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Abstract: Land Use/Land Cover (LULC) change is a major global concern and a topic of scientific
debate. In West Africa, the key trend among the changes of the past few years is the loss of natural
vegetation related to changes in different LULC categories, e.g., water bodies, wetland, and bare
soil. However, not all detected changes in these LULC categories are relevant for LULC change
management intervention in a resource-constrained continent, as a massive change in the dominant
LULC types may be due to errors in the LULC maps. Previous LULC change analysis detected
large discrepancies in the existing LULC maps in Africa. Here, we applied an open and synergistic
framework to update and improve the existing LULC maps for West Africa at five-year intervals
from 1990 to 2020—updating them to a finer spatial resolution of 30 m. Next, we detected spatial–
temporal patterns in past and present LULC changes with the intensity analysis framework, focusing
on the following periods: 1990–2000, 2000–2010, and 2010–2020. A faster annual rate of overall
transition was detected in 1990–2000 and 2010–2020 than in 2000–2010. We observed consistent
increases in shrubland and grassland in all of the periods, which confirms the observed re-greening
of rangeland in West Africa. By contrast, forestland areas experienced consistent decreases over
the entire period, indicating deforestation and degradation. We observed a net loss for cropland in
the drought period and net gains in the subsequent periods. The settlement category also gained
actively in all periods. Net losses of wetland and bare land categories were also observed in all of
the periods. We observed net gains in water bodies in the 1990–2000 period and net losses in the
2010–2020 period. We highlighted the active forestland losses as systematic and issued a clarion call
for an intervention. The simultaneous active gross loss and gain intensity of cropland raises food
security concerns and should act as an early warning sign to policy makers that the food security of
marginal geographic locations is under threat, despite the massive expansion of cropland observed
in this study area. Instead of focusing on the dynamics of all the LULC categories that may be
irrelevant, the intensity analysis framework was vital in identifying the settlement category relevant
for LULC change management intervention in West Africa, as well as a cost-effective LULC change
management approach.
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1. Introduction

The normal functioning of the global earth system has been altered in recent years by
abrupt and systematic changes in its various components [1,2]. The impacts of the current
anthropic activities on Earth are numerous and widespread. Land Use/Land Cover (LULC)
change is a reliable indicator of the combined impacts of climate and anthropic activities on
Earth [3,4]. According to Lambin et al. [1] and Geist and Lambin [5], socioeconomic factors,
e.g., population growth, poverty rate, human lifestyle changes, climatic conditions, and
specific policies in each location at a given time are the major underlying causes of LULC
change in Africa. Therefore, Geist and Lambin [5] categorized the underlying causes of
LULC change in Africa into anthropic and climate-driven causes.

The severe droughts in Africa in the 1970s and the 1980s exemplify how climate
and anthropic activities may threaten natural vegetation growth, water bodies, and other
natural resources with subsequent impacts on food security, economic livelihoods, and the
social well-being of the continent’s people [6–9].

Primarily, investigations into the complex interactions between human and the LULC
system have often been centered on understanding the patterns and processes of LULC
changes at different spatiotemporal scales. Such investigations are necessary to understand
the mechanisms of change and serve as a major pathway to predict the possible rate of
change in the future. They are also useful for developing and implementing policies in
response to changes at different spatial scales [10].

In LULC change analysis, it is important to understand whether the detected changes
are related to large fractional abundance, the size of the categories at the initial period, or
whether transitions are more likely to occur for a particular category [10–12]. Supposing the
changes in a given category are non-uniform (systematic), it is crucial to understand how
the area covered by a category, i.e., its size, the rate of change, and the gross losses and gains
of that category, vary over time. Aldwaik and Pontius Jr. [10] defined the ratio of change
size over the size of the total area where the change occurred as the “change intensity”.

According to Pontius Jr. et al. [13] and Braimoh [12], even a massive transition between
the dominant LULC classes in a landscape is likely to be a random process of change, i.e.,
for example, the gaining LULC categories may replace the losing categories proportionally
to the initial abundance. Any deviations from these random processes of change are
defined as systematic transitions. Systematic LULC transitions are such that a given LULC
category preferentially avoids or targets some specific and unique developmental LULC
categories for transitions. Understanding these mechanisms may offer useful information
about the active and dormant categories, i.e., categories with change intensities above
or below the uniform intensity line, respectively. Information about the “dormant” and
“active” transitions is useful to characterize spatial patterns and processes in the LULC
transitions [10]. The characterization of these signals is critical for land managers to target
management interventions towards actively changing LULC categories instead of focusing
on complex dynamic processes that may be cost-intensive. This is crucial in resource-
constrained countries, as in the case of West Africa [10,14–21].

Basically, “dormant” transition means that the changes observed for a given category,
e.g., natural vegetation, were less than expected based on the initial size. Whilst “active”
transition means the changes observed for a given category, e.g., natural vegetation, were
more than the expected changes based on the initial size [10]. In addition, when the
ultimate goal of LULC transitions analysis is to model the underlying drivers, it is crucial
to understand whether the patterns and processes leading to the observed transitions are
stationary across time and space. Essentially, the stationarity here means that the detected
pattern of change at one time interval is the same as the pattern of change in a different time
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interval [22]. Aldwaik and Pontius Jr. [10] defined stationarity to mean that the intensity of
a category’s gain/loss is either greater or less than the uniform line for all intervals. Here,
if the intensities for all the time intervals reside on one side, i.e., either above or below the
uniform intensity line, then the change is considered as stationary.

Despite the growing number of LULC change analyses at different spatial scales in
West Africa and the entire continent at large, there are still gaps in the initial characterization
of the change process [23–25]. Thus, issues such as variation in the change pattern at
different moments in time among the categories and across the different transitions remain
unaddressed. Understanding how the intensity of a category’s transitions vary across the
other categories is of paramount importance in land use change management, as large
transitions do not necessarily mean that the landscape has systematically changed to the
point where LULC change management interventions are required [10].

Detailed analyses of spatial patterns from a transition matrix produced from a cross
tabulation of two or more LULC maps at a given moment are required to characterize the
spatial pattern and processes within and across the categories to interpret the temporal
changes. A transition matrix contains vast information that can be useful if properly mined.
It forms the basis of many LULC change analyses. The logic of it will be illustrated in detail
in the methodology section, while other studies provide a broad background [26–30]. Ac-
cording to Aldwaik and Pontius Jr. (2012) [10], some important signals, such as systematic
and random transitions or uniform processes at different points in time, cannot be captured
by a simple direct comparison of the entries in the transition matrix, but indepth analysis
of these matrices can unravel the key change processes [23–25].

Based on the entries in a transition matrix, Pontius Jr. et al. [13] proposed a method for
the analysis of LULC transitions with respect to the size of the LULC categories to identify
systematic signals of transitions. This approach has been advanced by Aldwaik and Pontius
Jr. [10] to offer an accounting framework (“intensity analysis”) for linking the detected
LULC patterns with the underlying processes that cause the transitions and to understand
environmental change in different time intervals. The intensity analysis approach proposed
by Aldwaik and Pontius Jr. [10] analyzes LULC transitions at three levels, i.e., interval
(examines the variation in changes between different periods), category (examines variation
in changes between different LULC categories), and transition (examines variation in
changes between different LULC transitions). Thus, at the interval level, the total change in
each time interval is analyzed to examine how size and annual rate of change vary across
time intervals. The category level measures how the size and intensity of both gross losses
and gross gains vary across space. The transition level examines a particular transition to
understand how the size and intensity of the transition varies among categories available
for that transition. This level of analysis can pinpoint the categories that are intensively
avoided or targeted for a transition when a given category loses or gains.

The major strength of the intensity analysis approach is that it makes transitions at
different points in time comparable by considering the duration of the intervals. This ap-
proach can provide a simple explanation of differences in magnitude of a specific transition,
e.g., natural vegetation to cropland, in two or more time intervals. In addition, in some
instances, detected LULC transitions may be affected by errors in the datasets, especially if
the magnitude of the error is greater than the detected transition. The intensity analysis
concept addresses this major issue by estimating an error matrix along with the intensity of
the LULC transitions [16,31].

