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ABSTRACT 
The dazzling promises of AI systems to augment humans in various 
tasks hinge on whether humans can appropriately rely on them. 
Recent research has shown that appropriate reliance is the key to 
achieving complementary team performance in AI-assisted deci-
sion making. This paper addresses an under-explored problem of 
whether the Dunning-Kruger Efect (DKE) among people can hinder 
their appropriate reliance on AI systems. DKE is a metacognitive 
bias due to which less-competent individuals overestimate their 
own skill and performance. Through an empirical study (� = 249), 
we explored the impact of DKE on human reliance on an AI sys-
tem, and whether such efects can be mitigated using a tutorial 
intervention that reveals the fallibility of AI advice, and exploiting 
logic units-based explanations to improve user understanding of AI 
advice. We found that participants who overestimate their perfor-
mance tend to exhibit under-reliance on AI systems, which hinders 
optimal team performance. Logic units-based explanations did not 
help users in either improving the calibration of their competence 
or facilitating appropriate reliance. While the tutorial intervention 
was highly efective in helping users calibrate their self-assessment 
and facilitating appropriate reliance among participants with over-
estimated self-assessment, we found that it can potentially hurt 
the appropriate reliance of participants with underestimated self-
assessment. Our work has broad implications on the design of 
methods to tackle user cognitive biases while facilitating appro-
priate reliance on AI systems. Our fndings advance the current 
understanding of the role of self-assessment in shaping trust and 
reliance in human-AI decision making. This lays out promising 
future directions for relevant HCI research in this community. 

CCS CONCEPTS 
• Human-centered computing → Empirical studies in HCI; 
• Computing methodologies → Artifcial intelligence; • Ap-
plied computing → Law, social and behavioral sciences. 
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1 INTRODUCTION 
In the last decade, powerful AI systems (especially deep learning 
systems) have shown better performance than human experts on 
many tasks, sometimes outperforming humans by a large mar-
gin [58, 87]. Attracted by the predictive capability of such AI sys-
tems, researchers and practitioners have started to adopt such sys-
tems to support human decision makers in critical domains (e.g., f-
nancial [33], medical domains [48]). With the wish of complemen-
tary team performance, one goal of such human-AI collaboration is 
appropriate reliance: human decision makers rely on an AI system 
when it is accurate (or perhaps more precisely, when it is more 
accurate than humans) and do not rely on it when the system is 
inaccurate (or, ideally, whenever it is wrong). In such a collabo-
rative decision process, human factors (e.g., knowledge, mindset, 
cognitive bias) and the explanations for AI advice are important 
for trust in the AI system and for human reliance on the system. 
Several prior works have carried out empirical studies within this 
context of human-AI decision making, to explore the efectiveness 
of diferent kinds of explanations and the role of human factors in 
shaping such collaboration [3, 8, 24, 33, 52, 62, 79, 87]. 

In recent literature exploring human-AI interaction, researchers 
have shown a great interest in understanding what shapes user trust 
and reliance on AI systems. They found that factors like frst impres-
sion [76], AI literacy [8], risk perception [33, 34], and performance 
feedback [55, 61] among others, play important roles in shaping 
human trust and reliance on AI systems. Explanations (e.g., feature 
attribution of input) have been found to be useful in promoting hu-
man understanding and adoption of AI advice [3, 52, 79, 87] and He 
et al. [35] recently proposed analogies as an instrument to increase 
the intelligibility of explanations. However, prior studies observed 
improvements in performance in the presence of explanations only 
when the AI system outperformed both the human and the best 
team [3]. One reason for such phenomenon is under-reliance, which 
indicates humans do not rely on accurate AI predictions as of-
ten as it is ideal to [23, 79, 82]. In this work, we explore whether 
Dunning-Kruger efect (DKE) [43] – a metacognitive bias due to 
which individuals overestimate their competence and performance 
– afects user reliance on AI systems. This a particularly important 
metacognitive bias to understand in the context of human-AI de-
cision making, since one can intuitively understand how infated 
self-assessments and illusory superiority over an AI system can 
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result in overly relying on oneself or exhibiting under-reliance 
on AI advice. This can cloud human behavior in their interaction 
with AI systems. However, to the best of our knowledge no prior 
work has addressed this. In addition, DKE is closely related to user 
confdence in decision making, which has been identifed as an 
important user factor and has been recently explored in the con-
text of human-AI decision making [10, 33]. To achieve the goal 
of appropriate reliance, users are expected to adequately calibrate 
their self-confdence and their confdence in the AI system. Our 
work can lead to fundamental HCI insights that can help facilitate 
appropriate reliance of humans on AI systems. 

To explore the impact of DKE on user reliance, we need to frst 
identify participants who demonstrate the DKE (i.e., participants 
who perform relatively poorly but overestimate their performance). 
According to existing research on the DKE [16, 18], the participants 
representing the bottom performance quartile tend to overestimate 
their skill and depict an illusory superiority, while those in the 
top performance quartile do not exhibit such a trend. Researchers 
have also operationalized self-assessments to serve as indicators of 
competence in diferent online tasks [29]. Informed by such prior 
work, we consider overestimated self-assessments in the context of 
human-AI decision making as an indicator of the DKE and explore 
it further. Through an explicit analysis of participants’ performance 
in the bottom quartile, we verifed that the overestimation in their 
performance is highly indicative of DKE in our study. In this scope, 
we explore whether we can design interventions to help users 
improve their own calibration of their skills in the task at hand. 

