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A B S T R A C T

Simulation of CO2 utilization and storage (CCUS) in subsurface reservoirs with complex heterogeneous
structures requires a model that captures multiphase compositional flow and transport. Accurate simulation
of these processes necessitates the use of stable numerical methods that are based on an implicit treatment of
the flux term in the conservation equation. Due to the complicated thermodynamic phase behavior, including
the appearance and disappearance of multiple phases, the discrete approximation of the governing equations
is highly nonlinear. Consequently, robust and efficient techniques are needed to solve the resulting nonlinear
system of algebraic equations. In this study, we present a powerful nonlinear solver based on a generalization
of the trust-region technique for compositional multiphase flows. The approach is designed to embed a newly
introduced Operator-Based Linearization technique and is grounded on the analysis of multi-dimensional tables
related to parameterized convection operators. We split the parameter space of the nonlinear problem into a set
of trust regions where the convection operators preserve the second-order behavior (i.e., they remain positive
or negative definite). We approximate these trust regions in the solution process by detecting the boundary of
convex regions via analysis of the directional derivative. This analysis is performed adaptively while tracking
the nonlinear update trajectory in the parameter space. The proposed nonlinear solver locally constrains the
update of the overall compositions across the boundaries of convex regions. We tested the performance of the
proposed nonlinear solver for various scenarios. In many cases, our approach yields an improved behavior of
the nonlinear solution in comparison to state-of-the-art solvers.
1. Introduction

Carbon emissions reduction has become a high priority as the world
strives to mitigate global warming. Carbon dioxide capture, utilization,
and storage (CCUS) is one of the promising technologies to minimize
the amount of greenhouse gases entering the atmosphere. CCUS in-
cludes the capture of carbon dioxide and its associated compounds
from producing sources, compression, transportation, and use of the
captured CO2 for operations such as permanent storage in deep un-
derground geological formations and increased hydrocarbon recovery
in existing oil fields. A model that captures multiphase compositional
flow and transport is required to simulate CO2 use and storage (CCUS)
in subsurface reservoirs with complicated heterogeneous structures.

Compositional simulation is based on the solution of the discretized
governing equations describing the mass, energy and momentum trans-
fer in the reservoir. Explicit schemes have severe timestep size restric-
tions and are impractical for large-scale detailed reservoir models with

∗ Corresponding author.
E-mail address: d.v.voskov@tudelft.nl (D. Voskov).

Courant–Friedrichs–Lewy (CFL) numbers that vary by several orders of
magnitude across the domain. As a result, in practice, the fully-implicit
method (FIM) is preferred.

After the discretization of the governing Partial Differential Equa-
tions is complete, a nonlinear system needs to be linearized. The
most frequently used sets of variables for linearization are based on
natural (Coats, 1980) and molar formulations (Collins et al., 1992;
Acs et al., 1985) which include phase-dependent or mass-dependent
variables respectively. Typically, linearization is done using a version
of the Newton-based method, which demands the assembly of the
Jacobian and the residual for the combined system of equations. A
previous timestep solution is used as an initial guess for the nonlinear
solver. Due to the nonlinear nature of the equations and dependency
on the initial guess, Newton’s method is not guaranteed to converge for
larger timesteps (Deuflhard, 2004). Once the solution of the linearized
system is obtained, the nonlinear unknowns are updated and nonlinear
iterations are repeated until convergence is achieved.
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Heuristic strategies are utilized to select timesteps in reservoir simu-
lation practice (Aziz and Settari, 1979). The use of such heuristics often
yields to timesteps that are either too conservative (i.e., small) or too
large which in turn leads to wasted nonlinear iterations (Younis, 2011).
The limitation of timestep selection can be overcome by applying an
advanced nonlinear solution strategy.

There are several nonlinear solvers described in the literature for
the compositional formulation. One of the promising ideas is the con-
tinuation method proposed by Younis (2011) that introduces a con-
tinuous parameter changing between 0 to 1 through the timestep.
This approach controls the residual through continuous integration
along the nonlinear trajectory in parameter space. Recently, Jiang
and Pan (2022) introduced a Dissipation-Based Nonlinear Solver for
compositional transport. By using numerical dissipation, the approach
creates a homotopy of the discrete governing equations. A continuation
parameter is included to limit dissipation and ensure that the converged
solution’s accuracy is not harmed.

Another approach is the flux-based trust region (TR) method for the
natural formulation, proposed initially by Jenny et al. (2009) for two-
phase immiscible flow with the S-shape fractional flow curves. Their
work demonstrates that unconditional convergence is possible by limit-
ing saturation updates based on the inflection point of the flux function.
Later, Wang and Tchelepi (2013), Li and Tchelepi (2014) extended
the flux-based trust region for two-phase immiscible flow and trans-
port where buoyancy, capillary, and viscous forces are present. More
recently, Møyner (2017) extended this work for black oil three-phase
physics with a non-smooth flux function.

Even though different trust region nonlinear solvers were devel-
oped for the natural formulation, there is a lack of such strategies
for the molar formulation. Voskov and Tchelepi (2008) demonstrated
a compositional flow simulation employing tie-lines to parametrize
the compositional space. A version of trust-region correction has been
developed for molar formulation along the key tie-lines (Voskov and
Tchelepi, 2011) but was not robust enough in comparison with tech-
niques proposed for the natural formulation. Khebzegga et al. (2021)
designed a nonlinear solver that detects phase boundaries. They focused
their research on chopping at phase boundaries, ignoring the inflection
line within the two-phase zone. They highlighted that detecting the
inflection line for compositional problems required a second-order
derivative and the Hessian analysis, which is more expensive and
challenging to compute.