The intensity analysis technique also facilitates the detection of stable transitions, i.e.,
stationarity of the changes over the time intervals, across categories, and among transitions.
Intensity analysis reveals information that provides a foundation to correctly interpret
the estimated transitions. Intensity analysis links LULC patterns and processes with
underlying drivers and helps us to understand the mechanisms of change. This is necessary
in examining the complex interaction between human activities and the environment at
different levels of spatial aggregations [32–34].
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Apart from the research gaps in characterizing the long-term patterns and processes
of LULC change in Africa, other challenges in the study of LULC change and the driving
mechanisms in Africa are the lack of synthesis assessment, deficiencies in long-term and
finer resolution monitoring datasets, and the inadequate focus on the dynamic process [35].
Although, an array of studies on LULC change have been conducted at different scales in
the past few decades, inconsistent conclusions have often appeared in different, studies
which can be attributed to data gaps, shortage of integrated investigations, and assessment
over the whole region [36].

According to our global survey, there are existing long-term LULC maps over Africa.
Some of these LULC data include the following: the Global land cover 30 m [37],
Finer Resolution Observation and Monitoring of Global Land Cover (FROM_GLC)
data which are available at: http://data.ess.tsinghua.edu.cn/ (accessed on December,
2017) and LULC maps produced from Moderate-Resolution Imaging Spetroradiometre),
MERIS (Medium Resolution Imaging Radiometer (MODIS) [38] which are available at:
https://doi.org/10.5067/MODIS/MCD12Q1.006 (accessed on 6 December 2017), Euro-
pean Space Agency Climate Change Initiative (ESA_CCI) LULC data http://maps.elie.ucl.
ac.be/CCI/viewer/download/ESACCI-LC-QuickUserGuide-LC-Maps_v2-0-7.pdf of
the datasets (accessed on 6 December 2017), and recently Copernicus Sentinel data [39].

However, the classification accuracy and the inconsistency between different products
hinder the spatially explicit monitoring of the patterns and processes underlying LULC
change in Africa. The existing LULC products are usually at a relatively low spatial
resolution (300–2000 m) and are insufficient for the detailed analysis of past and present
patterns and processes in LULC change over the continent [40]. Some high spatial resolution
LULC datasets are available but are not up-to-date, i.e., they are limited to specific regions
and periods (e.g., European Space Agency (ESA) 20 m). Hence, they can only partially
capture the LULC dynamics relevant to the continent.

The Landsat series satellite imagery have provided continuous global observations
with a spatial resolution at 30 m since the 1980s, which is valuable for studying the patterns
and processes, i.e., spatiotemporal configuration of LULC change over the African con-
tinent [41,42]. Comprehensive LULC monitoring is a prerequisite for understanding the
driving mechanisms and environmental impact. To conduct long-term LULC research, it is
essential to produce LULC products at regular intervals [38,39]. Here, we used updated
finer resolution LULC maps developed from the synergistic fusion of historical Landsat
imageries, existing multi-source LULC data, and very high-resolution satellite imagery
from the Google Earth Engine cloud computing platform to characterize the patterns and
processes in the past and present LULC change from 1990 to 2020 in West Africa.

The specific aims of the research were to apply the intensity analysis framework
proposed by Aldwaik and Pontius Jr. (2012) [10] to:

(1) Identify the time intervals with the slowest and fastest annual rate of change.
(2) Identify the LULC categories that were relatively dormant or active in a given interval,

i.e., to examine the LULC categories that gained/lost more or less than expected.
(3) Examine the LULC categories that were avoided or targeted by a given LULC category

for transition in a given interval.

We detected LULC changes in three intervals (1990–2000, 2000–2010, and 2010–2020).
Further, we estimated and compared the variability of the rate of change by category and
the temporal variability of gains and losses in these periods.

2. Materials and Methods
2.1. Study Area

The study was undertaken in western part of Sub-Saharan Africa. The area is located
between 4◦ N–18◦ W (lower left) and 18◦ N–24◦ E (upper right) (see Figure 1). The total
size of the area covered by this study was nearly 8 × 106 km2, which is about a quarter of
the total size of Africa. The subcontinent is characterized by five broad bioclimatic zones
(Saharan, Sahelian, Sudanian, Guinean, and Guineo-Congolian) as a result of the distinctive

http://data.ess.tsinghua.edu.cn/
https://doi.org/
10.5067/MODIS/MCD12Q1.006
http://
maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-QuickUserGuide-LC-Maps_v2-0-7.pdf
maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-QuickUserGuide-LC-Maps_v2-0-7.pdf
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variation in the rainfall pattern and vegetation [43].The research article by Asenso Barnieh
et al. [23] gives a comprehensive account of the study area (West Africa).

Figure 1. Map of the study area (West Africa). The area demarcated by a brown outline is the extent
of the Sahel/arid eco-region (see Table A1 in the Appendix A for the full names of the countries).

2.2. Datasets

The LULC datasets were produced by Zhao et al. [44] of Tsinghua University and
some of the authors of the current manuscript. To produce the datasets, we developed and
applied an open and synergistic framework to combine multiple thematic LULC datasets
(e.g., European Space Agency Climate Change Initiative (ESA_CCI) [45], Finer Resolution
Observation and Monitoring of Global Land Cover (FROM_GLC)) [41], and other EO LULC
data available in the Google Earth Engine (GEE) cloud computing platform). The open and
synergistic framework combines information from supervised land cover classifications of
finer resolution satellite imagery and LULC information aggregated from existing multiple
thematic LULC maps and other LULC information from the GEE cloud computing platform.
Here, the 30 m Landsat surface reflectance dataset, the Shuttle Radar Topography Mission
(SRTM), Digital Elevation Model (DEM), ESA-CCI land cover maps, and three recent single-
type land cover datasets (Global Artificial Impervious Area (GAIA) [46], GLAD Forest [47],
JRC Global Surface Water (JRC_GSW) [48]) were the main input datasets for the supervised
LULC classification.

The outputs were nine major land cover types, i.e., cropland, forestland, shrubland,
grassland water, wetland, tundra, impervious surface, and bare land (See Figure 1). The
major algorithm for the classification of these datasets was the Random Forest Classifier,
the use of which was followed by an estimation of class probabilities. Cross-validation of
samples was undertaken to measure the accuracy of the classification. The dataset was
further improved by applying a spatial–temporal consistency model known as “Markov
a Posterior Random Fields (MAP-MRF”). The overall accuracy of the maps was about
75% [44].

The temporal coverage of the final dataset from 1990 to 2020 covered the whole globe.
The datasets from 2011 to 2020 can be obtained from the GEE platform by using the image
collection snippet; projects/ee-fgp-annual-4/assets/fgp-annual30_2011–2020. The datasets
from the year 1990 to 2020 covering only the Sahel–Sudano–Guinean region in Africa (0◦

and 30◦ N) are available at https://doi.org/10.11888/Terre.tpdc.272021 (accessed on Au-
gust 2021). The analysis in this paper is restricted to the western part of Africa (4◦ N–18◦ N
and 18◦ W–24◦ E) to make the results comparable to the LULC transitions analysis in our
previous study [23]. The datasets were generated at five-year intervals. The analysis in this
paper was conducted at ten-year (decade) intervals to minimize spurious changes and the

https://doi.org/10.11888/Terre.tpdc.272021
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inter-annual variability that may be introduced by residual noise in the input time series.
The subsequent sections of this paper and the article by Zhao et al. [44] give details of the
entire process for the development of the LULC data.

2.3. Re-Classification of the Multi-Source Land Use/Land Cover (LULC) Data

To develop the long-term historical LULC dataset, the open synergistic framework
with improved validation procedure was applied to fuse LULC information from the super-
vised land cover classification of historical Landsat imagery, other finer resolution satellite
imagery in GEE, and the reclassification of the existing LULC data in Africa [44]. The exiting
LULC data were acquired from multi-sources, i.e., ESA-CCI-LULC [45], FROM_GLC [41],
and single-cover LULC maps, e.g., forest cover [47], Global Artificial Impervious Area
(GAIA) [46], and JRC Global Surface Water [48]. The open synergistic framework has
three major steps, namely, LULC change detection with the exiting LULC maps to detect
disagreement in the data for quality improvement, new LULC classification with historical
Landsat archives and other finer resolutions EO data in GEE, and finally, fusion of the infor-
mation from the existing LULC maps and classified Landsat imagery by data aggregation
and mosaicking [44].

