
 
 

Delft University of Technology

Nonlinear finite volume discretization of geomechanical problem

Tripuraneni, S. R. T.; Novikov, Aleksei; Voskov, Denis

DOI
10.1002/nag.3580
Publication date
2023
Document Version
Final published version
Published in
International Journal for Numerical and Analytical Methods in Geomechanics

Citation (APA)
Tripuraneni, S. R. T., Novikov, A., & Voskov, D. (2023). Nonlinear finite volume discretization of
geomechanical problem. International Journal for Numerical and Analytical Methods in Geomechanics,
47(12), 2283-2303. https://doi.org/10.1002/nag.3580

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1002/nag.3580
https://doi.org/10.1002/nag.3580


Received: 10 October 2022 Revised: 11 May 2023 Accepted: 12 May 2023

DOI: 10.1002/nag.3580

RESEARCH ARTICLE

Nonlinear finite volume discretization of geomechanical
problem

S.R.T. Tripuraneni1,2 Aleksei Novikov2 Denis Voskov1,2

1Department of Energy Resources
Engineering, Stanford University,
Stanford, California, USA
2Department of Civil Engineering and
Geosciences, Delft University of
Technology, Delft, The Netherlands

Correspondence
Aleksei Novikov, Department of Civil
Engineering and Geosciences, Stevinweg
1, 2628 CN, Delft, The Netherlands.
Email: a.novikov@tudelft.nl;
Denis Voskov, Department of Civil
Engineering and Geosciences, Stevinweg
1, 2628 CN, Delft, The Netherlands.
Email: D.V.Voskov@tudelft.nl

Funding information
Nederlandse Organisatie voor
Wetenschappelijk Onderzoek,
Grant/Award Number: DEEP.NL.2018.046

Abstract
Elliptic differential operators describe a wide range of processes in mechan-
ics relevant to geo-energy applications. Extensively used in reservoir modeling,
the Finite Volume Method with TPFA can be consistently applied to discretize
only a specific type of application under severe assumptions. In this paper, we
introduce a positivity preserving Nonlinear Two Point Stress Approximation
(NTPSA) based on the recently developed collocated Finite Volume scheme for
linear elastic mechanics. The gradient reconstruction is different from the one
used in Nonlinear TPFA, but a similar form of weighting scheme is employed
to reconstruct the traction vector at each interface. The convergence of the
scheme is testedwith ahomogeneous anisotropic stiffness tensor. Themotivation
behind the implementation of a new discretization framework inmechanics is to
develop a uniform discretization technique preserving monotonicity for generic
poromechanics applications.

KEYWORDS
elasticity, homogenization function, nonlinear finite volume method, nonlinear two-point
approximation

1 INTRODUCTION

The prediction of the performance of subsurface systems is crucial for efficient and sustainable subsurface management.
The modelling of fluid mass balance in porous media at different scales and dimensions is used to address this problem

Physical variables: ℂ, rank-four stiffness tensor of skeleton; 𝐂, 6 × 6 symmetric matrix of stiffness coefficients; 𝐄, rank-two strain tensor; 𝐸,
Young’s modulus; 𝐟 , traction vector; f𝑁, 𝐟𝑇 , normal and tangential projections of traction vector; 𝐟 ′, effective Terzaghi traction vector; f ′𝑁, 𝐟

′
𝑇 , normal

and tangential projections of effective Terzaghi traction vector; 𝜆, first Lame’s coefficient; 𝐺, shear modulus (second Lame’s coefficient); 𝑔,
gravity constant; ℎ, fluid enthalpy.; 𝐈, identity matrix;𝐊, rank-two tensor of permeability; 𝐾𝑠 , bulk modulus of the solid phase; 𝑘𝑥, 𝑘𝑦, 𝑘𝑧 , diagonal
components of permeability tensor; 𝜇, fluid viscosity; 𝐧, unit normal vector; 𝜈, Poisson’s ratio; 𝑝, pore pressure; 𝜌𝑓 , fluid density; 𝚺, rank-two
stress tensor; 𝑡, time; 𝐮 = [𝑢 𝑣 𝑤]𝑇 , vector of displacements; (∇𝐮)𝑇 , Jacobian matrix of 𝐮; 𝜙, porosity; 𝑧, depth
Numerical variables: 𝚪𝑖 , 3 × 9matrices; Δ𝑡, time step size; 𝛿𝑗 , area of 𝑗th interface; 𝜆𝑖 , tangential projection of co-normal permeability vector; 𝐀,
Jacobian matrix; 𝑑𝑖 , distance between 𝑖th cell center and interface; 𝑑𝑖𝛿 , distance between 𝑖th cell center and interface 𝛿; 𝐓𝑖 , 3 × 3matrices; 𝑉𝑖 , volume
of 𝑖th cell; 𝐱𝑖 , 𝑖th cell center; 𝐱𝛿 , center of the interface 𝛿; 𝐲𝑖 , projection of the 𝑖th cell center on interface.
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2 NOVIKOV et al.

for decades.1 Different numerical techniques have been developed to integrate the balance equations. However, the Finite
Volume Method (FVM) with Two Point Flux Approximation (TPFA) has become an industry standard because of its
simplicity and robustness. Nevertheless, the method requires a so-called K-orthogonal grid2 which is barely feasible to
construct for real-field models.3
Energy transition extends the range of geological settings and physical processes to be taken into account in subsurface

reservoir modeling. Land subsidence, induced seismicity and the stability assessment of hydrogen or carbon dioxide stor-
ages require full-field geomechanical and poromechanical modelling. The economical feasibility of geothermal resources
strongly relies on the accurate prediction of energy redistribution in the subsurface. Many of these applications consider
essentially anisotropic reservoirs or require advanced gridding that can not be resolved consistently with TPFA. Espe-
cially whenwe consider stress approximation or look into realistic fluid flow scenarios, the grids are often highly distorted
because of the presence of impermeable or highly permeable zones, for example, fractures or faults. These features com-
plicate the geological model and introduce nonphysical errors to the dynamic solution. So, the conventional TPFA does
not provide a representative approximation of fluxes.
Numerousmethodologies are developed and implemented to tackle this problem for both flow andmechanics. Some of

the first were Multi-Point flux approximation (MPFA) schemes2,4–7 where we utilize more than two cells for approximat-
ing fluid flux across the interface between control volumes. A similar form of discretization technique, namelymulti-point
stress approximation (MPSA), is employed to solve the linear elasticity problem.8–11 Although the research in the field of
simulation of momentum equations by Finite Elements (FE) is more mature, the advantage of using an FVM for mechan-
ics is the support of a wide range of polyhedral meshes including Corner Point Geometry12 that is ubiquitously used
in reservoir modelling. Another advantage is that the use of collocated grids simplifies the formulation, solution and
implementation of coupled fluid mass, energy and momentum balances within a unified FVM framework.13–15
While MPFA gives a representative solution to the flow problem, it is known to be conditionally monotone7,16 and

may violate the discrete maximum principle. This non-monotone behavior often takes the form of spurious oscillations
in numerical solution across the grid. In particular, it is more pronounced when solving the problem of flow in highly
anisotropic porous media.6
A nonlinear FV scheme for fluid flow was introduced almost two decades ago17,18 and developed further by vari-

ous researchers.19–22 In this formulation, the linear elliptic equation is transformed to a nonlinear form such that the
scheme becomes monotone. The idea of nonlinear Finite Volume (FV) approaches is that the flux approximations should
have non-negative coefficients in front of elliptic unknowns which are pressure. This ensures non-positive off-diagonal
and non-negative diagonal elements in Jacobian which are inverted to obtain the solution of a discrete system of equa-
tions. Also when there was a fully heterogeneous domain that is, all cells surrounding a control volume having different
permeability tensors, the methods in literature23,24 proved to be unsuccessful to approximate the flux accurately.
Another kind of approach involves using vertex interpolation of unknowns to construct a positive basis for gradient

reconstruction.22,25 But considering vertices will introduce additional unknowns to the discretization equation which
becomes computationally expensive. Along the lines of the above research, the concept of Harmonic averaging is
developed26 and successfully extended to multi-phase flow and multi-dimensional problems27,28 in the past few years.
In this study, we introduce the Nonlinear Two Point Stress Approximation (NTPSA), a new type of discretization

method in the FVM domain. In analogy to the formulation of nonlinear schemes for fluid flow, we propose the derivation
of nonlinear schemes for elasticity problems. The approximation is based on the weighting scheme for two single-side
approximations of traction vectors on an interface. The weights are calculated from a two-point constraint. To guarantee
the convergence of the nonlinear scheme, we do a positivity-preserving approximation based on the connection-based
gradient reconstruction. The proposed scheme results in a nonlinear discrete system of equations even for a linear elas-
tic response that can make the computational cost of purely geomechanical simulation unreasonably high. In reservoir
modeling, the flow and transport already introduce significant nonlinearity that may alleviate the higher costs of the
geomechanical part in a fully coupled simulation.29,30
Homogenization function approach27 valid for heterogeneous anisotropic elasticity is derived and utilized in the con-

junction with MPSA. We show that the homogenization function approach has the potential to improve the preciseness
of the solution which is crucial for the representative description of faults in the subsurface.
Both NTPFA and NTPSA were implemented in the open-source Delft Advanced Research Terra Simulator

