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Abstract
In this paper, we propose a method to reconstruct a digital 3D model of a stolen/damaged statue using photogrammetric meth-
ods. This task is challenging because the number of available photos for a stolen statue is in general very limited – especially
the side/back view photos. Besides using standard structure-from-motion and multi-view stereo methods, we match image pairs
with low overlap using sliding windows and maximize the normalized cross-correlation (NCC) based patch-consistency so that
the image pairs can be well aligned into a complete model to build the 3D mesh surface. Our method is based on the prior of the
planar side on the statue’s pedestal, which can cover a large range of statues. We hope this work will motivate more research
efforts for the reconstruction of those stolen/damaged statues and heritage preservation.

CCS Concepts
• Computing methodologies → Reconstruction; Mesh models;

1. Introduction

The logo of TU Delft (Delft University of Technology, The
Netherlands) is the flame of Prometheus. There was an over-life-
sized bronze statue of Prometheus (see Fig. 1) created by Oswald
Wenckebach (1895–1962) for the university’s 100th anniversary
and placed on the campus. However, the statue was stolen from
its concrete pedestal on the night of 10/11 January 2012 and has
not been found anymore.

Since there is very little chance to find the stolen statue, people
try to reconstruct it digitally by using photos taken in the past years.
The work of [Ren15] is an early effort to tackle this problem, which

(a) (b) (c)

Figure 1: The Prometheus statue was placed in two locations (a–b)
on the campus of TU Delft during different periods. The pedestal
(c) remained in the second location after the statue was stolen. All
these photos are obtained from [vdKvdK10]. (a) and (b) are the
#13th and #22nd photos in this paper’s dataset.

reconstructed an incomplete 3D point cloud (its Sec. 9.2). The dif-
ficulties of this reconstruction problem are summarized as:

• The number of photos is limited (e.g., only 34 photos are used in
the Appendix J.1 of [Ren15]);

• The object’s appearance changes because of the dirt (mainly tar-
nish) and the variation of lighting conditions in the photos taken
at different times spanning over decades;

• The camera setup is unknown, without any precise information
about the intrinsic or extrinsic parameters.

When using the state-of-the-art system based on photogramme-
try (e.g., COLMAP [SF16, SZFP16] ) and the dataset 1 of [Ren15]
(listed in this paper’s supplementary material), we found the 3D
model of the Prometheus statue can be reconstructed as two sub-
models (see Fig.2(b)), the main challenge is how to align them into
the same coordinate frame. In a standard pipeline of photogram-
metry, local features are extracted from images and matched in
the first step. In this example, the matched photos are distributed
into two clusters, where the matched features between clusters are
too few to estimate a valid geometric relation. Photos from side-
views cannot be well registered with those already matched pho-
tos shown in Fig.2(b) since there is a big angular gap between
the front-view cluster and the back-view cluster with around 90◦.
Techniques employed in the subsequent steps of reconstruction, in-
cluding structure-from-motion (SfM) [SF16] and multi-view stereo
(MVS) [SZFP16], cannot align two sub-models easily.

Although there is little 3D overlap between the two reconstructed
sub-models, we observe that the left and right sides of the pedestal
are partially observed in both the front and the back view clusters.
We can align two clusters by matching 2D points in the side re-
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Figure 2: Reconstruction pipeline for the Prometheus statue. (a) SIFT features are matched exhaustively between all image pairs. (b)
Two sparse sub-models are reconstructed by SfM: the front sub-model (the red point cloud and cameras) and the back sub-model (the
blue, manually aligned to the front model), between which there is little overlap, as shown in the zoom-in view. (c) Dense models can be
reconstructed by MVS when two sub-models are aligned together. There is a seam (red arrow on left) since the alignment obtained by
symmetric epipolar distance (SED) optimization is not accurate enough. The seam is eliminated after refinement with NCC (right, details are
given in Sec. 2.3). (d) A mesh is reconstructed from the dense point cloud. The point clouds (c) and the mesh (d) are colored by their vertex
normals.

gions of the pedestal. Since the sides of the pedestal are basically
planar, we transform the local patches from one image to another
and find their optimal correspondences by evaluating the normal-
ized cross-correlation (NCC) in sliding windows. Experiment re-
sults demonstrate the effectiveness of this method. It is unusual to
use NCC in the image matching step for SfM as it is not invariant
to scaling and orientation. However, we found it is very effective
in the special case with a planar prior. This can be generalized to
solve the reconstruction problem for other stolen/damaged statues
with similar shapes – i.e., planar sides for the statue’s pedestal.