Recently, a new approach for the linearization of governing equa-
tions, called operator-based linearization (OBL), was proposed by
Voskov (2017). In this approach, the exact physics of the simulation
model was approximated using abstract algebraic operators. Later this
technique was extended and implemented in the open-source Delft
Advanced Research Terra Simulator (DARTS). DARTS is a scalable
parallel modeling framework and aims to accelerate the simulation per-
formance while capturing multi-physics processes in geo-engineering
fields such as hydrocarbon (Khait and Voskov, 2017; Lyu et al., 2021a)
geothermal (Wang et al., 2020) and CO2 sequestration (Kala and

oskov, 2020; Lyu et al., 2021b). In the OBL approach, the parameter-
zation is performed dependent on the conventional molar unknowns
pressure and overall composition). Using the OBL approach, the non-
inearity of the residual is translated into the operators. Consequently,
y analyzing the nonlinearity of the operators, one can understand the
ajor source of nonlinearity in the discrete residual equations. This

reatly facilitates the design of a nonlinear solver for this framework.
In this work, we present an advanced nonlinear solver based on a

eneralization of the trust-region technique for compositional multi-
hase transport applied for CCUS. First, we investigate the nonlinearity
f convective operators written in fractional flow form and detect
oundaries of the trust region for the hyperbolic operator by assembling
he directional approximation of the Hessian matrix. Next, we design
he nonlinear solver in which we track the nonlinear trajectory for
2

inary and ternary kernel in OBL parameter space and approximate
these trust regions in the solution process via directional analysis of
the derivative. By drawing some trial Newton trajectories on OBL
parameter space, we observe that our directional analysis of derivatives
predicts the boundaries of these trust regions correctly. Furthermore,
it is less computationally expensive than computing the full Hessian
matrix. Finally, we test the performance of the new nonlinear solver
for several complex examples.

2. Modeling approach

In this section, we describe an operator form of governing equations
used in Delft Advanced Research Terra Simulator (DARTS) frame-
work (Khait, 2019).

2.1. Governing equations

We start from the description of the governing equations and non-
linear formulation for a general-purpose compositional simulation used
in DARTS. The conservation equations for an isothermal multiphase
compositional problem with 𝑛𝑝 phases and 𝑛𝑐 components can be
written as:

𝜕
𝜕𝑡
(𝜙

𝑛𝑝
∑

𝑗=1
𝑥𝑐𝑗𝜌𝑗𝑠𝑗 ) + 𝑑𝑖𝑣

𝑛𝑝
∑

𝑗=1
𝑥𝑐𝑗𝜌𝑗𝐯𝑗 +

𝑛𝑝
∑

𝑗=1
𝑥𝑐𝑗𝜌𝑗𝑞𝑗 = 0, 𝑐 = 1,… , 𝑛𝑐 . (1)

Here, we introduce all variables in the equations as functions of
spatial coordinate 𝜉 and physical state 𝜔 :

• 𝜙(𝜉, 𝜔)- porosity,
• 𝑥𝑐𝑗 (𝜔)- the mole fraction of component c in phase j,
• 𝑠𝑗 (𝜔) - phase saturations,
• 𝜌𝑗 (𝜔)- phase molar density,
• 𝐯𝑗 (𝜉, 𝜔)- phase velocity,
• 𝑞𝑗 (𝜉, 𝜔, 𝑢)- phase rate per unit volume.

Darcy’s law is applied to describe how each phase flows:

𝑗 = −
(

𝐊
𝑘𝑟𝑗
𝜇𝑗

(∇𝐩𝐣 − 𝛾𝑗∇𝐝)
)

, (2)

where

• 𝐊(𝜉) – permeability tensor,
• 𝑘𝑟𝑗 (𝜔) – relative permeability,
• 𝜇𝑗 (𝜔) – phase viscosity,
• 𝐩𝐣(𝜔) – vector of pressures in phase 𝑗,
• 𝛾𝑗 (𝜔) – phase gravity vector,
• 𝐝(𝜉) – vector of depths (positive downwards).

By applying a finite-volume discretization on a general unstructured
mesh and backward Euler approximation in time, we transform the
conservation equations into

𝑉

(

(𝜙
∑

𝑗
𝑥𝑐𝑗𝜌𝑗𝑠𝑗 )𝑛+1 − (𝜙

∑

𝑗
𝑥𝑐𝑗𝜌𝑗𝑠𝑗 )𝑛

)

− 𝛥𝑡
∑

𝑗

(

∑

𝑙∈𝐿
𝑥𝑙𝑐𝑗𝜌

𝑙
𝑗𝑇

𝑙
𝑗 𝛥𝛹

𝑙

)

+ 𝛥𝑡
∑

𝑗
𝜌𝑝𝑥𝑐𝑗𝑞𝑗 = 0, (3)

where 𝑉 is the volume of a control volume and 𝑞𝑗 = 𝑗𝑗𝑉 the source of
a phase. Here we assume Darcy’s law neglecting capillarity and grav-
ity and used a Two-Point Flux Approximation (TPFA) with upstream
weighting introducing the summation over all interfaces L connecting
the control volume with other grid blocks. Based on these simplifica-
tions, 𝛥𝜓 𝑙 becomes a simple difference in pressures between blocks a
and b, where 𝑇 𝑙𝑗 is phase transmissibility. These assumptions are not
required by the proposed approaches, but help to simplify the further

description.
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2.2. Sources of nonlinearity

The main source of nonlinearity is related to the use of the Fully Im-
plicit Method (FIM) for time approximation of the governing equations
which requires the flux term in Eq. (3) to be defined based on of the
nonlinear unknowns at a new timestep (𝑛+ 1). The closure assumption
of instantaneous thermodynamic equilibrium further increases the non-
linearity. We used the overall molar formulation suggested by Collins
et al. (1992). In this formulation, the following system must be solved
at any grid block containing a multiphase (𝑛𝑝) multi-component 𝑛𝑐
mixture:

𝐹𝑐 = 𝑧𝑐 −
𝑛𝑝
∑

𝑗=1
𝑣𝑗𝑥𝑐𝑗 = 0, (4)

𝐹𝑐+𝑛𝑐 = 𝑓𝑐1(𝑝, 𝑇 , 𝑥1) − 𝑓𝑐𝑗 (𝑝, 𝑇 , 𝑥𝑗 ) = 0, (5)

𝐹𝑗+𝑛𝑐∗𝑛𝑝 =
𝑛𝑐
∑

𝑐=1
(𝑥𝑐1 − 𝑥𝑐𝑗 ) = 0, (6)

𝐹𝑛𝑝+𝑛𝑐∗𝑛𝑝 =
𝑛𝑝
∑

𝑗=1
𝑣𝑗 − 1 = 0. (7)

Here 𝑧𝑐 = 𝛴𝑥𝑐𝑗𝜌𝑗𝑠𝑗∕𝜌𝑗𝑠𝑗 is overall composition and 𝑓𝑐𝑗 (𝑝, 𝑇 , 𝑥𝑐𝑗 ) is the
fugacity of component 𝑐 in phase 𝑗. The solution of this system is called
a multiphase flash (Michelsen, 1982) and needs to be applied at every
nonlinear iteration (Voskov and Tchelepi, 2012). The solution provides
molar fractions for each component 𝑥𝑐𝑗 and phase fraction 𝑣𝑗 .