(DARTS) framework. It is a general-purpose reservoir simulator that supports applications ranging from advanced
compositional31–33 to geothermal34,35 and induced seismicity.15 This provides a good basis for a coupledNTPFAandNTPSA
discretization within a unified simulation framework for reservoir modeling.
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NOVIKOV et al. 3

2 PROBLEM FORMULATION

2.1 Conservation laws

Let us consider the system of partial differential equations (PDEs) of the following form

𝜕𝖆

𝜕𝑡
+ ∇ ⋅ 𝕱 = 𝖗, (1)

where 𝖆 is a vector,𝕱 is a matrix. In the case of

𝖆 =
[
𝜙𝜌𝑓
]
, 𝕱 = −

[
𝜌𝑓𝜇

−1𝐊∇𝑝
]
, (2)

Equation (1) represents the conservation of fluid mass balance in porous medium and 𝜙 is porosity, 𝜌𝑓 is the fluid density,
𝜇 is fluid viscosity,𝐊 is permeability tensor, 𝑝 is fluid pressure. In the case of

𝖆 =
[
𝜙𝜌𝑓𝑈𝑓 + (1 − 𝜙)𝜌𝑟𝑈𝑟

]
, 𝕱 = −

[
𝜌𝑓ℎ𝜇

−1𝐊∇𝑝 + 𝚲∇𝑇
]
, (3)

Equation (1) represents the conservation of energy in porous medium and 𝜌𝑟 is rock density, 𝑈𝑓,𝑈𝑟 are fluid and rock
internal energies respectively, ℎ is fluid enthalpy, 𝚲 is heat conductivity tensor, 𝑇 is temperature. In the case of

𝖆 = 𝜌
𝜕𝐮

𝜕𝑡
, 𝕱 = −ℂ ∶

∇𝐮 + (∇𝐮)𝑇

2
, (4)

Equation (1) represents the conservation of linear momentum in elastic body and 𝜌 is density, 𝐮 is a vector of displace-
ments, ∇𝐮 and (∇𝐮)𝑇 stand for the Jacobian of the displacements and its transpose respectively, ℂ is the rank-four
stiffness tensor.
It is worth to be mentioned that the assumption of 𝖆 = 𝟎 in Equations (2), (4) leads to elliptic PDEs with respect to

unknown pressure 𝑝 and the vector of displacements 𝐮 correspondingly. Equation (3) includes both convective and con-
ductive heat transport so that in the case 𝖆 = 𝟎 it is close to elliptic PDE for Peclet number (ratio between advective and
conductive transport rates) close to zero.
Equations (2)–(4) and their extension to multiphase multicomponent fluid flow, transport and coupled poromechanics

are extensively used in reservoir modeling.1,36,37 Robust solution of these equations requires reliable numerical schemes
capable to handle severe heterogeneity, arbitrary material anisotropy and advanced gridding techniques. Moreover, the
consistent numerical scheme must preserve local conservation of fluid mass balance to guarantee the proper solution of
transport problem.38
FV schemes can fit these requirements. They are both locally and globally conservative, and can be used to resolve highly

heterogeneous anisotropic medium with arbitrary star-shaped polyhedral meshes.24 Among the different kinds of FV
schemes, NTPFA represents a good balance between robustness and complexity.28 Although NTPFA is well-developed, to
the best of our knowledge it has never been extended to elasticity problems. Belowwe introduce theNTPSA formomentum
balance in a solid elastic body.

2.2 Static elasticity

We consider a static elasticity problem in Ω governed by the momentum balance equation as

−∇ ⋅ 𝚺 = 𝐫 in Ω, (5)

where 𝐫 is a vector of volumetric forces, 𝚺 is the rank-two stress tensor represented by a 3 × 3 symmetric matrix. In the
case of elastic infinitesimal deformation, Hooke’s law defines the stress tensor as

𝚺 = ℂ ∶ 𝐄 = ℂ ∶
∇𝐮 + (∇𝐮)𝑇

2
, (6)
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4 NOVIKOV et al.

whereℂ is the rank-four stiffness tensor,𝐄denotes the infinitesimal strain tensor,𝐮 = {𝑢, 𝑣, 𝑤} is a vector of displacements.
We define traction vector 𝐟 to a surface with a unit normal 𝐧 as

𝐟 = −

[
ℂ ∶

∇𝐮 + (∇𝐮)𝑇

2

]
⋅ 𝐧. (7)

The other representation of the traction vector is also possible11

𝐟 = −𝐐[∇⊗ 𝐮] = −

⎡⎢⎢⎢⎣
𝐧𝑇𝐀1 𝐧𝑇𝐀𝑇

6 𝐧𝑇𝐀𝑇
5

𝐧𝑇𝐀6 𝐧𝑇𝐀2 𝐧𝑇𝐀𝑇
4

𝐧𝑇𝐀5 𝐧𝑇𝐀4 𝐧𝑇𝐀3

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
∇𝑢

∇𝑣

∇𝑤

⎤⎥⎥⎥⎦ , (8)

where ∇𝑢,∇𝑣,∇𝑤 are gradients of the components of displacement vector 𝐮 stacked into 9 × 1 vector ∇⊗ 𝐮, 𝐐 is 3 × 9

matrix defined in the right-hand side of Equation (8) and 𝐀𝑖 are 3 × 3matrices defined as follows

𝐀1 =
⎡⎢⎢⎣
𝑐11 𝑐16 𝑐15
𝑐16 𝑐66 𝑐56
𝑐15 𝑐56 𝑐55

⎤⎥⎥⎦ , 𝐀6 =
⎡⎢⎢⎣
𝑐16 𝑐66 𝑐56
𝑐12 𝑐26 𝑐25
𝑐14 𝑐46 𝑐45

⎤⎥⎥⎦ , 𝐀5 =
⎡⎢⎢⎣
𝑐15 𝑐56 𝑐55
𝑐14 𝑐46 𝑐45
𝑐13 𝑐36 𝑐35

⎤⎥⎥⎦ ,
𝐀𝑇
6 =
⎡⎢⎢⎣
𝑐16 𝑐12 𝑐14
𝑐66 𝑐26 𝑐46
𝑐56 𝑐25 𝑐45

⎤⎥⎥⎦ , 𝐀2 =
⎡⎢⎢⎣
𝑐66 𝑐26 𝑐46
𝑐26 𝑐22 𝑐24
𝑐46 𝑐24 𝑐44

⎤⎥⎥⎦ , 𝐀4 =
⎡⎢⎢⎣
𝑐56 𝑐25 𝑐45
𝑐46 𝑐24 𝑐44
𝑐36 𝑐23 𝑐34

⎤⎥⎥⎦ ,
𝐀𝑇
5 =
⎡⎢⎢⎣
𝑐15 𝑐14 𝑐13
𝑐56 𝑐46 𝑐36
𝑐55 𝑐45 𝑐35

⎤⎥⎥⎦ , 𝐀𝑇
4 =
⎡⎢⎢⎣
𝑐56 𝑐46 𝑐36
𝑐25 𝑐24 𝑐23
𝑐45 𝑐44 𝑐34

⎤⎥⎥⎦ , 𝐀3 =
⎡⎢⎢⎣
𝑐55 𝑐45 𝑐35
𝑐45 𝑐44 𝑐34
𝑐35 𝑐34 𝑐33

⎤⎥⎥⎦ , (9)

where 𝑐𝑖𝑗 are components of the 6 × 6 stiffness matrix 𝐂 written in Voigt notations.
Elasticity problem in Equations (5), (6) is subjected to the boundary conditions written in the following general form11

⎧⎪⎨⎪⎩
𝐧𝐓(𝛂𝐧𝐮𝐛 + 𝛃𝐧𝐟𝐛) = 𝛄𝐧,

(𝐈 − 𝐧𝐧𝑇)(𝛼𝑡𝐮𝑏 + 𝛽𝑡𝐟𝑏) = 𝛾𝛾𝛾𝑡

on 𝜕Ω, (10)

where 𝐟𝑏, 𝐮𝑏 are traction and displacements at the boundary, respectively, 𝐈 is an identity matrix, 𝐧𝐧𝑇 denotes the outer
product of column 𝐧 to row 𝐧𝑇 . In addition, 𝛼𝑛, 𝛽𝑛, 𝛼𝑡, 𝛽𝑡 are coefficients that determine the magnitude of their corre-
sponding boundary conditions, while 𝛾𝑛,𝛾𝛾𝛾𝑡 are the corresponding condition values. Below we consider Dirichlet (𝛼𝑛 =

𝛼𝑡 = 1, 𝛽𝑛 = 𝛽𝑡 = 0), Neumann (𝛼𝑛 = 𝛼𝑡 = 0, 𝛽𝑛 = 𝛽𝑡 = 1) and roller (𝛽𝑛 = 𝛼𝑡 = 0, 𝛼𝑛 = 𝛽𝑡 = 1) boundary conditions.