Inspired by existing work in mitigating cognitive biases such 
as the DKE [43] and promoting appropriate reliance [8, 45, 79], 
we propose to leverage tutorials to calibrate their self-assessment 
through revealing the actual performance level of participants with 
performance feedback. In such a tutorial, after the initial decision 
making, participants are provided with correct answers and expla-
nations to contrast with their fnal choice (if they make a wrong 
choice). As pointed out by existing research [17], one cause of DKE 
can be that people place too much confdence in the insightfulness 
of their judgments. When the correct answer difers from their 
own choice, they may refrain from trusting such ground truth in 
the absence of additional rationale. To ensure the efectiveness of 
revealing users’ shortcomings, we provide them with contrastive 
explanations which point out not only the reason for correct an-
swers, but also why their choice was incorrect. Based on prior work, 
we expect such a training session to help users realize their errors 
and calibrate their self-assessment. Furthermore, they become more 
skillful at the task, which is also highlighted by Kruger et al. [43] 
in mitigating DKE. 

When AI advice disagrees with human decisions, the lack of ra-
tionales may be a reason not to adopt AI advice. To help participants 
interpret the AI advice, we leverage logic units-based explanations 
which reveal the AI system’s internal states. When users recognize 
that an explanation provides reasonable evidence for supporting AI 
advice, it is much easier for them to resolve disagreement in their 
decision making. As a result, participants have a better opportunity 
to know and understand when they “should” in fact rely on AI 
systems. From this standpoint, efective explanations alongside the 
tutorial may help mitigate the impact of the Dunning-Kruger Efect 
on user reliance. To analyze the impact of DKE on user reliance on 

AI systems in this paper, we aim to fnd answers for the following 
two research questions: 

RQ1: How does the Dunning-Kruger Efect shape reliance 
on AI systems? 

RQ2: How can the Dunning-Kruger Efect be mitigated in 
human-AI decision making tasks? 

To answer these questions, and based on existing literature, we 
proposed four hypotheses considering the efect of the overesti-
mation of performance on (appropriate) reliance, the efect of the 
tutorial intervention on self-assessment calibration and reliance 
for participants with miscalibrated self-assessment, the efect of 
logic units-based explanations and tutorial intervention on reliance 
and team performance. We tested these hypotheses in an empirical 
study (� = 249) of human-AI collaborative decision making in a 
logical reasoning task (i.e., multi-choice logical question answer-
ing based on a context paragraph). We found a negative impact 
of the DKE on human reliance behavior, where participants with 
DKE relied signifcantly less on the AI system than their counter-
parts without DKE. To mitigate such efects, we designed a tutorial 
intervention for making users aware of their miscalibrated self-
assessment and provided logic units-based explanations to help 
explain AI advice. Although we found that the intervention tutorial 
was highly efective in improving participants’ self-assessments, 
their improvement in appropriate reliance and performance is lim-
ited (statistically non-signifcant). Moreover, no obvious benefts 
were found with introducing logic units-based explanations in the 
logical reasoning task. 

Our results highlight that the overestimation of performance will 
result in under-reliance, and such miscalibrated self-assessment can 
be improved with our proposed tutorial intervention. We also found 
that participants who overestimated their performance demon-
strated an increased appropriate reliance, which the calibration of 
self-assessment can partially explain. However, this was in contrast 
to participants who initially underestimated their performance – 
while they calibrated their self-assessment, they achieved signif-
cantly worse appropriate reliance and performance. One potential 
cause is that such tutorials help them recognize their actual per-
formance but also cause the illusion of superiority to AI systems. 
Such fnding is also in line with algorithm aversion [12], where 
users are less tolerant of the mistakes made by AI systems. In ad-
dition, we found that the users’ general propensity to trust goes 
a long way in shaping trust in AI systems, despite our tutorial 
not having an efect in reshaping subjective trust. Based on the 
results from our empirical study, we provide guidelines for design-
ing more comprehensive user tutorials and point out promising 
future directions for further research around self-assessments in 
the context of human-AI decision making. Although we found that 
miscalibrated self-assessments may hinder appropriate reliance 
(i.e., participants with DKE relied less on AI systems), the par-
ticipants with accurate self-assessment did not necessarily show 
optimal appropriate reliance (e.g., we found that participants with 
underestimation showed better appropriate reliance and perfor-
mance). This interplay between self-assessment and reliance on AI 
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systems is potentially more complex than what can be explained 
by a linear relationship and, therefore, deserves further research. 

