 
weather was cloudy, the images would be very dark.”, (P9 high-CV) 
“The data in deployment (houses of people) may be diferent from the 
ones in your training dataset, probably from catalogs. So I would not 
expect the model to work well.” Some failures were also considered 
without explicit naming with the "technical" term, such as for un-
fairness discussed in the following terms by P13 high-CV “What is 
called the dining room and what is called the kitchen is person and 
culture dependent. So, whether a prediction is wrong, that is heavily 
dependent on what use-case we are talking about”5. 

5While most examples of algorithmic unfairness from the outputs of a machine learning 
model consider disparities between errors rates for diferent categories of populations 
[120], other works [29, 101, 123] have considered broader algorithmic harms, where 
the model would not perform equally well on a same type of object or scene that 
presents diferent representations across geographical locations or cultures. Hence, we 
(and a few of the practitioners) consider potential unfairness issues in our scenario. 

Other practitioners did not envision the existence of these fail-
ures, e.g., only six participants were concerned with unknown 
unknowns that can be seen as a subset of correctness failures (data 
samples for which a model makes wrong predictions while display-
ing a high confdence, hence particularly challenging to identify 
in production) [9, 72, 137]. A last set of practitioners considered 
them unimportant (e.g., several practitioners mentioned not car-
ing for distribution shifts as they would anyway try to obtain a 
"representative" training dataset); or irrelevant for this use-case 
(e.g., P8 high-CV said unfairness issues are not a concern, yet this 
is questionable as one could imagine that the diferent scenes the 
model should recognize would look diferent in diferent parts of 
the world [101]). 

4.1.3 Failures: Model features. While this is absent from the ma-
chine learning testing literature, some participants were also con-
cerned with the meaningfulness of the features learned by the 
model. They identifed feature failures by scrutinizing specifc sam-
ples (see subsubsection 4.3.4) (P4 high-CV) “The overall test accuracy 
is 80%. This accuracy for the initial model is fne. Next, I use a visual-
ization method like T-SNE to see if this model truly learned something.” 
They talked about failures when the model did not seem to have 
learned any relevant feature looking at the overall shape of a few 
saliency maps, or when the model did not display specifc, expected 
features for specifc samples (e.g., the model classifes correctly an 
image as a kitchen, but does not seem to use the presence of a 
fridge or oven for that, while a human would have looked at these 
elements). This shows the duality of model features, seen either 
as goals here or as means to explain and solve correctness failures 
(see subsection 4.4). 



Handling Failures in Computer Vision Models: A Study of Practices, Challenges, and Needs CHI ’23, April 23–28, 2023, Hamburg, Germany 

Other participants explained not knowing or recalling that the 
model can reach correct inferences using questionable features. 
They would however handle the features after the correctness fail-
ures considered more urgent (P14 high-CV) “That’s a second step. 
I focus at the beginning on the errors. When I understand globally 
why and how, then I go through the correct answers. And I investigate 
if the model understood the classes.” A few participants also never 
handle feature failures, arguing that handling correctness failures 
automatically solves the relevant feature issues. They frst evalu-
ate the model with new samples representative of the deployment 
data, and if the error rates are higher there, the model might use 
wrong features. Otherwise, irrelevant features are not considered 
errors: while not relevant for humans, they are acceptable as the 
model makes correct inferences. This approach does not always 
hold depending on the use-case requirements, and the feasibility 
of collecting a representative dataset (e.g., due to contractual or 
privacy issues). 

4.1.4 * Precautionary atitude: Diferent atitudes across levels of 
experience. We note a disparity between participants in their level 
of precaution towards failures. Participants with low-CV experi-
ence spent more time on general understanding as they did not 
know where to focus. Later, they focused on reactive debugging 
(explicit correctness failure) when choosing specifc correctness 
errors. Proactive debugging as a workfow objective, i.e., the idea of 
searching proactively for non-obvious model failures, such as the 
use of wrong features by the model, was not a familiar concept to 
the participants, who did not envision the existence of such implicit 
failures. Proactive debugging is especially useful given that the 
distribution shifts cannot lead to explicit failures when one evalu-
ates their model on an evaluation dataset taken from the same data 
distribution as the training dataset: one could proactively refect on 
the eventual distribution shift and the type of additional training 
data that could be needed to solve it. Participants with mid-CV expe-
rience focused primarily on obvious manifestations of correctness 
failures, and experts discussed all goals. However, 75% of these mid-
and high- experience participants only discussed proactive debug-
ging when prompted. This disparity is concerning considering that 
our design brief was implying a strong distribution shift (the fact 
that the training data were collected from the Web but the deploy-
ment data would be pictures taken by visually-impaired individuals 
in everyday environments) calling for proactive debugging. 

4.1.5 * Bugs: Refinement of bug categorizations. Overall, the bugs 
addressed by practitioners were both structural and training ones. 
Yet, similarly to failures, we observed diferences in the bugs iden-
tifed by practitioners of diferent expertise, diferences that we 
discuss further when explaining the specifc failure handling work-
fows. 

Coding the interviews, especially the goals of the participants, 
and the explanations they were providing for identifed failures, 
led us to propose a more fne-grained categorization of these latter 
bugs. We distinguish between dataset bugs further sub-divided into 
data-statistics bugs (e.g. distribution of data samples across classes) 
and data-content bugs (e.g. distribution of specifc visual elements 
appearing across samples and classes), data-engineering bugs (e.g. 
how the data samples are scaled, fltered, augmented, labeled, etc.), 
and training-parameter bugs (e.g. loss function, batch size, etc.). 

This distinction should allow practitioners to be more structured 
in their reasoning about bugs, but is also useful for researchers to 
develop bug-specifc debugging methods. For instance, to the best 
of our knowledge, data engineering bugs are not discussed in the 
machine learning literature6 while addressing them early could 
avoid retraining models. 

4.2 RQ1 - goals: Disagreement on the 
satisfaction point for deployment 

While the participants were focusing on diverse types of failures 
along their process, we explicitly asked them to clarify how they 
would judge the model ready for deployment. We discuss their 
process here. 

4.2.1 Ambiguity. The point of satisfaction at which the partici-
pants stop their process appeared ambiguous. 

Trade-ofs between failures. Along their process, the participants 
mentioned various types of failures with minimum requirements 
on the absence of certain failures (e.g., overftting was unaccept-
able for P8 high-CV), and needed trade-ofs across the diferent 
categories. For instance, P13 mid-CV did not consider meaningful 
features (feature failures) as important as long as the accuracy is 
high (correctness failures) “The accuracy is what counts the most for 
lots of my projects. If something hits 99.9% accuracy, I don’t look at 
the saliency maps anymore.” (P10 low-CV) “We cannot even inter-
pret how our brain works. So why we are so focused on interpreting 
how the model works?” These trade-ofs were also made for specifc 
instances of failures within a category, as discussed in subsubsec-
tion 4.1.1. Yet, none of the participants expressed a precise way to 
judge how severe each failure is, and to establish when the trade-ofs 
are acceptable. 

* Disconnect between failures and metrics. The participants also 
based their decision on the values of certain correctness-related 
performance metrics. A direct mapping between such metrics and 
the failures implicitly appeared from the low-CV participants, as 
they considered correcting failures as the mean to their goal (in-
creasing performance metrics). Instead, for participants with more 
expertise, the relation between failures and metrics was perceived 
as less clear. 

Expert participants were cognizant of the limitations of using 
metrics, and used them as a preliminary indication of the model’s 
quality, before observing inferences on individual samples. This 
was the case a) when the test dataset is erroneous (e.g., wrong label) 
or ambiguous leading to over- or under-estimating the model “If 
you’re talking about hard labels, there is an error. But if I understand 
why the network classifes this kitchen as a dining room, I no longer 
consider it an error.” P3 high-CV; b) when a mistake could also be 
made by a human (P7 mid-CV) “it is confusing even for humans to 
classify these images. So I tolerate some error.” ; c) when the mistake 
is rare (P14 high-CV) “it’s not a fundamental but understandable 
mistake. I will be OK with it. This kind of bathroom, there are one 
out of 1,000,000.” ; d) when the error has a high confdence (a few 
expert participants used the model confdence to judge an error’s 
gravity (P14 high-CV) “I check the probabilities that the model gives 
6Possibly because data engineering typically belongs to the data management literature, 
inadequately disconnected [10, 38] from the machine learning one. 



CHI ’23, April 23–28, 2023, Hamburg, Germany Balayn, et al. 

to see if it’s really wrong or a bit wrong. If it’s 60% dining room and 
39% kitchen, then I say OK.” ; or e) in cases when an expert would 
judge the error acceptable7. 

4.2.2 * Variability in choices around metrics. The way correctness 
metrics and the threshold of acceptability were selected greatly 
varied across participants. Some participants made an intuitive 
choice (P11 low-CV) “My goal is to have as much accuracy that I 
can get.” Or they deferred the choice to domain experts or model 
requesters, judged more qualifed or responsible (P14 high-CV) 
“What would the business be happy with? As a system that they would 
put into production, there is a defnition of good enough.” 

Others emphasized that errors are not avoidable, and adopted a 
nuanced, class-based evaluation, accepting errors on certain classes 
to balance correctness for other classes (P7 mid-CV) “One cannot 
be perfect in all cases. Let’s say you are more interested in classifying 
images about kitchens. If you confuse the dining room with the liv-
ing room, then you are okay. Then, you reach high recall classifying 
kitchens. You would be satisfed.” Two thirds of these participants 
recognized that diferent use-cases require emphasis on diferent 
metrics (P10 high-CV) “It depends on the application. If I want as 
many kitchens as possible, then recall is more important. But for au-
tonomous cars, recall is not as important as precision.” As for the 
choice of threshold, some practitioners proposed absolute numbers 
based on the characteristics of the task and their background knowl-
edge (P4 high-CV) “The accuracy should be higher than 95% because 
this model is for the blind people so safety is the top priority.” Others 
chose based on the performance of existing baseline models (P9 
high-CV) “I don’t know how hard this task is, so I don’t know what 
accuracies can be considered acceptable.”, or on human disagreement 
(P7 mid-CV) “When you know whether people would agree, you know 
the human accuracy. Then, you would not beat yourself up if your 
model doesn’t reach an accuracy higher than the human one”. 

4.3 RQ2 - process: Drawing the failure handling 
workfow 

4.3.1 * A workflow simpler than for traditional sofware systems. 
The participants followed a trial-and-error workfow similar to the 
one for debugging traditional software systems. However, they 
often simplifed the workfow, and typically did not test their hy-
potheses rigorously before acting, or even did not formulate specifc 
hypotheses before experimenting on diferent models. As the soft-
ware debugging literature does not directly apply to each step of 
the workfow within the machine learning context, in the following 
subsections, we describe further how our participants conducted 
each step —when they did conduct it— (we detail bug correction 
strategies in Appendix A.2.1). 

4.3.2 Identifying a model failure. Depending on their type of pre-
cautionary attitude, participants did not adopt the same approach to 
start tackling a failure. Reactive debugging starts by exploring the 
confusion matrix and identifying areas with low or high error rates 
(subsection 4.1) (P3 high-CV) “The confusion matrix is where I start 
from. [..] Also regarding class overlap, I would expect that classes that 
are closer, are also closer together in the network embedding space, 

7a) to d) can be questionable when the model has high-stakes. 

and that it would lead to increased errors.” Then, the workfows 
described next are employed. 

Proactive debugging follows the same workfows, the diference 
being that the failure frst needs to be detected. Participants inter-
ested in feature failures scrutinized the features through saliency 
maps to refect on their validity. To fnd failures due to distribution 
shifts, they compared the training dataset to imaginary deployment 
data ((P9 high-CV) “The domain of the dataset where you train the 
model can be distant from the house the blind person enters, so I’m not 
sure if solving the current model issues would solve the problem of the 
blind person.” ), or when feasible searched for more diverse images, 
to identify potential limitations in what the model learned. Often, 
the participants did not purposefully identify these implicit failures. 
They discovered them serendipitously during reactive debugging, 
when scrutinizing samples or features with incorrect predictions. 

