
 
 

Delft University of Technology

Simulations and concepts for a 2-D spin-echo modulated SANS (SEMSANS) instrument

Parnell, Steven R.; Berg, Sergi Van Den; Bolderink, Gregor; Bouwman, Wim G.

DOI
10.1088/1742-6596/2481/1/012007
Publication date
2023
Document Version
Final published version
Published in
Journal of Physics: Conference Series

Citation (APA)
Parnell, S. R., Berg, S. V. D., Bolderink, G., & Bouwman, W. G. (2023). Simulations and concepts for a 2-D
spin-echo modulated SANS (SEMSANS) instrument. Journal of Physics: Conference Series, 2481(1),
Article 012007. https://doi.org/10.1088/1742-6596/2481/1/012007

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1088/1742-6596/2481/1/012007
https://doi.org/10.1088/1742-6596/2481/1/012007


Journal of Physics: Conference Series

PAPER • OPEN ACCESS

Simulations and concepts for a 2-D spin-echo
modulated SANS (SEMSANS) instrument
To cite this article: Steven R. Parnell et al 2023 J. Phys.: Conf. Ser. 2481 012007

 

View the article online for updates and enhancements.

You may also like
Micromachined integrated self-adaptive
nonlinear stops for mechanical shock
protection of MEMS
Kaisi Xu, Fushuai Jiang, Wei Zhang et al.

-

Contrast variation in spin-echo small angle
neutron scattering
Xin Li, Bin Wu, Yun Liu et al.

-

Slow internal protein dynamics in solution
R Biehl and D Richter

-

This content was downloaded from IP address 145.90.35.214 on 05/06/2023 at 13:42

https://doi.org/10.1088/1742-6596/2481/1/012007
/article/10.1088/1361-6439/aab581
/article/10.1088/1361-6439/aab581
/article/10.1088/1361-6439/aab581
/article/10.1088/0953-8984/24/6/064115
/article/10.1088/0953-8984/24/6/064115
/article/10.1088/0953-8984/26/50/503103
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjstUK3adHRUfPa13d2dKfsN9NO7uW34gHDUw3mfVckuRaFR8p5BSSQfs1qQ8Cg3UuHXjEm97DULb6Uuy3M-f2KrxHWGLmzL9cVeUfW3uqeD3dCWqL4EzmhYOs96IadzrOsaGTMhVpYcxPRuQ-2R0GvpAV4PAQ64eKYIGIbr16A6BNkMjGMMF9wR75Adnl06oeXSEeorcgaPdoKydqsYmoaQAax3PGphY545fDcp-4ALnvgAWOMVCBa6k7AnBcKudsMs3G1Y0Tus_gniBuNuo26kfyaDD0VsZO_gzz3i1eNTh0g&sai=AMfl-YTeKOCbAqEkMqiRKfazrWp3VCk3lDqhAp9RyCobOnGRpzn2xHTATP59kqNrB3i1LSgKRSk3ZeIBi_EQI_k&sig=Cg0ArKJSzOd0R8UOPtGp&fbs_aeid=[gw_fbsaeid]&adurl=https://www.electrochem.org/upcoming-meetings/


Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

PNCMI 2022
Journal of Physics: Conference Series 2481 (2023) 012007

IOP Publishing
doi:10.1088/1742-6596/2481/1/012007

1

Simulations and concepts for a 2-D spin-echo

modulated SANS (SEMSANS) instrument

Steven R. Parnell, Sergi Van Den Berg, Gregor Bolderink and Wim
G. Bouwman

Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629 JB Delft, The
Netherlands

E-mail: s.r.parnell@tudelft.nl

Abstract. The spin-echo small-angle neutron scattering (SESANS) technique utilises a series
of inclined magnetic fields before and after the sample to encode the scattering angle into the
polarisation to obtain a much higher resolution than in conventional SANS. The analogous
technique (spin echo modulated SANS (SEMSANS)) implements spin manipulations before
the sample only to encode the scattering into an intensity modulation. The technique can be
combined with SANS to expand the length scale range probed from 1 nm to microns.

Using McStas we show that using a series of four magnetic Wollaston prisms in two
orthogonal pairs with a 90◦ rotation can be utilised to create SEMSANS modulations in 2-D.
These modulations can also be of different periods in each encoding direction. This method can
be applied to anisotropic scattering samples. Also this allows for the simultaneous measurement
at two orthogonal independent spin-echo lengths. This technique yields directly information
about the structure of oriented structures.