In summary, we explored the efectiveness of a tutorial inter-
vention to mitigate the DKE and, in turn, facilitate appropriate 
reliance. We found evidence suggesting its efectiveness through an 
empirical study in a logical reasoning task. Our work has important 
implications for HCI research in the realm of human-AI interaction. 
Our fndings indicate that incorrect self-assessments and a preva-
lent meta-cognitive bias can afect user objective reliance on the AI 
system. Thus, while designing for optimal human-AI interaction, it 
is important to consider the extent to which users are aware of their 
own abilities and that of the AI system. Our work is an important 
frst step towards furthering our understanding of how cognitive 
biases shape human reliance on AI systems, an understudied aspect 
in this quickly evolving realm of research. Considering the unique 
and evolving landscape of AI systems, the associated metaphors, 
and end-user expectations that are mediated through abstractions 
and their own experiences, we believe that studying the role of 
the DKE in the human-AI decision making context is a timely and 
unique contribution. We hope that our work can inform future 
research on designing human-AI interactions that can facilitate 
appropriate reliance on AI systems. 

2 BACKGROUND AND RELATED WORK 
This paper contributes to the growing literature on human-AI inter-
action, collaboration, and teaming, by exploring how the Dunning-
Kruger Efect shapes user reliance on AI systems and whether 
such efect can be mitigated with a user tutorial that high-
lights the fallibility of AI advice and logic units-based expla-
nation. Thus, we position our work in diferent strands of related 
literature: the general literature on AI-assisted decision making 
and what roles explanations play in such collaboration (2.1), more 
specifc literature on promoting appropriate reliance (2.2), the con-
tradicting literature on algorithm aversion and algorithm apprecia-
tion (2.3), and fnally the literature on self-assessments, which has 
been explored in both psychology and other HCI studies (2.4). 

2.1 Human-AI Collaborative Decision Making 
In recent years, AI-assisted decision making has received more and 
more attention. In such collaboration, user factors and interaction 
with AI systems are observed to be of much impact on fnal user be-
haviors. Among these work, most researchers are interested in how 
users shape their trust in AI systems and how user behaviors will 
be afected by AI systems. Topics like performance feedback [2, 55], 
risk perception [27, 34], uncertainty [77] and confdence [10, 79, 87] 
of machine learning models, impact of explanations [3, 46] have 
been extensively studied in human-AI decision making. Meanwhile, 
fairness, accountability, and transparency of incorporating AI sys-
tems for collaborative decision making received more and more 
attention from a wide range of stakeholders [19, 21]. For a more 
comprehensive survey of existing work on Human-AI decision 
making, readers can refer to [44]. 

According to GDPR, the users of AI systems should have the 
right to access meaningful explanations of model predictions [68]. 
Under this perspective, more and more researchers have started to 
provide human-centered explainable AI (XAI) solutions to promote 

human-AI collaboration [20–22, 50, 78]. Up to now, the benefts 
of incorporating XAI methods in human-AI collaboration are still 
limited [3, 44]. As reported by most existing work, though XAI 
methods can aid understanding of AI advice, such efect does not 
necessarily lead to clear performance improvement [3, 52]. For in-
stance, Liu et al. [52] observed that interactive explanations may 
“reinforce human biases and lead to limited performance improve-
ment”. Based on a comprehensive literature review, Wang et al. [79] 
proposed three desiderata of AI explanations to promote appropri-
ate reliance: (1) critical for people to understand the AI, (2) recognize 
the uncertainty underlying the AI, and (3) calibrate their trust in 
the AI in AI-assisted decision making. With such ideal properties, 
efective explanations may also potentially help participant realize 
their weakness and mistake when they disagree with AI advice. 
Under this perspective, we also explored whether logic units-based 
explanations can help participants calibrate their self-assessment 
and promote appropriate reliance. 

2.2 Empirical Studies on Appropriate Reliance 
AI systems and human decision makers are supposed to achieve 
complementary team performance through taking advantage of 
both powerful predictive capability of AI systems and fexibility of 
human users to handle complex decision tasks. However, existing 
literature still struggles to fnd such complementary team perfor-
mance — in most empirical studies, AI alone performs much better 
than human-AI team [44, 52]. With further analysis, researchers 
point out two main causes: (1) under-reliance, users fail to fully take 
advantage of powerful AI systems, and (2) over-reliance, users fail 
to rely on themselves when they actually outperform AI systems. 

To promote appropriate reliance, existing research mainly fo-
cused on mitigating under-reliance and over-reliance. Diferent in-
terventions like cognitive forcing functions [5], user tutorial [8, 9] 
and explanations [79] are proved to be highly efective in mitigating 
such unexpected reliance patterns. Buçinca et al. [5] introduced 
three types of cognitive functions to mitigate over-reliance: show 
AI advice on demand, update decision with AI advice after the 
initial decision, and keep participants waiting for a while before 
providing advice. Their experimental results indicate that such cog-
nitive forcing functions are even more efective than simple XAI 
methods in mitigating over-reliance. With a comparative study 
of four types of diferent explanations, Wang et al. [79] reported 
that feature importance and feature contribution explanations can 
promote appropriate reliance with mitigating under-reliance. 