3 DISCRETIZATION FRAMEWORK

The conservation laws represented by Equation (1) can be written in integral form and discretized according to FVM. It
implies the representation of integrals of divergence term ∇ ⋅ 𝕱 as the fluxes 𝔮 = 𝕱𝐧 at cell interfaces with the help of
Gauss formula as

∫
𝑉𝑖

(
𝜕𝖆

𝜕𝑡
+ ∇ ⋅ 𝕱

)
𝑑𝑉 = ∫

𝑉𝑖

𝜕𝖆

𝜕𝑡
𝑑𝑉 +

∑
𝑗∈𝜕𝑉𝑖

∫
𝛿𝑗

𝖖 𝑑𝑆 ≈
𝖆𝑛+1
𝑖

− 𝖆𝑛
𝑖

Δ𝑡
𝑉𝑖 +

∑
𝑗∈𝜕𝑉𝑖

𝛿𝑗𝖖𝑖𝑗 = 𝖗𝑉𝑖, (11)

where subscript 𝑖 denotes the values defined at cell 𝑖 and subscript 𝑖𝑗 means that the value is evaluated at the interface
between cells 𝑖 and 𝑗, superscripts 𝑛 and 𝑛 + 1 define variables taken at a previous and current time step, Δ𝑡 is a time step,
𝑉𝑖 is a cell volume, 𝛿𝑗 is an area of the interface between neighboring cells. The backward Euler scheme is used here for
time integration.
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NOVIKOV et al. 5

Below we introduce a nonlinear FV scheme for the elasticity problem. Its formulation consists of three parts. First, we
present two single-side approximations of the traction vector. Second, we introduce the method for the reconstruction of
gradients of the displacements which are required to accomplish the approximations. Third, we develop the linear combi-
nation of two single-side approximations. An extra condition is required to define the coefficients in this combination. In
a similar fashion to fluid flux approximation, in this paper, we restrict the stencil of the final approximation to two points.
As a result, we obtain a scheme based on NTPSA.

3.1 Local problem

Let us consider the local problem formomentum balance in an elastic body. The continuity of displacements and tractions
between cell 1 and cell 2 can be written as follows

𝐮1 + 𝐈 ⊗ (𝐱𝛿 − 𝐱1)
𝑇 ⋅ ∇ ⊗ 𝐮1 = 𝐮2 + 𝐈 ⊗ (𝐱𝛿 − 𝐱2)

𝑇 ⋅ ∇ ⊗ 𝐮2, (12)

𝐟𝛿1 = −𝐐1[∇ ⊗ 𝐮1] = −𝐐2[∇ ⊗ 𝐮2] = 𝐟𝛿2, (13)

where 𝐟𝛿1, 𝐟𝛿2 are single-side approximations of traction vector, 𝐱1, 𝐱2 and 𝐱𝛿 are the centers of cells 1, 2 and interface 𝛿
respectively,⊗ denotes the Kronecker product, 𝐈 ⊗ (𝐱𝛿 − 𝐱1)

𝑇 represents 3 × 9matrix constructed as follows

𝐈 ⊗ (𝐱𝛿 − 𝐱1)
𝑇 =
⎛⎜⎜⎝
(𝐱𝛿 − 𝐱1)

𝑇

(𝐱𝛿 − 𝐱1)
𝑇

(𝐱𝛿 − 𝐱1)
𝑇

⎞⎟⎟⎠ . (14)

Equation (12) assumes piecewise-linear displacements within each cell while Equation (13) ensures the local
momentum balance between cells. Below we use the approximations derived from Equations (12), (13).

3.2 Single-side stress approximations

The approximation of traction vector 𝐟 is essentially multi-point because the displacement gradients in Equation (7) or in
Equation (8) have to be approximated along multiple different directions even in the case of isotropic stiffness. TheMPSA
was first proposed in literature.9 The recent work,11,39 facilitate the different formulations of MPSA that do not use the
dual grid. Following this approach, we represent the traction vector as

𝐟 = 𝐓(𝐮1 − 𝐮2) + 𝐟𝜏, (15)

𝐟𝜏 = −𝚪𝐆𝜏, 𝐓 = 𝐓1(𝑑1𝐓2 + 𝑑2𝐓1)
−1𝐓2, (16)

𝚪 = 𝑑2𝐓1(𝑑𝑖𝐓𝑗 + 𝑑2𝐓1)
−1𝚪2 + 𝑑1𝐓2(𝑑1𝐓2 + 𝑑2𝐓1)

−1𝚪1 + 𝐓[𝐈 ⊗ (𝐲1 − 𝐲2)
𝑇], (17)

where the following decompositions are used

𝐐𝑖 = 𝐓𝑖[𝐈 ⊗ 𝐧𝑇] + 𝚪𝑖, 𝐓𝑖 = 𝐐𝑖[𝐈 ⊗ 𝐧], 𝚪𝑖 = 𝐐𝑖[𝐈 ⊗ (𝐈 − 𝐧𝐧𝑇)], (18)

𝐱𝛿 − 𝐱1 = 𝑑1𝐧 + (𝐱𝛿 − 𝐲1), 𝑑1 = 𝐧 ⋅ (𝐱𝛿 − 𝐱1) > 0, 𝐲1 = 𝐱1 + 𝑑1𝐧,

𝐱2 − 𝐱𝛿 = 𝑑2𝐧 + (𝐲2 − 𝐱𝛿), 𝑑2 = 𝐧 ⋅ (𝐱2 − 𝐱𝛿) > 0, 𝐲2 = 𝐱2 − 𝑑2𝐧, (19)

where, 𝐓𝑖 , 𝚪𝑖 are 3 × 3 and 3 × 9 matrices, 𝐆𝜏 = [𝐈 ⊗ (𝐈 − 𝐧𝐧𝑇)][∇ ⊗ 𝐮𝑖] denotes transversal projection of displacement
gradients onto the interface,⊗ denotes the Kronecker product, 𝐈 ⊗ (𝐲1 − 𝐲2)

𝑇 , 𝐈 ⊗ 𝐧 and 𝐈 ⊗ (𝐈 − 𝐧𝐧𝑇) represent 3 × 9,
9 × 3 and 9 × 9matrices constructed in a similar way to Equation (14), 𝐲1, 𝐲2 are projections of cell centers 𝐱1, 𝐱2 onto the
interface, the direction of normal vector such that 𝐧𝑇(𝐱2 − 𝐱1) > 0, 𝑑1, 𝑑2 are the distances from the center of cells 1 or 2
to the center of the interface 𝐱𝛿. The projections are shown in Figure 1.
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6 NOVIKOV et al.

F IGURE 1 Normal decomposition of distances between the centers of cells 1, 2 and the center of interface 𝛿.

Co-normal decomposition in Equations (15)–(18) was initially proposed for diffusion operator.40 It splits the flux into
harmonic and transversal parts that improve the behavior of the scheme with respect to the locking issue.27,40 More-
over, this representation allows the transversal term to be eliminated providing the interpolation technique with positive
coefficients, called harmonic averaging point.26 Recently, the harmonic averaging point was extended to mechanics11 and
poromechanics.14
However, the harmonic averaging points may lay outside the interface between cells and strictly positive interpo-

lation may be not possible.41 In this paper, we use connection-based gradient reconstruction.11 We also propose the
homogenization function approach for momentum balance to find out positive interpolation across interfaces.

3.3 Gradient reconstruction

The approximation of the traction vector requires the approximation of displacement gradients. The following equa-
tion can be derived from the continuity of displacements in Equation (12) and tractions in Equation (13) on the interface
between cell 1 and 211

(
𝐈 ⊗ (𝐱2 − 𝐱1)

𝑇 + 𝑑2𝐓
−1
2 (𝐐1 − 𝐐2)

)
[∇ ⊗ 𝐮1] = 𝐮2 − 𝐮1. (20)

At the boundary interface with boundary conditions defined in Equation (10) the following equation can be written39(
𝛼𝑡𝐈 ⊗ (𝐱𝑏 − 𝐱1)

𝑇
+ 𝛽𝑡𝐐1 + 𝜓𝐧𝐧𝑇(𝛽𝑛𝐈 − 𝛽𝑡𝐋)

(
𝚪1 + 𝑑−11 𝐓1 ⊗ (𝐲1 − 𝐱𝑏)

𝑇
))

[∇ ⊗ 𝐮1]