4.3.3 Gathering context and formulating hypotheses for non-data 
bugs. Overall, the participants tackled the gathering of context and 
the formulation of hypotheses around bugs diferently based on 
their experience with computer vision. 

Skewed sets of envisioned bugs. Experts participants took a se-
quential, bug-elimination approach. They always started with struc-
tural and data-statistics bugs, later on turning to data-engineering 
or training-parameter bugs, and to dataset-content bugs as a last 
resort. They took this approach for practical reasons. (P8 high-CV) 
“Looking at the images is the last step. If the training is poor, there 
are things you can do before. For example, dining room and kitchen 
might share many pieces of furniture and because of that, it’s harder 
to distinguish between them. This, I can assume without looking at 
the pictures, from prior knowledge.” They also assumed structural 
bugs to be limiting factors for a model (P14 high-CV) “When I reach 
some performance [with experimentations on the model], the main 
problem is not in the architecture: the model is learning but in a bad 
way. Then, I check the augmentation of images, or try other datasets.” 

In the rest of this subsubsection, we describe the way these high-
CV participants investigated the frst batch of bugs (non-data bugs). 
Less-expert participants took a less structured approach, and fo-
cused on the bugs they were most familiar with, essentially dataset 
ones (described in the next subsection) (P6 low-CV) “hopefully if it 
has stronger data, it can learn something deeper. And if not, the model 
itself should change, but I’m not so familiar with CV and how you can 
improve it from the model perspective.” They sometimes wrongly as-
sumed that mitigating dataset bugs can serve to correct all failures 
forgetting to account for the bias-variance trade-of, e.g., if more 
training data is added, the model hyperparameters might not be 
adapted to the dataset anymore, leading to underftting (P5 low-CV) 
“My frst step would be to pick one angle: either the data (because the 
model performs only as good as the data it was trained on), or the 
system parameters (some learning rate or model hyperparameters).” 

Truncated and oriented context and hypotheses. To deal with struc-
tural and training-parameter bugs, expert participants tried multiple 
models with diferent architectures, training hyperparameters, and 
data processing (P3 high-CV) “Going a step back, I would employ 
augmentation techniques to see if I can get higher performance, and I 
would use a method to further regularize the model to make sure that 
it’s not falling into the overftting regime.”, (P3 high-CV) “I suppose 



Handling Failures in Computer Vision Models: A Study of Practices, Challenges, and Needs CHI ’23, April 23–28, 2023, Hamburg, Germany 

that the input has been sufciently preprocessed? I would normalize, 
typically by the max value if we are talking about standard RGB 
images. I would also standardize the data, so force inputs to have zero 
mean and unit variance.” until they reached the “best” model among 
these tests (P14 high-CV) “There is something that I do dumbly at 
the beginning: I try diferent architectures to see if there is a problem 
of this kind. I’m not sure that the architecture is the main issue. But it 
can help to add more dropout, or change the architecture, especially 
when I have a problem of overftting.” Practitioners have learned 
through experience typical “good” hyperparameters that they test 
in priority (P3 high-CV) “One thing that could lead to increase per-
formance is to force those classes to be more separated by employing 
another form of loss, like the contrastive loss.” This process truncates 
the software debugging workfow as it directly consists in testing 
various potential “solutions” to improve the model performance, 
solely with an implicit hypothesis (non-data bugs: the model hyper-
parameters have not been explored) and no gathering of context 
for hypothesis formulation. 

* Supporting artifacts. During this process, participants men-
tioned monitoring a subset of the artifacts discussed in the litera-
ture such as learning curves, and overall shapes of saliency maps 
that might indicate model overftting, to orient further the search 
of the “best” model (P3 high-CV) “I will see some training curves. 
The optimal case would be that the further the training process is, the 
lower the training and validation losses go. This means that the model 
is learning something without sign of overftting.”, (P9 high-CV) “I 
would see how the training curves look like with the Tensorboard, to 
see if the model is overftting on the training set. If that’s the case, 
you can add some regularization or augment the training set.” We 
did not delve deeper into these bugs during the interviews, as only 
expert participants discussed them, and existing research primarily 
provides support with similar artifacts for these bugs. 

4.3.4 Gathering context and formulating hypotheses for data bugs. 

Artifacts as context. Data bugs were typically connected to cor-
rectness, robustness, or feature failures. They were specifed by 
investigating test set images and/or saliency maps for recurring vi-
sual elements the model might have learned as features, rare visual 
elements that might confuse the model, or signs of problematic data 
processing (image size, resolution, unrealistic data augmentation). 
The link to the activities that led to such bugs was then made, and 
bug correction strategies were devised. For that, participants used 
diferent sets of images. a) The images corresponding to a confusion 
matrix cell (P14 high-CV) “There are a lot of false positives of dining 
room and kitchen. Let’s see in the images what kind of situations 
cause these mistakes. I would plot heatmaps. Probably it would put 
the salient part here, and that’s the problem.” b) The images that 
received correct inferences for the classes at stake, searching for 
common concepts with the wrongly predicted images (P7 mid-CV) 
“I focus on cases where the model made a mistake and the ones where 
the model is correct. I fgure out the pattern that was correctly de-
tected.” c) One participant looked at a random sampling of images 
of a class to understand how diverse the dataset is, and compared 
it to mis-classifed images of the class (P17 mid-CV) “My goal is 
to understand how diverse are the images of kitchen visually and 

how well they capture the essence of a kitchen. There might be some 
similarity metrics to use.” 

Diversity of hypotheses. Participants formulated fve types of hy-
pothesis (cf. Table 2) around model features and data content, using 
the above artifacts and their background knowledge (P2 high-CV) 
“I would compare a true positive and a false positive from these classes, 
apply some domain knowledge, and see if there are elements which 
should be used for a specifc class.” The frst one was however not 
formulated by participants with low-CV experience as they did 
not think features can be wrong, or did not know how to iden-
tify features. For all these hypotheses, the notion of granularity 
is important, i.e., diferent levels of description of the visual ele-
ments a model has learned. For instance, the participants often 
mentioned the style of an object the model is expected to use for 
classifying an image (P14 high-CV) “I make an assumption by trying 
to understand why it makes these mistakes. This bed is not classic, so 
maybe the dataset needs more not-classic beds.”, parts of an object, 
and remarkable textures and colors of these objects. 

4.3.5 Instrumenting the hypothesis. Most participants did not in-
strument and test their hypotheses. Instead, other proxy methods 
were employed when feasible. 
• Artifacts for hypothesis invalidation. Between the observation of 
a failure (e.g., false negatives for a certain class) and the identi-
fcation of its potential causes i.e., the bugs (e.g., overftting on 
other classes) and remedy (e.g., decreasing the number of lay-
ers), participants often used intermediate artifacts (e.g., training 
curves, data statistics) for context gathering. These artifacts were 
serving both to search for the potential bug, and to quickly check 
that no other information about the model would invalidate their 
hypotheses. 

• Correction as instrumentation. Instrumenting the hypotheses was 
often about making a correction and checking for a positive 
change in the model, followed by further fne-tuning the correc-
tion (see section 4.3.3). 

• Hypothesis testing. Only three participants tested their hypotheses 
with other instruments, even though it is probably more efcient 
than retraining a model for each hypothesis. They searched for 
data samples or transformed available samples to present only 
the features (or anything but the features) of interest, and check 
whether the inference of the model matches expectations (P17 
mid-CV) “I take a perturbation approach. Once you see commonal-
ities, let’s say "white", you mask out the non-white thing, and see 
if the probability is increasing. If so, I may be looking in the right 
direction and need more non-white kitchens.” Such activity needs 
more support as participants argued it is challenging. 

4.4 RQ2 - process: Explainability for failure 
handling 

4.4.1 * Narrow subset of explanations. Our participants typically 
did not mention any tool or method inspired from the ones we 
identifed in the literature. Our participants only mentioned using 
saliency maps among other explainability methods, except P4 high-
CV who also mentioned T-SNE [119] for faster image exploration 
through image clustering. A few participants without experience 
with explainability described the desire to have explanations that 



CHI ’23, April 23–28, 2023, Hamburg, Germany Balayn, et al. 

Table 2: The diverse hypotheses formulated by the participants around model features and data content. 

Participants’ hypothesis Explanation 

Irrelevant features (P1 mid-CV) “The model might learn wrong rules, like the presence of a sink to predict a living room”, (P7 mid-CV) 
“Once we know the wrong patterns the model learned, we add more examples that refect the wrong behavior in the 
training data for the model to learn the extreme cases.” 

Incomplete features The model has not learned enough features to correctly make inferences for certain images. Incomplete and irrelevant 
features are always mapped to dataset biases (P17 mid-CV) “What comes into my mind is rules, but it will defeat the 
purpose of having machine learning. I model what’s a kitchen in a symbolic fashion like "needs an oven, stove". And then 
I make sure that the data set is refecting those adequately.” 

Over- or under-emphasized fea- (P7 mid-CV) “The frst step is to use an interpretability method to detect what the model has learned. For example, when 
tures the model classifes kitchens, it does not look for a sink or cooking stove. It looks for under-relevant patterns like tables 

that can be used for other classifcations like dining rooms.” 

Unknown unknowns Three participants related the incorrect or incomplete features to unknown unknowns (P7 mid-CV) “knowing what to 
expect from the model and what it learns allows to identify unknown unknowns”, (P12 high-CV) “A blind-spot happens 
because of systematic data biases. You have to see how the data distribution looks like to fgure out whether there is a 
blind spot. You should use crowdsourcing because automatic methods are not reliable.” 

Absence (presence) of (ir)relevant This makes the model confuse the ground truth for another class (e.g., the lack of a bed in a bedroom makes it being 
elements in images classifed as a kitchen) (P7 mid-CV) “This image is missing hot spots.” 

correspond to saliency maps, without being aware of their exis-
tence. A few participants wished for other types of explanations. 
For instance, they would like to automatically obtain statistical sum-
maries of visual elements across images to fasten their hypothesis 
formulation and validation process (P6 low-CV) “I want to see the 
entire distribution of objects, and subdivide these 25 mislabeled dining 
rooms into smaller segments that I can understand, like photographs 
of dining rooms with the kitchen in the background.”. They also in-
sisted on getting textual explanations besides visual ones to query 
whether the model has learned expected or known problematic fea-
tures (e.g., a participant mentioned that the models shouldn’t pick 
up on potential pace-makers), or to quickly explore the training 
data distribution. 

4.4.2 Diverse purposes for explainability. From the interviews, we 
also found out that the use of explainability methods is not stan-
dardized. The purpose for and way of using the saliency maps (the 
primary explainability method that was employed) varied across 
participants. Overall, we identify four uses; non-expert participants 
only focusing on the frst one. 

• Artifact for data content or data engineering bugs: Saliency maps 
were used to identify problematic features, and to further investi-
gate potential solutions for correctness failures. This was done by 
scrutinizing the image patches highlighted by saliency maps, and 
refecting on the points in Table 2. Certain participants disagreed 
that it is feasible to look into the actual data content because it 
is hard to defne what one would expect a model to pick-up on 
(P4 high-CV) “In a bathroom you expect the bath to be highlighted. 
You expect the dining room table in the dining room, but in the 
kitchen there can also be a table, so it’s not convenient.” 

• Artifact for bias-variance trade-of : Saliency maps were used to 
make sure the model learned something meaningful, and is not 
over- or under-ftting. For that, participants analysed the shapes 
of the maps across images, and their coverage of pixels refecting 
human-interpretable concepts (P4 high-CV) “I frst see if this 

model truly learned something (the objects, not some nonsense). 
Saliency maps are really tiny: it over-trains. It’s about the general 
aspect of the map, more than what it’s highlighting.” This was used 
by expert participants who have formed over time an idea of a 
meaningful saliency map, and how it relates to model failures 
(e.g., overftting). 

• Final verifcation: Certain participants used saliency maps as a 
last step to quickly validate the relevance (P15 high-CV) “I frst 
fx my model, then my data. Once I’m sure this is the model I’m 
going to use, I check that images are analyzed fairly according to 
what we expect. I see the actual visual clues that the computer bases 
its decisions on.” and possibly fairness of the model features in a 
random subset of saliency maps (P9 high-CV) “It is very important 
if you’re afraid the model is biased towards categories with ethical 
implications.” 