2.3.1. Land Use/Land Cover Change Detection

We compared the spatial locations of the existing LULC data to detect disagreement
in terms of spatial locations, which is an indication of possible errors in the multi-source
LULC data. The major input data for this analysis were the ESA_CCI LULC maps [45]. The
seventeen classes of ESA_CCI LULC maps were aggregated into only nine LULC types, i.e.,
cropland, forestland, shrubland, grassland, water, wetland, tundra, impervious surface,
and bare land) by grouping similar LULC types into the same categories (see Table 1). Only
eight of these LULC types, i.e., all the LULC types excluding tundra, were present within
the study area (West Africa).

Table 1. Classification schemes crosswalk strategies [44].

FROM GLC ESA-CCI

Cropland Rainfed cropland, irrigated/post-flooding cropland
Mosaic cropland (>50%)/natural vegetation (tree, shrub, herbaceous cover),
Mosaic cropland/natural vegetation (tree, shrub, herbaceous cover) (>50%)

Forestland Tree cover, broadleaved, deciduous, closed to open (>15%),
Tree cover, needle leaved, evergreen, closed to open (>15%),
Tree cover, needle leaved, deciduous, closed to open (>15%),
Tree cover, mixed leaf type (broadleaved and needle leaved),

Mosaic tree and shrub (>50%)/herbaceous cover
Grassland Mosaic tree and shrub/herbaceous cover (>50%), grassland,
Shrubland Shrubland
Wetland Tree cover flooded with fresh/ brackish water/saline,

Shrub or herbaceous cover flooded with fresh/saline/brackish water
Water Water bodies

Impervious surface Urban areas/Settlements
Bare land Sparse vegetation (tree, shrub, herbaceous cover) (<15%), Bare areas

The rationale of the aggregation was to harmonize the classification scheme of FROM-
GLC with the ESA-CCI LULC maps. A change detection algorithm was applied to two
LULC map pairs in the two different sources of data for a given year. Thus, the ESA-
CCI-LULC maps over 6 years (1992, 1995, 2000, 2005, 2010, and 2015) were compared
with the corresponding LULC maps in the FROM-GLC LULC maps by considering two
LULC maps that were adjacent in terms of years (i.e., 1992 to 1995, 1995 to 2000, 2000 to
2005, 2005 to 2010, 2010 to 2015). The LULC change locations were used as masks for
the subsequent analysis. Another change detection was also conducted with the GAIA
datasets over 40 years at six time intervals (1992–1995, 1995–2000, 2000–2005, 2005–2010,
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and 2010–2015). The change locations detected by the ESA_CCI data were combined with
the LULC change locations detected by GAIA data to produce the final LULC change areas,
i.e., disagreement between datasets.

2.3.2. Development of a New Land Use/ Land Cover (LULC) Classification Scheme

The LULC cover maps over 40 years at five-year intervals at 30 m spatial resolution
were generated by applying parallel/distributed computing techniques and machine
learning algorithms. To generate the LULC maps, training samples were created with the
ecoregion’s layer of the continent to train the classifier [49]. A fish net of 10 × 10 grid size
was created. The area of the 14 biomes in each grid cell was estimated. The grids were
categorized into groups based on the biome with the largest fractional abundance in each
grid. Based on that, 12 training regions were obtained for the entire globe. This Figure 2 is
in the article published by Zhao et al. in the supplementary displayed the results for the 12
training regions, and the names of the corresponding biomes for each of the 12 training
regions are also shown in Table 3 of the same article [44].

Next, the training region boundaries based on the eco-region layer [49] were used to
filter the training samples. Variable percentages of the training samples were defined for
different LULC types to reduce the samples and ensure they were evenly distributed in
the classification regions. Here, samples in other regions were used to compensate for the
LULC with less than 100 samples. This action was taken to ensure the required quantity.
Input feature sets were created based on spectra, phenology, and terrain properties to delin-
eate different LULC types. All the bands of Landsat imagery, together with Normalized
Difference Vegetation Index (NDVI) and Normalized Difference Water Index (MDWI), were
used to calculate the required percentage.

The Landsat observations available in each year, i.e., 1990, 1995, 2000, 2005, 2010,
and 2015) and in each five-year period, i.e., 1988–1992, 1993–1997, 1998–2002, 2003–2007,
2008–2012, and 2013–2017, 2017–2020, were also calculated. We maintained the complete-
ness of the Landsat observations by filling in the missing data gaps using percentiles of the
spectra bands that were derived from the five-year periods as the training features. These
analyses were performed in the GEE cloud computing platform. Next, the training set
and feature sets were used to develop a Random Forest classifier by setting the number of
trees at 100 to identify the LULC types (cropland, forestland, shrubland, grassland, water,
wetland, tundra, impervious surface, and bare land) in the locations of the LULC changes
that were detected in the ESA-CCI datasets in 1990, 1995, 2000, 2005, 2010, and 2015.

2.3.3. Data Aggregation and Mosaicking

After the LULC types at the LULC change locations had been mapped, the classified
maps, the FROM_GLC 2017 LULC map and the single-type LULC products (i.e., forestland,
urban, and water bodies, respectively) for four periods were mosaicked to produce the
open synergistic LULC Maps at five-year intervals. This procedure ensured the spatial
and temporal consistency of the land cover types. The outputs were nine major land
cover types (i.e., cropland, forestland, shrubland, grassland, water, wetland, tundra, urban
areas/settlement, and bare land) for the entire globe and only eight LULC types in the West
Africa sub-continent. The synergistic framework improved the accuracy of the LULC maps
by eliminating differences due to misclassification of the individual LULC datasets from
multiple sources.

2.4. Validation of the Land Use/Land Cover Datasets

The validation samples described by Li [50] were used to assess the accuracy of the
LULC datasets. The results from the accuracy assessments of the six maps were around
75%, and the accuracy for change area detection was over 70%. Details of the accuracy
assessment of the 2015 map can be seen in the work of Zhao et al. [44].

We assessed the consistencies of the final datasets we used for the analysis, which
covered only the extent of West Africa (herein referred to as WAv2–30 m) with the two
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major global LULC datasets we used as input data for the synergistic data development,
i.e., ESA-CCI-LC [44] and FROM-GLC_250 m [41]. We compared the statistics of the
spatial distributions of cropland and forestland areas of the aforementioned datasets
against the Food and Agriculture Organization (FAO)’s national level LULC statistics
available at: http://www.fao.org/faostat/en/#data/RL (accessed on 6 December 2017).
The LULC maps in the year 2000 were used for this comparison. We estimated the root
mean squared error (RMSE) of cropland and forestland areas from each dataset against
the national level cropland and forestland statistics provided by the FAO available at:
http://www.fao.org/faostat/en/#data/RL (accessed on 6 December 2017).

When the national level forestland and cropland estimates of the FAOSTATS were
merged into a single reference data, the relative RMSE estimates were 112.4%, 70.25%, and
54.8% for ESA-CCI-LC, FROM-GLC_250 m and WAv2–30 m, respectively. This suggests
that the LULC datasets we generated from the opened synergistic approach have better
agreement with the FAOSTATS. In some cases, the FAOSTATS are also limited in terms
of completeness of the national statistics available at: http://www.fao.org/faostat/en/
#data/R (accessed on 6 December 2017). This may partly explain the large relative RMSE
we obtained for the LULC data.

2.5. Development of a Transition Matrix

The WAv2 LULC maps from 1990 to 2020 were analyzed for changes in different time
intervals, i.e., 1990–2000, 2000–2010, and 2010–2020. The LULC maps in each year pair were
cross-tabulated to generate a transition matrix (see Table 2). These matrices had eight LULC
categories each, i.e., cropland, forestland, shrubland, grassland, water, wetland, settlement,
and bare land). The sizes and intensities of changes in these LULC categories were analyzed
in terms of interval, category, and transitions, following the intensity analysis framework
proposed by Aldwaik and Pontius Jr. [10]. We divided each entry in the transition matrices
by the extent of the study area to obtain the fractional abundance of each transition to
facilitate the estimation of the uniform change intensities. This conversion was applied to
changes in each time interval, specifically, 1990–2000, 2000–2010, 2010–2020) in the case of
this study.

