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Abstract: We propose an enhancement module called depth discontinuity learning (DDL) for learning-
based multi-view stereo (MVS) methods. Traditional methods are known for their accuracy but
struggle with completeness. While recent learning-based methods have improved completeness
at the cost of accuracy, our DDL approach aims to improve accuracy while retaining completeness
in the reconstruction process. To achieve this, we introduce the joint estimation of depth and
boundary maps, where the boundary maps are explicitly utilized for further refinement of the
depth maps. We validate our idea by integrating it into an existing learning-based MVS pipeline
where the reconstruction depends on high-quality depth map estimation. Extensive experiments
on various datasets, namely DTU, ETH3D, “Tanks and Temples”, and BlendedMVS, show that our
method improves reconstruction quality compared to our baseline, Patchmatchnet. Our ablation
study demonstrates that incorporating the proposed DDL significantly reduces the depth map
error, for instance, by more than 30% on the DTU dataset, and leads to improved depth map
quality in both smooth and boundary regions. Additionally, our qualitative analysis has shown
that the reconstructed point cloud exhibits enhanced quality without any significant compromise on
completeness. Finally, the experiments reveal that our proposed model and strategies exhibit strong
generalization capabilities across the various datasets.

Keywords: multi-view stereo; 3D reconstruction; depth map refinement; depth boundary estimation

1. Introduction

Multi-view stereo (MVS) techniques have been widely used to obtain dense 3D re-
construction from images. MVS allows aerial images to be converted into accurate 3D
models, which provides a more comprehensive representation of the large scene. This 3D
information can be used for various applications, such as digital surface modelling [1],
landform analysis [2], and urban planning [3]. It provides valuable insights into the shape,
structure, and topography of the scene, enabling better understanding and interpretation
of remote sensing data.

Traditional MVS techniques [4–6] extract dense correspondences from multiple cali-
brated views and generate a dense 3D representation (i.e., point cloud or dense triangle
mesh) of the scene. These methods rely on image correspondences in the RGB space, which
are sensitive to textureless and non-Lambertian surfaces and lighting variations. Recent
developments in deep learning allow the use of learned feature maps instead of directly
working on RGB images to build more robust MVS pipelines [7–17]. By learning feature
maps about the objects in the scene, learning-based MVS methods have demonstrated
better completeness than traditional methods in reconstructing man-made objects with
low texture and non-Lambertian surfaces. Recent learning-based MVS methods learn to
reconstruct the depth map from input images by regularizing the 3D cost volume [7,13]
or by Patchmatch-based iterative optimization [17,18]. Still, depth estimation remains
challenging, and depth discontinuities at transitions between object boundaries are usually
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erroneous [19,20]. While this kind of error can be alleviated by post-processing filters, it
often reduces the completeness of the reconstruction.

In MVS pipelines, it is common for a single depth value to be estimated per pixel,
accompanied by a smooth surface assumption. This spatial regularization technique results
in higher-quality depth maps, as shown in previous studies such as [21,22], which in turn
improves the completeness of the reconstructed 3D model. However, a limitation of this
approach is that it tends to oversmooth the true depth continuities at object boundaries, as
pointed out in recent works such as [20,23]. Furthermore, as illustrated in Figure 1, pixels
near depth discontinuities can pose ambiguity in determining which side of the depth
boundary they belong to.

These findings motivate us to pursue two complementary objectives. First, we aim to
explicitly detect the geometric edges, instead of relying solely on photometric edges that
capture color and texture changes [21,22]. Geometric edges more accurately indicate the
true locations of object boundaries than photometric edges (see Figure 1). We propose to
estimate geometric boundary maps jointly with the depth maps such that smooth depth
surfaces can be enforced while considering the local geometry. Second, as shown in Figure 1,
we propose to estimate per-pixel depth as a univariate bimodal distribution rather than as
a single depth value. This allows us to explicitly represent the depth ambiguity and avoids
over-smoothing the depth discontinuities. We integrate both objectives into a multi-task
learning architecture to improve the depth accuracy while avoiding the completeness
trade-off of previous approaches.

1

2 1 2

probability

depth

Figure 1. We propose to estimate depth as a bimodal univariate distribution. Using this depth
representation, we improve multi-view depth reconstruction, especially across geometric boundaries.

To confirm the validity of our idea, we integrate it into the existing learning-based
multi-view stereo (MVS) pipeline. Extensive experiments that we ran on various benchmark
datasets (see Section 4) demonstrate that our method obtains better results. (The code
is available at https://github.com/mirmix/ddlmvs (accessed on 28 December 2022).)
Moreover, our method has high generalization capabilities, which have been validated by
training our model on one dataset and testing it on other datasets.

In summary, the contributions of this work to multi-view stereo networks are:
(1) a novel multi-task learning architecture for joint estimation of depth maps and ob-
ject boundary maps for learning-based multi-view stereo pipelines; (2) a bimodal depth
representation that represents depth as a distribution learned from multi-view images;
(3) a general loss formulation for depth discontinuity-based spatial regularization, which
helps to learn discontinuities in depth and to regularize the depth maps.

The structure of this article is as follows: In Section 2, we will review the existing
literature and contrast the most related works to our approach. Section 3 will delve into
our methodology and outline the MVS pipeline we use to test our approach. Section 4 will
present and discuss the experimental results obtained from our study. Finally, in Section 5,
we will conclude the paper by summarizing our main findings.