“User tutorials, when presented in appropriate forms, can help 
some people rely on ML models more appropriately” [8]. Another 
important branch is educating users with user tutorials, which 
stands out in recent years. On one hand, such user tutorials make 
users aware of the weakness of AI systems, which further calibrate 
user trust and reliance on AI systems. For example, Chiang et al. [9] 
found that a brief education session (to increase people’s awareness 
of the machine learning model’s possible performance disparity 
on diferent data) can efectively reduce over-reliance on out-of-
distribution data. On the other hand, such a system can educate 
participants with domain-specifc knowledge extracted from an 
AI system, which further improves users’ capability. As a typical 
example, Lai et al. [45] proposed model-driven tutorials to help 
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humans understand patterns learned by models in a training phase. 
Inspired by this series of research, we also explored whether DKE 
can be mitigated with user tutorial. For the purpose of calibrating 
self-assessment, we include performance feedback and explanations 
to contrast wrong user choice with correct answers. 

2.3 Algorithm Aversion and Algorithm 
Appreciation 

In the face of intelligent predictive agents, which may outperform 
human experts, people show two contradicting altitudes: Algo-
rithm Aversion and Algorithm Appreciation. Compared to human 
forecasters, people more quickly lose confdence in AI systems af-
ter seeing them make the same mistakes [12]. Thus, some users 
are reluctant to use superior but imperfect algorithms [6]. Such a 
phenomenon is called “Algorithm Aversion,” which has been ob-
served across multiple domains, like moral decision making [31], 
economic bargains [23], medical diagnosis [54], and autonomous 
driving [14]. Burton et al. [6] summarized the cause and solution 
of algorithm aversion with fve aspects: expectations and exper-
tise, decision autonomy, incentivization, cognitive compatibility, 
and divergent rationalities. Meanwhile, Dietvorst et al. [13] found 
that such algorithm aversion can be overcome with the chance to 
modify algorithm advice. Readers can refer to two recent survey 
papers [6, 40] for a comprehensive literature review. In contrast, 
Logg et al. [53] found that users were infuenced more by the algo-
rithmic decision instead of human decision, and they frst coined 
the notion of “Algorithm Appreciation” to describe such a phenom-
enon. Others revealed similar fndings in contexts where tasks are 
perceived as being more objective [7], machines share rationale 
with humans [75] or with prior exposure to similar systems [42]. 

Besides contradicting attitudes towards the use of AI systems, 
prior work has shown how diferent human factors such as algorith-
mic literacy [72], expertise [53], and cognitive load [84] can afect 
users’ fnal adoption of algorithmic advice. For example, users’ 
algorithmic literacy [71–73] about fairness, accountability, trans-
parency, and explainability is found to greatly afect their trust and 
privacy concern in adopting the advice from AI systems [70, 74]. 
Logg et al. [53] found that experts may even show more tendency 
to discount algorithmic advice when compared to laypeople. Fur-
thermore, these factors can also afect the extent to which users 
show algorithm aversion or algorithm appreciation. For instance, 
You et al. [84] argue that algorithm appreciation declines when the 
transparency of the advice source’s prediction performance further 
increases. In their study, they used a series of numbers instead of 
aggregated average performance, which increases the transparency 
of prediction performance. But they observed a decrease in algo-
rithm appreciation, which was explained by the greater cognitive 
load imposed by the elaborated format. A recent work [37] found 
that the choice of framings of human agents and algorithmic agents 
may afect user perception of agent competence (i.e., expert power), 
which further afects user behavior and cause inconsistent obser-
vations of algorithm aversion and algorithm appreciation. In this 
work, since we explore means to facilitate appropriate reliance of 
humans on AI systems, we position our fndings in the context of 
the research breaching algorithm aversion and appreciation. Future 

work can further explore the role of algorithmic aversion and ap-
preciation in the context of interventions to facilitate appropriate 
reliance on AI systems. 

2.4 Self-assessment in HCI Studies 
Evaluating one’s own performance on a task, typically known as 
“self-assessment”, is perceived as a fundamental skill, but people 
appear to calibrate their abilities [39] poorly. In general, most people 
tend to overestimate their own abilities. The cause of such an efect 
is multi-fold, like people tend to think they are above average and 
people place too much confdence in the insightfulness of their 
judgments [17]. With self-assessment, existing HCI research has 
explored using it as a measure for diferent purposes: Gadiraju et 
al. [29] used self-assessment for competence-based pre-selection 
in crowdsourcing marketplaces, Green et al. [33] measured users’ 
risk assessment with comparing self-reported confdence with their 
actual performance, and Chromik et al. [11] compared perceived 
understanding of XAI methods with their actual understanding to 
reveal users’ illusion of explanatory depth. 

Dunning-Kruger efect (DKE) [43] described the dual burden the 
unskilled sufer from, besides the low performance, the unskilled 
will also lack the skill to estimate their own ability. Kruger et al. 
also found that a training session to increase the skills of partic-
ipants is highly successful in mitigating such efect [43]. It had 
some positive efects and showed that by increasing knowledge, the 
overestimation could also be reduced. Further work also proved the 
efectiveness of such training in diferent domains like medicine [4] 
and economics [64]. 