= 𝜓𝛾𝑛𝐧 +
(
𝐈 − 𝜓𝐧𝐧𝑇𝐋

)
𝛾𝛾𝛾𝑡 +
(
𝜓𝐧𝐧𝑇(𝛽𝑛𝐈 − 𝛽𝑡𝐋)𝑑

−1
1 𝐓1 − 𝛼𝑡𝐈

)
𝐮1, (21)

where 𝐋 = (𝛼𝑛𝐈 + 𝛽𝑛∕𝑑1𝐓1)(𝛼𝑡𝐈 + 𝛽𝑡∕𝑑1𝐓1)
−1 is 3 × 3 matrix, 𝜓 = (𝐧𝑇𝐋𝐧)−1. Both Equations (20), (21) represent an

equation with respect to the gradients of displacements ∇⊗ 𝐮1. These equations can be written in every cell for
every interface either internal or boundary. At least three of such equations are required to reconstruct gradients in
three-dimensional space.
The positivity-preserving approximation is required for the convergence of nonlinear FV schemes written for diffusion

operator.42 It was achieved by choosing the right way of gradient reconstruction among many alternatives.27 However, in
contrast to a scalar diffusion operator, the traction vector includes nine scalar diffusion terms as shown in Equation (8).
To preserve the positivity of all coefficients in the approximation of traction, we perform the reconstruction of these nine
terms individually which means that we use a specific triplet of equations for every scalar diffusion term.
When the stiffness is constant over the grid, the reconstruction of gradients ∇𝑢,∇𝑣,∇𝑤 can be done separately as

Equation (20) reduces to

(𝐱2 − 𝐱1)
𝑇∇𝑢1 = 𝑢2 − 𝑢1, (𝐱2 − 𝐱1)

𝑇∇𝑣1 = 𝑣2 − 𝑣1, (𝐱2 − 𝐱1)
𝑇∇𝑤1 = 𝑤2 − 𝑤1. (22)
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NOVIKOV et al. 7

F IGURE 2 The interpolation over four cells in 2D.

Even though the gradient reconstruction of the vector of displacements can be reduced to the independent reconstruc-
tions of its scalar components, it is not enough to guarantee the positivity of coefficients in the final approximation in
Equation (8) or in Equation (17). For a better explanation, see the gradient reconstruction for fluid fluxes presented in
Appendix B.Nevertheless, to find out this reconstruction onemay iterate over different triplets of connections. The homog-
enization function approach was used to find out the admissible triplet of connections in nonlinear flux approximation in
literature.27 The approach proposes the methodology how constructing an interpolation over multiple connections which
significantly expands the range of variants.
The search for an admissible triplet of connections that provides the reconstruction of gradients with positive coeffi-

cients may become expensive and unsuccessful, especially in the reconstruction of displacement gradients. In the case
of three completely independent gradients, we need to make sure that 3 coefficients per gradient are non-negative.
In heterogeneous case, the gradients of components are not independent. It results in a 9 × 9 matrix produced by
the triplet of Equations (20), (21) to be inverted. In the end, we need to have a 3 × 9 matrix of coefficients to be
non-negative.
It is worth to be noted that to reduce these costs the positivity constraint can be weakened and the search for admissible

stencil for the reconstruction of gradients can be formulated as an optimization problem.28

3.3.1 Homogenization function for mechanics

The homogenization function refers to the development of auxiliary conditions that relate the displacement gradients
in cell 1 to any arbitrary cell. For example, in a three-dimensional hexahedral mesh, we are no longer limited only by
six neighboring cells to reconstruct the gradients. Instead, this technology can provide an interpolation over neighboring
cells, neighbors of neighbors and etc.
For arbitrary point 𝐱 ∈ 𝑉2 Equation (20) can be rewritten as follows27

𝐮(𝐱) = 𝐮1 +
(
𝐈 ⊗ (𝐱 − 𝐱1)

𝑇 +
(
𝐧𝑇
𝛿
(𝐱 − 𝐱1) − 𝑑1𝛿

)
𝐓−1
2𝛿
(𝐐1𝛿 − 𝐐2𝛿)

)
[∇ ⊗ 𝐮1], (23)

where 𝐧𝛿 denotes the normal vector to the interface 𝛿 between cell 1 and cell 2, 𝑑1𝛿 = 𝐧𝛿(𝐱𝛿 − 𝐱1) is a distance between
the interface 𝛿 and the center of cell 1, 𝐓2𝛿 and 𝐐1𝛿, 𝐐2𝛿 are matrices calculated for the interface 𝛿 according to their
definitions in Equations (18), (8) respectively. Figure 2 illustrates the interpolation.
Taking the derivative of Equation (23) with respect to 𝐱 provides the expression for the gradient of displacement in

cell 2

∇⊗ 𝐮2 =
(
𝐈 + diag(𝐧𝛿)𝐓

−1
2𝛿
(𝐐1𝛿 − 𝐐2𝛿)

)
[∇ ⊗ 𝐮1], (24)

where diag(𝐧𝛿) denotes 3 × 3 diagonal matrix with components of 𝐧𝛿 on diagonal.
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8 NOVIKOV et al.

Let us consider cell 3 which shares a common interface 𝜎 with cell 2. The continuity conditions from Equations (12),
(13) can be written for this interface as

𝐮2 + 𝐈 ⊗ (𝐱𝜎 − 𝐱2)
𝑇 ⋅ ∇ ⊗ 𝐮2 = 𝐮3 + 𝐈 ⊗ (𝐱𝜎 − 𝐱3)

𝑇 ⋅ ∇ ⊗ 𝐮3, (25)

−𝐐2𝜎[∇ ⊗ 𝐮2] = −𝐐3𝜎[∇ ⊗ 𝐮3]. (26)

Repeating the same derivations we can come up with an equation similar to Equation (23) written for any point 𝐱 ∈ 𝑉3

𝐮(𝐱) = 𝐮1 +
(
𝐈 ⊗ (𝐱 − 𝐱1)

𝑇 +
(
𝐧𝑇
𝜎(𝐱 − 𝐱1) − 𝑑1𝜎

)
𝐓−1
3𝜎 (𝐐2𝜎 − 𝐐3𝜎)

)
[∇ ⊗ 𝐮2] − 𝑑1𝛿𝐓

−1
2𝛿
(𝐐1𝛿 − 𝐐2𝛿)[∇ ⊗ 𝐮1], (27)

where 𝐱𝛿, 𝐱𝜎 denote the points at the plane of interfaces 𝛿 and 𝜎 respectively, ∇⊗ 𝐮2 can be found from Equation (24).
This interpolation can be extended to an arbitrary chain of cells as shown in Figure 2.
The homogenization function for displacement gradients can be defined in a similar way to how it was done for pressure

gradient in Equation (B7) in Appendix B. It provides a relationship between displacement gradients in cell 1 to any other
cell 𝑖 which are connected over a set of interfaces Σ

Σ
1,𝑖(𝐱𝑖 − 𝐱1)

𝑇[∇ ⊗ 𝐮1] = 𝐮𝑖 − 𝐮1, (28)

where 𝐮𝑖 = 𝐮(𝐱𝑖). Now we can derive the homogenization function for neighboring cells from Equation (23)

𝛿
1,2(𝐱 − 𝐱1) = 𝐈 ⊗ (𝐱 − 𝐱1)

𝑇 +
(
𝐧𝑇
𝛿
(𝐱 − 𝐱1) − 𝑑1𝛿

)
𝐓−1
2𝛿
(𝐐1𝛿 − 𝐐2𝛿), (29)

and for the neighbors of neighboring cells from Equation (27)

𝛿,𝜎
1,3 (𝐱 − 𝐱1) =

(
𝐈 ⊗ (𝐱 − 𝐱1)

𝑇 +
(
𝐧𝑇
𝜎(𝐱 − 𝐱1) − 𝑑1𝜎

)
𝐓−1
3𝜎 (𝐐2𝜎 − 𝐐3𝜎)

)(
𝐈 + diag(𝐧𝛿)𝐓

−1
2𝛿
(𝐐1𝛿 − 𝐐2𝛿)

)
− 𝑑1𝛿𝐓

−1
2𝛿
(𝐐1𝛿 − 𝐐2𝛿), (30)

One can see how the homogenization function changes while interpolating over a larger number of interfaces. We can
generalize the expression of the homogenization function for the interpolation over an arbitrary chain of cells 1, … , 𝑘 + 1

connected through the set of interfaces Σ = {𝛿, 𝜎, … }:

Σ
1,𝑘+1(𝐱 − 𝐱1) =

(
𝐈 ⊗ (𝐱 − 𝐱1)

𝑇 + 𝐧𝑇
𝑘
(𝐱 − 𝐱1)𝐓

−1
𝑘+1,𝑘

(𝐐𝑘,𝑘 − 𝐐𝑘+1,𝑘)
)
⋅

(
𝑘−1∏
𝑖=1

(
𝐈 + diag(𝐧𝑖)𝐓

−1
𝑖+1,𝑖

(𝐐𝑖,𝑖 − 𝐐𝑖+1,𝑖)
))

−

𝑘∑
𝑗=1

𝑑1,𝑗𝐓
−1
𝑗+1,𝑗

(𝐐𝑗,𝑗 − 𝐐𝑗+1,𝑗)

(
𝑗−1∏
𝑖=1

(
𝐈 + diag(𝐧𝑖)𝐓

−1
𝑖+1

(𝐐𝑖,𝑖 − 𝐐𝑖+1,𝑖)
))

, (31)

where index 𝑘 corresponds to the final interface in Σ and 𝑘 + 1 corresponds to the final cell. Note that 𝐧𝑘 is normal to the
interface between cells 𝑘 and 𝑘 + 1.
This auxiliary condition can be incorporated into gradient reconstruction in multi-point or nonlinear approximation

schemes formomentumbalance. In theMPSA,we can use these additional auxiliary conditions in the gradients calculated
as a least square solution11 that is, instead of interface neighbors, we will now consider additional terms which result in a
larger multi-point stencil and can provide higher accuracy of flux approximation.