1. Introduction
The use of neutron spin-echo [1] is an established technique in neutron scattering for achieving
higher resolution than is otherwise possible and without the drawbacks of excessive beam
collimation, which often reduces the effective flux to almost unmanageable levels.

In small angle scattering it is possible to reach longer length scales by the techniques of
spin-echo SANS (SESANS) [2, 3, 4] and the newer technique of spin echo modulated SANS
(SEMSANS) . Both of these techniques utilise magnetic fields with inclined interfaces to encode
the scattering angle [8, 9, 10].

However, so far the technique has been largely limited to the investigation of isotropic
structures where the scattering is radially symmetric in Q, as is often the case in SANS and there
exist only a few instances where samples have been measured in different orientations [13]. Most
of these measurements show refraction on oriented wires, fibres and air bubbles [14, 15, 16, 17].
However there are many applications such as rheometry, magnetic scattering, gels and foods
where there is orientation of the structures on the nanoscale. In these cases the assumption of
isotropic scattering and subsequent radial averaging smears out these structures and also looses
important information.

As SESANS and SEMSANS encode the scattering angle via a series of inclined magnetic
fields, then the encoding of the scattering is only along the inclination axis of this magnetic
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Figure 1. A schematic representation of the general SEMSANS beamline. The neutrons come
in from the left after which they are polarised in the +z-direction. The fields in the Wollaston
prisms are in the +y and -y-directions. As the second prism is twice as close to the detector as
the first prism, the field strength in the second prism is also twice as large. There are also 1cm
× 1cm (rectangular) slits, which are not shown but located at x = 1.9 m and x = 6.1 m

field. The exact arrangements of these fields vary between SESANS and SEMSANS and for the
remainder of this article the focus is on the SEMSANS method.

A typical SEMSANS setup is shown in figure 1 where the magnetic fields are generated by a
pair of magnetic Wollaston prisms (MWPs)[18], for a complete overview of the prisms the reader
is directed to [19] and references therein. The SEMSANS setup has been recently simulated [22]
in McStas [23, 24, 25, 26, 27] for a series of inclined permalloy foils [11], not only is the actual
spatial modulation of the beam simulated, the resulting correlation function is also obtained for
a sample of dilute spheres.

The structure of the remainder of this article is as follows, first is a short introduction
to 1-D SEMSANS and the measured correlation function and the relationship between SANS
and SEMSANS, followed by simulations of various instrumental configurations. We finish by
discussing practical setups and implementation.

2. 1-D SEMSANS
The regular SEMSANS setup is shown in figure 1 and is used to produce a spatially modulation
of the intensity focused at the detector [8]. This has been discussed at length in [9] and we
summarise from that paper, for more detail the reader is directed to this paper.

For a fixed neutron wavelength and geometry the period (p) of the modulation at the focus
(detector) is given by;

p =
π tan θ

cλ(B2 −B1)
(1)
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where c is a constant with a value of 4.62 × 1014rad · T−1 · m−2 and θ the angle between the
hypotenuse in the MWPs and the x axis (as defined in Figure 1), which for the MWP used
in these simulations is 45◦. With B1 and B2 being the magnetic field strength in the first and
second MWPs. This arrangement creates a spatial modulation of the neutron intensity along
the y direction given by

Ib,s(y) = ±Ab,s cos

(
2π

p
y + ϕ

)
+ Īb,s (2)

where the sign of ” ± ” is determined by the choice of incident beam polarisation, Ab,s and
Īb,s are the amplitude and average intensity of the spatial intensity modulations respectively
and b and s refer to blank and sample respectively. ϕ is an offset phase dependent upon the
instrumental settings, which can be adjusted by varying the magnetic guide field between the
magnetic Wollaston prisms in an experimental setup. However in this simulation as there is no
extraneous magnetic field ϕ = 0. The accessible length scale of the SEMSANS setup is given
by the spin echo length δ, which is determined by the period of the intensity modulation on the
detector (p) along with the distances from the sample to the detector plane (Ls) and neutron
wavelength (λ) [8];

δ = λLs/p (3)

The quantity measured An(δ) is determined by the ratio of the intensity modulation with
As(δ) and without sample Ab(δ) as a function of spin echo length (δ) and assuming that all
scattered neutrons arrive at the detector [19] is given by;

An(δ) = eσ[G(δ)−1] (4)

where σ is the average number of times a neutron scatters when traversing the sample, which
takes into account multiple scattering.