Besides the popularity in psychology research, Dunning-Kruger 
efect was also studied in human-computer interaction feld. In a 
recent study, Schafer et al. [65] conducted a user study based on 
Diner’s Dilemma game. They found that participants who consid-
ered themselves very familiar with the task domain showed more 
trust in an intelligent assistant but relied less on it. Presenting ex-
planations was not as efective as expected, and sometimes even 
resulted in automation bias. Using logical reasoning tasks with 
varying difculty levels, Gadiraju et al. [29] showed that online 
crowd workers also fall prey to the DKE. The authors proposed 
the use of self-assessments in a pre-selection strategy to improve 
quality-related outcomes. Informed by prior literature, we selected 
logical reasoning tasks as the exploratory lens to address our re-
search questions since the tasks themselves are straightforward to 
understand for laypeople, but with increasing difculty, they also 
create room for inviting AI advice. This serves suitably to study the 
DKE in the context of human-AI decision making. 

3 METHOD AND HYPOTHESIS 
In this section, we describe the logical reasoning task (i.e., multi-
choice logical question answering based on a context paragraph) 
and present our hypotheses. 

3.1 Logical Reasoning Task 
Prior work in the human-AI decision making context has explored 
how one can reliably study human behavior in proxy tasks. These 
work has established the importance of designing tasks, where 
users can fnd that there is a need to rely on AI (e.g., owing to the 
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Figure 1: An example of a logical reasoning task used to 
obtain an initial human decision in the two-stage decision 
making process. 

task difculty or a perceivable beneft) and where there is a risk 
associated with such reliance (e.g., dealing with an imperfect AI 
system) [5, 76]. This follows from the work of Lee and See [47] 
who defned trust in the Human-AI interaction context as “the 
attitude that an agent will help achieve an individual’s goals in a 
situation characterized by uncertainty and vulnerability.” The basis 
for our experimental setup is a task where participants are asked 
to choose an option in a multi-choice setting based on a paragraph 
of context presented to them (an example of the interface page 
is shown in Figure 1). We use the publicly available Reclor1 [85] 
dataset to this end. The dataset corresponds to characteristically 
high difculty of logical reasoning tasks and has been used in prior 
work exploring Human-AI team performance [3]. This task was 
chosen as a realistic scenario for human-AI collaboration, where 
humans incentivized to complete the task accurately, may have the 
capability to reason accurately and fnd the right answer, but may 
also evidently perceive a beneft in adopting AI advice. In addition, 
the Dunning-Kruger Efect which has been widely replicated in a 
variety of contexts has been shown to be prevalent in the domain 
of logical reasoning as well [16, 43]. 

In the basic setting of the task, participants are presented with 
three snippets of information: (1) a context paragraph, (2) a question 
related to this context, and (3) four diferent options corresponding 
to the question. Among the four options, a single option is deemed 
to be the best match to the question (i.e., ground truth). Participants 
are asked to frst go through the context paragraph, and then make 
a choice based on the question. This simulates a realistic scenario 
where participants make decisions in a reading comprehension set-
ting. While humans are capable of handling such tasks, AI systems 
may outperform them by extracting useful information and dealing 

1https://whyu.me/reclor/ 

with complex reasoning structures which require a larger working 
memory capacity. The task interface is shown in Figure 2(a). 
Two-stage Decision Making. To analyze human reliance on AI 
systems, all participants in our study worked on tasks with a two-
stage decision making process. In the frst stage, only task informa-
tion was provided, and participants were asked to make decisions 
themselves (example shown in Figure 1). After that, we showed 
the same task with AI advice (and explanations depending on the 
experimental condition) and provided an opportunity for the par-
ticipants to alter their initial choice. An example of second stage is 
shown in Figure 2(a), where “Your choice” shows the initial decision 
participants made in the frst stage. This setup of an initial unaided 
decision and the presentation of advice from an AI system in order 
to make a second and fnal choice is similar to the update condition 
in [33], and in line with fndings that people frst make a decision 
on their own and only then decide whether to incorporate system 
advice [32]. It also fts with the research of Dietvorst et al. [13] on 
trust in two-stage decision making. 
Quality Control. To ensure participant reliability and that partici-
pants worked on the logical reasoning tasks genuinely (i.e., read 
the context paragraph and question carefully), we employed three 
attention check questions during the study process [56]. For this 
purpose, we embedded explicit instructions asking participants to 
select a specifc option either in the context paragraph (once) or 
the question (twice). For example, we embedded the instruction, 
“Confrm that you have read the context by selecting answer B.” into 
a context paragraph on the task interface (which looks nearly iden-
tical to other tasks). A conservative estimate through trial runs 
refected that participants would take at least 1 minute to complete 
each task. As a further quality control measure, we deactivated the 
submit button corresponding to each task page (including tasks in 
tutorial phase) for 30 seconds. Since attention check pages do not 
require deliberation, we reduced that time to 5 seconds. 