2.3. Operator form

We can rewrite Eq. (3) as the component of a residual vector in
general algebraic form. In this case, each term can be represented
as a product of state-dependent and space-dependent operators. The
resulting mass conservation equation, written for a control volume 𝑖 in
residual form, is

𝑟𝑐 (𝜔) =𝑉 (𝜉)𝜙0(𝜉)(𝛼𝑐 (𝜔) − 𝛼𝑐 (𝜔𝑛))

−
∑

𝑙
𝛽𝑙𝑐 (𝜔)𝛬(𝜔)𝛥𝑡𝑇

𝑎𝑏(𝜉)(𝑝𝑏 − 𝑝𝑎) + 𝜃𝑐 (𝜉, 𝜔, 𝑢) = 0, (8)

where operators are defined as

𝛼𝑐 (𝜔) = (1 + 𝑐𝑟(𝑝 − 𝑝𝑟𝑒𝑓 ))
𝑛𝑝
∑

𝑗=1
𝑥𝑐𝑗𝜌𝑗𝑠𝑗 , (9)

𝛽𝑐 (𝜔) =

∑

𝑗 𝑥𝑐𝑗
𝑘𝑟𝑗
𝜇𝑗
𝜌𝑗

𝛬
=
∑

𝑗
𝑥𝑐𝑗𝑓𝑗𝜌𝑗 , (10)

𝛬(𝜔) =
∑

𝑗

𝑘𝑟𝑗
𝜇𝑗
, (11)

𝑐 (𝜉, 𝜔, 𝑢) = 𝛥𝑡
∑

𝑗
𝜌𝑗𝑥𝑐𝑗𝑞𝑗 (𝜉, 𝜔, 𝑢). (12)

Notice, that in this formulation, an additional operator 𝛬 is intro-
uced in comparison to one suggested in Voskov (2017). Here, 𝑐𝑟 is
he rock compressibility, 𝑇 𝑎𝑏 is the geometric part of transmissibility
which involves permeability and the geometry of the control volume),
nd 𝑓𝑗 is a fractional flow for phase 𝑗. The variables 𝜔 and 𝜔𝑛 are non-
inear unknowns at the current and the previous timestep respectively,
nd 𝑢 is a vector of well control variables. The operator 𝜃𝑐 (𝜉, 𝜔, 𝑢) is the
nflux/outflux term. In addition, 𝜙0, 𝑉𝑖, and 𝑝, are the initial porosity,
olume, and pressure respectively.

The operator 𝛼𝑐 is dependent on the properties of rock and fluid
nd independent of spatially distributed properties. Similarly, the di-
ergence operator is present as a fluid-related operator 𝛽𝑐 independent
f spatially distributed properties. It should be noted that the Operator-
ased linearization framework is intended for molar formulation (based
3

n an overall molar fraction, see Voskov (2017) for more details). Since
he number of unknowns is changing in natural formulation due to the
hase appearance and disappearance, the application of OBL based on
nterpolation in the parameter space with variable dimensionality is not
traightforward.

. Linearization and solution

In this section, we describe different types of linearization using the
eneral algebraic form of governing equation.

.1. Standard linearization approach

To solve nonlinear Eq. (8), we need to linearize them. The conven-
ional approach in reservoir simulation is based on the application of
he Newton–Raphson method. In each iteration of this method, we need
o solve a linear system of equations of the following form:

(𝜔𝑘)(𝜔𝑘+1 − 𝜔𝑘) = −𝐫(𝜔𝑘), (13)

where 𝐽 is the Jacobian defined at nonlinear iteration step 𝑘.
The standard approach requires a sequential assembly of the resid-

ual and the Jacobian based on the numerical approximation of the
analytic relations in Eqs. (9)–(12). This may demand a table interpo-
lation (for standard PVT correlations or relative permeabilities), or a
solution of the highly nonlinear equations (for EoS-based properties).
Each property evaluation requires storage space for both values of the
property and its derivatives with respect to the nonlinear unknowns.
Most reservoir simulation software performs numerical (Pruess et al.,
1997), analytic (Geoquest, 2011) or automatic differentiation (Garipov
et al., 2018) of each property with respect to nonlinear unknowns.

3.2. Operator-based linearization

Operator-Based Linearization is a newly proposed strategy for the
linearization of the reservoir simulation problem described by Eq. (8).
As can be seen from the structure of each operator in Eqs. (9)–(12),
this system is based on a complex combination of different nonlinear
properties and relations. Since the space and time approximation is
fixed, the discretization error depends on the variation of the timestep
size 𝛥𝑡 and the characteristic size of the mesh embedded in the 𝑇 𝑎𝑏

term.
The operators 𝛼𝑐 and 𝛽𝑐 represent the physics-based terms. The

ccuracy of the nonlinear physics representation is controlled by these
wo operators (and a part of 𝜃𝑐). In conventional linearization, we

introduce all nonlinear properties and their derivatives into residual
and Jacobian assemble. Next, the nonlinear solver tries to resolve all
the details of the nonlinear description, struggling sometimes with
unimportant features due to the numerical nature and some uncertainty
in the property representations.