G(δ), which is the correlation function, is given by;

G(δ) =
1

σk20

∫ Qzmax

Qzmin

∫ Qymax

Qymin

dσ

dΩ
(Q) cos (Qyδ)dQydQz (5)

where k20 is the square of the incoming neutron wave vector, the Qy and Qz directions are as
defined in Figure 1. For a simple sample of spheres this shows a correlation function which
starts at unity and decays at a value corresponding to twice the radius (as show in in figure 3).
It should be noted that this is the case for a dilute system and as expected only correlations
within individual spheres are observed and no inter-particle correlations.

The quantity dσ
dΩ(Q) is the neutron scattering cross section per unit volume of sample and

equation 5 shows the relationship between SESANS and SANS. This is different from many
recent treatments such as [20] and [21] where isotropic scattering is assumed and hence the
Hankel transform can be applied.

The setup shown in figure 1 is for a 1-D SEMSANS setup and is simple to implement in
McStas, we utilised the McStas script package to this along with the Wollaston prism model
developed in our earlier work [29]. This module is based on a finite element simulation of a
superconducting prism. The fields are described by polynomials derived from a finite elements
simulation using the MagNet (Infolytica, US) software. Hence this gives a realistic field integral
for any path of the neutron through the device. It should be noted that whilst in experiments we
implement a π/2 rotation to project the neutron spin into the encoding plane we simply initialise
the polarisation in this plane using the perfect polariser McStas component and likewise do the
same for the analyser to project only the required component to the detector.
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Figure 2. Shown on the left are the intensities on the PSD screen and the corresponding
vertical integration (right top) for simulations run on the 1-D SEMSANS beamline. On the
bottom right are the derived visibilities for a dilute sphere as a function of spin echo length and
also the corresponding analytical expected form for a 2 micron dilute sphere. The instrument
was simulated in all cases for λ = 2.36Å with a wavelength spread of ∆λ = 0.05 Å and magnetic
field strength of ∆B = 7.5 mT between the two Wollaston prisms. A total of 108 neutrons were
simulated with a flux of 108 n/s/Å/cm2.

The results of the 1-D SEMSANS simulation are shown in figure 2. On the left is a typical
intensity variation which shows the characteristic spatial intensity modulation at the detector
and on the right is the resulting periodicity which is obtained along the y-axis. This expected
behaviour gives good agreement with the period predicted by equation 2. The results are also
in agreement with the McStas simulations of the system with magnetised foils [22]. It should be
noted though that the intensity decreases at the edges of the detector. This is due to the finite
size of the source, combined with slits before each prism which serve to define the beam within
the active are of the MWPs.

The function of these simulations of the 1-D SEMSANS setup is only to establish the validity
of the method, check that these simulations work using MWP’s and that good agreement is
found from the resulting correlation function.

3. 2-D SEMSANS
As we have already discussed the ’standard’ SEMSANS method is 1-D and sensitive only to
correlations along the encoding axis. There have been a number of suggestions to encode
using different schemes [30, 31], however the approach which we describe below utilises the
already existing technology of MWPs and does not need additional magnetic field component
development.

In order to create encoding in two directions we need to create two encoding axes, hence we
need to modify the modulation given by equation 2 to give an additional modulation in the z
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Figure 3. Shown in the left column are the various shapes along with dimensions for the
simulated nanoparticles, the second column is the corresponding SANS scattering as a function of
momentum transfer (Q). The third column if the corresponding SEMSANS correlation function
in 2-D and the fourth column is the projection of that correlation function along a given axis.
Note that the coordinate frame is consistent with the SEMSANS setup diagram as shown in
figures 1 and 4.

direction given by;

Ib,s(y, z) = ±Ab,s cos

(
2π

py
y + ϕ

)
cos

(
2π

pz
z + ϕ

)
+ Īb,s (6)

where the periods in y and z are given by py and pz respectively and hence the correlation
function is now given by;

G(δy, δz) =
1

σk20

∫ Qzmax

Qzmin

∫ Qymax

Qymin

dσ

dΩ
(Q)cos(Qyδy)cos(Qzδz)dQydQz (7)

Examples of these two orthogonal correlation functions are shown in figure 3 for a range of
anisotropic nanoparticles, these show that the measured correlation function is indeed different,
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Figure 4. The proposed new scheme to generate modulation in the x and y directions. In this
set-up, the order in which we construct the two prism sets is changed: the first prism set, for
modulation in y, consists of the first two prisms and the second prism set is composed by the last
two prisms, which makes sure there is modulation in the z direction. To circumvent the problem
of losing modulation depth the neutrons enter the first prism set with a z-polarisation, after
which they are analysed in the same direction. Hereafter, in order to obtain full modulation
depth, the neutron beam must be polarised in the y-direction when entering the last prism set.

as expected. We have introduced the nomenclature δi where i = y, z defined by the particular
encoding axis.