2. Related Work

As learning-based MVS networks are inspired by photogrammetry-based MVS algo-
rithms and developed from two-view methods, we review photogrammetry-based MVS
algorithms, learning-based two-view methods, and the recent development in learning-
based MVS networks.

https://github.com/mirmix/ddlmvs
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2.1. Photogrammetry-Based MVS

Multi-view stereo methods purely built upon photogrammetry and multi-view geom-
etry theory are usually referred to as traditional multi-view stereo methods. Janai et al. [24]
showed that the taxonomy of the traditional multi-view stereo methods can be divided
into four classes based on their representations of the scene and output. These scene
representations are depth maps, point clouds, volumetric representations, and mesh
or surfaces.

Volumetric representations use either discrete occupancy function [25] or levelset-alike
signed distance functions [26], which limits them to small-scale reconstruction. The most
common mesh-based approaches run variations of the marching cubes algorithm [27] on
top of a signed distance function based on a volumetric surface representation [28].

The seminal point-cloud-based method by Furukawa et al. [4] has shown that starting
with an initial sparse set of point features it is possible to create an initial set of patches and
densify them by iterative greedy expansion and photo-geometric filtering. These methods
usually demand a uniformly sampled sparse set of points across the image domain to be
able to create point clouds with better completeness.

Depth-map-based approaches usually first try to estimate a 2.5D depth map for each
view. By using multi-view fusion pipelines [28,29], these depth maps are consolidated into
a single geometric model. Although the plane sweeping algorithm [30] has high memory
consumption, it was the most commonly used technique for depth map estimation. To use
plane sweeping stereo for a large dynamic range of outdoor videos, Pollefeys et al. [31]
took advantage of GPS and inertia measurements to place the reconstructed models in
geo-registered coordinates. Using random initialization and propagation techniques, the
PatchMatch-based MVS algorithms [5,32] were able to estimate the depth map of each view
with low memory consumption. In this work, we use a differentiable PatchMatch-based
module to achieve a similar goal.

2.2. Learning-Based Two-View Methods

Learning-based two-view methods have introduced the initial building blocks for
two-view stereo matching and depth estimation, which were later adapted for multi-view
settings. The most common building blocks for learning-based depth map estimation
pipelines are feature extraction and depth estimation from the feature space. Shared weight-
based feature extraction was introduced by [33] and later improved by using cost volume
regularization for depth map extraction [34–36]. To reduce memory demand of the cost
volume, Duggal et al. [18] introduced differentiable PatchMatch Stereo (PMS) for two-view
depth map estimation. These approaches were later adapted for multi-view settings via
differentiable homography [7,12,13,17,35].

EdgeStereo [37] uses a pre-trained sub-network for detecting the edges, and the edge
cues are then fed into the disparity branch to improve the disparity map. Tosi et al. [20]
showed that it is possible to improve the quality of the learning-based two-view stereo
networks by integrating an MLP-based bimodal mixture density network. In their work,
they improved the accuracy of stereo matching networks [35,36] that were used as a
backbone to their mixture density head. Inspired by these works, we also represent depth
as bimodal distribution, and we jointly estimate depth maps and object boundary maps in
the multi-view stereo setting using a novel multi-task learning architecture. Our pipeline
does not involve any parallel (sub)networks and learns directly from multi-view images to
estimate edge-depth pairs jointly.

The continuous disparity network [23] aims to regress the multi-modal depth by
jointly estimating both probability and offset volume by minimizing a Wasserstein distance
between the ground truth and the distribution estimated from the volumes. The offset
volume aims to obtain continuous disparity estimations. Our method avoids regressing the
offset values and instead, directly estimates bimodal distribution parameters.
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2.3. Learning-Based MVS

State-of-the-art learning-based MVS approaches adapt the photogrammetry-based
MVS algorithms by implementing them as a set of differentiable operations defined in
the feature space. MVSNet [7] introduced good quality 3D reconstruction by regularizing
the cost volume that was computed using differentiable homography on feature maps of
the reference and source images. Its network architecture is similar to the learning-based
two-view stereo matching architecture GCNet [34]. Both MVSNet [7] and GCNet [34]
regularize cost volume using a 3D CNN-based U-Net. The cost volume itself has a very
high demand for memory. To circumvent this problem, R-MVSNet uses GRUs [8] to
regularize the cost volume sequentially. Follow-up works [13,16] used feature pyramids
and cost volume pyramids to learn in a coarse-to-fine manner instead of constructing a
cost volume at a fixed resolution. To fully avoid the construction of feature cost volume,
Wang et al. [17] introduced a learning-based multi-view PMS pipeline. Variations of PMS
are seen as suitable options to work with high-resolution images since both traditional and
learning-based multi-view PMS avoids the memory demands of plane sweep stereo or
feature cost volume regularization.

In contrast to two-view or multi-view Plane Sweep stereo [28,29] and cost volume
regularization methods [7,34], to reduce memory consumption our pipeline estimates depth
maps by fully avoiding the cost volume creation and usage of 3D CNN networks. For
this, we are leveraging differentiable PatchMatch-based multi-view stereo as part of the
internal structure of our pipeline [5,17]. The recent work of PatchMatchNet [17] showed
state-of-the-art results in terms of reconstruction completeness, which is used as a baseline
in this work.