2. Method

Our reconstruction mainly relies on the photogrammetry system
COLMAP with the additional NCC-based alignment between the
front-view and the back-view clusters (Sec. 2.3). The NCC-based
alignment is the most critical step for a complete reconstruction.

2.1. Feature Extraction and Matching

Dataset 1 of [Ren15] has 34 photos of the statue. We remove #26
(i.e., a cropped #27) and use the rest 33 photos. As that work
suggested, we manually segment the images and only keep the
statue with the pedestal. SIFT features are extracted and matched
(Fig. 2(a)) exhaustively considering the number of images is small.

2.2. Incomplete SfM

We run SfM using the 2D correspondences obtained in the previ-
ous step. Two sparse sub-models are then reconstructed. Each sub-
model is a sparse 3D point cloud P and multiple images, each of
which has estimated (intrinsic and extrinsic) camera parameters and
inlier 2D feature points (2D projections of P’s subset). The front
sub-model contains 18 images (i.e., the red ones in Fig. 2(b)) and
the back sub-model has 3 images (i.e., the blue ones in Fig. 2(b)).

It is not straightforward to align two sub-models because they
do not share any image. Although there are side view photos (e.g.,
#2 and #30), these ones are not registered since their appearances
are quite different. The result of feature matching with these views
(e.g., #1 from the back cluster - #2 - #8 from the front cluster) is not

good enough to estimate valid two-view geometries (fundamental
matrices).

2.3. Front-Back Alignment by NCC

Now we have the front and back sparse sub-models. We need to
estimate a similarity transformation to align the back model into
the coordinate frame of the front model. There are two pairs of im-
ages that can help to construct the relation between the sub-models.
One pair is image #8 (front) and #1 (back), both of which capture
the right side of the Prometheus statue’s pedestal. The other pair
is image #29 (front) and #34 (back) which capture the left side.
In the previous steps, SIFT features can not find sufficient corre-
spondence between them. In this step, we hypothesize the pedestal
sides are planar and guide the matching by measuring NCC-based
consistency between sliding windows.

2.3.1. Rough Alignment Transformation

We start from an alignment transformation T̃ before guiding the
NCC-based matching. The alignment transformation T̃ is a simi-
larity consisting of a scalar scale factor s̃, a rotation matrix R̃, and
a translation vector t̃. It transforms the back point cloud Pb to the
coordinate frame of the front point cloud P f by

Pb2 f = s̃ R̃Pb + t̃. (1)

If a camera’s extrinsic matrix is (Rb|tb) in the back model, then it
should be

(Rb2 f | tb2 f ) =
(

R̃Rb

∣∣∣ s̃ tb −Rb t̃
)

(2)

in the front model, transformed by the alignment similarity. The
intrinsic matrix remains unchanged.

Such a similarity T̃ can be estimated, denoted as T̃0, by man-
ually picking at least three pairs of non-collinear 3D-3D corre-
spondences between P f and Pb. However, the overlap between two
SfM-reconstructed point clouds is too little to find enough 3D-3D
matches for accurate estimation (Fig. 2(b)). We optimize T̃0 by min-
imizing symmetric epipolar distances (Eq. (3)) on further picked
2D-2D correspondences (2D point-to-point distances can not be
evaluated directly without depth information). That is to say, we
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(a) T̃0 before optimization (b) SED optimized T̃1

Figure 3: A rough alignment from the back model to the front is
optimized by minimizing the symmetric epipolar distance (SED) on
picked points (small circles here). We manually picked 9 pairs of
points in total on 3 front/back image pairs: #8/#34 (this figure),
#8/#1, and #29/#1. The distances from points to their epipolar lines
are reduced after optimization (see zoom-in views in (a–b)).