3.2 Logic Units-based Explanations 
In natural language processing tasks, feature attribution methods 
(e.g., text highlights on input) are the most popular in existing 
literature. However, multiple pieces of research work point out that 
such token-level highlights are still hard to interpret [69, 81, 86]. 
Meanwhile, since logical reasoning tasks highlight the potential for 
logical reasoning congruent to human understanding, explanations 
based on logic units (i.e., text spans) may be a better choice to reveal 
how AI systems reach their fnal decision. With this perspective, 
we drew inspiration from LogiFormer, proposed by Xu et al. [80], 
who conducted logical reasoning with logic units based on pre-
trained language models to generate such explanations. LogiFormer 
adopted a graph transformer network for logical reasoning of logic 
units, where the logic units are text spans connected with causal 
relations. Following this interpretability design, we also relied on 
the self-attention matrix A ∈ R�×� (n indicates the number of logic 
units) from the last layer of the graph transformer network and 
identifed the important logic units with the following formula: 

�=�∑ 
� = ������� ( A� � ), (1) 

� =1 

https://whyu.me/reclor/
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(a) Logical question answering page with AI advice. (b) Tutorial page with manual explanation. 

Figure 2: Screenshots of the task interface. In panel (a), the logic units-based explanations are highlighted with a light blue 
background color in the context paragraph and the option suggested by the AI system. In panel (b), we show the rationale of 
correct answers in contrast with users’ fnal choice at the bottom (when users do not select the correct answer in the decision 
making stage) at the bottom. 

where � is the top-� logic units which receive most attention 
from other logic units (i.e., we calculated it with the sum along 
each column of the self-attention matrix). One example of such 
explanation is shown in fgure 2(a). 

Our implementation and extracted logic units-based explana-
tions can be found in Github repo.2 To generate the explanations 
described above, we frst trained the LogiFormer model on the Re-
clor dataset. With the trained model, we generated logic units-based 
explanations according to Equation 1. In this study, we specify � = 5 
to highlight the most important logic units for each task. Notice 
that, such explanations are generated for each option, and the spans 
are only extracted from the context paragraph and each option. For 
more details about the LogiFormer model, we refer readers to the 
original paper [80] and the corresponding implementation.3 

3.3 Proposing a Tutorial Intervention to Help 
Users Calibrate Their Skills 

To answer RQ2, we need to verify whether our proposed interven-
tion can help mitigate the DKE among the same participants who 
demonstrated it in the absence of the intervention. This requires 
two batches of tasks that can facilitate comparative performance 

2https://github.com/RichardHGL/CHI2023_DKE 
3https://github.com/xufangzhi/Logiformer 

assessment and on which participants can be asked to self-assess 
their performance. Based on the efectiveness of tutorials as inter-
ventions in previous HCI literature [8, 9, 45], we designed a tutorial 
as a means to shed light on the fallibility of AI advice. In our pa-
per, we, therefore, considered the tutorial as an intervention and 
analyzed its efectiveness by comparing participants’ reliance and 
self-assessment before and after the tutorial was delivered. Inspired 
by existing work to mitigate diferent kinds of cognitive biases 
through revealing such biases to users [1, 38], we decided to adopt 
a tutorial to help users calibrate their skills through self-assessment 
on logical reasoning tasks. To this end, we designed a tutorial with 
the aim of revealing to users that they may not be as capable in such 
tasks as they may believe. Furthermore, to ensure the efectiveness 
of revealing their mistakes, we designed persuasive explanations 
for users. To achieve that goal, we chose to provide contrastive 
explanations which point out not only the reason for correct an-
swers but also the reason to reject users’ wrong choices. As none 
of the existing of-the-shelf toolkits can be used to obtain such 
strongly persuasive explanations, we manually created explana-
tions for each option in the four tasks considered in the tutorial 
phase. These explanations corresponding to each task have also 
been made available on the Open Science Framework companion 
page. An example of such performance feedback and contrastive 
explanation can be found in Figure 2(b). On this page, we showed 

https://github.com/RichardHGL/CHI2023_DKE
https://github.com/xufangzhi/Logiformer
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the correct answer in a box with light blue background color. The 
fnal decision of the participant after receiving AI advice, and the AI 
advice itself are shown in boxes with a dark blue background color. 
The contrastive explanation is shown at the bottom of this page. 
Through such a performance feedback intervention, we hope that 
users with infated self-assessments can realize their true capability 
with respect to the tasks and recalibrate their self-assessment. Such 
an intervention can potentially help users improve their reliance 
on AI systems [36]. 

3.4 Pilot Study for Task Selection 
To answer our research questions, we need to analyze the impact 
of the Dunning-Kruger efect on reliance measures and the efec-
tiveness of the proposed intervention to mitigate such an efect. 
Note that the Dunning-Kruger efect corresponds to one’s skills in a 
given task [16]. To operationalize this, we need two batches of tasks 
with similar difculty levels, through which we can verify the efec-
tiveness of the intervention by comparing performance before and 
after the intervention. Meanwhile, for the tutorial tasks, we need 
tasks that may trigger the Dunning-Kruger efect. In other words, 
tasks that participants may make mistakes on with high confdence. 
For these purposes, we conducted a pilot study with 10 participants 
from the Prolifc crowdsourcing platform.4 In the pilot study, each 
participant worked on 30 questions randomly sampled from the 
validation set of the Reclor dataset. We collected their choice and 
confdence level for each task. With six participants who passed all 
the attention checks, we assessed the difculty of each task based 
on the number of participants who answered the task correctly. 
Considering that most participants spend around 1 minute to fully 
understand a task and make a decision, we considered the batch 
size to be six. We collected two batches of tasks which are of similar 
difculty (informed by the average accuracy on the tasks in the 
pilot study). To make the tutorial efective but not cumbersome, we 
selected four tasks for the tutorial. The tasks for the tutorial were 
selected in a similar fashion as the other batches, as the tutorial 
only has four questions instead of six, the tasks with the lowest and 
highest accuracy were removed. Such selection strategy creates 
a batch similar in difculty to the other batches. Among the four 
tasks, we confgured the AI advice to be correct on two of them and 
misleading on the other two. All participants were rewarded with 
hourly wage of £7.5 (estimated completion time was 33 minutes), 
and extra bonus of £0.05 for each correct decision. 