Table 2. The Transition matrix from cross-tabulation of Land Use/Land Cover (LULC) maps from
1990 to 2020 at a decadal interval (1990–2000, 2000–2010, 2010–2020).

Areas (km2)

LULC
Categories Cropland Forestland Grassland Shrubland Wetland Water Settlement Bareland

Period
(1990–2000)
Cropland 683,079.7 11,425.1 35,915.9 49,784.1 78.5 318.7 2077.3 447.8
Forestland 11,912.5 871,949.0 10,700.1 43,885.1 266.2 592.7 118.1 40.3
Grassland 38,283.2 10,058.5 1,701,829.6 41,800.1 230.3 998.7 1099.8 18,927.6
Shrubland 40,121.7 38,255.9 35,852.0 1,760,458.1 38.6 95.1 94.9 847.4
Wetland 71.3 266.4 236.2 32.1 2639.0 304.7 3.4 5.8

Water 274.2 499.2 571.4 38.9 216.0 30,011.8 6.3 27.2
Settlement 183.1 12.0 186.4 15.0 0.8 2.2 2892.9 32.8
Bareland 2375.1 55.2 40,396.0 3594.0 25.0 149.3 172.8 1,533,969.7

http://www.fao.org/faostat/en/#data/RL
http://www.fao.org/faostat/en/#data/RL
http://www.fao.org/faostat/en/#data/R
http://www.fao.org/faostat/en/#data/R
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Table 2. Cont.

Areas (km2)

LULC
Categories Cropland Forestland Grassland Shrubland Wetland Water Settlement Bareland

Period
(2000–2010)
Cropland 766,466.1 1626.2 1139.2 5778.0 8.6 110.6 1179.4 12.0
Forestland 12,584.7 886,525.1 7709.2 25,592.9 11.6 79.6 92.2 31.5
Grassland 7814.3 550.0 1,800,830.4 15,678.6 7.3 91.9 651.1 93.6
Shrubland 1689.9 688.6 874.0 1,896,309.1 3.1 17.9 26.8 6.1
Wetland 57.3 136.6 88.5 81.5 3107.2 25.5 3.0 0.1

Water 24.5 15.6 369.6 13.4 12.8 32,104.8 1.1 3.1
Settlement 0.0 0.0 0.0 0.0 0.0 0.0 6469.4 0.0
Bareland 2652.8 27.6 33,754.7 3438.4 11.0 85.0 314.2 1,514,015.4
Period

(2010–2020)
Cropland 684,571.6 5625.1 36,765.2 43,704.5 59.2 221.4 20,149.2 174.8
Forestland 35,172.1 758,458.0 21,447.7 73,246.4 214.2 564.6 357.1 4.2
Grassland 36,678.5 6528.8 1,742,692.8 35,766.6 216.0 737.1 4029.5 18,086.8
Shrubland 45,865.7 31,791.0 34,090.9 1,833,569.1 14.6 40.5 1133.7 377.8
Wetland 61.2 252.22 264.9 16.3 2277.7 269.2 15.0 0.8

Water 276.1 503.0 801.6 43.8 332.3 30,387.6 75.4 23.3
Settlement 55.7 3.5 341.6 14.3 0.6 7.6 8301.5 7.1
Bareland 509.5 0.8 29,709.5 1067.0 6.0 47.7 523.9 1,482,297.0

2.6. The Intensity Analysis Framework

The analyses were based on the mathematical notations and equations developed by
Aldwaik and Pontius Jr. [9,18] in an Excel spreadsheet, which can be obtained for free from
www.clarku.edu/$\sim$rpontius, along with the transition matrices we generated (see
Table 2). The mathematical notations and equations are listed in Table A2 in the Appendix A
and Table 3, respectively. We conducted the intensity analysis at three levels (intensity,
categories, and transition).

Firstly, we calculated the change intensity for each interval and compared the observed
rate with the uniform rate that would have occurred if the annual changes were distributed
uniformly across the entire time extent. We then identified the time intervals with the
slowest and fastest annual rate of change. Secondly, we calculated the intensity of gross
losses and gains for each category and compared the results, i.e., the observed change
intensities with a uniform intensity of annual change that would occur if the changes
within each interval were distributed uniformly over the entire spatial extent. The LULC
categories that were relatively dormant or active were identified. Thirdly, we calculated
the observed intensity of each transition and compared the observed intensity of each
transition with a uniform intensity among the categories available for those transitions.
The categories that were avoided or targeted by a given category for a transition were
identified. We indicated a transition of a category as random when the rate of change
was proportional to the initial abundance of a category and systematic when it specifically
targeted or avoided a particular category for a transition [10]. Detailed intensity analysis at
three levels are explained below.

www.clarku.edu/$\sim $rpontius
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Table 3. Mathematical equations for the intensity analysis [10,16].

Equations No.

St =
area o f change during interval [Yt , Yt+1]

areaao f study region

duration o f interval[Yt , Yt+1]
× 100% =

{
∑

J
j=1[(∑

J
i=1 Ctij)−Ctjj]

}
[

∑
J
j=1(∑

J
i=1 Ctij)

]
Yt+1−Yt

× 100%
(1)

U =
area o f change during all intervals

area o f study region
duration o f all intervals × 100%=

∑T−1
t=1

{
∑

J
j=1[(∑

J
i=1 Ctij)−Ctjj]

}
[

∑
J
j=1(∑

J
i=1Ctij)

]
YT−Y1

× 100%
(2)

Gtj =

area of gross gain of category j during[Yt , Yt+1]
duration of[Yt , Yt+1]

area of category j at time Yt+1
× 100% =

[(∑
J
i=1 Ctij)−Ctjj]
(Yt+1−Yt)

∑J
i=1Ctij

× 100%
(3)

Lti =

area of gross loss of category i during[Yt , Yt+1]
duration of[Yt , Yt+1]

area of category i at Yt
× 100

=

[(
∑

J
j=1 Ctij

)
−Ctii

]
(Yt+1−Yt)

∑J
j=1 Ctij

× 100

(4)

Rtin =

area o f transition f rom i to n during [Yt ,Yt+1]
duration o f [Yt ,Yt+1]

area o f category i at time Yt
× 100 =

Ctin
(Yt+1−Yt)

∑J
j=1 Ctij

× 100 (5)

Wtn =

area o f gross gain o f category n during [Yt , Yt+1]
duration o f [Yt , Yt+1]

area that is not category n at time Yt
× 100% =

[(∑
J
i=1 Ctin)−Ctnn]
(Yt+1−Yt)

∑J
j=1[(∑J

i=1 Ctij)−Ctnj]
× 100%

(6)

Qtmj =

area o f transition f rom m to j during[Yt , Yt+1]
duration o f [Yt , Yt+1]

area o f category j at time Yt+1
× 100% =

[
Ctmj

(Yt+1−Yt)

]
∑J

i=1 Ctij
× 100%

(7)

Vtm =

area o f gross loss o f category mduring [Yt , Yt+1]
duration o f [Yt , Yt+1]

area that is not category m at time Yt+1
× 100%

=

[(
∑

J
j=1 Ctmj

)
−Ctmm

]
(Yt+1−Yt)

∑J
i=1

[(
∑J

j=1 Ctij
)
−Ctim

] × 100%

(8)

Mtij =
area o f transition f rom i to j during [Yt ,Yt+1]

area o f category i at time Yt
=

Ctij

∑J
j=1 Ctij

(9)

2.6.1. Identification of the Time Intervals with the Slowest and Fastest Annual Rate
of Change

To understand the variation in the intensity of change in different time intervals, the
annual rate of change on the landscape was estimated for each time interval by applying
Equation (1) in Table 3. This facilitated a comparison of changes in different periods of time,
as proposed by Runfola and Pontius Jr. [51]. Equation (1) takes into account the duration of
each interval to give one rate of change per time interval at each level of spatial aggregation.
The results from Equation (1) for each time interval were compared with a constant annual
rate (uniform change intensity) estimated for all the time intervals combined, i.e., from
the initial time point to the final time point of the entire analysis by applying Equation (2).
Equation (2) yields one uniform rate for the entire temporal extent of the study. If St in
Equation (1) remains unchanged for the entire temporal coverage, St will be equal to U in
Equation (2), which is the uniform annual rate. According to Aldwaik and Pontius Jr. [10],
this logic holds true for the analysis of all the other levels of intensity analysis. The annual
rate of change for a given interval is considered slow if it is lower than the uniform rate
and fast when higher than the uniform annual rate U obtained by Equation (2).