To enhance the quality of scene reconstruction, our proposed method focuses on
estimating the geometric boundaries of objects in the scene where depth discontinuities
occur. We introduce a technique to regularize the depth map by incorporating an estimated
boundary map. Our approach distinguishes itself from DEF-MVSNet [38] in terms of how
edge information is represented and modeled. While DEF-MVSNet primarily focuses on
determining flow directions as pixel offsets, our method explicitly learns and smooths the
edge map by defining each pixel as a bimodal distribution. This distinction contributes to
the unique characteristics of our approach.

Similarly, our method deviates from BDE-MVSNet [39], which also aims to find flow
directions for edge pixels using gradient information. Instead, we explicitly learn the
boundary map, placing emphasis on regularizing smoothness in regions that are not
classified as boundaries. In comparison to ElasticMVS [40] which proposes an elastic
part representation for encoding physically connected part segmentations, our approach
focuses solely on explicitly learning the boundary map. By utilizing the boundary map
for regularization, our objective is to enhance smoothness rather than encode physically
connected part segmentations and capture surface connectedness and boundaries within
the image.

During the development of our method, we also explored some depth derivative-
based loss functions, similar to those utilized in previous works [37,41]. However, we did
not observe significant improvements when employing these loss functions. Therefore,
we adopted a different approach by explicitly learning the boundary map to regulate
smoothness in regions that are not classified as boundaries.

In comparison to two-view stereo matching pipeline SMD-Nets [20], we employ a
mixture density network as an internal structure for depth refinement, inputting it with
RGB-Depth pairs instead of rectified left-right image pairs. Unlike previous methods, we
learn the depth and boundary map simultaneously, utilizing the same backbone architecture
for estimating the density parameters and boundary map in parallel. In comparison with
previous methods, our pipeline utilizes a 2D CNN-based U-Net architecture [42] to estimate
the bimodal depth density parameters for each pixel in discrete space.
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3. Method

In contrast to existing MVS approaches with depth map representations in which
the depth of each pixel is expressed as a single value, our approach takes advantage of
a bimodal depth representation that represents depth as distribution. Our depth map is
thus not a common grid of per-pixel scalars, but per-pixel mixture density parameters.
The motivation of this module is to implicitly integrate the uncertainty notion into our
pipeline, which enables us to learn depth discontinuities for spatial regularization of the
depth map and to further alleviate the noise gathered in intra-object transitions, foreground-
background transitions, and partial occlusions.

The overview of our proposed network architecture is shown in Figure 2. Our network
has three parts, namely, feature extraction, coarse-to-fine PatchMatch Stereo (PMS), and
depth discontinuity learning, detailed as follows.

Edge and depth density
estimationInputs Feature pyramid 

extraction
Coarse-to-fine 
PatchMatch Stereo

Initial depth map
and ref. image

𝛼𝜇!𝜇"𝜎!𝜎"

Depth map

Edge map

Figure 2. An overview of the proposed multi-view depth discontinuity learning network that
outputs depth and edge information for each pixel. The brown arrows represent input feed and the
blue arrows represent pipeline flow. The dashed arrow denotes the presence of skip connections
connecting the encoder and decoder in the U-Net architecture. We first extract multi-scale features
from color images with FPN [43] alike auto-encoder. Then, we feed extracted features and camera
parameters to the coarse-to-fine PMS module to extract the initial depth map. Using the initial depth
map and RGB pair, our network learns bimodal depth parameters and geometric edge maps. We use
mixture parameters and photo-geometric filtering to compute our final depth map. The edge map
visualized here is negated edge map (for a clear view).

3.1. Feature Extraction

We employ a widely used technique in the computer vision field known as feature
pyramid learning [12,13,16], which enables us to build our algorithm in a coarse-to-fine
regression fashion. We adopted the Feature Pyramid Networks [43] with residual con-
nections between encoder and decoder, and use three layers of decoder outputs as our
extracted features. Each subsequent level has half the resolution of the level before it, and
the finest level has half the width and height of the original image. In Figure 2, the red
blocks show three scales of features fed to the coarse-to-fine PMS module.

3.2. Coarse-to-Fine PMS

Being agnostic to the backbone, our method is independent of the underlying rough
depth estimation method. Both cost volume regularization and the PatchMatch-based ap-
proach can be used for depth estimation. We follow PatchmatchNet [17] that demonstrates
good reconstruction completeness and low memory demands. Our pipeline regress three
levels of initial depth maps in a coarse-to-fine manner.

We randomly initialize the depth values at the coarsest level, and at a finer level, we
initialize the depth values with the outputs of the coarser levels. Following the initialization
step, we run an iterative feedback loop between the propagation and evaluation steps.
We propagate our estimates with good scoring values to the neighboring pixels. In the
evaluation step, we use candidate depth values for differentiable homography warping
and matching cost computation.
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3.3. Depth Discontinuity Learning

The output of coarse-to-fine PMS is a conventional depth map of half the resolution
(half width and half height) of the original input. Hui et al. [44] showed that a low-
resolution depth map can be progressively upsampled with the guidance of the associated
high-resolution color image. This idea inspires the proposed framework’s attempt to match
the resolution of the color and depth images.