3.4 Weighting scheme

Wehave considered two approximations of the traction vector above. Both the straight definition of traction inEquation (8)
and the transversal part 𝐟𝜏 in Equation (15) depend on the gradient. In flow approximation the weighting scheme in
Equations (B12), (B13) is used for semi-fluxes included single-side approximation of gradients. The same methodology
can be applied to the approximation of the traction vectors. The weighting scheme applied to Equations (8), (15) can be
written as follows

𝐟 = 𝐌1𝐟𝛿1 +𝐌2𝐟𝛿2, (32)
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NOVIKOV et al. 9

𝐟 = 𝐓(𝐮1 − 𝐮2) +𝐌1𝐟𝜏1 +𝐌2𝐟𝜏2, (33)

where 𝐟 represents the approximation of traction vector, 𝐟𝛿1, 𝐟𝛿2 are the single-side approximations of traction vector,
𝐟𝜏1, 𝐟𝜏2 are single-side approximations of the transversal term defined in Equation (16),𝐌1,𝐌 are 3 × 3 positive semidef-
inite matrices of the coefficients of convex combination such that 𝐌1 +𝐌2 = 𝐈.Taking 𝐌1 = 𝐌2 = 𝐈∕2 results in the
Average MPSA scheme (in analogy to Average MPFA43) presented in literature.11
For derivations below it does not matter which form of weighting either Equation (32) or Equation (33) is used. Below

we use 𝐟𝛿 notation meaning that the same logic can be applied for 𝐟𝜏.
The following representation of single-side tractions 𝐟𝛿1, 𝐟𝛿2 can be used once the gradient reconstruction described in

the previous section has been performed

𝐟𝛿1 = 𝐑2(𝐮1 − 𝐮2) +
∑

𝑘∈𝜔1∖{2}

𝐑𝑘(𝐮1 − 𝐮𝑘) +
∑
𝑘∈�̃�1

𝐑𝑘(𝐮1 − 𝛾𝛾𝛾𝑘) + 𝐠1, (34)

𝐟𝛿2 = 𝐒1(𝐮1 − 𝐮2) +
∑

𝑘∈𝜔2∖{1}

𝐒𝑘(𝐮𝑘 − 𝐮2) +
∑
𝑘∈�̃�2

𝐒𝑘(𝛾𝛾𝛾𝑘 − 𝐮2) + 𝐠2, (35)

where 𝜔1, 𝜔2 denote the sets of inner cells participated in the approximation of 𝐟𝛿1, 𝐟𝛿2 respectively, �̃�1, �̃�2 denote the sets
of boundary conditions defined in Equation (10) and contributed to 𝐟𝛿1, 𝐟𝛿2, 𝐑𝑘, 𝐒𝑘 are 3 × 3 matrices that represent the
single-side approximations of 𝐟𝛿1, 𝐟𝛿2 respectively, they are obtained from the reconstruction of displacement gradients in
cell 1 and 2 being substituted to either Equation (8) or to Equation (15), 𝛾𝛾𝛾𝑘 = 𝛾𝛾𝛾𝑡,𝑘 + 𝛾𝑛,𝑘𝐧 represents the right-hand side of
boundary condition in Equation (10) contributed to the single-side approximations, 𝐠1, 𝐠2 denotes the sum of Neumann
boundary conditions contributed to the approximation of 𝐟𝛿1, 𝐟𝛿2 respectively.
SubstitutingEquations (34), (35) in Equation (32) and rearranging the termswe can comeupwith the following equation

𝐟 = 𝐃1𝐮1 − 𝐃2𝐮2 − (𝐌1𝜉𝜉𝜉1 −𝐌2𝜉𝜉𝜉2), (36)

where the following notations are used

𝐃1 = 𝐌1

∑
𝑘∈𝜔1∪�̃�1

𝐑𝑘 +𝐌2𝐒1, 𝐃2 = 𝐌1𝐑2 +𝐌2

∑
𝑘∈𝜔2∪�̃�2

𝐒𝑘, (37)

𝜉𝜉𝜉1 =
∑

𝑘∈𝜔1∖{2}

𝐑𝑘𝐮𝑘 +
∑
𝑘∈�̃�1

𝐑𝑘𝛾𝛾𝛾𝑘 − 𝐠1, 𝜉𝜉𝜉2 =
∑

𝑘∈𝜔2∖{1}

𝐒𝑘𝐮𝑘 +
∑
𝑘∈�̃�2

𝐒𝑘𝛾𝛾𝛾𝑘 + 𝐠2. (38)

We can construct a two-point nonlinear scheme in the same way as it was done for flux approximation, by eliminating
all the terms in Equation (36) except those that are proportional to 𝐮1, 𝐮2. Assuming that the matrices of weights𝐌1,𝐌2

are diagonal, the following linear system of equations completely defines them

𝐌1𝜉𝜉𝜉1 −𝐌2𝜉𝜉𝜉2 = 0, (39)

𝐌1 +𝐌2 = 𝐈, (40)

which solution is

𝐌1 = diag

{
𝜉
(𝑖)
2 + 𝜀

𝜉
(𝑖)
1 + 𝜉

(𝑖)
2 + 2𝜀

}
, 𝐌2 = diag

{
𝜉
(𝑖)
1 + 𝜀

𝜉
(𝑖)
1 + 𝜉

(𝑖)
2 + 2𝜀

}
, 𝑖 = 1, 2, 3, (41)

where 𝜉(𝑖)1 , 𝜉
(𝑖)
2 represent the components of 𝜉𝜉𝜉1,𝜉𝜉𝜉2 vectors, 𝜀 stands for a small regularization parameter.

27

The weights𝐌1,𝐌2 defined in Equation (41) introduce nonlinearity to the scheme as they depend on unknown dis-
placements through 𝜉𝜉𝜉1,𝜉𝜉𝜉2. It leads to nonlinear discrete equations for the linear continuous problem. This artificial
complexity allows the numerical properties of the scheme to be adjusted. Here we reduce the stencil of the scheme to
two-point as it leads to a monotone convergent scheme for a scalar diffusion operator.27 However, the constraint in Equa-
tion (39) can be chosen in a different way. For example, keeping only the terms with a single displacement component in
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10 NOVIKOV et al.

each row in Equation (36) it is possible to split nine coupled scalar diffusion operators in Equation (8) into three decou-
pled operators. If a two-point stencil is also preserved within this constraint then it can be seen that the full matrix will be
M-matrix.44 Here we impose the constraint in Equation (39) that produces a two-point approximation, but each semi-flux
in Equations (34), (35) may include contributions from all displacements components.
The positivity of the solution is required for the purpose of nonlinear convergence.27 For those setups where negative

values of any displacement component may be exhibited, we add a large constant to the corresponding displacement
component as an initial guess. Dirichlet boundary conditions were modified accordingly.

3.5 Sparcity pattern

The 𝐀matrix which is assembled by utilizing the coefficient matrices from Equation (37), and the connections gathered
from the traction flux approximation Equation (36) form a two-point stencil. However, the resulting Jacobian matrix
has a sparsity pattern similar to the MPSA scheme since all nonlinear entries are consistent with the MPSA stencil. This
discretization is equivalent to a lower-order FE approximation (e.g., Brezzi–Douglas–Marini order 1 scheme. Equation (36)
can be used to provide an approximation to the traction vector in a discrete system from Equation (11). The system of
nonlinear equations needs to be solved with respect to displacements serving as nonlinear unknowns. Here we adopt the
Newton-Raphson method to linearize the equations. The resulting linear system of equations on each nonlinear iteration
can be expressed as

𝐀𝛿𝑢𝛿𝑢𝛿𝑢 = −𝐠 (42)

where 𝐀 stands for a Jacobian matrix, 𝛿𝑢𝛿𝑢𝛿𝑢 represents the update in the vector of displacements 𝐮 over nonlinear iteration,
𝐠 denotes the vector of residuals. We repeat Newton-Raphson iterations until the method converges.