2.6.2. Identification of the Land Use/Land Cover (LULC) Categories That Were Relatively
Dormant or Active

The intensities of annual gross losses and gains in each category at each time interval
were analyzed to understand how the magnitudes of loss and gain intensities varied across
space and time. These were calculated for each category in each time interval by applying
Equations (3) and (4), respectively, and the outputs were compared with the uniform
intensity of annual change in each time interval (t), i.e., the value obtained by applying
Equation (1). This information was crucial to understanding which category was relatively
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dormant or active in a given interval. Here, there is a linkage between the interval and
category level analysis. In Equations (1) and (3), Gtj = St when equal gains are obtained
for all the j. Similarly, in Equations (1) and (4), Lti = St when equal losses are obtained for
all the i. Annual loss or gain intensity below the estimated uniform change intensity for
a given category indicates a relatively dormant category. Likewise, annual loss or gain
intensity above the estimated uniform change intensity for a given category indicates a
relatively active category. This analysis was essential to detect stable patterns in the annual
loss and gain intensity for each category.

2.6.3. Examination of the Land Use/Land Cover (LULC) Categories That Were Avoided or
Targeted for Transitions

To determine which transition was relatively intensive in a given interval, each tran-
sition, e.g., forestland transition to cropland, was analyzed to understand the variation
in magnitude and intensity. The patterns of gains and losses in the categories n and m,
respectively, were analyzed (see Table A2 in the Appendix A for description of notations
n and m). The observed intensities of each transition were compared with the uniform
intensity, i.e., the average over all transitions.

The transition intensity level of analysis yields two sets of outputs. One output is
gains of category n from other categories and another is the loss of category m to other
categories. Taking for instance, the pattern of gain of category n, the analysis was essential,
e.g., to identify why the transition from natural vegetation to cropland was larger than
the mean magnitude of cropland gains. Aldwaik and Pontius Jr. [10] attributed such
transitions to the fact that the natural vegetation area at the initial time may be larger than
the other categories. Hence, if cropland gain was distributed proportionally across the
landscape, more natural vegetation areas may transition to cropland than to any other
category. Another explanation offered by Aldwaik and Pontius Jr. [10] was that cropland
gains might systematically target natural vegetation rather than the other LULC types.

Therefore, based on the estimated gross gain of category n, Equations (5) and (6) were
applied to understand whether the gains in the individual categories, in particular, natural
vegetation, were due to a random or systematic process. The analysis provided more
information about the categories which were intensively avoided or targeted by category
n for transitions in a given time interval. Based on the observed gross gain of category n,
Equation (5) yields a single result for each time interval (t), that is, the uniform intensity
of transitions to category n, i.e., the mean gain of category n across the landscape. The
Wtn in Equation (5) will be equal to Rtin in Equation (6) for all i when the gains in n are
distributed uniformly across the landscape, i.e., under a random process of gain. The
observed intensities of the transitions from category i to category n for all non-n categories
were determined by Equation (6). This yielded a single result for each category i per time
interval. Here, it must be noted that category n could only gain from categories that were
not n at the initial time interval. Therefore, if the gains in category n were uniform across
the landscape, that means the gains in category n were proportional to the initial extent of
those other categories. The transition from category m to category n is stationary if category
n either targets or avoids m in all the time intervals.

The loss intensity for each category was estimated with Equations (7) and (8) based
on the estimated gross loss of category m. This analysis revealed the other categories that
systematically avoided or targeted losing to category m. Here, the assumption was that
it was impossible for category m to lose at the location it occupied at the end of the time
interval. Equation (7) yielded the uniform intensity of the transitions from category m to all
other categories for a given interval. The output from Equation (8) is the intensity of the
transition from category m to category j for all the non-m categories for each time interval.
Qtmj = Vtm for all j if the loss in category m to the other categories was uniform. The
intensities in all the time intervals were examined to identify stable (stationary) transitions.
Based on the losses of category m, a transition was considered stationary when category m
is either avoided by category n for all the time intervals or targeted by category n for all the
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time intervals. The intensity analysis at the transition level presented in this section differs
from Markov transition analysis, as the proportion of each LULC transition in a Markov
matrix is estimated by Equation (9).

3. Results
3.1. Comparison of the Land Use/Land Cover (LULC) Maps in Different Years

The LULC maps in Figure 2 of this study are a comparison of the situations in 1990 (a),
2000 (b), 2010 (c), and 2020 (d) in West Africa (see Table A1 in the Appendix A for the full
names of the countries on the map). Essentially, we observed the concurrent expansions
and reductions in the LULC categories at different locations in West Africa. We observed
the encroachment of settlements on cropland fields and cropland encroachment on natural
vegetation areas. Despite the massive loss we observed for natural vegetation, particularly
forestland, in some parts of the study area, such as in Nigeria, Cote d’Ivoire, Ghana, and
Togo, there were some isolated areas in Niger, Burkina Faso, Mali, and Senegal where we
detected natural vegetation regrowth. Figure 3 shows the locations of natural vegetation
gains (greening/new growth) for 1990–2020 in West Africa. The subsequent sections
provide more details about the extent and nature of the LULC transitions we observed in
the study area.

Figure 2. Cont.
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Figure 2. Land Use/Land Cover (LULC) maps in: (a) 1990, 2000 (b), 2010 (c), and 2020 (d) showing
the spatial distribution of the various LULC categories. The area demarcated by a brown outline is
the extent of the Sahel/arid eco-region.
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and vice versa.
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3.2. Identification of the Time Intervals with the Slowest and Fastest Annual Rate of Change

The highest annual rate of change (0.69%) was observed in 2010–2020, followed by
1990–2000 (0.63%). The lowest annual rate of change intensity was observed in 2000–2010,
i.e., 0.18%, which was below the mean annual rate change, thus indicating a slower process
of change during this period (see Figure 4).
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3.3. Identification of the LULC Categories That Were Relatively Dormant or Active in a
Given Interval

At the category level, settlement, cropland, and wetland both actively gained and lost
in 1990–2000. Water bodies actively gained in extent, while the loss intensity was dormant
in the same period. During 2000–2010, cropland, grassland, shrubland, and settlement
actively gained in extent. The remaining LULC were dormant in gaining, while forestland
and wetlands showed some active losses. During 2010–2020, cropland, settlements, and
shrubland actively gained, while wetlands actively gained in some areas and actively lost
in other areas. The extent of the remaining LULC categories did not change significantly
during this period, as they were dormant in gaining and losing at the same time. Settlements
showed the highest annual gain intensity, i.e., 5.53%, 2.60%, and 7.60%, respectively, in
1990–2000, 2000–2010, and 2010–2020 (Figures 5 and 6).

During the three periods, settlements and cropland were active gainers, whilst bare
land and forestland were dormant. The gain intensities of these four LULC categories
were stationary. The annual gain intensities of the remaining LULC categories were not
stationary. Regarding losses, only wetlands were the active loser throughout the entire
study period, i.e., stationary. All the other LULC categories were either active losers or
dormant losers in one or more periods, i.e., non-stationary (see Figures 5 and 6).

Figure 6 shows the loss and gain intensities of the various LULC categories every
10 years. The sum of the loss and gain intensities, with sign, of each category gives a
decadal net change (%). For the entire period (1990–2020), the net change was negative
(loss) for forestland, wetland, and bare land. The net change was positive (gain) for the
remaining categories, i.e., cropland, settlement, shrubland, and grassland (Table 4). The
net gains in rangeland (i.e., shrubland and grassland) are of paramount importance, as
previous studies [23–25] on the continent detected consistent losses in natural vegetation
categories, except for herbaceous vegetation.
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Table 4. The relative net change for the Land Use/Land Cover (LULC) categories during 1990–2000,
2000–2010, 2010–2020, and 1990–2020 in West Africa.