pick several 2D-2D correspondences on front-back image pairs.
The 2D points are selected at unique corners such as the flame tip,
fingertips, and pedestal corners, as shown in Fig. 3. A similarity
T̃ defines a fundamental matrix Ff ,b between a front image and a
back image (using Eq. (2)), which is sufficient to evaluate the dis-
tance d(p, Fp) from a 2D point p to the corresponding epipolar line
(Fp). Therefore, the objective is to find

T̃1 = argmin
T̃

∑
f ,b

∑
p f ,pb

d2
(

p f ,Ff ,b pb

)
+d2

(
pb,F

⊤
f ,b p f

)
. (3)

To minimize the objective Eq. (3), we use CMA-ES (Covariance
Matrix Adaptation Evolution Strategy), a gradient-free optimizer,
as an ad hoc solution, which is acceptable to guide the NCC-based
matching.

If we use the T̃1 estimated to align the sparse models and take the
next step MVS, there will be a visible seam on the reconstructed
pedestal (Fig. 2(c) left), which encourages us to further refine the
result.

2.3.2. Alignment Refinement by NCC

Now we have reconstructed the 3D geometry of the pedestal sides,
which are (nearly) planar. Given a 3D region on a side (e.g., the
right side), we can project it onto a front/back view pair (e.g., #8/#1
or #29/#34, denoted as #f/#b for generality) that both observe the
region, then find a more accurate matching by sliding the projec-
tions. The consistency between projections is evaluated by NCC,
which is robust to illumination variations. Though NCC is not in-
variant to geometric transformations (scaling, rotation, and transla-
tion), our pre-estimated T̃1 can handle the transformation between
projected patches.

We segment the pedestal side region on image #f and get a nearly
planar sparse point cloud P from the front sub-model correspond-
ing to the segmented region. The plane’s equation is estimated by
RANSAC. It is spanned by a pair of orthogonal vectors, denoted as
u,v (the decomposition is not unique but its choice is inconsequen-
tial).

For each reconstructed 3D point p on P, a small square centered
at p is constructed by four 3D vertices p ± r u ± r v, in which r
controls its size. We project the square onto image #f and #b, get-

(a) (b)

(c) (d)

Q f H(Q f ) Qb

slide H(Q f )

fix Qb

optimal s∗ Pf (p) Pb2 f (p) + s∗

Pb2 f (p)

heatmap

Figure 4: NCC-based alignment refinement. The planar side of
the pedestal is observed in front/back images #f/#b (e.g., #8/#1 in
(a)/(b)). For a 3D point p on the side, a square patch around it
is projected as quadrilaterals Q f (a) and Qb (b) on images #f/#b.
Image patch in Q f is transformed as H(Q f ) to match the shape
of Qb and compared to Qb. We fix Qb and slide H(Q f ) in Qb’s
n×n neighborhood. An n×n heatmap (c) is then obtained by eval-
uating the NCC scores on the sliding windows. If the maximum of
the heatmap is not at the center, the 2D matching should be shifted
(from the dashed line to the solid line in (d)). Then the correspon-
dence between #f / #b is refined.

ting two 2D quadrilaterals Q f and Qb, between which there exists
a homography transformation H.

We warp the image patch Q f (converted as grayscale for sim-
plicity) to H(Q f ), which has a pixel-wise correspondence to patch
Qb (Fig. 4(a–b)). When sliding H(Q f ) by a 2D shift vector s ∈
[−w,w]× [−w,w], using one pixel as the step-length, the consis-
tency between patches can be evaluated by NCC

NCC f ,b(s) =
(f− f) · (g−g)
∥f− f∥∥g−g∥

, (4)

in which f is the flattened pixel array in H(Q f ), g is the flattened
pixels in Qb + s, and f is the mean value of array f.