The Operator-Based Linearization (OBL) strategy, utilized in this
work, is based on the simplified representation of the nonlinear op-
erators 𝛼𝑐 and 𝛽𝑐 in the parameter-space of the simulation prob-
lem (Voskov, 2017). In this approach, we uniformly discretize the
parameter space with a fixed number of points. Next, we apply multi-
linear interpolation in parameter space for the continuous represen-
tation of physics-based operators and the discrete representation of
their derivatives. The number of points in the interpolation controls
the accuracy of approximation of the nonlinear physics, which governs
the process. This is similar to the accuracy of the approximation in
space and time being controlled by the 3D grid and timestep size. The
details of the OBL approach, test results and convergence analysis can

be found in Khait and Voskov (2017) and Khait and Voskov (2018).
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Fig. 1. Binary incompressible compositional kernel.
4. Nonlinear analysis of convective operator 𝜷

For simplicity, we assume in the following derivations that the
system is incompressible, which limits the analysis to the convection
operators 𝛽𝑐 only as the main source of nonlinearity in the residual
Eq. (8) written in total velocity formulation. As we can see in Fig. 1,
for a binary compositional kernel, we have two kinks in addition to the
inflection point of the fractional curve. These two points correspond to
bubble and dew points compositions where the phase transition occurs.
Kinks have different properties than inflection points and usually have
a negative impact on nonlinear convergence (Li and Tchelepi, 2015).
There is a discontinuity in derivative in the point of kinks and thus
there is an abrupt change in concavity and residual.

Kinks and inflection points in parameter space dictate the bound-
aries of trust regions. For general multicomponent systems, we estimate
the inflection point(s) based on the analysis of the Hessian of the
convective operator. The Hessian matrix is a way of organizing all the
second partial derivative information of a multivariable function. The
general Hessian matrix for a convection operator can be written as:

𝐇(𝜔) = 𝐉
(

∇[𝛽𝑐 (𝜔)]
)

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜕2𝛽1
𝜕𝜔21

𝜕2𝛽1
𝜕𝜔1𝜕𝜔2

… 𝜕2𝛽1
𝜕𝜔1𝜕𝜔𝑐

𝜕2𝛽1
𝜕𝜔2𝜕𝜔1

𝜕2𝛽1
𝜕𝜔22

… 𝜕2𝛽1
𝜕𝜔2𝜔1

⋮ ⋮ ⋱ ⋮

𝜕2𝛽1
𝜕𝜔𝑐𝜕𝜔1

𝜕2𝛽1
𝜕𝜔𝑐𝜕𝜔2

… 𝜕2𝛽1
𝜕𝜔2𝑐

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (14)

In this work, we focus on the analysis of binary and ternary com-
positional problems and evaluate the Hessian matrix with respect to
hyperbolic variables 𝑧𝑐 using the finite difference method.

In our analysis of the ternary system, we are interested in the varia-
tion of convective operators with respect to 𝑧1 and 𝑧2. Accordingly, we
construct the Hessian matrix for the fixed pressure as follows:

H =

⎡

⎢

⎢

⎢

⎣

𝜕2𝛽
𝜕𝑧21

𝜕2𝛽
𝜕𝑧1𝜕𝑧2

𝜕2𝛽
𝜕𝑧2𝜕𝑧1

𝜕2𝛽
𝜕𝑧22

⎤

⎥

⎥

⎥

⎦

. (15)

For ternary systems, we uniformly discretize the parameter space and
compute the Hessian numerically as follows

(

𝜕2𝛽
𝜕𝑧21

)

𝑖,𝑗

=
( 𝜕𝛽𝜕𝑧1

)𝑖+1,𝑗 − ( 𝜕𝛽𝜕𝑧1
)𝑖,𝑗

𝛥𝑧
, (16)

(

𝜕2𝛽
2

)

=
( 𝜕𝛽𝜕𝑧2

)𝑖,𝑗+1 − ( 𝜕𝛽𝜕𝑧2
)𝑖,𝑗

𝛥𝑧
, (17)
4

𝜕𝑧2 𝑖,𝑗
(

𝜕2𝛽
𝜕𝑧2𝜕𝑧1

)

𝑖,𝑗
=

(

𝜕2𝛽
𝜕𝑧1𝜕𝑧2

)

𝑖,𝑗
=
⎛

⎜

⎜

⎝
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)𝑖,𝑗
𝛥𝑧

⎞

⎟

⎟

⎠

, (18)

where 𝑖 and 𝑗 corresponds to the coordinates of the hypercube centers
for axes 𝑧1 and 𝑧2 respectively. Next, for each point in the centers at
the interface of parameterized hypercubes, we define a quadratic form

𝑄 = 𝑑𝑧H𝑑𝑧′. (19)

After calculating Q for all points in the parameter space, we identify
trust regions. If Q changes the sign from positive to negative, it indi-
cates that our operator goes from positive definite to negative definite
and changes its convex condition.

Fig. 2 shows the Hessian diagram for all three convection operators
(𝛽1, 𝛽2, 𝛽3) and the phase diagram corresponding to that ternary kernel.
In the phase diagram, the red color corresponds to the two-phase
region and the blue color corresponds to the single-phase region. In the
Hessian diagram, each color corresponds to different convex conditions
of the flux operators. Comparing the Hessian diagram to the phase
diagram, it is clear that there is an abrupt change in concavity (kink) on
the boundaries between single-phase and two-phase regions. Moreover,
there is an inflection line in the two-phase region for each component
that segments the two-phase zone into a concave and a convex part.

All computations of special features in the phase diagram depends
on the OBL resolution. Since all properties including convective oper-
ator 𝛽𝑖 are defined based on interpolation among supporting points
in the OBL mesh, any changes in convexity can be detected based
on the numerical approximation of second derivatives. It is clear that
these calculations as well as the performance of the nonlinear solver
are dependent on the OBL resolution. In Appendix C, we show the
sensitivity of inflection point definition and nonlinear convergence
based on OBL resolution. More sensitivity analysis of the nonlinear
convergence can be found in Voskov (2017) and Khait and Voskov
(2018)

It is computationally expensive and time-consuming to compute the
Hessian at each point in the parameter space. Checking the convexity
condition only for the interfaces through which Newton’s trajectory
passes excludes the need to study the entire parameter space. However,
the quadratic form of the operator must be evaluated using Eq. (19),
which requires computation of the full Hessian matrix. The size of
the Hessian matrix is 𝑛𝑐 × 𝑛𝑐 , where 𝑛𝑐 is the number of components.
As a result, 𝑛2𝑐 evaluations of first derivatives are required for hessian
matrix assembly. To avoid calculating the entire hessian matrix, in the
directional analysis of the second derivative, we only need to evaluate
derivatives in the direction of the given interface that nonlinear solver
passes. As an example, given the simple Newton trajectory in Fig. 3 that



Geoenergy Science and Engineering 225 (2023) 211698K.M. Pour et al.
Fig. 2. Hessian for three convective operators and phase diagram for incompressible ternary kernel.
Fig. 3. Newton trajectory passing interface L between two cells in the parameter space.

passes interface L in the direction of Z1, the second order directional
second derivative is calculated as follows:

𝜕2𝑍1
𝛽(𝜔) =

( 𝜕𝛽𝜕𝑧1
)𝑖+1 − ( 𝜕𝛽𝜕𝑧1

)𝑖
𝛥𝑧1

, 𝜔 = [𝑍1,… , 𝑍𝑛𝑐 ]. (20)

The advantage of using Eq. (20) is that we only need to evaluate
derivatives once to calculate the second-order directional derivative
regardless of the dimension of the operator’s space 𝑛𝑐 .