• Stakeholder communication: Most participants used saliency maps 
for communicating about the model performance (P9 high-CV) 
“You measure the success from the accuracy. If successful, you un-
derstand what the model is looking at with explainability. It is nice 
to explain to your clients why the model works and what it looks.” 

5 DISCUSSION & FUTURE WORK 
Our interviews brought new insights into computer vision model 
failure handling practices (summarized in Table 3), that are corrob-
orated by the few HCI studies that compare non-machine learning 
practitioners with machine learning experts [128]. Instead of rely-
ing on the (potentially useful) theory, methods, and tools published 
in literature, practitioners develop an error-prone workfow based 
on their prior experiences with machine learning, and they do not 
systematically address every machine learning failure and bug. This 
is concerning as other stakeholders within an organization might 
also not be aware of and in charge of these failures. We now discuss 
implications of these results for future research. 



Handling Failures in Computer Vision Models: A Study of Practices, Challenges, and Needs 

Table 3: Summary of the insights obtained through our study. 

Category Insight 

RQ1: Stated and verifed goals of the failure handling process. 
*Failures Failure handling practices for computer vision models often focus 

on a narrow set of failures (compared to literature), centered on 
output correctness, with however model problematic features as an 
additional, typically understudied, failure. 

*Bugs Practitioners address the same bugs as discussed in the literature, 
with more refned bug categorizations (structural, dataset, data-
engineering, training). 

Satisfaction Ambiguous decision boundary, made of trade-ofs between various 
point failures and correctness metrics, to declare the model ready for 

deployment. 
Diferences Participants have disparate knowledge about “debugging” con-
across cepts, and limited attention towards diferent bugs: sequential bug-
practitioners elimination approach for high-CV participants, incorrect trade-ofs 

between bugs for low-CV participants. They also show disagree-
ment on the importance of correctness and feature failures, and 
disparate precautionary attitude. 

RQ2: Failure handling process. 
*Workfow An ad-hoc, trial-and-error workfow that is simpler than for tradi-

tional software system debugging is adopted. Typically hypothesis 
instrumentation is missing, as well as hypothesis formulation for 
non-data bugs. Its steps are based on practitioners’ experiences. 

Hypotheses Hypotheses related to data bugs are around problematic features: 
incorrect or incomplete features, over- or under-emphasized fea-
ture importance, absence/presence of ir/relevant visual elements in 
images. 

Corrections Various correction methods: modifcations of dataset, training pa-
rameters, model structure, and way the model is setup. 

*Artifacts Next to known model artifacts, primarily visual content across 
images is used. Need for domain knowledge is polemical. 

*Methods & None of the methods or tools developed in the literature are used. 
tools Only TensorBoard [22] has been mentioned. 

RQ2: Use of explainability methods for failure handling purposes. 
Purposes Diversity in purposes: scrutinizing dataset bugs, bias-variance trade-

of, stakeholder communication, and fnal verifcation. 
*Types A narrow subset of explanation types (saliency maps) is used in 

practice. Wishes for global, textual, query-able explanations about 
the model and potentially the data are unfulflled. 

5.1 Surfaced design directions 
Our results led to identify obstacles for practitioners to correctly 
handle failures. These obstacles can serve as design principles or 
challenges to further support practitioners. In relation to these, we 
discuss a few avenues for future work. 
(1) Challenging need for workfow diversity. Failure handling re-

quires diverse workfows, as it is a highly use-case dependent 
task (use-case, stakeholders, structure of an organization and al-
location of responsibilities, etc.), and no one-size-fts-all process 
has been developed. Hence, we do not argue for standardization, 
but emphasize the need for a plurality of workfows, that brings 
about new research challenges to create supportive methods 
and tools. 

(2) Confusing fuidity of concepts. One surprising insight was the 
fuidity of the concepts in the participants’ workfows. While we 
had envisioned identifying independent sets of failures, bugs, ar-
tifacts, and steps, related by how one serves to identify or solve 
the other, we realized these sets are permeable. For instance, fea-
tures can either be considered failures when they are irrelevant 
or incomplete according to human judgement, or an artifact to 
identify the dataset bugs that caused correctness or robustness 
failures (same observation for overftting). Bug correction was 

CHI ’23, April 23–28, 2023, Hamburg, Germany 

also either the actual correction step taken by the practitioners, 
or one way to test their hypothesis. Concept fuidity is already 
known for certain non-functional, trustworthiness-related, re-
quirements of machine learning systems, such as fairness [82], 
interpretability [54], and contestability [75]. This fuidity brings 
confusion to the research and practice, and should be acknowl-
edged, e.g., to clarify the available tools and steps, and to reas-
sure practitioners about their process. One can take inspiration 
from these other works to handle the fuidity of the failure 
handling concepts, for instance by proposing a comprehen-
sive overview of the diferent uses of the terms by diferent 
practitioners and research communities (e.g., also highlighting 
the dissimilarities with traditional software engineering), as a 
boundary negotiation object [82]. 

(3) All practitioners are not equal in confdence and efectiveness. Low-
CV participants lacked a clear workfow, spending a large part 
of the interview on model understanding, instead of reactive or 
proactive debugging. A few of these participants expressed not 
being confdent in their process, discussing a (P5 mid-CV) “very 
empirical process” that “refects a human feeling of what’s going 
on”. They posed that this way “the success of debugging is left to 
the sensitivity of the expert”. Participants with more experience 
were instead more confdent, faster, and efective. This result 
displays similarities with the way people working on non data-
driven software develop an ability to debug their software, with 
experts learning debugging heuristics, the efective use and 
application of debugging tools, etc. [78]. The development of 
new tools should hence bear in mind the various levels of AI 
literacy of the practitioners and their confdence. AI literacy 
literature [23] refers to four literacy dimensions (technology, 
work, learning, and human-machine -related dimensions) that 
should all be considered to tailor the tools to their users. 

(4) Difculties in using new tools. The participants had difculties 
envisioning uses of new tools. When we showed low-CV par-
ticipants saliency maps or global explanations, they could not 
envision how to employ them. Similarly, when showing more ex-
perienced participants explanations they were not familiar with 
(global, textual explanations outputted by the SECA method 
[12]), only half of them could envision using them. 

Besides, Liao et al. [68] built an explainable AI question bank 
where each question refects a need for explainability. Inspired by 
this bank, we built a failure handling question bank for computer 
vision models in Table 4, that summarizes the information needs 
practitioners might have when handling failures. For that, we re-
viewed the transcripts and workfows described by our participants, 
and extracted their explicit questions and questions that were im-
plicitly answered by the actions they took. Compared to the XAI 
question bank, we added new categories of questions, revolving 
around the algorithm design and the way the model was trained, 
around iterations of the model, and expectations on the model be-
havior (refecting the need for domain knowledge). These questions 
revealed to be essential to tackle structural and training bugs, and 
to understand when the model is satisfactory. We also refned the 
questions about model features, their nature, relevance, complete-
ness, etc. as features were an essential artifact to judge the validity 
of the model and to identify correction methods. The question bank 



CHI ’23, April 23–28, 2023, Hamburg, Germany Balayn, et al. 

can be used by practitioners as inspiration to identify the relevant 
questions (and whether methods for getting answers exist) to ask 
for handling failures in their model, and by researchers to identify 
important research directions that have not been tackled until now. 

5.2 Opportunities for the design of new 
supportive tools 

5.2.1 Need for guidance. We argue that practitioners need more 
guidance on the process. Proposing high-level (sequences of) steps 
and intermediate objectives for structuring the workfows in rela-
tion to diferent failures, associated artifacts, examples of bug cor-
rection methods and pitfalls, would allow for a more efective and 
efcient process. The exact form of this guidance requires further 
investigation, e.g., a tutorial, a checklist, an interactive framework, 
a tool suggesting a workfow and artifacts, etc. Previous works 
around software debugging and machine teaching provide hints for 
its design, highlighting the importance of structured steps [84, 89]; 
structured documentation [6, 18, 33, 43, 81]; or warnings against 
graphical user-interfaces [128]. Research is also needed to balance 
this guidance with the freedom practitioners need for failure han-
dling, and to leave the fexibility to envision usages of new artifacts. 

There is no comprehensive resource accessible by practitioners 
to learn about failure handling. We suggest the community to build 
an open, collaborative repository of practices to share heuristics 
(similarly to UMLAUT [100]), methods and tools, as well as theo-
retical knowledge8 (e.g., list of failures, bugs, relations to artifacts). 
Such library should provide both general information, and infor-
mation that is specifc to certain types of use-cases, models, etc., 
since the participants regularly referred back to previous use-cases 
they encountered with similar considerations. Research on soft-
ware debugging again provides recommendations for the design 
of such library, with lists of relevant information to include—e.g., 
patterns [79], debugging diaries [90]—, and methods to collect this 
information [78]. As a frst step towards establishing such a library, 
we propose a failure handling framework (Figure 3) designed by 
synthesising our participants’ practices. It summarizes the various 
objectives, main steps, and artifacts of the failure handling process. 

5.2.2 Need for additional tools. Our study and especially our failure 
handling question bank point out to specifc needs and wishes from 
practitioners, that would merit further research at the intersection 
between machine learning and human-computer interaction. On 
one side, the questions in our bank are partially overlapping with 
the ones of the XAI question bank [69], reinforcing opportunities 
for explainability works to serve in the failure handling process. 
On the other side, the questions that are not present in the XAI 
question bank can serve as invitations for researchers to build new 
methods and tools, requiring algorithmic research (e.g., “should I 
focus on the data or algorithm and training hyperparameters?”), 
or human-computer interaction research especially to facilitate 
communications between stakeholders (e.g., “is this inference really 
correct? can we accept it?”) and data visualisation (e.g., “does the 
model make errors with high or low confdence?”). We discuss a 
few of these research opportunities. 

8Similarly to existing initiatives, such as https://docs.microsoft.com/en-us/security/ 
engineering/failure-modes-in-machine-learning 

Novel types of explanations. Certain practitioners mentioned 
desiderata sometimes similar to existing but rare explanations. 
These insights corroborate the results of Hong et al. [47] on poten-
tial uses of and needs for explainability. In previous works [135], 
these explanations are summarized as global textual [11, 12] or 
visual concepts [34, 60], examplars [59] (samples that contrast or 
are similar to others), and cues (hint on the main diferences or 
similarities). From the identifed workfows, it seems that global 
explanations could greatly speedup certain steps of their process, 
textual explanations could lead to more accurately identify bugs and 
support communication between stakeholders, and interactivity 
could help navigating these explanations. 

Data & feature exploration. Our participants spent a large amount 
of time exploring the dataset for understanding what it represents, 
to identify potential biases, unknown unknowns, shifts, etc, and to 
identify and judge model features (with the help of other stakehold-
ers). They (wish to) do so through various types of interactions, 
e.g., getting random samples for each class in the dataset, clustering 
images with similar visual content, querying samples with various 
visual elements, etc. Interactive visualisation tools could greatly 
support them in easily accessing such information. Existing tools 
for data exploration in the context of machine learning [17, 46] 
could be refned for the specifc needs identifed. Particularly, fac-
ing the diversity of hypotheses one can extract from explanation 
artifacts (subsubsection 4.3.4), it appears highly relevant to develop 
user-interfaces for feature exploration, allowing the search of model 
features at diferent granularities, the comparison of feature im-
portance, and the matching of model features with expected ones, 
to investigate the dissonance between human features and ma-
chine learned features [17, 136]. One key challenge would be the 
uncertainty within these features —expected ones are not always 
known, while learned ones are never entirely known due to the 
interpretability gap for existing explainability methods [12]—, re-
quiring constant fne-tuning [80]. This highlights the importance, 
despite the complexity of it, of involving domain experts in the 
failure handling process, as they can support the practitioners in 
identifying additional failures by reporting on their own experi-
ences with challenging edge-cases, and with priorities in terms 
of correctly-classifed data samples and meaningful features, etc. 
Prior works, especially in the medical context [21], have shown the 
potential ease in designing a library of test cases, that should be 
further investigated not only for supporting the responsible use of 
models by end-users, but also for developing appropriate models. 