3.5 Hypotheses 
Our experiment was designed to answer questions surrounding the 
impact of Dunning-Kruger efect on user reliance on AI systems, 
and how to mitigate such potentially undesirable impact. People 
who are less competent in a task struggle more with estimating their 
own performance in the task, compared to the more competent 
counterparts [43]. Impacted by DKE, users with the option to rely 
on AI advice may overestimate their own performance in a task and 
tend to rely on themselves when they are actually less capable than 
the AI systems. Apart from them, some users can exhibit accurate 
self-assessment. Such accurate self-assessments can be indicative 
of a good understanding of the task difculty and personal skills, 
4https://www.prolifc.co/ 

which may help these users rely on AI systems more appropriately. 
Meanwhile, efective explanations may amplify such an efect. Thus, 
we hypothesize that: 

(H1) Users overestimating their own performance will 
demonstrate relatively less reliance on AI systems than users 
demonstrating accurate self-assessment. 

According to previous work [26, 57], interventions that provide 
users with feedback on their performance may help improve their 
self-assessment. By providing users with an opportunity to refect 
on their skills and recalibrate their skills on the given task, we 
argue that the impact of the DKE can be mitigated. As a result of an 
improved calibration of oneself, such users are better suited to rely 
on AI systems appropriately when making decisions. Therefore, we 
hypothesize that: 

(H2) Making users aware of their miscalibrated self-
assessment, will help them improve their self-assessment. 

(H3) Making users aware of their miscalibrated self-
assessment will result in relatively more appropriate reliance 
on AI systems. 

Performance feedback can potentially help participants improve 
their self-assessment, which may facilitate appropriate reliance. 
At the same time, explanations have been shown to improve the 
human understanding and interpretation of AI advice [3, 52, 79], 
which can also potentially contribute to appropriate reliance. Thus, 
we hypothesize to observe the following in a human-AI decision 
making context: 

(H4) Providing performance feedback and meaningful ex-
planations can facilitate appropriate reliance on the AI system. 

4 STUDY DESIGN 
This section describes our experimental conditions, variables, sta-
tistical analysis, procedure, and participants in our main study. 

4.1 Experimental Conditions 
In our study, all participants worked on logical reasoning tasks 
with two-stage decision making process (described in Sec. 3.1). The 
only diference is whether tutorial is presented and whether ex-
planations are provided along with AI advice. To comprehensively 
study the efect of each factor and their interaction efect, we con-
sidered a 2 × 2 factorial design with four experimental conditions: 
(1) no tutorial, no XAI (represented as × Tutorial,× XAI), (2) 
with tutorial, no XAI (represented as ✓ Tutorial,× XAI), (3) no 
tutorial, with XAI (represented as × Tutorial,✓ XAI), (4) with 
tutorial, with XAI (represented as ✓ Tutorial,✓ XAI). In condi-
tions with tutorial, participants were presented with four selected 
tasks with performance feedback and contrastive explanation for 
correct answers against wrong choice (when participants missed 
the wrong answer). While in conditions without tutorial, the four 

https://www.prolific.co/
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Table 1: The diferent appropriate reliance patterns consid-
ered in [66]. �� is initial human decision, while �� is the fnal 
decision after AI advice. 

�� AI advice �� Reliance 

Incorrect Correct Correct Positive AI reliance 
Incorrect Correct Incorrect Negative self-reliance 
Correct Incorrect Correct Positive self-reliance 
Correct Incorrect Incorrect Negative AI reliance 

tasks selected are presented as normal tasks without any perfor-
mance feedback or explanation for correct answers, to prevent any 
learning efect. In conditions with XAI, the top-5 most important 
logic units are highlighted as an explanation for AI advice. 

For each batch of six tasks, the AI system was confgured to 
provide correct advice on four of them and misleading advice on 
two tasks. So the accuracy of AI systems is around 66.7%. To avoid 
any ordering efect, we randomly assign one batch of tasks as frst 
batch of tasks for each participant and further shufed the order of 
tasks within each batch. 