5. Nonlinear solver for OBL framework

Before we present our Trust Region (TR) nonlinear Newton solver
in detail, we provide an overview of the state-of-the-art damping
strategies for Newton’s solver. Newton update can be written at every
nonlinear iteration in the general form as follows:

𝛥𝜔 = −𝛷𝐉−1𝐫, (21)

Here 𝛷 is the diagonal matrix:

𝛷 = diag(𝜙1, 𝜙2,… , 𝜙𝑛), 𝜙𝑖 ∈ [0, 1]. (22)

Global and local nonlinear solvers can be seen as different meth-
ods to damp the Newton updates (Ortega and Rheinboldt, 1970) by
specifying the diagonal matrix 𝛷:

• STD The standard Newton’s solver where the updated matrix is
the identity matrix.

• Global chop In the global-chop nonlinear strategy, all entries of
the diagonal are identical, implying that the Newton direction is
simply scaled by a constant factor.

• Local chop In the local-chop nonlinear solver, the diagonal scaling
entries depend on a cell-by-cell basis to limit the local composi-
tional update.
5

The benefit of global chop is that the nonlinear update direction is
not changing. However, it could be quite restrictive due to a significant
number of resulting nonlinear iterations. Local chop on the other hand
is more effective due to the local adjustment of the update. However,
it may lead to inconsistency in the nonlinear update due to the restric-
tions of the hyperbolic transport solution. Next, we will present a Trust
Region (TR) solver which yields a consistent nonlinear update.

5.1. Trust region solver for OBL framework

In previous sections, the sources of nonlinear convergence failure,
such as kinks and inflection lines encoded in the convective operator,
were discussed. All of these features can be discovered by applying
the Hessian analysis of the convective operator. With these kinks and
inflection lines, the nonlinear space is divided by multiple subregions,
which are referred to as trust regions (TR). The key idea is that any
nonlinear update (in terms of composition) is not allowed to cross the
boundary of any trust region too far. If an intersection is found, the
nonlinear update’s size is reduced until the updated composition barely
crosses the boundary.

The full Hessian evaluation in the trust-region identification is
a time-consuming procedure. To detect the trust regions more effi-
ciently, we apply a directional analysis of the second derivative while
tracking the nonlinear update and passing each interface in the OBL
parametrization. The procedure is as follows:

1. detect OBL interfaces along the nonlinear update trajectory in
the parameter space (see Appendix A for detailed algorithm de-
tecting OBL interfaces based on tracking of nonlinear trajectory
in parameter space),

2. computes directional second derivative for each convection op-
erator at each crossing interface of OBL space with finite differ-
ence method,

3. detects inflection point(s) and kinks based on the second deriva-
tive information,

4. limits the local nonlinear update by the location inside the trust
region.

Next, we illustrate our approach with examples and compare a
calculation of special points detected by two types of analysis: ref-
erence results based on the construction of the full Hessian matrix
for binary and ternary systems and directional analysis based on the
second derivative only. In Fig. 4, we detect an inflection line position
in the parameter space based on the convex condition approximated
by the quadratic form of the Hessian matrix and compare it to the
inflection point detected during tracking the nonlinear update. In this
example, we use a two-phase immiscible physical kernel with viscosity
dependent on pressure, which results in a pressure-dependent inflection
line. Note that the exact location of the detection points can be lightly
shifted from the line position due to the discrete approximation of the
directional derivative. Another observation is that the pressure impact
can be taken into consideration when detecting the inflection point

using the directional derivative.
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Fig. 4. Adaptive detection of inflection point versus the rigorous inflection line calculated by the full Hessian assembly for several random trajectories in parameter space.
Fig. 5. Full and directional evaluations of second order behavior for ternary compositional kernel.
Similarly, for a ternary compositional kernel, we show in Fig. 5(a)
that special points can be detected correctly using directional deriva-
tives along the nonlinear update. However, some numerical artifacts
and noise are usually present in the computation of numerical deriva-
tives in directional analysis. To overcome this problem, we use the
moving average algorithm (Gilgen, 2006) to smooth second-order di-
rectional derivatives as shown in Fig. 5(b).

6. Performance of nonlinear solver

In this section, the performance of the proposed nonlinear solver is
demonstrated for several simplified and realistic modeling setups.

6.1. Single cell analysis

We can derive some essential conclusions for simulation problems
by investigating the nonlinear behavior of a single-cell compositional
transport problem. Fig. 6 shows our single-cell setup. Here our goal
6

is to find the solution 𝑧𝑛+1 from the initial guess 𝑧𝑛+1,0 for a given
boundary condition on the left and right sides of the cell, defined as
𝛽𝑐𝑖𝐿 and 𝑃𝑅, respectively. The imposed flux is from left to right. Here
we inject pure gas mixture with the composition of (CO2, C10) = (1,
0) into the reservoir initialized with composition of (0, 1) with the K-
values equivalent to 𝐾 = {2.5, 0.3} and the viscosity ratio of 10 between
the oil and gas phase

We investigate the convergence map of the pure Newton’s solver
and trust region solver for binary compositional kernels. In this setup,
we fixed the right boundary conditions as 𝑧𝑟 = 1 and study the conver-
gence of the solution using different nonlinear solvers for all possible
starting points (𝑧𝑛+1,0, 𝑧𝑙) ∈ (0, 1) × (0, 1). The maximum nonlinear
iteration for all these test cases is equal to 50. We perform our analysis
for two different dimensionless timesteps expressed as C= V𝑡dt

dx 𝑡, with 𝑡
in days and 𝑥 in meters and 𝑉𝑡 velocity in meters per seconds.