Model comparisons. The iterative process requires to frequently 
retrain the model and compare it with its previous versions in terms 
of performance, features, and other artifacts. Yet, few practical tools 
[15] support such comparison. As retraining deep learning models is 
computationally intensive, methods are needed to provide estimates 
of the changes in these artifacts, e.g., by building simpler surrogate 
models that would be less heavy to retrain. 

Hypothesis testing and bug correction. Hypothesis instrumenta-
tion and testing are the main steps our participants skipped com-
pared to the traditional software debugging workfow, due to the 
lack of methods existing to do so efciently. Yet, this could certainly 
save further training time. Recent works such as Deblinder [20] or 
an explainability-based debugging framework [11] start to propose 
support, by displaying model failures to the developer who has then 

https://docs.microsoft.com/en-us/security/engineering/failure-modes-in-machine-learning
https://docs.microsoft.com/en-us/security/engineering/failure-modes-in-machine-learning


Handling Failures in Computer Vision Models: A Study of Practices, Challenges, and Needs CHI ’23, April 23–28, 2023, Hamburg, Germany 

Table 4: Questions practitioners ask when handling failures of models. In bold the ones also found in the XAI question bank [68], 
and with a triangle △ the ones that have not received extensive attention in terms of study of practices or technical solutions. 
Questions without a triangle are formatted in italic when they can be (partially) answered using existing explainability methods, 
the others being answered using other debugging artifacts. 

Topic Question 

Input What kind of data does the system learn from? (and all related questions of the XAI question bank) 
To what extent is the data diverse enough to represent each class? To what extent is it balanced over the diferent classes? 
△Does the test dataset cover the complete range of situations the model can encounter in deployment? 
What do the samples look like for each class? What are the diference between these two classes? 
How have the data been processed? and augmented? Is it easy to augment the dataset by collecting new data? 

Model performance How well does the model perform generally? Where does the model typically make errors? for what type of images? into which classes 
does it incorrectly classify them?
Does the model make errors with high or low confdence? △Are there unknown unknowns? 

Expectations △What is the expected performance for the model? for which metrics? Can we consider the model to be fair and unbiased? 
△Is this inference really incorrect? or can we accept it? What should the model pick up on to distinguish these two classes? 

Model structure What is the structure of the model? How were the parameters set?
How was the model trained? What loss function was used? what were the training hyperparameters? 

Model training Is the model overftting or underftting? Is the model too large/small for the task? compared to the training data?
Is the training dataset of the pretrained model relevant for the target task? 
Does the performance improve when simply adding training samples? 

Features (global - how) Has the model learned anything relevant? Does the model use (or not use) this feature? 
Which visual elements does the model use to predict this class? Which visual elements does the model generally use? Which visual elements does the 
model use to make (in)correct inferences? 

Features (local) What features of this instance lead to this inference? 
Why is this sample predicted P instead of Q? Which visual elements might have triggered this wrong inference? 

Features (comparison) What are the features used for both classes? What are the features diferent for the two classes? 
Why are instances A and B given the same/diferent predictions? 
What are the top features/rules used by the model? How does the model weigh diferent features? 

Questionable features Are these visual elements relevant for this sample? or class? What features do we expect it to learn for this class? 
△Should the model pick up on more visual elements for this image/class? △Should it learn additional features? 
Does the model make correct inferences using wrong features? Are the features fair to use? 

Inferences (what if) What would the model predict if this sample is changed to ...? 
What would the model output for a sample with these visual elements? 

Iterations △How to improve the model? △Should I focus on the data or algorithm and training hyperparameters? 
How well does the model perform after doing X? Have the features changed after doing X? 

Figure 3: Summary of the failure handling practices identifed through the interviews. In orange, we show the stakeholders 
that can intervene in each step of the failure handling process. 



CHI ’23, April 23–28, 2023, Hamburg, Germany Balayn, et al. 

several options for generating and testing hypotheses, yet targeted 
bug correction is still not supported by any tool. We recommend to 
develop such functionalities to allow for faster testing. 

5.3 Increasing clarity in the failure handling 
goals & process 

Our study showed the importance for our participants to access 
various types of knowledge during the failure handling process. 
Hence, clear communication with various stakeholders or clear 
documentation appeared necessary (more information in Appendix 
A.2.2). These results refect previous works around the data science 
lifecycle [30, 47, 62, 91, 130]. The information needs and associated 
communication challenges in these studies and ours are overlap-
ping (e.g., misaligned vocabulary and knowledge). We list below 
additional challenges. 

5.3.1 Designing metrics for clarity. The participants rightfully rec-
ognized that a model cannot make perfect inferences, and conse-
quently that not all misclassifcations should be considered failures 
but instead that certain should be treated as acceptable. Diferently 
from software engineering, the end-point criteria for deploying a 
model revealed to be subjective. This subjectivity has been illus-
trated in prior studies [21], where, similarly to model developers, 
model users decide on the acceptability of model misclassifcations 
based on their expectations for the model, especially in relation 
to their own locus of expertise to allow for a successful collabora-
tion between them and the model. Our participants however did 
not tend to extensively account for this notion of human-model 
collaboration to decide on failures and the model readiness for 
deployment, despite the increasing number of research works on 
the topic [13, 124, 133]. The end-point criteria was also ambiguous, 
e.g., expert participants, while not considering all model errors 
equal, did not have a clear process besides trying to attribute dif-
ferent levels of severities to ad-hoc categories of observed failures. 
Ethnographic work in a data science team has similarly shown the 
equivocal nature of performance metrics both for the developers 
and other stakeholders judging the trustworthiness of the models 
[88], our work expanding these fndings to models that are not 
built in order to discover new insights from data but to automate a 
process that can typically be performed by humans. This was also 
observed in prior studies where participants implicitly attributed 
“cost” to the diferent wrong predictions [31, 128], and pointed out 
to the discrepancy between the perceived performance of a model, 
and its performance as measured by a metric [41, 87, 98, 109]. We 
suggest to develop metrics or frameworks that would document 
and account for these various costs. Recent research directions on 
disaggregating evaluation metrics [14, 77] could include these con-
cerns in their propositions. This would especially allow to adhere 
to new concerns for accountability and transparency, facing the 
subjectivity in defning an end-point. 

Feature issues are not discussed in machine learning testing 
research, and only mentioned sparsely within literature around 
statistical biases in dataset [115, 116], or explainability methods 
[12, 105, 106], despite their importance (discussed by 17 out of 18 
practitioners). The absence from research could be explained by the 
lack of metrics to evaluate them, yet one prior study [88], although 
in a diferent context, also identifed the importance of valid model 

explanations for stakeholders to decide on using a model in practice. 
Recent works such as Shared Interest [17] constitute a frst step 
towards quantifying feature failures. Its categorization of samples 
depending on the correctness of model predictions (proactive or 
reactive debugging), and whether the model features are aligned 
with human expectations, is highly refective of the feature hypothe-
ses identifed in Table 2. We however also identifed a discussion 
around the features’ weights, not addressed in the literature. 

5.3.2 Increasing transparency between developers. Our results and 
especially certain of the questions in our question bank also showed 
the more general need for developers to communicate with each 
other. Documentation, although often not used by the interviewed 
practitioners beyond model versioning, seems like the right avenue 
to facilitate such knowledge sharing across practitioners, similarly 
to what previous studies also concluded [30, 43]. Next to detailing 
how a dataset was created [33] or the performance and scope of 
a trained model [81], future documentations should also focus on 
“intermediate models” and on logging the experiments conducted 
across models for a single system and the reasoning behind the 
choices of experiment. While this could be saved as code, making 
the steps clear in the form of textual descriptions [97] could fasten 
the process. E.g., the participants asked what kind of data processing 
had been conducted, which could be answered without looking into 
the specifcities of the code. 

5.4 Beyond the failure handling process: 
additional changes needed 

5.4.1 Lack of communication between research and practice. Our 
participants do not use the methods and tools stemming from re-
search publications (except a few explainability methods, and com-
mon code development tools such as TensorBoard [22]) due to a 
lack of awareness. This does not necessarily hint at a technical prob-
lem, but at a structural one. It highlights a lack of knowledge or 
time, from certain practitioners to search for these materials. Hence, 
disseminating further the outputs from research to practitioners 
appears to be an avenue for future work. 

5.4.2 AI education. The challenges identifed also reveal limita-
tions in the way computer vision is learned. Our participants, while 
having followed a computer vision course and/or learned computer 
vision through reading resources around the Internet, primarily 
build their failure handling process over time by discussing with 
colleagues (P15 high-CV) “I never learned computer vision in school. I 
learned it from the Internet and I had few experiences in internships.”, 
reading about practices (P16 high-CV and P3 high-CV mentioned 
specifc blog posts about failures and bugs [53]), and through prac-
tical experiences (P9 low-CV) “To improve performance, it would 
be horizontally (you add more lines to a dataset), or vertically (more 
columns, that is more features). I’m speaking out of my experience 
about records. For images, more lines could be data augmentation, 
more columns could be features that correspond to specifc objects.” 
None has been taught a failure handling process in a curriculum 
(P5 low-CV) “I did the deep learning course in the Masters and then 
some computer vision projects. From that, I learned the basic tools and 



Handling Failures in Computer Vision Models: A Study of Practices, Challenges, and Needs CHI ’23, April 23–28, 2023, Hamburg, Germany 

common libraries for deep learning.” This corroborates prior obser-
vations around machine learning practices [3, 110], and debugging 
of software [79]. 

Developing education around failure handling for computer vi-
sion models could beneft practitioners, as is suggested by po-
sition papers [102] and successfully experimented with in re-
search on teaching debugging. Particularly, research around soft-
ware debugging teaching [78, 79, 86], and data science teaching 
[35, 64, 71, 73, 110, 111, 125] proposes teaching through exercises 
with examples of workfows or hierarchical lists of questions to ask 
for correctly “debugging”. 

Computer vision practitioners could also exploit online commu-
nities to get further training (none of our participants mentioned 
using these frequently), similarly to data science practitioners [104]. 
Failure handling tasks could be shared online and executed in col-
laboration. Yet, one would need to investigate how to share relevant 
materials (e.g., trained model, datasets), information (documenta-
tion about the task and model), and solutions. 

6 LIMITATIONS & THREATS TO VALIDITY 
There are several limitations in our study. While we do not think 
they impact the validity of our results, tackling them in the future 
would improve the generalisability of our fndings. 

We used one simple scenario, that enabled our participants to 
easily describe their usual practices, as the various examples the 
participants brought from their own use-cases and some comments 
testify, e.g., (P13 high-CV) “My very frst thought was: this is a very 
realistic use case”. Yet, using such scenario might obfuscate speci-
fcities of their own use-cases, such as competing incentives they 
might encounter (they primarily referred to constraints around 
data collection). However, using a diferent use-case per participant 
would have not allowed to fairly compare practices, and would 
have posed confdentiality issues. Freeing them from competing 
incentives places them in a more ideal situation to discuss their 
process. Besides, our scenario presented the participants with infor-
mation about the model to “debug”, without the actual development 
code —that they did not ask for. A task where they would be pre-
sented with the training code could provide additional insights, but 
would require longer interview sessions. Our methodology inspired 
from previous works [11, 30, 44] already provided us with main 
challenges and limitations. 

We focused on failure handling in development. Practices might 
difer after deployment, as other failures and constraints might 
occur, and additional stakeholders might be involved. We looked 
primarily into correctness and feature failures that are still un-
derstudied. Yet, many more types of failures might arise. We in-
terviewed a considerable amount of participants and devoted our 
eforts to cover practitioners with various levels of experience. Such 
qualitative approach can never completely assure that we gathered 
all failure handling practices that exist. In the future, one might 
want to perform studies with other methodologies, e.g., ethno-
graphic work for in-context practices, code-based studies, diferent 
focuses, and in specifc domains of application, to complement our 
results. Finally, we focused on models for image-based computer 
vision applications, and hence we cannot conclude certainly on 
the applicability of our results to other types of models. We can 

however mention that our discussion on the organisation of the 
feld echoes prior discussions around other applications such as the 
ones relying on tabular data [54]. Besides, the design opportunities 
we highlight are applicable to other applications as they are not 
application-specifc. However, the required technical work would 
difer to leverage the relevant artifacts, that are diferent across 
applications —and more or less researched until now (e.g., more 
research on explainability for tabular-data based applications has 
been performed than for image-based applications). Whether these 
design opportunities are necessary for practitioners developing 
these other applications, should be investigated in the future, and 
our work can provide inspiration to do so in terms of insights to 
look for. It is fair to assume that certain of the insights would hold 
as our participants and other practitioners have typically received 
the same training, and many machine learning models across ap-
plications share similar properties. 