Contrary to existing learning-based networks [7,45], which revise depth maps using
residual networks, we refine depth maps via learning mixture density parameters and
geometric edge maps. In contrast to SMD-Nets [20], which employ corrected image pairs as
input, we use RGB-depth pairs as the input to the depth refinement network and convolu-
tional mixed density networks as the internal structure. To the best of our knowledge, our
work is the first learning-based MVS method that explicitly learns depth discontinuity maps
(also known as geometric edge maps) to simultaneously refine the quality and improve the
smoothness of the depth maps.

In our pipeline, we use a 2D CNN-based U-Net [42] architecture to estimate the
bimodal depth density parameters of each pixel in a discrete space. During the development
of our pipeline, we experimented with different network variations to learn separate
boundary maps and mixture density parameters, including two parallel network streams
and single encoder and multiple decoder architectures. However, we found that using
multiple subnetworks increased the number of parameters and GPU memory demands
without leading to any substantial improvement in results. Therefore, we chose to use
a single encoder and decoder architecture for our proposed pipeline. Based on the fact
that depth maps have piecewise smoothness and that they can be improved by spatial
regularization to smooth regions as shown in earlier works [21,22,46], we propose to refine
depth-map quality by learning depth discontinuities.

Previous methods based on pixel-wise single value estimates implicitly balance the
depth estimation error between nearby foreground and background pixels for boundary
points. Our refinement network regresses the parameters of a bimodal distribution. We
use the bimodal Laplacian distribution, which was inspired by the work of Tosi et al. [20].
During development, we observed that the Laplacian distribution [47] had slightly better
results than the Gaussian. The Laplacian distribution has a sharper shape modality than
Gaussian. It optimizes over L1 distance instead of L2 distance between the groundtruth
and estimated mean. This makes it more robust against outliers. The bimodal Laplacian
density distribution can be written as

θ = {α, µ1, σ1, µ2, σ2} (1)

p(x; θ) =
α

2σ1
exp(−|x− µ1|

σ1
) +

1− α

2σ2
exp(−|x− µ2|

σ2
)

where α is the mixture weight that can be seen as the likeliness of each mode. Later in our
work (see Section 4), we observe that the network learns to assign different α values to
different scene parts, and in most cases it is binary classifying foreground and background
pixels. µ1 and µ2 are the two depth estimates of the corresponding modes. σ1 and σ2 are the
two depth variance measures of each depth value. We also treat α

σ1
and 1−α

σ2
as responsibility

scores, which aims to determine the responsible mode for the depth of a given pixel.
In addition to extending bimodal depth estimation to the multi-view case, our pro-

posed convolutional mixture density network also shows that with a single stream compact
discontinuity learning network architecture, it is possible to achieve three goals: (1) Upsam-
pling; (2) Refining; (3) Multi-task learning.

3.4. Loss Function

Our loss function has four terms: depth-groundtruth loss, edge-depth loss, smoothness
loss, and bimodal depth loss, each defined with a specific purpose.
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Depth-groundtruth loss. This loss term measures the difference in depth maps be-
tween prediction and the groundtruth. It is defined as the mean absolute error (MAE) of
the estimated depth map, i.e., L1 distance between the estimated depth and ground-truth
depth across all stages of the PMS and the final reconstructed depth,

Lgt =
3

∑
k=0

[
1

Nk
L1(Dk, D̂k)], (2)

where k ∈ {0, 1, 2, 3} denotes the scale index of the coarse-to-fine PMS that estimates initial
low-resolution depth maps, with 0 representing the finest input and output resolution, and
from 3 to 1 the coarser-to-finer scales of the PMS output. D̂k and Dk represent the ground-
truth depth map and estimated depth map at resolution level k, respectively. The DTU
dataset [48] contains masks that identify pixels with valid ground truth depth information.
Nk represents the number of pixels in each scale.

Edge-depth loss. Geometric edges or boundaries are expected where there are depth
discontinuities in the depth map. Thus, the edge-depth loss term measures how much the
estimated edges agree with the second-order depth variations (i.e., depth discontinuities).
It is defined as the mean squared error (MSE) (L2 distance) between the estimated edge E
and groundtruth changes of variations in depth D̂,

Led =
1
N
L2(E, φ(∆D̂, τ)), (3)

where φ is the function that takes Laplacian of the depth and threshold value τ to return
the mask image where the Laplacian response [49] of the depth map is higher than the τ.
The DTU dataset [48] contains masks that identify pixels with valid ground truth depth
information. The variable N represents the count of masked pixels that have corresponding
ground truth labels for depth. With this term, we explicitly inform the network that
we are expecting geometric edges or boundaries at the pixels where there exist depth
discontinuities. We calculate depth discontinuities using the Laplacian operator, which is
the second-order depth change.