4 NUMERICAL RESULTS

4.1 Convergence study

In the first part, we prove the convergence of NTPSA and Average MPSA discretization techniques by using the homo-
geneous anisotropic tensor test suggested in literature.11 Let us consider the following reference solution of the elasticity
problem in the cubic domain Ω = [0, 1]3

𝑢𝑥(𝑥, 𝑦, 𝑧) =

(
𝑥 −

1

2

)2

− 𝑦 − 𝑧, 𝑢𝑦(𝑥, 𝑦, 𝑧) =

(
𝑦 −

1

2

)2

− 𝑥 − 𝑧, 𝑢𝑧(𝑥, 𝑦, 𝑧) =

(
𝑧 −

1

2

)2

− 𝑥 − 𝑦, (43)

and the 6 × 6 stiffness matrix is represented as

𝐂 =

⎡⎢⎢⎢⎢⎢⎢⎣

1.323 0.0726 0.263 0.108 −0.08 −0.239

0.0726 1.276 −0.318 0.383 0.108 0.501

0.263 −0.318 0.943 −0.183 0.146 0.182

0.108 0.383 −0.183 1.517 −0.0127 −0.304

−0.08 0.108 0.146 −0.0127 1.209 −0.326

−0.239 0.501 0.182 −0.304 −0.326 1.373

⎤⎥⎥⎥⎥⎥⎥⎦
. (44)

We substitute the reference solution and the stiffness matrix to the left-hand side of Equation (5) and use the result of
the calculation as the vector of volumetric forces in the right-hand side of Equation (5). We also subject the domain to
Dirichlet boundary conditions according to the reference solution. The solution of all three components of displacement
can be seen in Figure 3.
We reconstruct stress tensor in the centers of cells. This is done by the procedure described in literature.11 As we can

see in Figure 4, both NTPSA and AvgMPSA schemes converge with the second order with respect to displacements and
we observe superlinear convergence with respect to stresses. We use cubic mesh in these calculations. In Figure 4, 𝑚 is
the inverse of the cube root of a number of cells in the domain in the log scale.
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NOVIKOV et al. 11

F IGURE 3 Reference solution from Equation (43) for displacement components 𝑢𝑥 (left) 𝑢𝑦 (center) 𝑢𝑧 (right).

F IGURE 4 The convergence of numerical solution made with nonlinear and linear schemes to the reference with grid refinement. The
second-order convergence for displacement vector (A) and superlinear convergence for stress tensor (B) is obtained.

The residual over NTPSA iterations is shown in Figure 5 in a semi-log scale. The structured cubic and unstructured
extruded wedge grids of various resolutions are considered. The residual drops more than by two orders of magnitude
every iteration. Once a cut-off tolerance 10−10 (orange line) is reached nonlinear iterations are stopped. Figures 4 and 5
demonstrate good behavior of scheme in a homogeneous domain.

4.2 Compression and shear

Geological formations in the subsurface contain faults and fractures that may highly affect the hydromechanical response
of porous media. Contact mechanics governs the behavior of fault and fractures and it requires special treatment.15,45–47
Therefore, the preciseness of stresses calculated at faults presents a high interest for applications.
Let us consider the two-dimensional unit square domain (𝜆 = 𝐺 = 1) shown in Figure 6. The domain is subjected

to shearing (𝑢𝑥 = 0.01) and smaller compressive (𝑢𝑦 = −0.001) displacements at the top boundary, the bottom bound-
ary is kept fixed whereas the left and right sides are free. The plane strain setup is considered. Vertical and horizontal
displacements are presented in Figure 7.
In this test case, we analyze stress profiles over the horizontal line in the center of the continuous domain shown in

Figure 6. Normal and tangential components of the traction vector over the line are presented in Figure 8 for two types
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12 NOVIKOV et al.

F IGURE 5 Residual drop over nonlinear iterations for the setup calculated with the grid composed by structured hexahedrons (A) or
unstructured wedges (B).

F IGURE 6 The domain and boundary
conditions. Stresses are analysed over the
horizontal line in the center.

of meshes: adaptive coarse wedge and coarse square. The details of the meshes are shown in Table 1. We compare the
reference solution against the profiles obtained with three different schemes: Average MPSA with positivity-preserving
gradient reconstruction, Average MPSA with least square gradient reconstruction and NTPSA. The magnitude of tangen-
tial traction is higher than the magnitude of the normal one which is consistent with displacements applied at the top
boundary. Thus, the relative accuracy for tangential traction is noticeably higher than for normal traction. All consid-
ered schemes exhibit up to 3% deviation in tractions in this example. Even though regular square mesh produces much
smoother traction profiles than the adaptive wedge mesh, it can not be used for more complex geometry.
In order to preserve a positive solution in the NTPSA scheme, we shift the reference state for displacements to {10, 10}

to make sure that they remain positive over nonlinear iterations. NTPSA scheme takes 3 nonlinear iterations to converge
to the residual of 10−10.
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NOVIKOV et al. 13

F IGURE 7 Compression and shearing over the top boundary. Displacement components 𝑢𝑥 (left) and 𝑢𝑦 (right) were calculated on a
coarse adaptive wedge grid using NTPSA. NTPSA, nonlinear two-point stress approximation.

F IGURE 8 Normal (A), (C) and tangential (B), (D) components of traction vector along the line in the center of the domain. (A), (B) and
(C), (D) represent components calculated on the coarse wedge and coarse square grids respectively.
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14 NOVIKOV et al.

TABLE 1 Convergence study for Average multi-point stress approximation.

Mesh type 𝑳𝒄 𝑳𝒄,𝒇𝒓𝒂𝒄 Cells Least squares Homogenization
Coarse square 0.025 0.025 1600 Smooth Smooth
Medium square 0.016 0.016 3600 Smooth Smooth
Coarse adaptive 0.1 0.01 1274 Noisy Noisy
Medium adaptive 0.1 0.003 3398 Noisy Improved
Fine adaptive 0.03 0.003 12874 Improved Improved

F IGURE 9 Procedure in which number of cells are considered in gradient reconstruction using homogenization, similar to the theory
used in literature.27.

4.3 Homogenization for linear MPSA

The above results (e.g., Figure 8) clearly show that the NTPSA scheme does not provide a smooth traction profile in the
solution of elasticity problem. An alternative option for obtaining a smooth traction profile is explored here. To achieve
this, we apply the homogenization approach discussed in section 3.3.1 directly in the least-squares reconstruction. When
we are performing gradient reconstruction using least-squares, we take an extended stencil that not only include imme-
diate neighbors but also several adjusted cells which are in the vicinity of these neighbors. To make this study grid
independent, we proceed to try the same three types of grids (exclude hexahedrons) as discussed in section 4.2.
The parameters 𝐿𝑐 and 𝐿𝑐,𝑓𝑟𝑎𝑐 listed in Table 1 represent the characteristic cell size of the whole mesh and in the vicinity

of fault respectively. A lower value of 𝐿𝑐,𝑓𝑟𝑎𝑐 relative to 𝐿𝑐 indicates finer mesh near the fault compared to the rest parts
of mesh. We also refer to levels of homogenization which indicate how many neighboring cells are being considered in
gradient reconstruction. For example, the 2nd level of homogenization used in cell 𝑐 means that all cells belonging to
the level of homogenization 𝑖 ≤ 2 including cell 𝑐 can participate in the gradient reconstruction in cell 𝑐. For each level
we choose among multiple variants of reconstruction to achieve the approximation with positive coefficients. The levels
of homogenization are shown in Figure 9. The 0th level of homogenization represents the stencil for the least squares
gradient reconstruction.
Figure 10 demonstrate the resolution study of two numerical strategies with respect to a normal traction profile con-

ducted for the adaptive wedge meshes. As resolution increases the calculated normal traction matches the reference
solution at the tips of the meshed line first (Figure 10A) and only then in the middle of the line (Figure 10C). This can be
explained by the distance to boundaries and grid refinement nearby the line. We observe homogenization method gives
a slightly different solution than the least squares counterpart. Specifically, in Figure 10B and Figure 10C we can see that
the homogenized solution is closer to the reference solution than the least squares method. Figure 11 illustrates a similar
resolution study conducted with two square meshes. As expected, regular meshes produce smoother and more accu-
rate solutions than adaptive meshes. In this case, the profiles obtained with homogenization coincide with the solution
obtained with least squares, slightly deviating from the reference solution.
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NOVIKOV et al. 15

F IGURE 10 Magnitude of normal traction calculated with (A) coarse adaptive, (B) medium adaptive, (C) fine adaptive meshes and
compared against the reference solution.

F IGURE 11 Magnitude of normal traction calculated with (A) coarse square, (B) medium square meshes and compared against the
reference solution.
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16 NOVIKOV et al.

F IGURE 1 2 Magnitude of normal traction for
different levels of homogenization in 3398 cells mesh.

Next, we analyze the extent of homogenization and observe how increasing the level of homogenization will impact the
solution profile. We consider four levels of homogenization after the least-squares stencil. Figure 12 shows the response
we get as we increase the level of homogenization. We can see for the mesh which has 3398 cells, the initial least-square
solution is noisy, but increasing the number of cells in the stencil gives us a better profile (especially at the endpoints),
although it never actually comes as close as the refined solution in Figure 10C even after four levels of homogenization.
In the case of square meshes, the higher number of homogenization levels produces the solutions which practically

coincide with the results obtained with zero level homogenization scheme shown in Figure 11. A deeper homogenization
does not bring any accuracy benefit on these meshes as the solution is already precise enough.
Overall, homogenization behaves as expected that is, considering several other connections in our vicinity apart from

neighbors is bound to give a better understanding of displacement gradient on specific cell-face pairs. This could also be
extended to a heterogeneous case, which will be discussed in future work.