7 CONCLUSION 
In this work, we conducted 18 semi-structured interviews to out-
line the practices for handling failures in computer vision models 
(Figure 3). We showed that, while practices broadly follow the tra-
ditional software debugging workfow, they diferentiate by the 
ambiguous way the model requirements are defned, by the type of 
hypothesis formulation and instrumentation activities performed in 
the machine learning context, by the artifacts employed to facilitate 
the workfow, and by the fuidity of the relevant concepts. Besides, 
failure handling workfows are typically performed manually and in 
collaboration without resorting to methods developed specifcally 
for machine learning models (Table 4). Finally, practitioners tend 
to have a narrow understanding of the failures and bugs that any 
machine learning model might sufer from, skewed by their prior 
experience. This understanding yet includes problematic model 
features that are not typically investigated in scientifc literature. 
These insights point out to various limitations and challenges in 
the current failure handling process, that should be tackled through 
both structural changes and socio-technical research. Especially, 
we drew a list of research opportunities at the intersection between 
HCI and machine learning, going from the creation of a collabora-
tive library of best-practices, to the development of failure handling 
methods and user-interfaces, and of support for communication 
between stakeholders. 

ACKNOWLEDGMENTS 
This work was partially supported by the HyperEdge Sensing 
project funded by Cognizant. We would also like to thank all the 
participants of our study, without whom this work would not have 
been possible. 

REFERENCES 
[1] Mouna Aff, Riadh Ayachi, Yahia Said, and Mohamed Atri. 2020. Deep learning 

based application for indoor scene recognition. Neural Processing Letters 51, 3 
(2020), 2827–2837. 

[2] Ahmed Alqaraawi, Martin Schuessler, Philipp Weiß, Enrico Costanza, and Nadia 
Berthouze. 2020. Evaluating saliency map explanations for convolutional neural 
networks: a user study. In Proceedings of the 25th International Conference on 
Intelligent User Interfaces. 275–285. 

[3] Saleema Amershi, Andrew Begel, Christian Bird, Robert DeLine, Harald Gall, Ece 
Kamar, Nachiappan Nagappan, Besmira Nushi, and Thomas Zimmermann. 2019. 
Software engineering for machine learning: A case study. In 2019 IEEE/ACM 



CHI ’23, April 23–28, 2023, Hamburg, Germany Balayn, et al. 

41st International Conference on Software Engineering: Software Engineering in 
Practice (ICSE-SEIP). IEEE, 291–300. 

[4] Saleema Amershi, Max Chickering, Steven M Drucker, Bongshin Lee, Patrice 
Simard, and Jina Suh. 2015. Modeltracker: Redesigning performance analysis 
tools for machine learning. In Proceedings of the 33rd Annual ACM Conference 
on Human Factors in Computing Systems. 337–346. 

[5] Paul Ammann and Jef Ofutt. 2016. Introduction to Software Testing (2nd ed.). 
Cambridge University Press, USA. 

[6] Ariful Islam Anik and Andrea Bunt. 2021. Data-Centric Explanations: Explain-
ing Training Data of Machine Learning Systems to Promote Transparency. In 
Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems. 
1–13. 

[7] Keijiro Araki, Zengo Furukawa, and Jingde Cheng. 1991. A general framework 
for debugging. IEEE software 8, 3 (1991), 14–20. 

[8] Vijay Arya, Rachel KE Bellamy, Pin-Yu Chen, Amit Dhurandhar, Michael Hind, 
Samuel C Hofman, Stephanie Houde, Q Vera Liao, Ronny Luss, Aleksandra 
Mojsilović, et al. 2019. One explanation does not ft all: A toolkit and taxonomy 
of ai explainability techniques. (2019). 

[9] Joshua Attenberg, Panos Ipeirotis, and Foster Provost. 2015. Beat the machine: 
Challenging humans to fnd a predictive model’s “unknown unknowns”. Journal 
of Data and Information Quality (JDIQ) 6, 1 (2015), 1–17. 

[10] Agathe Balayn, Christoph Lof, and Geert-Jan Houben. 2021. Managing bias 
and unfairness in data for decision support: a survey of machine learning and 
data engineering approaches to identify and mitigate bias and unfairness within 
data management and analytics systems. The VLDB Journal (2021), 1–30. 

[11] Agathe Balayn, Natasa Rikalo, Christoph Lof, Jie Yang, and Alessandro Bozzon. 
2022. How can Explainability Methods be Used to Support Bug Identifcation in 
Computer Vision Models?. In CHI Conference on Human Factors in Computing 
Systems. 1–16. 

[12] Agathe Balayn, Panagiotis Soilis, Christoph Lof, Jie Yang, and Alessandro 
Bozzon. 2021. What do You Mean? Interpreting Image Classifcation with 
Crowdsourced Concept Extraction and Analysis. In Proceedings of the Web 
Conference 2021. 1937–1948. 

[13] Gagan Bansal, Besmira Nushi, Ece Kamar, Eric Horvitz, and Daniel S Weld. 
2021. Is the most accurate ai the best teammate? optimizing ai for teamwork. 
In Proceedings of the AAAI Conference on Artifcial Intelligence, Vol. 35. 11405– 
11414. 

[14] Solon Barocas, Anhong Guo, Ece Kamar, Jacquelyn Krones, Meredith Ringel 
Morris, Jennifer Wortman Vaughan, W Duncan Wadsworth, and Hanna Wallach. 
2021. Designing disaggregated evaluations of ai systems: Choices, consider-
ations, and tradeofs. In Proceedings of the 2021 AAAI/ACM Conference on AI, 
Ethics, and Society. 368–378. 

[15] Alex Bäuerle, Ángel Alexander Cabrera, Fred Hohman, Megan Maher, David 
Koski, Xavier Suau, Titus Barik, and Dominik Moritz. 2022. Symphony: Compos-
ing Interactive Interfaces for Machine Learning. In CHI Conference on Human 
Factors in Computing Systems. 1–14. 

[16] Umang Bhatt, Alice Xiang, Shubham Sharma, Adrian Weller, Ankur Taly, Yun-
han Jia, Joydeep Ghosh, R Puri, J MF Moura, and P Eckersley. 2020. Explainable 
machine learning in deployment. In Proceedings of the 2020 Conference on Fair-
ness, Accountability, and Transparency. 648–657. 

[17] Angie Boggust, Benjamin Hoover, Arvind Satyanarayan, and Hendrik Strobelt. 
2022. Shared Interest: Measuring Human-AI Alignment to Identify Recurring 
Patterns in Model Behavior. In CHI Conference on Human Factors in Computing 
Systems. 1–17. 

[18] Karen L Boyd. 2021. Datasheets for Datasets help ML Engineers Notice and 
Understand Ethical Issues in Training Data. Proceedings of the ACM on Human-
Computer Interaction 5, CSCW2 (2021), 1–27. 

[19] Virginia Braun and Victoria Clarke. 2006. Using thematic analysis in psychology. 
Qualitative research in psychology 3, 2 (2006), 77–101. 

[20] Ángel Alexander Cabrera, Abraham J Druck, Jason I Hong, and Adam Perer. 
2021. Discovering and Validating AI Errors With Crowdsourced Failure Reports. 
Proceedings of the ACM on Human-Computer Interaction 5, CSCW2 (2021), 1–22. 

[21] Carrie J Cai, Samantha Winter, David Steiner, Lauren Wilcox, and Michael Terry. 
2019. " Hello AI": uncovering the onboarding needs of medical practitioners for 
human-AI collaborative decision-making. Proceedings of the ACM on Human-
computer Interaction 3, CSCW (2019), 1–24. 

[22] Shanqing Cai, Eric Breck, E Nielsen, M Salib, and D Sculley. 2016. Tensorfow 
debugger: Debugging datafow graphs for machine learning. (2016). 

[23] Dilek Cetindamar, Kirsty Kitto, Mengjia Wu, Yi Zhang, Babak Abedin, and Simon 
Knight. 2022. Explicating AI Literacy of Employees at Digital Workplaces. IEEE 
Transactions on Engineering Management (2022). 

[24] Hao-Fei Cheng, Ruotong Wang, Zheng Zhang, Fiona O’Connell, T Gray, F M 
Harper, and H Zhu. 2019. Explaining decision-making algorithms through 
UI: Strategies to help non-expert stakeholders. In Proceedings of the 2019 chi 
conference on human factors in computing systems. 1–12. 

[25] Ruiqi Cheng, Kaiwei Wang, Jian Bai, and Zhijie Xu. 2020. Unifying visual 
localization and scene recognition for people with visual impairment. IEEE 

Access 8 (2020), 64284–64296. 
[26] Ram Chillarese. 1999. Software Testing Best Practices, IBM Research. TR Patent 

RC21,457. 
[27] Michael Chromik, Malin Eiband, Felicitas Buchner, Adrian Krüger, and Andreas 

Butz. 2021. I Think I Get Your Point, AI! The Illusion of Explanatory Depth in 
Explainable AI. In 26th International Conference on Intelligent User Interfaces. 
307–317. 

[28] Brittany Davis, Maria Glenski, William Sealy, and Dustin Arendt. 2020. Measure 
utility, gain trust: practical advice for XAI researchers. In 2020 IEEE Workshop 
on TRust and EXpertise in Visual Analytics (TREX). IEEE, 1–8. 

[29] Terrance De Vries, Ishan Misra, Changhan Wang, and Laurens Van der Maaten. 
2019. Does object recognition work for everyone?. In Proceedings of the IEEE/CVF 
Conference on Computer Vision and Pattern Recognition Workshops. 52–59. 

[30] Wesley Hanwen Deng, Manish Nagireddy, Michelle Seng Ah Lee, Jatinder Singh, 
Zhiwei Steven Wu, Kenneth Holstein, and Haiyi Zhu. 2022. Exploring How 
Machine Learning Practitioners (Try To) Use Fairness Toolkits. arXiv preprint 
arXiv:2205.06922 (2022). 

[31] Rebecca Fiebrink, Perry R Cook, and Dan Trueman. 2011. Human model evalu-
ation in interactive supervised learning. In Proceedings of the SIGCHI conference 
on human factors in computing systems. 147–156. 

[32] Gordon Fraser and JM Rojas. 2019. Software Testing. Springer International 
Publishing, Cham, 123–192. https://doi.org/10.1007/978-3-030-00262-6_4 

[33] Timnit Gebru, Jamie Morgenstern, Briana Vecchione, Jennifer Wortman 
Vaughan, Hanna Wallach, Hal Daumé Iii, and Kate Crawford. 2021. Datasheets 
for datasets. Commun. ACM 64, 12 (2021), 86–92. 

[34] A Ghorbani and al. 2019. Towards automatic concept-based explanations. In 
NeurIPS. 

[35] Yolanda Gil. 2016. Teaching big data analytics skills with intelligent workfow 
systems. In Proceedings of the AAAI Conference on Artifcial Intelligence, Vol. 30. 

[36] Görkem Giray. 2021. A software engineering perspective on engineering ma-
chine learning systems: State of the art and challenges. Journal of Systems and 
Software 180 (2021), 111031. 

[37] Yash Goyal, Ziyan Wu, Jan Ernst, Dhruv Batra, Devi Parikh, and Stefan Lee. 
2019. Counterfactual visual explanations. In International Conference on Machine 
Learning. PMLR, 2376–2384. 

[38] Stefan Grafberger, Julia Stoyanovich, and Sebastian Schelter. 2021. Lightweight 
Inspection of Data Preprocessing in Native Machine Learning Pipelines.. In 
CIDR. 