As seen in Figs. 7 and 8, once the solution is in the two-phase
area, pure Newton’s update struggles to converge in a maximum num-
ber of iterations. Another point to note is that once the solution is
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Fig. 6. Single-cell setup with left and right boundary condition. Flow is from left to
right with fixed total velocity 𝑉𝑡 and fixed total flux 𝛽𝑐𝑖𝐿.

in the single-phase zone (linear fractional flow), Newton’s approach
guarantees nonlinear convergence. The proposed nonlinear solver, on
the other hand, always has a limited number of nonlinear iterations.

As we increase the timestep in Fig. 8, we can observe that for
pure Newton’s update, the yellow region (corresponding to the non-
convergence zone) increases again in the two-phase region. However,
once the solution is in the single-phase region pure Newton is able
to find the solution. And again, the proposed Trust Region solver is
globally convergent for all initial guesses.

6.2. Front propagation in a single fracture

In fractured reservoirs, the speed of transport front propagation
between matrix and fracture is significantly different due to the large
contrast in permeabilities. Here, we imitate this process for a one-
dimensional reservoir by running the simulation with small timesteps
to develop a resolved displacement solution at a particular time. Next,
we restart the simulation from this distribution for one control timestep
only and account for the number of nonlinear iterations required to
converge the solution. We repeat this procedure by gradually increasing
the size of the control timestep and detecting the change in the number
of nonlinear iterations. Fig. 9 illustrates CO2 front propagation test case.
This test case considers a 1000 m in length 1D homogeneous reservoir
with constant permeability and porosity of 𝐾 = 10 mD and 𝜙 = 0.3.

Next, we use multiple physical kernels of increasing complexity to
test the performance of a nonlinear solver based on directional analysis
in the suggested numerical setup. We also compare our trust-region
nonlinear method against global and local chop with 𝛥𝑧 = 0.1 as the
highest tolerable 𝛥𝑧.

For binary systems, we test the performance of nonlinear solvers for
the flow of two-phase immiscible fluids and miscible fluids with phase
behavior controlled by constant K-values with 𝐾 = {2.5, 0.3}. Initially,
the 1D domain is fully saturated by the non-wetting phase and we inject
a wetting phase at the left boundary. We ran the simulation with a small
timestep for 1000 days. Next, we restart by enlarging the timesteps.
Fig. 10 shows the fracture test results comparing different nonlinear
solvers for binary kernels. We set the maximum number of nonlinear
iterations to 50 for all test cases.

It is clear that the trust region solver performs better (provides
fewer nonlinear iterations) for both immiscible and miscible kernels.
Here global and local chops only provide a convergence strategy for
timesteps corresponding to 𝛥𝑡 = 500 days and fail to converge for larger
timesteps.

Furthermore, we run front propagation in a single fracture test
case for ternary and quaternary kernels. We inject at 135 bar using
bottom hole pressure control and initial reservoir pressure of 95 atm.
For the ternary kernel, we inject the gas stream of {CO2, NC4, C10}
with the composition of 𝑧𝑖𝑛𝑗 = {0.98, 0.01, 0.01} into the reservoir
initialized with 𝑧 = {0.1, 0.2, 0.7}. Similarly, in 4-component system
7

𝑖𝑛𝑖
we inject gas stream of {CO2, NC4, C10, C2} with the composition
of 𝑧𝑖𝑛𝑗 = {0.98, 0.001, 0.001, 0.01} into the reservoir initialized with
𝑧𝑖𝑛𝑖 = {0.1, 0.2, 0.2, 0.5}. Fig. 11 illustrates the performance of different
nonlinear solvers for single fracture test case. In both the ternary and
four-component test cases, the TR solver converges with fewer newton
iterations.

6.3. Full compositional simulation

In this test case, we run the simulation study for multiple timesteps
until reaching the final time. We start the simulation with a small
timestep (𝛥𝑡 = 1 day), if nonlinear iteration converges, we double the
timestep for the next timestep and if it does not converge we cut the
timestep to half. The maximum Newton iteration is again 𝑁 = 50. In
this test case we compare four different nonlinear solvers: STD, TR,
Global and local chop with damping factor 0.1.

6.3.1. 1D homogeneous model
This is the ternary 1D full simulation test case. The domain is

discretized into 1000 grid cells with a homogeneous permeability and
porosity of 𝐾 = 10 mD and 𝜙 = 0.3. Components are {CO2, NC4, C10}.
We inject a gas mixture of composition (0.98, 0.01, 0.01) into the (0.1,
0.25, 0.65) under BHP control (constant pressure 405 bar) at the left
boundary and produce it under constant pressure 395 bar at the right
boundary.

Fig. 12 illustrates the cumulative number of nonlinear iterations for
different final times and compares different nonlinear solver’s perfor-
mances. It is clear that the TR solver has superior performance with
respect to other solvers. Fig. 13 compares the composition front for
different nonlinear solvers. As we can see, the STD solver can capture
the shock accurately. On the other hand, the TR solver smears out the
shock since it is capable of converging for a more aggressive timestep
and consequently larger time-truncation error is present in the solution.

The smearing effect of time truncation is most noticeable at the
shock. Because the other solvers cannot converge for larger time steps,
they reduce timesteps, resulting in less truncation error and better
composition front evolution. While time truncation error analysis is
beyond the scope of this paper, having a robust nonlinear solver allows
us to choose timestep from practical considerations rather than the
necessity to perform a simulation with smaller timesteps.

6.4. 3D heterogenous model

In this test case, we compared the performance of nonlinear solvers
for a heterogeneous reservoir. We used a channelized Egg model
described in Jansen et al. (2014). The dimension of the model is
60 × 60 × 7 = 25200 grid cells of which 18553 cells are active, with
gridsize of 8 m × 8 m × 4 m. The porosity is constant (𝜙 = 0.2). Fig. 14
illustrates the permeability and well locations. The injection well is
located in the left upper part and the production well is at the right
bottom of the domain. The initial pressure of the reservoir is 400 bar.
We inject a gas mixture of composition (0.98, 0.01, 0.01) into the (0.1,
0.25, 0.65) at constant pressure 405 bar and produce at 395 bar. We
run the simulation for different nonlinear solvers several times.