Smoothness loss. Except for the geometric edges and boundaries with depth discon-
tinuities, real-world objects typically demonstrate piecewise smoothing surfaces. Thus, we
would like to encourage local smoothness for the regions without depth discontinuities. We
achieve this by introducing an edge-aware smoothness loss term to penalize second-order
depth variations in non-boundary regions,

Lsm =
1
N ∑

i∈Ω
ω(Ei)|∆Di|

ω(Ei) = exp(−βEi)

, (4)

where Ei will have an estimated value close to 1 for boundaries and close to 0 for non-
boundary pixels. ω is a weight function that plays a role of a switch, which returns a
value close to 0 for boundaries and close to 1 for non-boundary pixels. Thus, second-order
depth change in non-boundary regions contributes to our smoothness loss. β is a tunable
hyper-parameter that controls the sharpness of change in the ω function. N denotes the
number of pixels in the image space Ω with a valid grountruth depth. To the best of our
knowledge, this is the first time depth discontinuities are explicitly learned and used for
spatial regularization in multi-view stereo networks.

Bimodal loss. We adopt a common approach of minimizing the negative-log like-
lihood of the distribution to increase the likelihood of true depth. Tosi et al. [20] have
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demonstrated that this loss term for bimodal depth in the two-view stereo setting can
produce inspiring results. Our bimodal loss term is defined as

Lbi =
1
N ∑

i∈Ω
− log(p(D̂i; θ, i)), (5)

where D̂i represents the groundtruth depth measured at pixel i, and θ is the parameter of
the bimodal distribution introduced in Equation (1). The distribution p can be computed
using the Equation (1). N denotes the number of the pixels in the image space Ω with a
valid grountruth depth.

Total loss. We simply use the weighted sum of the aforementioned loss terms

Ltotal = Lgt + λ1Led + λ2Lsm + λ3Lbi (6)

as a training criterion for our network to optimize the parameters via backpropagation.
λ1 = 4, λ2 = 1.25, and λ3 = 0.5 are hyper-parameters empirically set based on our
experiments on the validation set.

4. Experiments and Evaluation

We used the same model to quantitatively evaluate the generalization capabilities
of our method and to compare it with other methods. All the metric results of the other
methods were collected from the corresponding papers, and the 3D point clouds of other
papers were reconstructed using the code and pre-trained models provided by the authors.

4.1. Datasets

We have tested and evaluated our method on multiple datasets: the small baseline
dataset DTU [48] and the large baseline datasets “Tanks and Temples” [50], ETH3D [51]
and BlendedMVS [52].

The DTU dataset [48] is a benchmark with 120 scenes captured by a structured-light
sensor under 7 different lighting conditions. It has been widely used for developing
learning-based MVS methods and evaluating their performance in terms of completeness
and accuracy. All the learning-based methods in Table 1 are trained on the same 79 scans,
validated on the same 18 scans, and evaluated on the remaining 22 scans. (Validation
set: scans 3, 5, 17, 21, 28, 35, 37, 38, 40, 43, 56, 59, 66, 67, 82, 86, 106, 117. Evaluation set: scans
1, 4, 9, 10, 11, 12, 13, 15, 23, 24, 29, 32, 33, 34, 48, 49, 62, 75, 77, 110, 114, 118).

“Tanks and Temples” is a real-world large-scale dataset consisting of both indoor
and outdoor scenes [50]. It has two parts: an intermediate set consisting of images of
sculptures, large vehicles, and house-scale buildings (taken from the exterior), and an
advanced set consisting of images of large indoor scenes and large outdoor scenes with
complex geometric layouts and repetitive structures.

The ETH3D dataset [51] is a collection of calibrated images, containing various indoor
and outdoor environments, including urban scenes, garages, and rooms. The dataset
provides ground truth camera poses, 3D point cloud geometry, and images for each scene,
making it suitable for tasks such as camera pose estimation and 3D reconstruction.

BlendedMVS [52] is a large-scale MVS dataset for generalized multi-view stereo
networks. The dataset contains samples covering a variety of scenes, including architecture,
sculptures, aerial images, and small objects.

4.2. Evaluation on DTU Dataset

In this section, we present our findings based on the DTU benchmark [48], where we
evaluated the performance of our method using the accuracy, completeness, and overall
metrics. The accuracy metric measures the mean error distance between the closest points
in the reconstruction and the reference based on structured light. The completeness metric
quantifies the mean error distance between the closest points in the reference and the
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reconstruction. The overall metric is the algebraic mean of accuracy and completeness.
Lower scores indicate better performance in this benchmark.

The result on the DTU dataset is reported in Table 1. For a fair comparison, all
techniques were trained on the same dataset and employed the same validation and
train split. From the result, we can see that traditional photogrammetry-based methods
generally have better accuracy, while learning-based methods have better completeness
and overall performance. Furthermore, it also reveals that the completeness gap between
learning-based and photogrammetry-based methods is bigger than their gap in accuracy,
which motivated us to use a coarse-to-fine PMS to build our initial depth estimation
block, to reduce the accuracy gap while still improving completeness. During a similar
development phase, several methods such as UniMVSNet [53] and TransMVSNet [54] have
been published, showcasing superior performance compared to our proposed approach.
However, despite these advancements, we maintain a strong belief in the effectiveness of
our Depth Discontinuity Learning (DDL) module in enhancing the baseline performance of
PatchmatchNet. This reveals that learning depth discontinuities is an effective means to
improve both reconstruction accuracy and completeness.