[39] Danna Gurari, Qing Li, Abigale J Stangl, Anhong Guo, Chi Lin, Kristen Grauman, 
Jiebo Luo, and Jefrey P Bigham. 2018. Vizwiz grand challenge: Answering visual 
questions from blind people. In Proceedings of the IEEE conference on computer 
vision and pattern recognition. 3608–3617. 

[40] Brent Hailpern and Padmanabhan Santhanam. 2002. Software debugging, test-
ing, and verifcation. IBM Systems Journal 41, 1 (2002), 4–12. 

[41] Galen Harrison, Julia Hanson, Christine Jacinto, Julio Ramirez, and Blase Ur. 
2020. An empirical study on the perceived fairness of realistic, imperfect machine 
learning models. In Proceedings of the 2020 conference on fairness, accountability, 
and transparency. 392–402. 

[42] Tong He, Zhi Zhang, Hang Zhang, Zhongyue Zhang, Junyuan Xie, and Mu 
Li. 2019. Bag of tricks for image classifcation with convolutional neural net-
works. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern 
Recognition. 558–567. 

[43] Amy Heger, Elizabeth B Marquis, Mihaela Vorvoreanu, Hanna Wallach, and Jen-
nifer Wortman Vaughan. 2022. Understanding Machine Learning Practitioners’ 
Data Documentation Perceptions, Needs, Challenges, and Desiderata. arXiv 
preprint arXiv:2206.02923 (2022). 

[44] Fred Hohman, Andrew Head, Rich Caruana, Robert DeLine, and Steven M 
Drucker. 2019. Gamut: A design probe to understand how data scientists un-
derstand machine learning models. In Proceedings of the 2019 CHI conference on 
human factors in computing systems. 1–13. 

[45] Fred Hohman, Haekyu Park, Caleb Robinson, and Duen Horng Polo Chau. 2019. 
Summit: Scaling deep learning interpretability by visualizing activation and 
attribution summarizations. IEEE transactions on visualization and computer 
graphics 26, 1 (2019), 1096–1106. 

[46] Fred Hohman, Kanit Wongsuphasawat, Mary Beth Kery, and Kayur Patel. 2020. 
Understanding and visualizing data iteration in machine learning. In Proceedings 
of the 2020 CHI conference on human factors in computing systems. 1–13. 

[47] Sungsoo Ray Hong, Jessica Hullman, and Enrico Bertini. 2020. Human factors 
in model interpretability: Industry practices, challenges, and needs. Proceedings 
of the ACM on Human-Computer Interaction 4, CSCW1 (2020), 1–26. 

[48] Fuyuki Ishikawa and Nobukazu Yoshioka. 2019. How do engineers perceive 
difculties in engineering of machine-learning systems?-questionnaire survey. 
In 2019 IEEE/ACM Joint 7th International Workshop on Conducting Empirical 
Studies in Industry (CESI) and 6th International Workshop on Software Engineering 
Research and Industrial Practice (SER&IP). IEEE, 2–9. 

[49] Md Johirul Islam, Giang Nguyen, Rangeet Pan, and Hridesh Rajan. 2019. A 
comprehensive study on deep learning bug characteristics. In Proceedings of the 
2019 27th ACM Joint Meeting on European Software Engineering Conference and 

https://doi.org/10.1007/978-3-030-00262-6_4


Handling Failures in Computer Vision Models: A Study of Practices, Challenges, and Needs CHI ’23, April 23–28, 2023, Hamburg, Germany 

Symposium on the Foundations of Software Engineering. 510–520. 
[50] Hanen Jabnoun, Faouzi Benzarti, and Hamid Amiri. 2017. Visual scene pre-

diction for blind people based on object recognition. In 2017 14th International 
Conference on Computer Graphics, Imaging and Visualization. IEEE, 21–26. 

[51] Sérgio Jesus, Catarina Belém, Vladimir Balayan, João Bento, P Saleiro, P Bizarro, 
and J Gama. 2021. How can I choose an explainer? An Application-grounded 
Evaluation of Post-hoc Explanations. In Proceedings of the 2021 ACM Conference 
on Fairness, Accountability, and Transparency. 805–815. 

[52] Daniel Kang, Deepti Raghavan, Peter Bailis, and Matei Zaharia. 2018. Model 
assertions for debugging machine learning. In NeurIPS MLSys Workshop. 

[53] Andrej Karpathy. 2019. A Recipe for Training Neural Networks. http://karpathy. 
github.io/2019/04/25/recipe/ 

[54] Harmanpreet Kaur, Harsha Nori, Samuel Jenkins, Rich Caruana, Hanna Wallach, 
and Jennifer Wortman Vaughan. 2020. Interpreting interpretability: under-
standing data scientists’ use of interpretability tools for machine learning. In 
Proceedings of the 2020 CHI conference on human factors in computing systems. 
1–14. 

[55] Christopher J Kelly, Alan Karthikesalingam, Mustafa Suleyman, Greg Corrado, 
and Dominic King. 2019. Key challenges for delivering clinical impact with 
artifcial intelligence. BMC medicine 17, 1 (2019), 1–9. 

[56] Daniel Kerrigan, Jessica Hullman, and Enrico Bertini. 2021. A survey of domain 
knowledge elicitation in applied machine learning. Multimodal Technologies 
and Interaction 5, 12 (2021), 73. 

[57] Asifullah Khan, Anabia Sohail, Umme Zahoora, and Aqsa Saeed Qureshi. 2020. 
A survey of the recent architectures of deep convolutional neural networks. 
Artifcial intelligence review 53, 8 (2020), 5455–5516. 

[58] Roli Khanna, Jonathan Dodge, Andrew Anderson, Rupika Dikkala, Jed Irvine, 
Zeyad Shureih, Kin-ho Lam, Caleb R Matthews, Zhengxian Lin, Minsuk Kahng, 
et al. 2022. Finding AI’s faults with AAR/AI: An empirical study. ACM Transac-
tions on Interactive Intelligent Systems (TiiS) 12, 1 (2022), 1–33. 

[59] Been Kim, Oluwasanmi Koyejo, Rajiv Khanna, et al. 2016. Examples are not 
enough, learn to criticize! Criticism for Interpretability.. In NIPS. 2280–2288. 

[60] B Kim, M Wattenberg, and al. 2018. Interpretability beyond feature attribution: 
Quantitative testing with concept activation vectors. In ICML. 

[61] Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin 
Zhang, Akshay Balsubramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas 
Phillips, Irena Gao, et al. 2021. Wilds: A benchmark of in-the-wild distribution 
shifts. In International Conference on Machine Learning. PMLR, 5637–5664. 

[62] Sean Kross and Philip Guo. 2021. Orienting, framing, bridging, magic, and coun-
seling: How data scientists navigate the outer loop of client collaborations in 
industry and academia. Proceedings of the ACM on Human-Computer Interaction 
5, CSCW2 (2021), 1–28. 

[63] Todd Kulesza, Margaret Burnett, Weng-Keen Wong, and Simone Stumpf. 2015. 
Principles of explanatory debugging to personalize interactive machine learning. 
In Proceedings of the 20th international conference on intelligent user interfaces. 
126–137. 

[64] Niklas Lavesson. 2010. Learning machine learning: a case study. IEEE Transac-
tions on Education 53, 4 (2010), 672–676. 

[65] Lucas Layman, Madeline Diep, Meiyappan Nagappan, Janice Singer, Robert 
Deline, and Gina Venolia. 2013. Debugging revisited: Toward understanding 
the debugging needs of contemporary software developers. In 2013 ACM/IEEE 
international symposium on empirical software engineering and measurement. 
IEEE, 383–392. 

[66] Jihyun Lee, Sungwon Kang, and Danhyung Lee. 2012. Survey on software 
testing practices. IET software 6, 3 (2012), 275–282. 

[67] Maurizio Leotta, Dario Olianas, and Filippo Ricca. 2022. A large experimentation 
to analyze the efects of implementation bugs in machine learning algorithms. 
Future Generation Computer Systems 133 (2022), 184–200. 

[68] Q Vera Liao, Daniel Gruen, and Sarah Miller. 2020. Questioning the AI: informing 
design practices for explainable AI user experiences. In Proceedings of the 2020 
CHI Conference on Human Factors in Computing Systems. 1–15. 

[69] Q Vera Liao, Milena Pribić, Jaesik Han, Sarah Miller, and Daby Sow. 2021. 
Question-Driven Design Process for Explainable AI User Experiences. arXiv 
preprint arXiv:2104.03483 (2021). 

[70] Brian Y Lim, Qian Yang, Ashraf M Abdul, and Danding Wang. 2019. Why 
these Explanations? Selecting Intelligibility Types for Explanation Goals.. In IUI 
Workshops. 

[71] Phoebe Lin and Jessica Van Brummelen. 2021. Engaging Teachers to Co-Design 
Integrated AI Curriculum for K-12 Classrooms. In Proceedings of the 2021 CHI 
Conference on Human Factors in Computing Systems. 1–12. 

[72] Anthony Liu, Santiago Guerra, Isaac Fung, Gabriel Matute, Ece Kamar, and Wal-
ter Lasecki. 2020. Towards hybrid human-ai workfows for unknown unknown 
detection. In Proceedings of The Web Conference 2020. 2432–2442. 

[73] Duri Long and Brian Magerko. 2020. What is AI literacy? Competencies and 
design considerations. In Proceedings of the 2020 CHI conference on human factors 
in computing systems. 1–16. 

[74] Raoni Lourenço, Juliana Freire, and Dennis Shasha. 2019. Debugging machine 
learning pipelines. In Proceedings of the 3rd International Workshop on Data 

Management for End-to-End Machine Learning. 1–10. 
[75] Henrietta Lyons, Eduardo Velloso, and Tim Miller. 2021. Conceptualising con-

testability: Perspectives on contesting algorithmic decisions. Proceedings of the 
ACM on Human-Computer Interaction 5, CSCW1 (2021), 1–25. 

[76] Shiqing Ma, Yingqi Liu, Wen-Chuan Lee, Xiangyu Zhang, and Ananth Grama. 
2018. MODE: automated neural network model debugging via state diferential 
analysis and input selection. In Proceedings of the 2018 26th ACM Joint Meeting 
on European Software Engineering Conference and Symposium on the Foundations 
of Software Engineering. 175–186. 

[77] Michael Madaio, Lisa Egede, Hariharan Subramonyam, Jennifer Wort-
man Vaughan, and Hanna Wallach. 2022. Assessing the Fairness of AI Systems: 
AI Practitioners’ Processes, Challenges, and Needs for Support. Proceedings of 
the ACM on Human-Computer Interaction 6, CSCW1 (2022), 1–26. 

[78] Renee McCauley, Sue Fitzgerald, Gary Lewandowski, Laurie Murphy, Beth 
Simon, Lynda Thomas, and Carol Zander. 2008. Debugging: a review of the 
literature from an educational perspective. Computer Science Education 18, 2 
(2008), 67–92. 

[79] Tilman Michaeli and Ralf Romeike. 2019. Improving debugging skills in the 
classroom: The efects of teaching a systematic debugging process. In Proceedings 
of the 14th workshop in primary and secondary computing education. 1–7. 

[80] Swati Mishra and Jefrey M Rzeszotarski. 2021. Crowdsourcing and Evaluating 
Concept-driven Explanations of Machine Learning Models. Proceedings of the 
ACM on Human-Computer Interaction 5, CSCW1 (2021), 1–26. 

[81] Margaret Mitchell, Simone Wu, Andrew Zaldivar, Parker Barnes, Lucy Vasser-
man, Ben Hutchinson, Elena Spitzer, Inioluwa Deborah Raji, and Timnit Gebru. 
2019. Model cards for model reporting. In Proceedings of the conference on 
fairness, accountability, and transparency. 220–229. 

[82] Deirdre K Mulligan, Joshua A Kroll, Nitin Kohli, and Richmond Y Wong. 2019. 
This thing called fairness: Disciplinary confusion realizing a value in technology. 
Proceedings of the ACM on Human-Computer Interaction 3, CSCW (2019), 1–36. 