Fig. 15 summarizes the nonlinear iterations for different nonlinear
solvers. The TR solver takes a lower number of nonlinear iterations to
converge compared to the other solvers. In this test case, the STD solver
takes the highest number of Newton iterations since it relies on a pure
Newton’s update. Local chop performs slightly better than global chop
in this setting but still worse than TR.

We take the solution of STD as a reference solution for the time-
truncation error analysis of the solution for the single top layer of
the model. From Fig. 16 we can see that the error is mainly localized
around the trailing and leading shocks. Similar to the 1D homogeneous
model test case, the time truncation error affects the accuracy of the so-
lution since the TR solver can converge for more aggressive timesteps.
You can see that the difference in the 2D heterogeneous solution is less
pronounced than the one detected in homogeneous 1D.
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Fig. 7. Convergence map for compositional binary problem with C= 𝑉𝑡dt
dx = 10.

Fig. 8. Convergence map for compositional binary problem with C= 𝑉𝑡dt
dx = 100.

Fig. 9. CO2 front propagation for different timesteps. The blue curve represents the resolved displacement solution, and the red curves represent the progressive control timestep
solutions.
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Fig. 10. Comparison of different nonlinear solvers for binary kernel.

Fig. 11. Comparison of different nonlinear solvers for ternary and quaternary kernel.

Fig. 12. Comparison of cumulative Newton iterations for different nonlinear solver for ternary kernel.
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Fig. 13. Comparison of solution for different nonlinear solvers for ternary kernel.

Fig. 14. Permeability 𝐾𝑥 map of egg model.

Fig. 15. Comparison of cumulative Newton iteration for different nonlinear solver for egg-model at different time.
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Fig. 16. Comparison of CO2 saturation maps at the time of 𝑇 = 100 days (1st row). The second row shows the delta of gas saturation between each model and the STD case.
7. Conclusion

For simulation of CO2 utilization and storage (CCUS) in subsurface
reservoirs with complicated heterogeneous structures, a model that
includes multiphase compositional flow and transport is needed. The
discretized governing equations are highly nonlinear, and Newton’s
technique is frequently used to solve them. Newton’s solution tech-
nique does not ensure convergence and is extremely dependent on the
timestep choice.

In this work, we investigate the nature of nonlinearities in CCUS
simulations and suggest solutions to a general compositional problem.
We present an advanced nonlinear solver based on a trust-region tech-
nique aimed to solve multiphase multi-component transport problems.
The trust region solver is based on the analysis of multi-dimensional ta-
bles connected to parameterized highly nonlinear convection operators.
These operators are associated with the governing equations and are
built for a newly introduced Operator-Based Linearization approach.
The inflection line and kinks in the parameter space determine the
delineation of the trust-region zones.

According to our nonlinear study of convective operators for binary
and ternary systems, each component has its inflection line within the
two-phase region. In addition, kink lines appear when phase boundaries
are crossed. These boundaries could change in the parameter space
of the problems based on the direction of the Newton trajectory. We
track the nonlinear trajectory and segment the parameter space of the
problem into a set of trust regions where the hyperbolic operators
keep their second-order behavior (i.e., they remain either convex or
concave). We approximate these trust regions in the solution process by
detecting the boundary of convex regions via analysis of the directional
derivative. By drawing multiple trial trajectories on binary and ternary
diagrams we observe that our algorithm can detect these boundaries
correctly. Moreover, it is less computationally expensive since we do
not compute the entire hessian in our technique and instead compute
the directional derivative while tracking the nonlinear update.

After detecting all the boundaries along the nonlinear trajectory, the
proposed nonlinear solver locally constrains the update of the overall
compositions across the boundaries of these regions. We tested our
nonlinear solver for several reservoir models starting from the single
cell to a fully 3D heterogeneous model. Our numerical results show that
the trust-region solver avoids overshoots in the nonlinear update which
11
lead to superior convergence in comparison to conventional nonlinear
solvers.

A promising future research direction could be to reduce the com-
putational overhead related to locating the trust-region boundaries and
carrying out the chopping. While we showed that directional derivative
is cheaper than full Hessian assembly, there is still additional overhead
since detection of special points (kinks and inflection) are happening
on the fly during simulation. The major cause of the overhead is due
to the tracking the Newton trajectory in nonlinear operator space.

One possibility is that once the special points have been identified,
we save the value to avoid recalculation for the next iteration. Another
possible future direction would be to combine the TR solver with
another type of solver. Based on our single cell analysis, we can see
that once the solution is in a single-phase region, conventional Newton
solvers work, so we can switch between different solvers adaptively if
we observe that one is struggling.
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Fig. 17. (a) Newton trajectory passing several OBL cells (b) Zoomed-in view of detecting the point inside the next cell of parameter space.
Appendix A. Algorithm to track Newton trajectory in an arbitrary
dimension of OBL space

Newton’s trajectory passes several cells or hyper cells in a higher
dimension of parameter space. In order to detect those cells or hyper
cells, we implement the iterative algorithm 1. The algorithm is incre-
menting to the next cell iteratively by finding the minimum distance
between the initial point with respect to interfaces and moving on
in a gradient direction to find the next point until reaching the last
hypercubes. Here’s the explanation of the following algorithm steps:

1. COMPUTESIGMA: This function calculates 𝜎 which is the mini-
mum distance between the initial points and all the interfaces of
the OBL cube/ hypercube.

2. NEXTPOINT : This function increments to the next hypercubes by
moving along the Newton trajectory gradient.

3. NEWBOX : This function detects the new vertices of the new
cubes/hypercubes.

These steps are repeated until reaching the last points of the OBL
and all the interfaces detected. Fig. 17 illustrates in 2-d space the
Newton trajectory tracking. The algorithm for tracking is independent
of the degree of freedom of the system and is able to track Newton
trajectories for an arbitrary number of dimensions.