5 CONCLUSION AND DISCUSSION

Spatial discretization is a significant piece of the numerical scheme that determines the spatial accuracy of the simulation.
Unconditionally stable linear TPFA is inconsistent to describe fluid flux on non-K-orthogonal grids. It also can not be used
to resolve momentum fluxes. Instead, the linear multi-point approximations were developed and successfully applied to
fluid flow, elasticity and poroelasticity. However, it is well-known that multi-point approximations are not monotone
and may introduce some non-physical features to the solution. Nonlinear approximation allows these features to be
avoided.
The main advantage of nonlinear schemes is that they provide flexibility in spatial discretization by taking a convex

combination of different approximations instead of having a single approximation. The weights in such combination can
be chosen from various premises like the preserving of monotonicity or discrete maximum principle. It is known that the
solution to the elasticity problemdoes not satisfy the discretemaximum (minimum) principle. Instead, Korn’s inequality48
used to prove the existence, uniqueness and well-posedness of elasticity problem should be maintained.10
In this study, we proposed a FV scheme based on positivity-preserving NTPSA for the anisotropic elasticity problem. To

preserve the positivity of approximation,we developed a homogenization approach formomentum fluxes over an arbitrary
chain of connections (cells). Moreover, the homogenization approach allows for improving the accuracy of approximation
which can be extremely helpful in the presence of faults.
We demonstrated the convergence of the scheme in a homogeneous anisotropic domain. The extension of the scheme to

heterogeneous cases makes the preserving of positivity challenging. In this case, the equations in gradient reconstruction
are coupledwhich implies havingmuchmore coefficients to be non-negative for a given stencil. The potential solution can
include relaxed requirements for the positiveness and reformulation of the search as an optimization problem.28 Besides,
the use of harmonic averaging points in gradient reconstruction can help.11,14
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NOVIKOV et al. 17

We tested the accuracy of approximationwith respect to the normal and tangential components of the traction vector.We
found that the proposed nonlinear scheme does not provide better, precision than linear multi-point schemes. However,
the use of higher-order spatial discretization techniques, for example, homogenization function approach, can increase
the accuracy of the solution on adaptive meshes.
The proposed scheme can also form a basis to build a robust comprehensive FV-based reservoir simulator that integrates

momentum balance with multi-phase fluid flow, compositional transport and energy balance in porous media.
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APPENDIX A: FLUID FLOW IN POROUSMEDIA
We consider two-phase fluid flow in the porous domain Ω governed by the following mass conservation equations

𝜕(𝜙𝜌𝔞𝑠𝔞)

𝜕𝑡
+ ∇ ⋅ (𝜌𝔞𝐯𝔞) = 𝑟𝔞, 𝔞 = 𝑤, 𝑜, in Ω, (A1)

where we have two phases 𝔞 = 𝑤, 𝑜 as water and oil respectively, 𝜙 stands for porosity, 𝜌𝔞 is phase density, 𝑠𝔞 denotes
phase saturation, 𝑟𝔞 is the source (sink) of phase mass, 𝐯𝔞 is the phase Darcy’s velocity, which is defined as

𝐯𝔞 = −
𝑘𝑟𝔞𝐊

𝜇𝔞
∇𝑝, 𝔞 = 𝑤, 𝑜, (A2)

where 𝑘𝑟𝔞 – relative phase permeability, 𝐊 - permeability tensor, 𝜇𝔞 – phase viscosity. For simplicity, we do not consider
gravity and capillarity contributions in this paper, although they could be taken into account in nonlinear approximation.24
We use the following definition of the phase flux 𝑞𝔞 and the flux 𝑞

𝑞𝔞 = 𝐯𝔞 ⋅ 𝐧 = −𝜆𝔞𝐊∇𝑝 ⋅ 𝐧 = 𝜆𝔞𝑞, 𝔞 = 𝑤, 𝑜, (A3)

where 𝜆𝔞 = 𝑘𝑟𝔞∕𝜇𝔞 denotes phase mobility.
The equations above are supplemented with the boundary condition

𝛼𝑝𝑝 + 𝛽𝑝𝑞𝔞 = 𝛾𝑝, 𝔞 = 𝑤 or 𝑜 on 𝜕Ω, (A4)

to be satisfied on the boundaries of domain 𝜕Ω, where 𝛼𝑝, 𝛽𝑝, 𝛾𝑝 are prescribed constants that define boundary condition,
𝐧 stands for unit normal vector to surface. Two different types of boundary conditions, Dirichlet (𝛼𝑝 = 1, 𝛽𝑝 = 0) and
Neumann (𝛼𝑝 = 0, 𝛽𝑝 = 1) are considered inEquation (A4).Moreover,we prescribe 𝑠𝔞 in the case of influx at the boundary.

APPENDIX B: FLUID FLUX APPROXIMATION
For flow problems, splitting the fluid flux 𝑞 defined in Equation (A3) into harmonic and transversal terms may help to
avoid locking issues.40 We use this decomposition, so-called co-normal decomposition, in the approximation of the fluid
flux27

𝑞 = 𝜆(𝑝1 − 𝑝2) + 𝑞𝜏, (B1)

𝜆 =
𝜆1𝜆2

𝜆1𝑑2 + 𝜆2𝑑1
, 𝑞𝜏 = −

𝜆1𝜆2(𝐲1 − 𝐲2) + 𝜆1𝑑2𝐠2 + 𝜆2𝑑1𝐠1
𝜆1𝑑2 + 𝜆2𝑑1

∇𝑝1, (B2)

where 𝐧 denotes the unit normal, 𝐱𝑖, 𝐱𝛿 are the centers of cells 𝑖 = 1, 2 and the interface 𝛿 lying between cells 1 and 2, the
direction of normal vector such that𝐧𝑇(𝐱2 − 𝐱1) > 0,𝑑𝑖 = |𝐧𝑇(𝐱𝛿 − 𝐱𝑖)| , 𝑖 = 1, 2 is a distance from the center of cell 𝑖 to the
center of the interface 𝛿, 𝐲1 = 𝐱1 + 𝑑1𝐧, 𝐲2 = 𝐱2 − 𝑑2𝐧 are projections of cell centers 𝐱1, 𝐱2 onto the interface, 𝜆𝑖 = 𝐧𝑇𝐊𝑖𝐧,
𝐠𝑖 = (𝐊𝑖 − 𝜆𝑖𝐈)𝐧 are co-normal and transversal components of permeability tensor𝐊𝑖 ,∇𝑝𝑖 is a pressure gradient in cell 1.
Note that the first term in Equation (B1) is called harmonic and the second is transversal.

Local problem
We repeat the derivation of NTPFA carried out in literature21,24 but with the use of co-normal decomposition for flow
representation.27 We consider an interface between cells 1 and 2 and assume pressure remains piecewise linear. The
continuity of pressure and flux across this interface 𝛿 can be written as

𝑝1 + (𝐱𝛿 − 𝐱1)
𝑇 ⋅ ∇𝑝1 = 𝑝2 + (𝐱𝛿 − 𝐱2)

𝑇 ⋅ ∇𝑝2, (B3)

𝑞𝛿1 = −𝐊1𝐧 ⋅ ∇𝑝1 = −𝐊2𝐧 ⋅ ∇𝑝2 = 𝑞𝛿2, (B4)

where 𝑝1, 𝑝2 are pressures in the cells, 𝐱1, 𝐱2 are cell centers, 𝐊1,𝐊2 are permeability tensors defined at the cells 𝑖 =
1, 2, 𝑞𝛿1, 𝑞𝛿2 are single-side approximations of flux. The point on interface 𝐱𝛿, where requirements in Equations (B3),
(B4) are imposed, can be the harmonic averaging point (HA) on interface, a concept introduced by literature.17 In this
work, we follow harmonic averaging equation specified in literature24 to find the position and pressure related to the
harmonic point.
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20 NOVIKOV et al.