Period 1990–2000 2000–2010 2010–2020 1990–2020

LULC Category Net Change (%) Net Change (%) Net Change (%) Net Change (%)

Cropland −0.87 1.89 1.48 2.50
Forestland −0.74 −4.62 −9.70 −14.51
Grassland 0.68 1.03 1.15 2.83
Shrubland 1.26 2.43 2.04 5.62
Wetland −1.81 −9.65 −1.16 −12.33
Water 2.55 −0.09 −0.52 1.95
Settlement 48.57 25.96 74.75 90.39
Bareland −1.67 −2.58 −0.87 −5.05

We observed that almost all the categories gained and lost simultaneously (Figures 5 and 6).
Regarding the net change in 1990–2000, 2000–2010, and 2010–2020, forestland, bare land, wet-
land, and water bodies had net losses, with the exception of the net change for water bodies,
which was positive in 1990–2000. Gains were identified in the net change for all the remaining
LULC categories, except cropland, which had a net loss in 1990–2000. For 2000–2010, gains
were recorded for cropland, grassland, shrubland, and settlements. The remaining categories,
i.e., wetlands, water bodies, forestland, and bare land experienced losses. The entire period
(1990–2020) saw expansion of water bodies accompanied by vegetation (shrubland, grassland)
recovery (Figures 2 and 3 and Table 4).

3.4. Examination of the LULC Categories That Were Avoided or Targeted for Transitions

Regarding the fractional abundances of transitions, the focus was on the gaining
categories—most importantly, natural vegetation, i.e., grassland and shrubland gains from
the remaining LULC categories. Previous LULC change analysis in West Africa revealed
consistent losses in natural vegetation areas [23–25]. We also focused on settlement and
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cropland gains from the remaining categories, as they were active in all the three periods.
Figure 7 shows the concurrent losses and gains in the LULC categories in West Africa over
time. Figures 8–11 illustrate the annual transition intensities of the major LULC categories.
The annual transition intensity for each major gaining category is expressed as a percentage
of the initial size of the losing category involved in the transition. Likewise, the annual
transition intensity for each major losing category is expressed as a percentage of the final
size of the gaining category involved in the transition. Details of the specific transitions are
presented in the subsequent sections.
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Figure 8. Annual transition intensities of shrubland gains. The Subfigures (a–c) represent annual 
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Figure 11. Annual transition intensities of cropland gains. The Subfigures (a–c) represent annual 
transition intensities in 1990–2000, 2000–2010, and 2010–2020, respectively. The bars that extend 
above and below the uniform intensity line indicate intensive and dormant systematic transitions, 
respectively. The bars ending at the uniform line indicate random transition. 
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3.4.1. Shrubland, Grassland, Cropland, and Settlement Gains

The shrubland category targeted gaining from the cropland and forestland categories
only in 1990–2000 and 2010–2020. In the former period, the annual shrubland gains from
cropland and forestland were 0.64% and 0.47%, respectively. These gains were above the
uniform annual transition rate of 0.27%. In 2000–2010, shrubland targeted gaining from
forestland (0.27%) and wetland (0.23%). These annual rates of change were above the
uniform annual rate of transition, i.e., 0.1%. In the last period, approximately 0.55% and
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0.82% of the gains in shrubland were due to encroachment on cropland and forestland,
respectively. The uniform transition rate for this period was 0.30% (Figure 8).

Grasslands mainly replaced wetland (0.66%), settlement (0.56%), cropland (0.46%),
and bare land (0.26%) in the first period, i.e., 1990–2000. These amounts were above the
uniform annual rates of transition (0.24%) for that period. In the 2000–2010 period, only
wetlands (0.25%), bare land (0.22%), and water bodies (0.11%) lost to grasslands. These
annual rates of change were above the uniform annual transition rate (0.08%). In the last
period, i.e., 2010–2020, wetland (0.84%), cropland (0.46%), settlement (0.31%), water bodies
(0.25%), and bare land (0.24%), targeted losing to grassland. The uniform annual rate of
transition for this period was 0.24% (Figure 9).

Settlements gained significantly during all periods (Figure 10). In 1990–2000, these
annual gains were at the expense of cropland (0.03%), grasslands (0.006%), and wetlands
(0.009%). Similarly, in 2000–2010, cropland (0.015%), grassland (0.0035%), and wetlands
(0.0085%) were targeted for transitions by the settlement category. The remaining cate-
gories were avoided for transitions by the settlement category. In 2010–2020, settlement
targeting gaining from cropland (0.25%) and wetland (0.05%) only. The uniform annual
transition rates were 0.005%, 0.0032%, and 0.04% for 1990–2000, 2000–2010, and 2010–2020,
respectively (Figure 10).

During the 1990–2000 period, in West Africa, cropland targeted gaining from grass-
land (0.21%), shrubland (0.21%), wetland (0.20%), and settlement (0.05%) categories annu-
ally. The remaining LULC categories were avoided for replacement by cropland. In the
2000–2010 period, the annual gains in cropland were mainly at the expense of wetland
(0.16%), forestland (0.13%), and grassland (0.04%). In the 2010–2020 period, shrubland
(0.24%) was also targeted for transitions in addition to grassland (0.2%), wetland (0.193%),
and forestland (0.04%). The uniform annual transition rates were 0.15%, 0.04%, and 0.19%
for 1990–2000, 2000–2010, and 2010–2020, respectively (Figure 11).

3.4.2. Forestland, Wetland, Water Bodies, and Bare Land Losses

Overall, from 1990–2000, the losses in forestland were mainly due to encroachment
by wetland (0.76%), shrubland (0.23%), water bodies (0.18%), settlements (0.18%), and
cropland (0.15%). In the 2000–2010 period, forestland targeted losing to cropland (0.16%),
shrubland (0.13%), and settlements (0.11%), against a uniform rate of transition of about
0.08%. In the 2010–2020 period, forestland was targeted for encroachment by wetland
(0.69%), cropland (0.44%), and shrubland (0.37%).

In the 1990–2000 period, wetlands targeted losing to water bodies (0.09%), settlements
(0.005%), and forestland (0.002%). In the 2000–2010 period, wetlands targeting losing to
water bodies (0.007%), settlement (0.003%), forestland (0.0015%), and cropland (0.0007%). In
the 2010–2020 period, wetlands lost to water bodies (0.08%), settlement (0.004%), forestland
(0. 003%), and grassland (0.001%).

Likewise, in the 1990–2000 period, water bodies targeted losing to settlements (0.1%),
wetland (0.062%), forestland (0.01%), cropland (0.0035%), and grassland (0.00313%), with
a uniform annual rate of transition of about 0.0023%. However, from 2000 to 2010, only
the wetlands (0.04%), grassland (0.002), and settlement categories (0.0012%) targeted water
bodies for transitions. These annual transition rates were above the uniform annual
transition rates of 0.00063%. In the 2020–2020 period, water bodies targeted losing to
wetlands (1.064%), settlements (0.021%), forestland (0.0063%), grassland (0.0043%), and
cropland (0.0034%). These annual transition rates were above the uniform annual transition
rate (0.0029%).

In the case of bare land, losses were mainly due to encroachment by the grassland and
settlement categories. The annual transition rates of bare land to settlements were (0.27%),
(0.36%), and (0.15%) in 1990–2000, 2000–2010, and 2010–2020, respectively. In the same
periods, the annual transition rates of bare land to grassland were 0.27%, 0.18%, and 0.16%,
respectively, which were higher than the uniform annual rates of transitions, i.e., 0.09%,
0.07%, and 0.06%, respectively.
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4. Discussion
4.1. Identification of the Time Intervals with the Slowest and Fastest Annual Rate of Change

The study took into account the duration of the different time intervals and examined
the sizes and intensities of LULC change to carry out a detailed analysis of the stationarity
of the observed transitions. At the interval level, we detected a faster annual rate of
total change in the period of 1990–2000 and 2010–2020. We attributed our findings to
the combination of severe drought and human activities, e.g., the expansion of artificial
water bodies to meet irrigational requirements. We observed gains in the area covered by
water bodies despite the preceding drought years and the massive concurrent expansion of
settlements in parallel with croplands in the most recent period (2010–2020).