Table 1. Quantitative comparison with photogrammetry-based and learning-based MVS methods,
on the DTU dataset [48]. Two different settings (with different loss functions) of our method were
tested. L1: depth-groundtruth loss; L2: edge-depth loss; L3: smoothness loss; L4: bimodal loss. Please
note that the metrics are error-based and thus the smaller the better. The best results are bolded in
the table.

Method Accuracy
(mm) ↓

Completeness
(mm) ↓

Overall
(mm) ↓

Traditional photogrammetry-based

Camp [55] 0.835 0.554 0.695
Furu [4] 0.613 0.941 0.777
Tola [6] 0.342 1.190 0.766
Gipuma [5] 0.283 0.873 0.578

Learning-based

SurfaceNet [9] 0.450 1.040 0.745
MVSNet [7] 0.396 0.527 0.462
R-MVSNet [8] 0.383 0.452 0.417
CIDER [15] 0.417 0.437 0.427
P-MVSNet [14] 0.406 0.434 0.420
Point-MVSNet [10] 0.342 0.411 0.376
AttMVS [56] 0.383 0.329 0.356
Fast-MVSNet [11] 0.336 0.403 0.370
Vis-MVSNet [57] 0.369 0.361 0.365
CasMVSNet [13] 0.325 0.385 0.355
UCS-Net [12] 0.338 0.349 0.344
EPP-MVSNet [58] 0.413 0.296 0.355
CVP-MVSNet [16] 0.296 0.406 0.351
AA-RMVSNet [59] 0.376 0.339 0.357
DEF-MVSNET [38] 0.402 0.375 0.388
ElasticMVS [40] 0.374 0.325 0.349
MG-MVSNET [41] 0.358 0.338 0.348
BDE-MVSNet [39] 0.338 0.302 0.320
UniMVSNet [53] 0.352 0.278 0.315
TransMVSNet [54] 0.321 0.289 0.305

PatchmatchNet [17] 0.427 0.277 0.352
PatchmatchNet + Ours (L1,4) 0.405 0.267 0.336
PatchmatchNet + Ours (L1,2,3,4) 0.399 0.280 0.339
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4.3. Evaluation on “Tanks and Temples” Dataset

In this section, we present our findings based on the “Tanks and Temples” dataset [50].
This benchmark has three metrics, namely, recall, precision, and F-score. Recall and
precision represent the completeness and accuracy of the reconstruction, respectively, both
measured in percentage (%). The F-score combines precision and recall, and it is defined as
the harmonic mean of a model’s precision and recall.

In our experiments, we used our model trained using the DTU dataset with 14 epochs
with all the proposed loss terms. We compared the results against those from our baseline
method PatchmatchNet [17]. For both methods, we ran the same depth map fusion algo-
rithm with the same threshold value to not gain any advantage in the evaluation process.
As can be seen from the statistics reported in Table 2, our results on the intermediate set
have better performance on all evaluation metrics. On the advanced set, our results demon-
strate better accuracy and F-score, and the results from PatchmatchNet have slightly better
completeness. As depicted in Figure 3, our approach improves baseline [17] in accurately
capturing the overall geometry and exhibits improved completeness in smooth regions.
This is substantiated by both qualitative and quantitative results, which demonstrate that
our approach outperforms the baseline in terms of overall reconstruction quality.

Figure 3. Comparison between our method and the baseline method PatchmatchNet [17] on a
set of scenes from the Tank and Temples dataset [50]. For each scene, the top row shows the
results from PatchmatchNet, and the bottom row shows the results from our method. A zoomed
view of the marked image region is shown on the right of each result. (a) Courtroom scan overall
reconstruction. (b) Courtroom scan roof reconstruction. (c) Courtroom scan indoor reconstruction.
(d) Museum scan overall geometry. (e) Museum scan ceiling reconstruction. (f) Museum scan
floor reconstruction. (g) Temple scan overall reconstruction. (h) Museum scan wall reconstruction.
(i) Ballroom scan reconstruction.
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4.4. Evaluation on ETH3D Dataset

In this section, we present our findings based on the ETH3D benchmark [51]. The ETH3D
benchmark [51] consists of high-resolution images of scenes with sparse scene coverage, high
viewpoint variation, and camera parameter information. The quantitative evaluation of our
method and the comparison with PatchmatchNet [17] on the ETH3D dataset [51] are detailed
in Table 3. Both methods have used the same fusion pipeline. Our method demonstrates
better accuracy and F-score, while PatchmatchNet has better completeness.

Table 2. Evaluation and comparison with PatchmatchNet [17] on the “Tanks and Temples” dataset [50].
The best results are bolded in the table.

Intermediate Set Advanced Set

Methods P (%) ↑ R (%) ↑ F-Score ↑ P (%) ↑ R (%) ↑ F-Score ↑
PatchmatchNet 43.64 69.38 53.15 27.27 41.66 32.31

Ours 45.12 69.69 54.30 28.31 41.06 32.80

Table 3. Quantitative evaluation of our method and comparison with PatchmatchNet [17] on the
ETH3D training set [51]. Following the benchmark, the accuracy and completeness measures are
quantified using the percentage of points below a 2 cm error margin (the higher the better). The best
results are bolded in the table.