Gradient reconstruction
The pair of Equations (B3), (B4) allows one of two pressure gradients to be excluded. However, another pressure gradient
remains in the expression for fluxes. In order to derive an expression for pressure gradient, we formulate the auxiliary
conditions which will help us to reconstruct it specifically for every cell-face pair. In three-dimensional space, three con-
ditions are required to reconstruct the gradient. In this step, we make sure to choose the auxiliary conditions such that a
positive basis is obtained for the scheme.
The auxiliary conditions can be written as a system of equations with respect to ∇𝑝1

𝐀∇𝑝1 =

⎛⎜⎜⎜⎝
(𝐱ℎ1 − 𝐱1)

𝑇

(𝐱ℎ2 − 𝐱1)
𝑇

(𝐱ℎ3 − 𝐱1)
𝑇

⎞⎟⎟⎟⎠∇𝑝1 =
⎛⎜⎜⎝
𝑝ℎ1 − 𝑝1
𝑝ℎ2 − 𝑝1
𝑝ℎ3 − 𝑝1

⎞⎟⎟⎠ (B5)

where 𝐀 is a 3 × 3 matrix of rows (𝐱ℎ1 − 𝐱1)
𝑇 , 𝑖 = 1, 2, 3; 𝐱ℎ𝑖 , 𝑖 = 1, 2, 3 represents the HA points located anywhere in

the plane of the interface,24,26 𝑝ℎ𝑖 , 𝑖 = 1, 2, 3 are the pressures in these points; 𝑝1 is the pressure in cell 1. Substitution of
Equation (B5) in the left part of Equation (B4) gives

𝐊1𝐧 ⋅ ∇𝑝1 = (𝐊1𝐧)𝐀
−1
⎛⎜⎜⎝
𝑝ℎ1 − 𝑝1
𝑝ℎ2 − 𝑝1
𝑝ℎ3 − 𝑝1

⎞⎟⎟⎠ , (B6)

where it is clearly seen that all components of (𝐊1𝐧)𝐀
−1 have to be non-negative to have a flux approximationwith positive

coefficients.24
In the case of heterogeneous anisotropic permeability on a nonorthogonal grid, the HA point may lay outside the par-

ticular interface and the gradient reconstruction with positive coefficients may run into difficulty.41 Some formulations
of NTPFA will require only a sum of coefficients in the flux approximation (𝐊1𝐧)𝐀

−1 to be nonnegative which is a less
restrictive condition.22 Even in this case, the triplet of interfaces providing a positive sum of coefficients may not exist.
In,28 the searching algorithm was proposed to overcome this restriction at the cost of a wider stencil used in the approxi-
mation. The homogenization function approach provides a pressure interpolation over the chain of cells and may be used
to find a triplet of interfaces that guarantees only positive coefficients.27
Homogenization function Σ

1,𝑖
(𝐱𝑖 − 𝐱1) can be defined as a generalization of equations written in the system in

Equation (B5) cabable to relate gradient in cell 1 to any other cell 𝑖 which are connected over a set of interfaces Σ

Σ
1,𝑖
(𝐱𝑖 − 𝐱1)

𝑇∇𝑝1 = 𝑝𝑖 − 𝑝1, (B7)

where 𝑝𝑖 represents pressure defined at 𝐱𝑖 .
Using pressure and flux continuity requirements from Equations (B3), (B4) over interfaces Σ homogenization function

may be represented as follows27

Σ
1,𝑘+1

(𝐱 − 𝐱1) =

𝑘∏
𝑖=1

[
𝐈 +

(𝐊𝑖 − 𝐊𝑖+1)𝐧𝑖𝐧
𝑇
𝑖

𝜆𝑖
𝑖+1

]
(𝐱 − 𝐱1) −

𝑘∑
𝑗=1

(
𝑗−1∏
𝑖=1

(
𝐈 +

(𝐊𝑖 − 𝐊𝑖+1)𝐧𝑖𝐧
𝑇
𝑖

𝜆𝑖
𝑖+1

))
𝑑
𝑗
1

𝜆
𝑗
𝑗+1

(𝐊𝑗 − 𝐊𝑗+1)𝐧𝑗, (B8)

where 𝜆𝑖
𝑖+1

= 𝐧𝑇
𝑖
𝐊𝑖+1𝐧𝑖 , 𝑑𝑖1 = 𝐧𝑇

𝑖
(𝐲𝑖 − 𝐱1) is the distance between the center of cell 1 and the plane of interface 𝑖 defined

by its center 𝐲𝑖 .
The homogenization function approach allows us to interpolate pressure over a heterogeneous domain and the gradient

reconstruction is no longer limited by immediate neighbors to cell 1, but it can involve any cell. The stencil selection
procedure will give priority to the cells which are encountered first that is, stencils with a lower level of homogenization
and positive basis will be considered in the formulation. For example, 𝑘 = 0 level corresponds to immediate neighbors of
the current cell

Σ
1,2(𝐱2 − 𝐱1) =

[
𝐈 +

(𝐊1 − 𝐊2)𝐧𝐧
𝑇

𝜆2

]
(𝐱2 − 𝐱1) −

𝑑1
𝜆2

(𝐊1 − 𝐊2)𝐧 = 𝐱2 − 𝐱1 +
𝑑2
𝜆2

(𝐊1 − 𝐊2)𝐧. (B9)
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NOVIKOV et al. 21

Thehomogenization function approach can be also used to reconstruct the gradient at the boundary interface of cell 1. In
the case ofDirichlet (𝛼𝑝 = 1, 𝛽𝑝 = 0) andNeumann (𝛼𝑝 = 0, 𝛽𝑝 = 1) boundary conditions in Equation (A4), Equation (B7)
can be rewritten respectively27

Σ
1,𝑖
(𝐱𝑖 − 𝐱1)

𝑇∇𝑝1 = 𝛾𝑝 − 𝑝1, (B10)(
∇Σ

1,𝑖
𝐊𝑖𝐧
)𝑇

∇𝑝1 = 𝛾𝑝, (B11)

where ∇Σ
1,𝑖
is a matrix that denotes the gradient of homogenization functionΣ

1,𝑖
from Equation (B8).

Weighting scheme
The fluid flux approximation includes the approximation of pressure gradients which is described in the previous section.
Generally, the approximations of the gradients in cells 1 and 2 are different and one can come up with two different
fluid flux approximations that use either the gradient in cell 1 or the gradient in cell 2. Such approximations are also
called semi-fluxes meaning that the approximation is single-side20,24,27,28. The convex combination of two semi-fluxes
represents the idea of linear and nonlinear weighted schemes designed to improve the accuracy of the approximation,
preserve monotonicity or satisfy the discrete maximum principle.
The harmonic term 𝜆(𝑝𝑖 − 𝑝𝑗) in co-normal decomposition in Equation (B1) is the same for both semi-fluxes. This

allows us to treat it separately and to apply weighting only for transversal term 𝑞𝜏. In this work we use two weighting
schemes based on the flux approximations used in Equation (B4) and Equation (B1). They can be written respectively in
the following way

𝑞12 = 𝜇1𝑞𝛿1 + 𝜇2𝑞𝛿2, (B12)

𝑞12 = 𝜆(𝑝1 − 𝑝2) + 𝜇1𝑞𝜏1 + 𝜇2𝑞𝜏2, (B13)

where 𝑞12 represents the flux approximation, 𝑞𝛿1, 𝑞𝛿2 are semi-fluxes defined in Equation (B4), 𝑞𝜏1, 𝑞𝜏2 are transversal
semi-fluxes defined in Equation (B2), 𝜇1, 𝜇2 are parameters of convex combination of semi-fluxes such that 𝜇1, 𝜇2 ≥ 1,
𝜇1 + 𝜇2 = 1.
Let us consider the approximation for semi-fluxes. Belowwe use 𝑞𝛿1, 𝑞𝛿2 to denote semi-fluxes, but the same statements

remain in power for the transversal semi-fluxes 𝑞𝜏1, 𝑞𝜏2 used in Equation (B13). Once the approximation of pressure gra-
dients substituted to either Equation (B4) or to Equation (B1) we can represent the approximation for two semi-fluxes as
follows24

𝑞𝛿1 = 𝑐11(𝑝1 − 𝑝2) + 𝑐12(𝑝1 − 𝑝3) + 𝑐13(𝑝1 − 𝛾𝑝), (B14)

𝑞𝛿2 = 𝑐21(𝑝1 − 𝑝2) + 𝑐22(𝑝4 − 𝑝2) + 𝑐23𝛾𝑝, (B15)

where 𝛾𝑝 is right-hand side in Equation (A4) representing Dirichlet boundary condition in Equation (B14) and Neumann
boundary condition in Equation (B15) contributed to the semi-flux, 𝑝𝑁 denotes the pressure approximated on boundary
with Neumann condition24 and the positiveness of coefficients 𝑐𝑖𝑗 > 0 is guaranteed by the proper choice of the triplet of
equations in Equations (B5), (B7), (B10), (B11) for the reconstruction of gradients.
Substitution of Equations (B14), (B15) to Equation (B12) (or the same expressions for 𝑞𝜏1, 𝑞𝜏2 to Equation (B13)) gives

the approximation of fluid flux 𝑞12. However, an additional constraint is required to define weights 𝜇1, 𝜇2. The most com-
mon choice of weights 𝜇1 = 𝜇2 = 0.5 results in a linear scheme, called AverageMPFA.28 Elimination all the contributions
in the flux in except from cell 1 and cell 2 gives a so-called Nonlinear Two-Point Flux Approximation (NTPFA) that pre-
serves themonotonicity of the scheme. The constraint may be designed in order to satisfy the discrete maximum principle
which gives so-called Nonlinear Multi-Point Flux Approximation (NMPFA).40 Additional mixing of two approximations
in Equations (B12), (B13) may help to improve scheme behavior with respect to locking issues.27
Similar expressions can be derived for the boundary interfaces such that flux can be represented in a nonlinear way as

suggested in literature.24
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