The concurrent losses and gains of the LULC categories we detected at the category
level of our analysis may also explain the reason why we detected a faster annual rate
of total change in the period of 1990–2000 and 2010–2020 at the interval level in West
Africa. Thus, a deeper analysis at the category level revealed more changes in the periods
of 1990–2000 and 2010–2020, i.e., we observed both active losing and gaining intensities
for categories thought to be dormant losers and active gainers. For example, in reality,
the category of settlement is a dormant loser, active gainer, and a persistence category in
different periods. However, here we observed that, in different regions, the settlement
category was both an active gainer and loser during the 1990–2000 period, i.e., soon after
the severe drought spells. The category of settlement losing actively in the aforementioned
periods could be linked with possible errors in the datasets, as the accuracy of the LULC
data we used for the analysis was not 100%. The overall accuracy of the LULC datasets
was about 75% [44].

We attributed these findings to the fact that farmers in West Africa’s rural areas live
very close to farmlands, forestland, and other vegetation areas. It is common to mix up the
RS mapping of small thatch settlements, croplands, forestsland, and other vegetation [52].
Therefore, the deviation of the settlement loss from the uniform intensity might be partly
due to systematic errors in the LULC datasets.

This confirms the explanation by Aldwaik and Pontius Jr. (2013) [16] that errors in the
LULC categories may influence the results from the transition analysis. The results from
this analysis are in agreement with the LULC analysis we conducted with the USGS LULC
maps at three time periods (1975–2000, 2000–2013, and 1975–2013; Subfigures (a–c)) in West
Africa [53]. In the aforementioned previous study [53], we observed a larger categorical
exchange between the LULC categories in the drought period (1975–2000) than in the
period between 2000 and 2013.

4.2. Identification of the LULC Categories That Were Relatively Dormant or Active in a
Given Interval

The results revealed that the settlement, cropland, forestland, and wetland categories
are the major active categories. At the initial stage (1990) of the LULC transition (1990–2000
and 2000–2010, 2010–2020) analyses, shrubland and grassland constituted a greater pro-
portion of the total land area in the study area. Therefore, if changes were distributed
uniformly across the landscape, shrubland and grassland were expected to lose more
than any other category. Nevertheless, the intensity analysis revealed that in 1990–2000,
shrubland and grassland categories in some regions were dormant losers, and in other
regions, they were active gainers. In the 2000–2010 period, two categories (shrubland and
grassland) were slightly active gainers and dormant losers in different periods. In the later
interval (2010–2020), grassland was a dormant loser and gainer, whilst shrubland was a
dormant loser and a slightly active gainer. Here, the dormancy of grassland and shrubland
may be due to their large persistence, which was included in the intensity analysis [10].

The influence of the large dormant categories, such as grassland and shrubland in the
case of this study, on the intensity of the transitions has been underlined by Aldwaik and
Pontius Jr. (2012) [10] and Quan et al. (2019) [17]. According to Aldwaik and Pontius Jr.
(2012) [10] and Quan et al. (2019), if, for instance, grassland accounts for a larger proportion
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of the landscape and does not change over time, then its presence in the analysis implies
that all the other non-grassland categories will be active than normal [17]. This may indicate
that losses or gains in a category that is at the final stage of a transition could be explained
by its largest size at the initial stage and whether the category avoided transition from the
remaining categories or whether it was targeted for a transition. According to Aldwaik
and Pontius Jr. (2012) [10], in some instances, a large dormant category plays a minimal
role in the total change. A typical example is water body. However, then it is crucial to
include water bodies in LULC change analysis in a setting where “humans convert water
to land via infill or convert land to water via dams,” which is the case in this study area
(West Africa) [14].

Aldwaik and Pontius Jr. (2012) [10] recommended that, to minimize the influence of a
large dormant category on the intensity analysis, categories which bring a large persistence
into the analysis must be eliminated. Shrubland and grassland dormancy in losses may be
explained by positive human activities and interventions, such as the farmer-led natural
regeneration initiative and the great green wall policy in West Africa [54]. In addition,
we detected transitions of cropland fields into grassland and shrubland, which may also
indicate the abandonment of some cropland fields in West Africa [55]—triggered by the
declining food prices and migration of farmers [56]. Though we observed net gains in
cropland fields in the middle and last periods (2000–2010 and 2010–2020), this category
was involved in large exchange, i.e., both the gross losses and gains were active during
the first and last periods (1990–2000 and 2010–2020). The exchange between cropland and
the remaining LULC categories meant that net change for this category was negative (net
loss) in the first period (1990–2000). The current finding is an exception because net gains
have been consistently observed in the cropland category by all the previous LULC change
analysis conducted over the continent at all the temporal periods of analysis [23–25]. The
simultaneous active gross loss and gain intensities of cropland fields in the 2010–2020
period (later period) raise food security concerns and should act as an early warning sign
to policy makers that the food security of some marginal geographic locations is under
threat despite the massive expansion of cropland observed in this area.

The net gains in the categories of shrubland, grassland, and water bodies during
the 1990–2020 period confirm the long-contested re-greening in West Africa [54,57,58].
By contrast, previous LULC analyses on the continent revealed net losses in the other
vegetation categories, i.e., shrubland and grassland, in the case of this study [23–25]. The
differences in temporal resolutions of the LULC datasets we used for this study and our
previous analysis might have accounted for the contrasting results.

Regarding the stationarity of the categories, the pattern of gains in the settlement
category was consistent throughout the intervals, i.e., the settlement category demon-
strated stationarity in actively gaining, whilst the remaining LULC categories exhibited
un-stationarity. We attributed this finding to population growth and the quest for urban
expansion on the continent [59].

4.3. Examination of the LULC Categories That Were Avoided or Targeted for Transitions

The analyses of the entire transition processes gave a clearer view of the development
that led to the massive expansion of cropland in the second and last periods (2000–2010 and
2010–2020), as we observed the replacement of shrubland and grassland by cropland. Com-
prehensive analysis at the transition level revealed that cropland systematically targeted
shrubland, grassland, forestland, and wetlands for transitions. This may be attributed to
the high nutrient values of natural vegetation and wetlands sites to support crop growth. It
may also indicate that the spatial dependence of a given category affects how it tends to
replace any neighboring category on the landscape [14]. Therefore, Pontius Jr. (2019) [14]
suggested a visual examination of the maps to confirm the influence of spatial dependence
on transitions among categories. In the case of this study, visual examination of the LULC
maps and field analysis suggest that farmers live in close proximity to natural vegeta-
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tion, e.g., forestland and other vegetation (shrubland, grassland, etc.) areas. Hence, the
likelihood of natural vegetation transitions to cropland may increase.

Concurrently, the settlement category mainly targeted cropland for transitions. Crop-
land replacement by settlements was one of the most pronounced observed systematic
transitions on the landscape due in part to the easiness of conversion, i.e., less labor and
lower costs involved. In addition, farmers prefer to change unproductive cropland to
settlement rather than to transform productive natural vegetation field, which could be
used for productive farming, into settlements. Huang et al. (2018) [15] also found a large
and systematic transition from cropland to settlements which, according to them, visual
examination of the patterns in the maps revealed outward expansion of settlement patches
to encroach cropland. In the case of settlement replacing forestland, this may be associated
with the fact that urbanization in West Africa is more localized in the forest-rich humid
areas and, as explained by Pontius Jr. (2019) [14] and evidenced by Huang et al. (2018) [15],
the fact that LULC categories may target the closest neighboring cells for replacement.
Cropland targeted natural vegetation for transitions and settlements targeted cropland,
which confirms the assertion that urbanization threatens cropland fields.

We observed forestland replacement by shrubland and cropland, which indicates land
degradation and deforestation, respectively. In the forest-rich areas, this may be attributed
to the rapid rise in population and economic growth, as well as the quest to fulfil the food
security of the people. Simultaneously, we observed isolated gains in the area covered
by forestland during the 1990–2020 period. Some areas previously covered by shrubland
were consistently replaced by forestland at all of the temporal scales (1990–2000, 2000–2010,
and 2010–2020). This might have been due in part to the implementation of Land Use
Management policies such as the farmer-managed natural resources rehabilitation program,
which involved the replanting of trees on degraded landscapes [54].

Though the use of the intensity analysis framework we employed for this analysis (see
Section 2.6) has not been fully explored to link patterns with processes with regard to the
African landscape, the results from this analysis are consistent with other LULC change
analyses on the continent [23–25]. Many results of these other analyses suggest that human-
induced LULC change is accelerating over time as they were all active gainers [23–25].
The sizes of the LULC transitions can be seen in the traditional Markov transition matrix.
However, deeper examination is required to link patterns with processes as intensity
analysis probes the transition matrix to reveal the matrix’s detailed patterns [14].