Method Accuracy
(%) ↑

Completeness
(%) ↑ F-Score ↑

PatchmatchNet 64.81 65.43 64.21
Ours 64.96 65.21 64.37

4.5. Ablation Study

We have conducted an ablation study to understand and analyze the contributions
of the aforementioned loss terms of our architecture. The results are detailed in Table 4.
Since the edge-depth loss and the smoothness loss terms together strive for edge-aware
smoothness, we do not separate them in our experiments. We retrieve the last two metrics
from the validation set while tuning our hyper-parameters. The “depth map” represents the
accuracy of the estimated depth map, calculated using mean absolute error (MAE) between
the estimated depth map and groundtruth. “Error > 8 mm” represents the percentage of
points in the depth map having a higher error than 8 mm.

From Table 4, we can see that using all lost terms improves the depth map quality on
the validation set. For testing, we observe that our point clouds have better completeness
and overall metrics with bimodal and depth ground-truth loss while having edge-aware
smoothness term results in better accuracy. Our network also improves the arithmetic
mean of accuracy and completeness if we compare it against the baseline.

4.6. Effect of Depth Discontinuity Learning

From the above experiments and evaluation, our method demonstrates superior
reconstruction quality in terms of completeness and overall quality, which benefits from
our depth discontinuity learning. To understand the role of depth discontinuity learning
in reconstruction, we visualize the learned depth discontinuities (denoted as edge maps)
for a few randomly picked examples in Figure 4a, and compare them with the edge maps
predicted using the seminal learning-based edge detection method HED [60]. We can
see that by learning depth discontinuities, our network can retrieve edges where the true
depth discontinuities lie. Thus, as a key component for learning-based MVS pipelines, our
discontinuity-aware depth learning is more robust to photometrical changes, shadows, and
small variations in depth. In the earlier stage of the development of DDL-MVS, we tried to
feed the network with HED [60] output and jointly refine the depth and edge maps similar
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to EdgeStereo [37]. It turned out that even after refinement, the edges were too sensitive to
photometric changes, leading to higher depth errors.

Table 4. Ablation study on the point clouds and depth maps from the DTU dataset [48]. L1: depth-
groundtruth loss; L2: edge-depth loss; L3: smoothness loss; L4: bimodal loss. Note that L2 and L3

cannot be separated because they together work for edge-aware smoothness. The best results are
bolded in the table.

Point Clouds (Testing) Depth Maps (Validation)

Methods Acc.
(mm) ↓

Comp.
(mm) ↓

Overall
(mm) ↓

Depth Map
(mm) ↓

Error Ratio
(%; error > 8 mm) ↓

PatchmatchNet [17] 0.427 0.277 0.352 7.09 11.58
Architecture + L1 0.412 0.273 0.342 5.41 9.07

Architecture + L1,2,3 0.412 0.270 0.341 5.44 8.96
Architecture + L1,4 0.405 0.267 0.336 5.47 9.01

Architecture + L1,2,3,4 0.399 0.280 0.339 5.28 8.79

(a) Edge maps

10, 000

(b) GPU memory consumption

Figure 4. Edges maps and GPU Memory consumption. (a) Edges maps of a few randomly chosen
examples. For each example, the images from left to right are the color image, the edge map
predicted by HED [60], our learned edge map, and the α map, respectively. We can see that our
learned edge maps better capture the depth discontinuities, regardless of the photometric changes.
It is also interesting to observe that our α maps distinguish between foreground and background.
(b) Comparison of GPU memory demands with existing learning-based MVS networks on DTU
dataset with image size 1152 × 864.

To reveal how our depth discontinuity learning contributes to depth estimation, we
demonstrate the α map of each example in the last column of Figure 4a, where α is the
mixture weight in the bimodal Laplacian density distribution (see Equation (1)). It is
surprisingly interesting to observe that our network tries to learn to differentiate foreground
and background, for which the α values express a binary classification for foreground and
background pixels.

Our suggested framework enhances the quality of depth maps for both smooth and
boundary regions, as demonstrated quantitatively in Table 5. We have computed mean
absolute error (MAE) between the estimated depth and the groundtruth. In contrast to
the rest of the pixels, which correspond to a smooth area, boundary pixels are those pixels
where the Laplacian of the groundtruth depth is greater than 5.

Table 5. Evaluation of depth map errors in boundary and smooth regions using the DTU dataset [48].

Boundary and Smooth Region Depth Maps

Methods Boundary Region (mm) ↓ Smooth Region (mm) ↓ Whole Depth Map (mm) ↓
PatchmatchNet [17] 22.05 6.66 7.09

Ours 19.86 4.84 5.28
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The proposed approach also enhances the quality of the point clouds as demonstrated
qualitatively in Figure 5, from which we can see that thin structures and smooth regions
are captured more completely, and the boundary regions have a lower amount of noise.

Figure 5. Comparison between our method and the baseline method PatchmatchNet [17] on a set
of scenes from the DTU dataset [48]. For each scene, the colored image at the top shows with green
boxes the results from PatchmatchNet, and the colored image at the bottom with blue boxes shows
the results from our method. A zoomed view of each marked image region is shown on the right of
each result. The blue images depict our results, while the green images depict the baseline results.
(a) scan 9. (b) scan 118 (c) scan 24. (d) scan 75.