[83] Shweta Narkar, Yunfeng Zhang, Q Vera Liao, Dakuo Wang, and Justin D Weisz. 
2021. Model LineUpper: Supporting Interactive Model Comparison at Multiple 
Levels for AutoML. In 26th International Conference on Intelligent User Interfaces. 
170–174. 

[84] Besmira Nushi, Ece Kamar, Eric Horvitz, and Donald Kossmann. 2017. On 
human intellect and machine failures: Troubleshooting integrative machine 
learning systems. In Thirty-First AAAI Conference on Artifcial Intelligence. 

[85] Chris Olah, Alexander Mordvintsev, and Ludwig Schubert. 2017. Feature visual-
ization. Distill 2, 11 (2017), e7. 

[86] Gary M Olson, Sylvia Sheppard, and Elliot Soloway. 1987. Empirical studies of 
programmers: second workshop. Vol. 2. Intellect Books. 

[87] Andrea Papenmeier, Dagmar Kern, Daniel Hienert, Yvonne Kammerer, and 
Christin Seifert. 2022. How Accurate Does It Feel?–Human Perception of 
Diferent Types of Classifcation Mistakes. In CHI Conference on Human Factors 
in Computing Systems. 1–13. 

[88] Samir Passi and Steven J Jackson. 2018. Trust in data science: Collaboration, 
translation, and accountability in corporate data science projects. Proceedings 
of the ACM on Human-Computer Interaction 2, CSCW (2018), 1–28. 

[89] Kayur Patel, Naomi Bancroft, Steven M Drucker, James Fogarty, Amy J Ko, and 
James Landay. 2010. Gestalt: integrated support for implementation and analysis 
in machine learning. In Proceedings of the 23nd annual ACM symposium on User 
interface software and technology. 37–46. 

[90] Michael Perscheid, Benjamin Siegmund, Marcel Taeumel, and Robert Hirschfeld. 
2017. Studying the advancement in debugging practice of professional software 
developers. Software Quality Journal 25, 1 (2017), 83–110. 

[91] David Piorkowski, Soya Park, April Yi Wang, Dakuo Wang, Michael Muller, and 
Felix Portnoy. 2021. How ai developers overcome communication challenges 
in a multidisciplinary team: A case study. Proceedings of the ACM on Human-
Computer Interaction 5, CSCW1 (2021), 1–25. 

[92] Tawsifur Rahman, Amith Khandakar, Yazan Qiblawey, Anas Tahir, Serkan Ki-
ranyaz, Saad Bin Abul Kashem, Mohammad Tariqul Islam, Somaya Al Maadeed, 
Susu M Zughaier, Muhammad Salman Khan, et al. 2021. Exploring the efect 
of image enhancement techniques on COVID-19 detection using chest X-ray 
images. Computers in biology and medicine 132 (2021), 104319. 

[93] Iyad Rahwan, Manuel Cebrian, Nick Obradovich, Josh Bongard, Jean-François 
Bonnefon, Cynthia Breazeal, Jacob W Crandall, Nicholas A Christakis, Iain D 
Couzin, Matthew O Jackson, et al. 2019. Machine behaviour. Nature 568, 7753 
(2019), 477–486. 

[94] Nathalie Rauschmayr, Vikas Kumar, Rahul Huilgol, Andrea Olgiati, Satadal 
Bhattacharjee, Nihal Harish, Vandana Kannan, Amol Lele, Anirudh Acharya, 
Jared Nielsen, et al. 2021. Amazon SageMaker Debugger: A System for Real-
Time Insights into Machine Learning Model Training. Proceedings of Machine 
Learning and Systems 3 (2021). 

[95] Donghao Ren, Saleema Amershi, Bongshin Lee, Jina Suh, and Jason D Williams. 
2016. Squares: Supporting interactive performance analysis for multiclass 
classifers. IEEE transactions on visualization and computer graphics 23, 1 (2016), 
61–70. 

http://karpathy.github.io/2019/04/25/recipe/
http://karpathy.github.io/2019/04/25/recipe/


CHI ’23, April 23–28, 2023, Hamburg, Germany Balayn, et al. 

[96] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. " Why should 
i trust you?" Explaining the predictions of any classifer. In Proceedings of the 
22nd ACM SIGKDD international conference on knowledge discovery and data 
mining. 1135–1144. 

[97] John Richards, David Piorkowski, Michael Hind, Stephanie Houde, and Aleksan-
dra Mojsilović. 2020. A methodology for creating AI FactSheets. arXiv preprint 
arXiv:2006.13796 (2020). 

[98] Nripsuta Ani Saxena, Karen Huang, Evan DeFilippis, Goran Radanovic, David C 
Parkes, and Yang Liu. 2019. How do fairness defnitions fare? Examining public 
attitudes towards algorithmic defnitions of fairness. In Proceedings of the 2019 
AAAI/ACM Conference on AI, Ethics, and Society. 99–106. 

[99] Frank Schneider, Felix Dangel, and Philipp Hennig. 2021. Cockpit: A Practical 
Debugging Tool for Training Deep Neural Networks. (2021). 

[100] Eldon Schoop, Forrest Huang, and Björn Hartmann. 2021. UMLAUT: Debugging 
Deep Learning Programs using Program Structure and Model Behavior. (2021). 

[101] Shreya Shankar, Yoni Halpern, Eric Breck, James Atwood, Jimbo Wilson, and D 
Sculley. 2017. No classifcation without representation: Assessing geodiversity 
issues in open data sets for the developing world. arXiv preprint arXiv:1711.08536 
(2017). 

[102] R Benjamin Shapiro, Rebecca Fiebrink, and Peter Norvig. 2018. How machine 
learning impacts the undergraduate computing curriculum. Commun. ACM 61, 
11 (2018), 27–29. 

[103] Shahin Sharif Noorian, Sihang Qiu, Ujwal Gadiraju, Jie Yang, and Alessandro 
Bozzon. 2022. What Should You Know? A Human-In-the-Loop Approach to 
Unknown Unknowns Characterization in Image Recognition. In Proceedings of 
the ACM Web Conference 2022. 882–892. 

[104] Nischal Shrestha, Titus Barik, and Chris Parnin. 2021. Remote, but Connected: 
How# TidyTuesday Provides an Online Community of Practice for Data Scien-
tists. Proceedings of the ACM on Human-Computer Interaction 5, CSCW1 (2021), 
1–31. 

[105] K Simonyan, A Vedaldi, and A Zisserman. 2014. Deep Inside Convolutional 
Networks: Visualising Image Classifcation Models and Saliency Maps. In ICLR. 

[106] Sahil Singla, Besmira Nushi, Shital Shah, Ece Kamar, and Eric Horvitz. 2020. 
Understanding Failures of Deep Networks via Robust Feature Extraction. (2020). 

[107] Leon Sixt, Maximilian Granz, and Tim Landgraf. 2020. When Explanations 
Lie: Why Many Modifed BP Attributions Fail. In International Conference on 
Machine Learning. PMLR, 9046–9057. 

[108] Kacper Sokol and Peter Flach. 2020. Explainability fact sheets: a framework 
for systematic assessment of explainable approaches. In Proceedings of the 2020 
Conference on Fairness, Accountability, and Transparency. 56–67. 

[109] Megha Srivastava, Hoda Heidari, and Andreas Krause. 2019. Mathematical 
notions vs. human perception of fairness: A descriptive approach to fairness 
for machine learning. In Proceedings of the 25th ACM SIGKDD international 
conference on knowledge discovery & data mining. 2459–2468. 

[110] Thilo Stadelmann, Julian Keuzenkamp, Helmut Grabner, and Christoph Würsch. 
2021. The AI-atlas: didactics for teaching AI and machine learning on-site, 
online, and hybrid. Education Sciences 11, 7 (2021), 318. 

[111] Elisabeth Sulmont, Elizabeth Patitsas, and Jeremy R Cooperstock. 2019. What is 
hard about teaching machine learning to non-majors? Insights from classifying 
instructors’ learning goals. ACM Transactions on Computing Education (TOCE) 
19, 4 (2019), 1–16. 

[112] Xiaobing Sun, Tianchi Zhou, Gengjie Li, Jiajun Hu, Hui Yang, and Bin Li. 2017. 
An empirical study on real bugs for machine learning programs. In 2017 24th 
Asia-Pacifc Software Engineering Conference (APSEC). IEEE, 348–357. 

[113] Harini Suresh, Steven R Gomez, Kevin K Nam, and A Satyanarayan. 2021. Be-
yond Expertise and Roles: A Framework to Characterize the Stakeholders of 
Interpretable Machine Learning and their Needs. In Proceedings of the 2021 CHI 
Conference on Human Factors in Computing Systems. 1–16. 

[114] Ferdian Thung, Shaowei Wang, David Lo, and Lingxiao Jiang. 2012. An empirical 
study of bugs in machine learning systems. In 2012 IEEE 23rd International 
Symposium on Software Reliability Engineering. IEEE, 271–280. 

[115] Tatiana Tommasi, Novi Patricia, Barbara Caputo, and Tinne Tuytelaars. 2017. A 
deeper look at dataset bias. In Domain adaptation in computer vision applications. 
Springer, 37–55. 

[116] Antonio Torralba and Alexei A Efros. 2011. Unbiased look at dataset bias. In 
CVPR 2011. IEEE, 1521–1528. 

[117] Mohammad Moeen Valipoor and Angélica de Antonio. 2022. Recent trends in 
computer vision-driven scene understanding for VI/blind users: a systematic 
mapping. Universal Access in the Information Society (2022), 1–23. 

[118] Elmira van den Broek, Anastasia Sergeeva, and Marleen Huysman. 2021. WHEN 
THE MACHINE MEETS THE EXPERT: AN ETHNOGRAPHY OF DEVELOPING 
AI FOR HIRING. MIS Quarterly 45, 3 (2021). 

[119] Laurens Van der Maaten and Geofrey Hinton. 2008. Visualizing data using 
t-SNE. Journal of machine learning research 9, 11 (2008). 

[120] Sahil Verma and Julia Rubin. 2018. Fairness defnitions explained. In 2018 
ieee/acm international workshop on software fairness (fairware). IEEE, 1–7. 

[121] Anneliese von Mayrhauser and A Marie Vans. 1997. Program understanding 
behavior during debugging of large scale software. In Papers presented at the 

seventh workshop on Empirical studies of programmers. 157–179. 
[122] Zhiyuan Wan, Xin Xia, David Lo, and Gail C Murphy. 2019. How does machine 

learning change software development practices? IEEE Transactions on Software 
Engineering 47, 9 (2019), 1857–1871. 

[123] Angelina Wang, Alexander Liu, Ryan Zhang, Anat Kleiman, Leslie Kim, Dora 
Zhao, Iroha Shirai, Arvind Narayanan, and Olga Russakovsky. 2022. REVISE: A 
tool for measuring and mitigating bias in visual datasets. International Journal 
of Computer Vision (2022), 1–21. 

[124] Dakuo Wang, Elizabeth Churchill, Pattie Maes, Xiangmin Fan, Ben Shneiderman, 
Yuanchun Shi, and Qianying Wang. 2020. From human-human collaboration to 
Human-AI collaboration: Designing AI systems that can work together with 
people. In Extended abstracts of the 2020 CHI conference on human factors in 
computing systems. 1–6. 

[125] Thomas Way, Mary-Angela Papalaskari, Lillian Cassel, Paula Matuszek, Carol 
Weiss, and Yamini Praveena Tella. 2017. Machine learning modules for all 
disciplines. In Proceedings of the 2017 acm conference on innovation and technology 
in computer science education. 84–85. 

[126] James Wexler, Mahima Pushkarna, Tolga Bolukbasi, Martin Wattenberg, Fer-
nanda Viégas, and Jimbo Wilson. 2019. The what-if tool: Interactive probing 
of machine learning models. IEEE transactions on visualization and computer 
graphics 26, 1 (2019), 56–65. 

[127] Yao Xie, Melody Chen, David Kao, Ge Gao, and Xiang’Anthony’ Chen. 2020. 
CheXplain: Enabling Physicians to Explore and Understand Data-Driven, AI-
Enabled Medical Imaging Analysis. In Proceedings of the 2020 CHI Conference on 
Human Factors in Computing Systems. 1–13. 