The influence of class aggregation on the analysis, particularly regarding the develop-
ment of the LULC maps, must be given careful consideration, as seventeen LULC types
were aggregated into only nine LULC classes [23]. The analysis of the original LULC types
may have been sensitive to the aggregation of the category.

5. Conclusions

This study bridged the LULC data gaps by fusing useful information from existing
multi-source LULC data with information from very high-resolution data from the GEE
cloud computing platform. This reduced the discrepancies in the LULC datasets and
improved their accuracy. This study is the first attempt to use long-term and up-to-date
finer resolution (30 m) LULC data in a synergistic approach for LULC change analysis in
West Africa. We analyzed the spatial patterns and processes in LULC categories on the
landscape of West Africa by using historical LULC data and a unified intensity analysis
framework that worked on three levels: interval, category, and transition. We detected
faster annual rates of transition, 0.63% and 0.69%, respectively, for the 1990–2000 and
2010–2020 periods, and attributed these faster rates to the severe drought of the 1970s and
the 1980s, in the case of the former, and intensive human activities in recent years, in the
case of the latter. Similar to our previous LULC transition analysis on the sub-continent,
we found simultaneous losses and gains in the LULC categories, which indicate the spatial
reallocation of the categories. In the case of cropland, both the active losses and gains are a
cause of policy concern as the massive gains threaten the conservation of natural vegetation,
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whilst the losses as a result of encroachment by the settlement category may threaten the
food security of the growing and vulnerable population.

The analysis at the transition level highlighted the dormancy of shrubland and grass-
land in losing despite being targeted for transition by actively gaining categories such as
cropland. The introduction of some LULC change management policies (REDD+, Farmer
Managed Natural Regenerative Initiative, and so forth) in the sub-continent might have
slowed down the loss of rangeland (shrubland and grassland). The net gains in shrubland
and grassland (re-greening) were due in part to replanting and, on the other hand, degrada-
tion of forestland as we observed the massive replacement of forestland by shrubland and
grassland. We also observed encroachment of the settlement, cropland, water bodies, and
wetland categories on forestland, which indicate deforestation. Deforestation is often asso-
ciated with fires that release large amounts of carbon dioxide (CO2) into the atmosphere,
potentially further hindering climate change mitigation on the continent. Additional effort
is therefore required to curb forest degradation and deforestation on the sub-continent
despite the relative gains of rangeland we observed on this landscape. Geo-spatial land
planning and buffer zones are urgently needed to protect pristine forest and other natural
resources on the continent.

The results suggest that the LULC transitions in West Africa were not only due to the
larger fractional abundance of some categories at the beginning of the transition but also
due to systematic targeting by actively gaining LULC categories such as settlements, e.g.,
the net relative gains in settlements were 48.57%, 25.96%, and 74.75 % in the periods of
1990–2000, 2000–2010, and 2010–2020, respectively, and 90.39% in 1990–2020. Our results
indicate that LULC changes on the landscape of West Africa are both systematic, i.e., under
the influence of humans, and random, i.e., driven by natural factors depending on the
type of transition. The study highlights important signals in the pattern of the LULC
transitions and may serve as a foundation to link the observed pattern with explanatory
variables to understand the processes underlying the intensive gains of settlements. The
current transitions may greatly affect biodiversity, carbon stock enhancement, and the food
security of the people. Agroforestry, community-led land rejuvenation activities, alternative
livelihoods, and diversification of income may present good opportunities to protect the
environment and reduce the susceptibility of the human system to shock.

The study also improved our understanding of the active and dormant LULC cate-
gories in the study area and revealed the LULC categories that were avoided or targeted
for transition in a given interval. The intensity analysis provided a basis to focus LULC
management interventions toward the actively changing categories, e.g., the expansion of
settlements, instead of focusing on entire dynamic processes that may be cost-intensive.
This study is the first to use LULC change analysis to document consistent net relative
gains (re-greening) in rangeland in West Africa from 1990 to 2020 in order to support the
re-greening hypotheses present in the literature. Future research must analyze the impact
of LULC change on food security and water balance. The opportunity cost of maintaining
cropland (e.g., cash crops) and compliance with LULC change management interventions
must also be analyzed.

6. Policy Recommendations

This research recorded concurrent deforestation and vegetation regrowth in different
locations in West Africa. These findings were attributed to human activities, such as the
uncontrolled expansion in settlements and cropland at the expense of natural vegetation
areas, and positive human activities, such as the implementation of nature-based solutions
and land degradation restoration projects, respectively, on the subcontinent. The results in-
dicate that the sustainable management of forests, good farming practices, and community
involvement can help to minimize deforestation and recover degraded land in West Africa.
Therefore, we recommend that the implementation of nature-based solutions, such as the
farmer-led Natural Regeneration of Trees and Resilience Building Strategies, Great Green
Wall Initiatives, Agroforestry practices, and REDD+ policies, must be up-scaled across the
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Africa continent. We detected simultaneous losses and gains in cropland fields, which
raise food security concerns in West Africa. Based on our findings, we recommend the
implementation of sustainable agricultural practices, such as effective soil management,
e.g., application of cow dung and organic manure to restore soil fertility, cultivation of
climate-smart and drought-resistant crops, and alternative sources of livelihood for the
farmers. The agriculture value chain in Africa must be strengthened.

The massive expansion of settlements indicates that urbanization has future prospects,
such as the creation of opportunities to market farm produce and alternative sources of
employment and income generation. However, urban sprawl may disrupt agriculture and
forest economies in Africa. Therefore, compact city structures that incorporate vertical
building systems should be promoted. Moreover, policy makers must ensure the strict
implementation of spatial planning laws in urban areas in Africa to control the massive
expansion of settlements at the expense of natural vegetation and cropland. In our view,
such policies ensure maximum benefit of the natural resources under minimal environ-
mental damage. Policies to control the expansion of settlements will indirectly regulate
the expansion of cropland fields because we observed that, as settlement encroached on
cropland, cropland simultaneously encroached on natural vegetation to meet the food
security requirements of the inhabitants.
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Appendix A

Table A1. Full names of the countries in West Africa displayed on the Land Use/Land Cover (LULC)
maps in Figures 1 and 2.

No. Code COUNTRY

1 BEN Benin
2 BUF Burkina Faso
3 CAM Cameroon
4 CHA Chad
5 CDI Cote d’dIvoire
6 GAM Gambia
7 GHA Ghana
8 GIN Guinea
9 GUB Guinea Bissau

10 LIB Liberia
11 MAL Mali
12 MAU Mauritania
13 NIG Niger
14 NIR Nigeria
15 SEN Senegal
16 SIL Sierra Leone
17 TOG Togo

Table A2. Mathematical notations in the intensity analysis equations in Table 3 [9,15].

J = number o f Categories
i = index f or a category at the initial time point f or a particular time interval
j = index f or a category at the f inal time point f or a particular time interval
m = index f or the losing category in the transition o f interest
n = index f or the gaining category in the transition o f interest
T = number o f time points
t = index f or the initial time point o f interval [Yt, Yt+1], where t ranges from 1 to T-1
Yt = year at time point t
Ctij = number o f pixels that transition f rom category i at time Yt to category j at time Yt+1
St = annual intensity f or time interval [Yt, Yt+1]
U = value o f uni f orm line f or time intensity analysis
Gtj = annual intensity o f gross gain o f category i f or time interval [Yt, Yt+1]
Lti = annual intensity o f gross loss o f category i f or time interval [Yt, Yt+1]
Rtin = annual intensity o f transition f rom category i to category n during time interval [Yt, Yt+1], where i 6= n
Wtn = value o f uni f orm iintensity o f transition to category n f rom all non −
n categories at time Ytduring time interval [Yt, Yt+1]
Qtmj=annual intensity o f tranistion f rom category m to category j during time interval[Yt, Yt+1], where j 6= m
Vtm = value o f uni f orm intensity o f transition f rom category m to all non −
m categories at timeYt+1 during time interval [Yt, Yt+1]
EG

j = hypothesized commision o f category j error at f inal time

OG
j = hypothesized ommision o f category j error at f inal time

EL
i = hypothesized commision o f category i error at initial time

OL
i = hypothesized ommision o f category i error at initial time
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