Algorithm 1 Iterative tracking
procedure Iterative tracking(𝑖𝑛𝑖𝑡𝑝𝑜𝑖𝑛𝑡, 𝑙𝑎𝑠𝑡𝑏𝑜𝑥)

Input:
𝑖𝑛𝑖𝑡𝑝𝑜𝑖𝑛𝑡← (𝑝𝑖, 𝑧1𝑖, 𝑧2𝑖...)
𝑒𝑛𝑑𝑝𝑜𝑖𝑛𝑡← (𝑝𝑒, 𝑧1𝑒, 𝑧2𝑒...)
𝐶 ← 𝑖𝑛𝑖𝑡𝑝𝑜𝑖𝑛𝑡 − 𝑒𝑛𝑑𝑝𝑜𝑖𝑛𝑡
while box != lastbox do

𝑆𝑖𝑔𝑚𝑎← 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑆𝑖𝑔𝑚𝑎(𝑖𝑛𝑖𝑡𝑝𝑜𝑖𝑛𝑡, 𝑏𝑜𝑥, 𝐶)
𝑖𝑛𝑖𝑡𝑝𝑜𝑖𝑛𝑡← 𝑛𝑒𝑥𝑡𝑃 𝑜𝑖𝑛𝑡(𝑖𝑛𝑖𝑡𝑃 𝑜𝑖𝑛𝑡, 𝐶, 𝑆𝑖𝑔𝑚𝑎)
𝑏𝑜𝑥 ← 𝑛𝑒𝑤𝑏𝑜𝑥(𝑖𝑛𝑖𝑡𝑝𝑜𝑖𝑛𝑡, 𝑧𝑣𝑒𝑐 , 𝑝𝑣𝑒𝑐 ) ⊳ 𝑝𝑣𝑒𝑐 , 𝑧𝑣𝑒𝑐 are uniformly

mesh in parameter space
end while
return 𝑏𝑜𝑥

end procedure

function ComputeSigma(𝑖𝑛𝑖𝑡𝑝𝑜𝑖𝑛𝑡, 𝑏𝑜𝑥, 𝐶)
for 𝑖 ← 1, 𝑁𝐶 do ⊳ NC = Number of components

𝛬𝑖 ← 𝑚𝑎𝑥( 𝑟𝑖𝑔ℎ𝑡𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦−𝑖𝑛𝑖𝑡𝑝𝑜𝑖𝑛𝑡(𝑖)𝐶(𝑖) , 𝑙𝑒𝑓 𝑡𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦−𝑖𝑛𝑖𝑡𝑝𝑜𝑖𝑛𝑡(𝑖)𝐶(𝑖) )
end for
𝜎 ← 𝑚𝑖𝑛(𝛬)
return 𝜎

end function
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Table 1
Immiscible fluid properties.

Parameter Oil Gas Desctiption

n 2 2 Corey exponent
𝜇𝑟𝑒𝑓 1.5cp 1cp Viscosity
𝜌𝑟𝑒𝑓 1000 kg/m3 800 kg/m3 Density

Table 2
Phase properties.

Components CO2 C1 H2 C2

K-values 2 0.4 0.1 0.02

function nextPoint(𝑖𝑛𝑖𝑡𝑝𝑜𝑖𝑛𝑡, 𝑆𝑖𝑔𝑚𝑎, 𝐶)
for 𝑖← 1, 𝑁𝐶 do ⊳ NC = Number of components

𝑛𝑒𝑥𝑡𝑃 𝑜𝑖𝑛𝑡(𝑖) ← 𝑖𝑛𝑖𝑡𝑝𝑜𝑖𝑛𝑡(𝑖) + (𝜎 + 𝜖)𝐶(𝑖) ⊳ + 𝜖 to make sure
passing the interface

end for
return 𝑛𝑒𝑥𝑡𝑃 𝑜𝑖𝑛𝑡

end function

function newbox(𝑖𝑛𝑖𝑡𝑝𝑜𝑖𝑛𝑡, 𝑧𝑣𝑒𝑐 , 𝑝𝑣𝑒𝑐)
for 𝑖← 1, 𝑁𝐶 do ⊳ NC = Number of components

if 𝑖 == 1 then
𝑛𝑒𝑤𝑏𝑜𝑥(𝑖) ← [ 𝑖𝑛𝑖𝑡𝑝𝑜𝑖𝑛𝑡(𝑖)−𝑝𝑣𝑒𝑐(1)𝑝𝑣𝑒𝑐(2)−𝑝𝑣𝑒𝑐(1)

] ⊳ [] Rounding to upper
integer

else
𝑛𝑒𝑤𝑏𝑜𝑥(𝑖) ← [ 𝑖𝑛𝑖𝑡𝑝𝑜𝑖𝑛𝑡(𝑖)−𝑧𝑣𝑒𝑐(1)𝑧𝑣𝑒𝑐(2)−𝑧𝑣𝑒𝑐(1)

]
end if

end for ⊳ We find one of the new vertices of the new box
end function

Appendix B. Parameters of numerical tests

Immiscible properties
See Table 1.

Miscible fluid properties
See Tables 2 and 3.

Appendix C. Sensitivity analysis to the OBL resolution

In this section, we investigate the effect of the OBL resolution on

the nonlinear solver performance. Table 4 summarizes the result of
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Table 3
Thermodynamic properties.

Parameter Oil Gas Description

n 2 2 Corey exponent
𝜇𝑟𝑒𝑓 1.5cp 0.05cp Viscosity
𝜌𝑟𝑒𝑓 20 kg∕m3 10 kg∕m3 Density

Table 4
Coarsening of OBL resolution.

Resolution Newton iteration Inflection points

4 × 4 5 1e−8
8 × 8 6 0.285
16 × 16 8 0.40
32 × 32 10 0.44
64 × 64 12 0.476
120 × 120 14 0.487

Fig. 18. Solution of front propagation for different OBL resolutions.

coarsening of OBL resolution of the fracture test for the binary kernel
on the immiscible test case for the single control timestep 𝛥𝑡 = 100
days. We observe that by coarsening the resolution, the number of New-
ton iterations decreases. In general, decreasing the resolution of OBL
relaxes the nonlinearity of the problem and fewer Newton iterations.
Fig. 18 illustrates the solution for different OBL resolutions. Notice
that decreasing the resolution of the OBL significantly can degrade
the solution. The rigorous error analysis has been carried out on the
original paper (Voskov, 2017).
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