Figure 6 presents a comparison of our proposed learning-based MVS method with
two methods, namely COLMAP [32] and PatchmatchNet [17] (our baseline). COLMAP is a
state-of-the-art traditional photogrammetry-based method. We visualized the outcomes of
the methods on four different scene parts from the “Tanks and Temples” [50] dataset, and
the last column of the figure shows the exterior of the courtroom’s top, with the lower part
of the point cloud clipped to better reveal the ceiling’s completeness and accuracy.

(a)

(b)

Figure 6. Cont.
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(c)

Figure 6. Comparisons with the state-of-the-art traditional photogrammetry-based MVS method
COLMAP [32] and learning-based MVS method PatchmatchNet [17]. (a) COLMAP [32]. (b) Patch-
matchNet (baseline) [17]. (c) Ours.

To ensure a fair comparison, we provided COLMAP with the ground-truth camera
parameters. Our experiments demonstrate that our proposed method generates denser
and more complete point clouds than the traditional photogrammetry-based method.
However, the traditional method achieves better accuracy, partially due to its sparsity. Our
method’s results exhibit the highest completeness and are cleaner than the other methods.
Additionally, our method outperforms PatchmatchNet [17] in terms of reconstruction
accuracy. Please refer to the Supplementary video for more visual comparisons.

4.7. Generalization to Aerial Images

To further evaluate the generalization capabilities of our proposed methods, we
conducted experiments using aerial images. Aerial images are commonly used in remote
sensing applications for tasks such as large-scale 3D reconstruction. For our experiments,
we utilized the BlendedMVS dataset [52], which consists of aerial images with a low
resolution of 768× 576 images.

Figure 7 demonstrates some example images from the BlendedMVS dataset, illustrat-
ing the qualitative results obtained from our proposed methods. These results show that
our method can generate 3D reconstructions from aerial images, even with low-resolution
input images. This indicates the potential of our approach for remote sensing applications
that require large-scale 3D reconstructions from aerial imagery.

On a single RTX 2080, the time needed for depth inference per image is 90 ms when
using 5 neighboring views, and increases to 110 ms when using 7 neighboring views. As an
illustration of the running time, the bottom left building example in Figure 7 is comprised
of 77 images. It takes 79.993 s to generate a point cloud from the calibrated views with the
default 5 neighboring views.

Figure 7. Experiments with BlendedMVS dataset. Qualitative results of our proposed methods for
aerial-image-based 3D reconstruction are visualized here.
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4.8. Memory Consumption and Running Times

In Figure 4, we report our comparison of GPU memory demands with existing learning-
based MVS networks on the DTU dataset [48], from which we can see that the memory
demand of our network is much lower than most of the existing networks. In the DTU
dataset with the default parameters and the 5-view case, the average depth inference time
for our model is 345 ms. This is comparable to the performance of PatchmatchNet [17],
which took 300ms. We used a GPU of NVIDIA GeForce RTX 2080 for the experiments.

4.9. Limitations

Although our method has good completeness and a good overall score (see Table 1), it
has still not reached the accuracy level of traditional photogrammetry-based algorithms
such as Gipuma [5], which is a common weakness in recently developed learning-based
MVS methods with high completeness score. In this paper, our goal is to improve the
accuracy of the reconstruction process while simultaneously maintaining a high level of
completeness. Although the accuracy of our proposed network is not among the highest
compared to some traditional state-of-the-art methods, we would like to emphasize that
currently, learning-based approaches struggle to achieve a state-of-the-art accuracy result
while maintaining a high completeness score. This is due to the trade-off between accuracy
and completeness in the depth map fusion process, which is a key component of the
reconstruction pipeline. Such a trade-off implies that increasing completeness leads to an
increasing potential source of noise. Although using bimodality helps to reduce the noise,
we observe that our work, like other traditional and learning-based algorithms, contains
noise, especially in sparsely viewed regions that may need further research. It is also worth
noting that in this work we have used the same fusion pipeline as in other papers [7,17].

5. Conclusions

We have presented a strategy for improving the baseline MVS network by learning
depth discontinuities. The proposed depth discontinuity learning module has demon-
strated superior performance compared to the baseline [17]. The results of our ablation
study, as shown in Table 4, highlight the significant reduction in depth map error achieved
by incorporating the proposed DDL module, reducing the error by more than 30%. Experi-
mental findings presented in Table 5 demonstrate the enhanced quality of our approach
in terms of depth map accuracy in smooth and boundary regions. Moreover, our visual
results shown in Figures 3 and 5 revealed that the reconstructed point cloud obtained from
our approach exhibits improved accuracy in capturing object and scene details compared
to the baseline model while maintaining completeness.

The results of Figure 5 and Table 5 further reinforce the superiority of our method,
with better qualitative and quantitative results in both smooth and boundary regions in
the DTU [48] dataset. These results indicate that our method has strong generalization
capabilities and the ability to produce high-quality depth maps with improved accuracy
and precision. Furthermore, our experimental results demonstrate the potential of our
method for remote sensing applications, such as large-scale point cloud reconstruction
from aerial images.

Our experiments have demonstrated that learning depth maps as a mixture distri-
bution and integrating depth discontinuities into the network as prior knowledge for
piecewise smoothness regularization leads to improved reconstruction quality, with en-
hanced accuracy and overall quality of the final reconstruction.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs15122970/s1.
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