[128] Qian Yang, Jina Suh, Nan-Chen Chen, and Gonzalo Ramos. 2018. Grounding 
interactive machine learning tool design in how non-experts actually build 
models. In Proceedings of the 2018 designing interactive systems conference. 573– 
584. 

[129] Alexey Zagalsky, Dov Te’eni, Inbal Yahav, David G Schwartz, Gahl Silverman, 
Daniel Cohen, Yossi Mann, and Dafna Lewinsky. 2021. The design of reciprocal 
learning between human and artifcial intelligence. Proceedings of the ACM on 
Human-Computer Interaction 5, CSCW2 (2021), 1–36. 

[130] Amy X Zhang, Michael Muller, and Dakuo Wang. 2020. How do data science 
workers collaborate? roles, workfows, and tools. Proceedings of the ACM on 
Human-Computer Interaction 4, CSCW1 (2020), 1–23. 

[131] Jiawei Zhang, Yang Wang, Piero Molino, Lezhi Li, and David S Ebert. 2018. 
Manifold: A model-agnostic framework for interpretation and diagnosis of 
machine learning models. IEEE transactions on visualization and computer 
graphics 25, 1 (2018), 364–373. 

[132] Jie M Zhang, Mark Harman, Lei Ma, and Yang Liu. 2020. Machine learning test-
ing: Survey, landscapes and horizons. IEEE Transactions on Software Engineering 
(2020). 

[133] Qiaoning Zhang, Matthew L Lee, and Scott Carter. 2022. You Complete Me: 
Human-AI Teams and Complementary Expertise. In CHI Conference on Human 
Factors in Computing Systems. 1–28. 

[134] Ru Zhang, Wencong Xiao, Hongyu Zhang, Yu Liu, Haoxiang Lin, and Mao Yang. 
2020. An empirical study on program failures of deep learning jobs. In 2020 
IEEE/ACM 42nd International Conference on Software Engineering (ICSE). IEEE, 
1159–1170. 

[135] Wencan Zhang and Brian Y Lim. 2022. Towards Relatable Explainable AI with 
the Perceptual Process. In CHI Conference on Human Factors in Computing 
Systems. 1–24. 

[136] Zijian Zhang, Jaspreet Singh, Ujwal Gadiraju, and Avishek Anand. 2019. Disso-
nance between human and machine understanding. Proceedings of the ACM on 
Human-Computer Interaction 3, CSCW (2019), 1–23. 

[137] Peng Zhao, Yu-Jie Zhang, and Zhi-Hua Zhou. 2021. Exploratory machine 
learning with unknown unknowns. In Proceedings of the AAAI Conference on 
Artifcial Intelligence, Vol. 35. 10999–11006. 



Handling Failures in Computer Vision Models: A Study of Practices, Challenges, and Needs CHI ’23, April 23–28, 2023, Hamburg, Germany 

A APPENDIX 

A.1 Research method 
Figure 4 and Figure 5 respectively present example explanations 
and the workfow template shown to the participants during the 
semi-structured interviews. 

Example image Corresponding saliency map Semantic concepts

bed

shelves

desk

oven

ceiling, wall

wall

door

Sofa AND Television-> Living room (0.9)
Bed -> Bedroom (0.8)
Door -> Bedroom (0.6)

Oven -> Kitchen (0.9)
Oven AND Ceiling -> Kitchen (0.7)
Toilet -> Bathroom (0.7)

Global explanations (SECA method)

(relevant and irrelevant)

Figure 4: Example explanations (local visual and textual ex-
planations, and global textual explanations) showed to the 
participants, when they would mention them, or at the end 
of the interviews to trigger further refections about them. 

A.2 Additional results 
A.2.1 Correcting bugs to solve the failures. The participants used 
one of four strategies (followed by model retraining) to correct bugs, 
depending on the bugs, and on their familiarity with the models. 

Dataset transformations. Participants with no experience in ex-
plainability and experts who do not wish to engage deeply with the 
data content tried to resolve correctness failures through typical 
data augmentation methods such as applying mirroring, rotation 
and colour contrast algorithms. “I would employ some augmentation 
techniques or artifcial data to see if I can get away with this. This 
would also be a method to further regularize the model to make sure 
that it’s not overftting.” P3 high-CV. P5 low-CV also mentioned 
“applying some dirty labels (for instance I would apply the label of 
"kitchen" to "dining room" pictures) to create a positive perturbation 
and rebalance the number of samples”. 

Other participants mentioned feature-specifc transformations: 
adding or removing images with specifc features, or obfuscating 
irrelevant information from images. “If there are cats only at dining 
rooms, I should do cat recognition and mask them.” P11 mid-CV. The 
hypotheses of these participants revolved around the relevance of 
the model features, and/or the existence of unknown unknowns. 

Transformations of the data engineering process were also men-
tioned by some experts as simple steps (e.g. increasing image size, 
changing scaling) along model modifcations. 

Modifcations of the training parameters. Expert participants 
transformed the loss function to penalize classes with higher error 
rates: “It is easier that the model learns to base the classifcation on 
diferent things than when you add more data” P9 high-CV. They also 
gave more importance to training samples erroneously predicted 
“It’s like the Bootstrap algorithm where you keep re-feeding falsely 
predicted samples into the model, assigning higher weights for the 
last computation.” P3 high-CV. This method is used by participants 
with computer vision experience, as they are more familiar with the 
functioning of the models. “It allows me to avoid using a parameter 
so that the classifcation of two classes becomes more diverse, and 
the optimization of the training based on a more relaxed representa-
tion.” P14 high-CV. A few participants with some experience also 
discussed tuning training hyperparameters. “What I found is that 
setting the right parameters, especially learning rate or batch size, 
can help the model avoid certain biases” P7 mid-CV. 

Model transformations. Hyperparameter tuning (e.g. changing 
the model architecture) was the main solution of high-CV experi-
ence participants, which sometimes came hand in hand with simple 
dataset transformations. “The network didn’t learn the task. It’s the 
famous bias variance. You have to see whether it cannot generalize 
well, which means that it has been overftted to the training set. If 
you have a lot of data available, you just throw more data at your 
model hoping that it can generalize better. If the data is scarce, let’s 
say you are in medical imaging and each MRI is from a patient, you 
cannot collect more data. You have to change your model and that’s 
more expensive because a machine learning expert needs to work on 
it. Instead, for data, you can just crowd source it via Amazon Mechan-
ical Turk, it’s much cheaper. There are also scientifc insights: if the 
task is simple, adding more complex model doesn’t make sense, but 
usually for computer vision task, it’s complex enough that you can 
have a complex model.” P16 high-CV. Low-CV participants did not 
engage in such activity as they were not familiar enough with the 
functioning of computer vision models “That’s where I’m hitting a 
wall. I would change something about the model. But I would need to 
understand that model a little better.” P4 low-CV. 

Changes in the model setup. Certain participants with low-CV 
experience proposed additional solutions based on their own expe-
rience. These solutions are not mentioned in literature, but useful in 
practice. They would a) build separate models for the most confused 
classes, b) create additional classes for the ones that are too diverse 
in terms of image content, or c) append a rule-based model, to cor-
rect inferences with heuristics defned on the content of the images. 
“Establishing rules means to modify the model decisions manually. It’s 
not something that you should do, but if it’s a requirement, it can be 
done. Let’s say this is towards 60% confdence, it’s a weak prediction. 
The probability of being a dining room is lower than average. So, once 
you have the combination of low probability of being a dining room 
and you also have the presence of a metal component intertwined 
with black glasses, then you can push it to the kitchen classifcation.” 
P8 low-CV. d) Others proposed to engineer features based on vi-
sual information identifed in the images “Most bathrooms have a 



CHI ’23, April 23–28, 2023, Hamburg, Germany Balayn, et al. 

Figure 5: Example template provided with the design brief, and flled in by one participant. The template shows empty circles 
and arrows representing objectives, actions, and transition triggers, refecting each step of the failure handling process, and 
helping the participants to structure their thoughts. 

mirror, then it’s really good if we can classify if there’s any mirror. 
From specifc elements that you discover, you arrange other features.” 
P8 low-CV. e) One participant mentioned deferring difcult cases 
to humans, or using active learning to fne-tune the model. “The 
way to proceed is through the human eye: you leave extreme cases to 
workers to annotate. The model can learn about the general cases and 
leave you the extreme ones.” P7 mid-CV. 

A.2.2 Collaboration between stakeholders for handling failures. 

Results. As it appeared along the previous subsections, for most 
participants, failure handling was not a lonely process. Practition-
ers frequently mentioned communicating with other stakeholders 
during the process. 
• With other “developers”. The practitioners often need to discuss 
with other individuals who took part in the model development 
process, dataset creation, etc. to obtain more information about 
choices and previous experiments. Especially, expert practition-
ers implicitly had a list of steps they always perform when de-
veloping a model (e.g., training with diferent architectures and 
hyperparameters), and a list of necessary operations (e.g., nor-
malization and standardization of the dataset, data augmentation, 
etc.) (P3 high-CV) “I suppose that the input has been sufciently 
preprocessed? I would normalize, typically by the max value if we 
are talking about standard RGB images.” 

• With model requesters. To clarify when the model is satisfying, the 
practitioners also rely on the model requesters (subsection 4.2) 
who are the fnal judges of the acceptability of the model (and 
the requirement providers) (P14 high-CV) “the fnal decision on 
how much you should improve the model is given by somebody 
else (the client, the model owner, ...) given whether it is a critical 
situation.” 

• With domain experts. Domain experts are involved by the prac-
titioners (when reachable) to better understand the target task 
and potential pitfalls, and to judge how ready the model is, to 
identify feature expectations, and to reason on the relevance 
of certain features when searching for model bugs and feature 
failures (P14 high-CV) “the part of saying whether it’s ok that 
the model makes a specifc mistake, it’s not up to me. It’s up to 
the experts.” P7 mid-CV also mentioned questioning the experts 
who are the end-users of their model to resolve data ambiguities, 
whether they are inherently ambiguous, or whether one specifc 
class can be attributed to the samples (P7 mid-CV) “Give it to 

people who are as close as possible to the end-users and say: what 
do you think? Is this a bedroom or a living room?” 

• With potential end-users. The developers have to convince the 
model requesters and users (who are often the experts) of the 
validity of the models. P14 high-CV for instance explained “You 
are the person that can communicate the density of information to 
a specialist like a doctor. When we have a meeting, we show the 
model understood the class.” 

Implications. Our results identify additional communication 
needs from the developer to non-developers, especially for defning 
when a model is suitable for deployment, whether specifc failures 
on single samples are acceptable, and which features one should ex-
pect [47, 88, 118]. Since the accessibility of domain experts was one 
of the main problems for the developers, research should investi-
gate how to facilitate collaborations around these specifc concepts, 
potentially with the development of remote, asynchronous tools, 
and common languages (possibly inspired from existing knowledge 
elicitation methods [56]), e.g., to indicate relevant features. Existing 
works that facilitate the cooperation between domain experts or 
end-users, and a machine learning model, could be adapted to these 
specifc concepts [20, 63, 129]. 


	Abstract
	1 Introduction
	2 Related work
	2.1 Failures & bugs in machine learning systems
	2.2 Approaches for failure handling
	2.3 Studies of debugging practices

	3 Research method
	3.1 Semi-structured interview participants
	3.2 Interview guide
	3.3 Analysis of the results

	4 Results
	4.1 RQ1 - goals: Disparities in identified failures and bugs
	4.2 RQ1 - goals: Disagreement on the satisfaction point for deployment
	4.3 RQ2 - process: Drawing the failure handling workflow
	4.4 RQ2 - process: Explainability for failure handling

	5 Discussion & future work
	5.1 Surfaced design directions
	5.2 Opportunities for the design of new supportive tools
	5.3 Increasing clarity in the failure handling goals & process
	5.4 Beyond the failure handling process: additional changes needed

	6 Limitations & threats to validity
	7 Conclusion
	Acknowledgments
	References
	A Appendix
	A.1 Research method
	A.2 Additional results