For each 3D point p, we compare the quadrilateral shaped
sliding-windows and get a (2w+1)×(2w+1) heatmap (Fig. 4(c)).
If s∗ maximizes Eq. (4), then there is a triplet of 3D-2D-2D corre-
spondence between the 3D point p, 2D point Pf (p) on image #f,
and Pb2 f (p)+ s∗ on image #b (Fig. 4(d)). The projection Pf (·) is
the camera projection of image #f and Pb2 f (·) is the camera projec-
tion of image #b transformed by T̃1 (see Eq. (2)).

We get a set of 3D-2D-2D correspondences after looping over
all p ∈ P. We remove outlier correspondences by estimating the
extrinsic parameter of image #b using RANSAC.

This process is repeated for front/back image pairs #8/#1 and
#29/#34. The square size r is chosen to make the projected patches
be around 50×50. The sliding range w is 15. The optimal shift vec-
tor s∗ is estimated to have sub-pixel accuracy. On the right side of
the pedestal, 64 out of 253 points are kept as inliers after RANSAC
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#22 #34 #1

Figure 5: The reconstructed mesh of the statue is rendered by ambi-
ent occlusion (#22), vertex normal (#34), or texture mapping (#1),
overlaid with the original photos [vdKvdK10].

extrinsic parameter estimation. On the left side, 42 out of 283 points
are kept. The result helps to reconstruct a complete sparse model
successfully and produces a visually ‘seamless’ dense point cloud,
as shown in the complete SfM and MVS of the next step (Fig. 2(c)
right).

2.4. Complete SfM, MVS, and Mesh Reconstruction

Now we have two sets of 2D correspondences between images.
One is the inlier results of the incomplete SfM step. The other is
obtained by NCC-based matching. Both sets of image matching re-
sults are used for SfM again. This time the SfM is complete since
all images in either the front model or the back model are regis-
tered in the same coordinate system, though those images that are
not registered in incomplete models still do not appear here.

Next, we use MVS to reconstruct a dense point cloud. In
COLMAP, MVS estimates the depth and normal maps of each view
by matching patches with other views, in which the patch consis-
tency is evaluated by weighted NCC. We observe that it is not good
to use all images to reconstruct a dense front model, because of
the appearance inconsistency caused by a statue’s cleaning in 2009
(compare Fig. 1 (a) v.s. (b)). Therefore, we only use the registered
images taken after 2009 (10 images with indices in Fig. 2(b)) to
reconstruct a dense model.

After obtaining a dense point cloud with MVS, we reconstruct
the mesh (Figs. 2(d) and 5) using Poisson surface reconstruction.

3. Conclusion and Discussion

Reconstructing stolen/damaged statues is difficult because of lack-
ing images, especially side-view images. We use an NCC-based
matching method to align two partial reconstructions (front and
back sub-models) into a complete one, after a manual initializa-
tion and optimization. The final reconstruction result on the TU
Delft Prometheus statue (see Fig. 2(d) and Fig. 5) is visually reason-
able. The average reprojection error of the complete sparse model
is 0.277 pixels, evaluated on 10 images used for MVS. We are not
able to quantitatively evaluate the error in 3D because the original
shape is missing.

There are several directions to further improve the result. First

of all, the pedestal can be more accurately reconstructed since it is
still there, and then the photo can be registered onto it. Shape-from-
shading techniques [XNSW19] can be used to enhance the geomet-
ric details using close-up photos #14 and #25. Meanwhile, recent
deep learning advances can be used. The two most relevant topics
are deep learning on MVS and neural reconstruction, both of which
still rely on camera parameters estimated beforehand. Skilled 3D
modelers can edit the mesh by taking the registered photos as ref-
erences. The reconstructed model can be displayed by augmented
reality (AR) [HLO∗20] to place it virtually at its original spot. The
proposed method can be generalized to reconstruct other shapes. If
the 3D geometry of a region (whether planar or not) can be recon-
structed from some views, then the region can be projected to a new
view and the extrinsic parameters of the new view can be refined
by maximizing NCC in sliding windows. The proposed method is
more robust to large rotation angles than SIFT-like features when
the surface is partially reconstructed.

We hope this work will motivate more research efforts for the
reconstruction of those stolen/damaged statues and the problem of
heritage preservation in general.
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