The question now arises as to how to achieve these modulations. The scheme that we propose
is shown schematically in figure 4, this utilises two pairs of MWPs orthogonal to one another
with a simple rotation of the magnetic field between the two sets of prisms and the addition of
an analyser after the first MWP pair. For this setup the magnetic fields are chosen for each of
the two different focusing conditions, one for each prism pair, such that both of the modulations
are focused at the detector.

The resulting simulation is shown in figure 5 and is the resulting modulation for two identical
spin echo lengths is shown in the top left, the resulting pattern can be collapsed (integrated)
along either the y or z directions (top right) and shows a high degree of visibility, note that in this
case both spin states (I+ and I−) were simulated and the resulting visibility derived assuming
the usual definition of neutron visibility (which is defined by the two neutron polarisation spin
states) (V = (I+ − I−)/(I+ + I−)). In order to test the effectiveness of this approach we then
derive the resulting change in correlation function using equation 4 to get An(δ).

The resultant correlation function shows good agreement with the analytical form given by
[32]. When the periods are changed relative to y and z as shown in figure 6 a high modulation
depth is achieved again in both the y and z directions. Again the correlation function (An(δ))
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Figure 5. Shown left is an example of the 2-D intensity modulation obtained at the detector
position without a sample. Whilst on the top left are the visibility along the y and z directions,
this is obtained by integrating across each orthogonal direction. Shown in the bottom right panel
is the simulated intensity modulation for dilute spheres measured along the y and z directions.

is derived, showing good agreement for the analytical function.

4. Discussion and further work
The simulations shown in this proceedings suggest that a 2-D modulation using the SEMSANS
method is possible. In terms of a physical realisation of this setup, the MWP’s can be mounted
orthogonally in pairs. Due to the low level of magnetic field aberrations [18] using a series of
prisms would have little effect on the resulting depth of modulation. The only limit would be
upon the strength of the magnetic field possible to reach relevant spin echo length scales in the
micron region.

Such a system would need a suitable detector and the existing designs such as the multi
channel plate detectors [33] have high pixel density (55µm) in two dimensions allowing high
resolution determination of the modulation depth. In addition to the multi channel plate
detectors there are also promising implementations of Anger cameras for neutrons [34] with
high spatial resolution.

These simulations were for a simple monochromatic instrument, however conceptually there
is no reason why such an implementation could not also be adapted to time of flight based setups.
The detector systems mentioned in the previous paragraph can also be used in time of flight
mode with high time resolution as was done in [7]. It could be possible to incorporate this within
the SEMSANS - SANS instrument concept as well, however this would require a smaller detector
such that it can be mounted in the beamstop area and not interfere with the 2-D SANS detector.
Ideally for SEMSANS-SANS the analyser may provide more parasitic scattering and may need
to be replaced with a 3He analyser, which is becoming routine in time of flight scattering now
[35, 28]. In particular with almost no background when using silicon windowed cells.

It should also be mentioned that variants upon this technique can also be employed in an
imaging configuration [36].

One advantage in advancing these simulations would be to incorporate an anisotropic
scatterer within the McStas sample modules to approximate some of the nanoparticle geometries
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Figure 6. Shown left is an example of the 2-D intensity modulation obtained at the detector
position without a sample. Whilst on the top left are the visibility along the y and z directions,
this is obtained by integrating across each orthogonal direction. The magnetic field strength
was ∆B=7.5mT between the first prism set and 6.9mT between the second pair. Shown in the
bottom right panel is the simulated intensity modulation for dilute spheres measured along the
y and z directions with different periods and hence spin echo lengths (SEL) probed. Note that
the SEL along z is fixed (as indicated in the legend) whilst the SEL in y is scanned with the
magnetic fields being ∆B = 3, 7.5, 19, 30, 41, 52, 64, 75, 87, 98, 113, 128, 143, 158, 180 mT.

shown in figure 3.

5. Conclusions
We have shown via Monte Carlo simulations an implementation of a 2-D SEMSANS
measurement. The results show that such a setup is feasible and can be implemented using
the existing hardware that has been developed. Such a setup could be used for anistotropic
scatterers. This could also be used for magnetic scattering. The proposed setup uses
existing components and does not need the development of new polarisation optics and can
be implemented on existing setups.
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