4.2 Measures and Variables 
We measure the reliance of participants on the AI system via two 
metrics: the Agreement Fraction and the Switch Fraction. These 
look at the degree to which participants are in agreement with 
AI advice, and how often they adopt AI advice in cases of initial 
disagreement. They are commonly used in the literature, for exam-
ple in [83, 87]. In addition, we consider the accuracy in batches to 
measure participants’ performance with AI assistance. Since cases 
without initial disagreement do not clearly signal reliance on the 
system we restrict the scope of the appropriate reliance measure to 
accurately understand how participants handle divergent system 
advice. Max et al. [66] presented four conditions of appropriate 
reliance patterns (see Table 1) when the disagreement exists and 
correct answer exists in human initial decision or AI advice. We 
followed them to adopt Relative positive AI reliance (RAIR) and Rel-
ative positive self-reliance (RSR) as appropriate reliance measures. 
The two measures assessed users’ appropriate reliance from two 
dimensions, which can help analyze the dynamics of reliance. To 
provide an overview of participants’ appropriate reliance under ini-
tial disagreement, we considered Accuracy-wid (i.e., accuracy with 
initial disagreement). These measures are computed as follows: 

Number of decisions same as the system 
Agreement Fraction = ,

Total number of decisions 
Number of decisions user switched to agree with the system 

Switch Fraction = ,
Total number of decisions with initial disagreement 

Number of correct fnal decisions 
Accuracy = ,

Total number of decisions 
Number of correct fnal decisions with initial disagreement 

Accuracy-wid = ,
Total number of decisions with initial disagreement 

Positive AI reliance 
RAIR = 

Positive AI reliance + Negative self-reliance 
, 

Positive self-reliance 
RSR = 

Positive self-reliance + Negative AI reliance 
. 

To measure the self-assessment of users, we gathered responses on 

the following question after each batch of tasks – “From the previ-
ous 6 questions, how many questions do you estimate to have been 
answered correctly? (after receiving AI advice)”. Comparing that es-
timation with the actual correct number, we can calculate the degree 
of miscalibration and self-assessment as: Degree of Miscalibra-
tion = |Estimated correct number - Actual correct number|, Self-
assessment = Estimated correct number - Actual correct number. 
Meanwhile, for conditions with explanations, we also assessed the 
helpfulness of explanations with the question, “To what extent 
was the explanation (i.e., the highlighted words/phrases) helpful in 
making your fnal decision?” Responses were gathered on a 5-point 
Likert scale from 1 to 5 corresponding to the labels not helpful, very 
slightly helpful, slightly helpful, helpful, very helpful. 

For a deeper analysis of our results, a number of additional 
measures were considered based on observations from existing 
literature [49, 67, 76]: 

• Trust in Automation (TiA) questionnaire [41], a validated 
instrument to measure (subjective) trust [76]. In this study 
we adopted two subscales: Propensity to Trust (TiA-PtT), 
Trust in Automation (TiA-Trust). Thus, we consider possible 
efects of trust on reliance, in accordance with Lee et al. [47]. 

• Afnity for Technology Interaction Scale (ATI) [28], admin-
istered in the pre-task questionnaire. Thus, we account for 
the efect of participants’ afnity with technology on their 
reliance on systems [76]. 

Table 2 presents an overview of all the variables considered in 
our study. 

4.3 Participants 

Sample Size Estimation. Before recruiting participants, we com-
puted the required sample size in a power analysis for the 2 × 2 
factorial design using G*Power [25]. To correct for error-infation as 
a result of testing multiple hypotheses, we applied a Bonferroni cor-
rection so that the signifcance threshold decreased to 0. 4

05 = 0.0125. 
We specifed the default efect size � = 0.25 (i.e., indicating a mod-
erate efect), a signifcance threshold � = 0.0125 (i.e., due to testing 
multiple hypotheses), a statistical power of (1 − �) = 0.8, and the 
consideration of 4 diferent experimental conditions. This resulted 
in a required sample size of 244 participants. We thereby recruited 
314 participants from the crowdsourcing platform Prolifc5, in order 
to accommodate potential exclusion. 
Compensation. All participants were rewarded with £2.5, amount-
ing to an hourly wage of £7.5 (estimated completion time was 20 
minutes). We rewarded participants with extra bonuses of £0.1 for 
every correct decision in the 16 trial cases. By incentivizing partici-
pants to reach a correct decision, we operationalize the concomitant 
"vulnerability" discussed by Lee and See [47] as a contextual re-
quirement to encourage appropriate system reliance. 
Filter Criteria. All participants were profcient English speakers 
above the age of 18 and they had an approval rate of at least 90% on 
the Prolifc platform. We excluded participants from our analysis 
if they failed at least one attention check (65 participants). The 
resulting sample of 249 participants had an average age of 38 (�� = 
12.8) and a gender distribution (48.6% female, 51.4% male). 
5https://www.prolifc.co 
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Table 2: The diferent variables considered in our experimental study. “DV” refers to the dependent variable. RAIR, RSR, and 
Accuracy-wid are indicators of appropriate reliance. 

Variable Type Variable Name Value Type Value Scale 

Performance (DV) Accuracy 
Accuracy-wid 

Continuous, Interval 
Continuous 

[0.0, 1.0] 
[0.0, 1.0] 

Reliance (DV) 

Agreement Fraction 
Switch Fraction 

RAIR 
RSR 

Continuous, Interval 
Continuous 
Continuous 
Continuous 

[0.0, 1.0] 
[0.0, 1.0] 
[0.0, 1.0] 
[0.0, 1.0] 

Assessment (DV) Degree of Miscalibration 
Self-assessment 

Continuous, Interval 
Continuous, Interval 

[0,6] 
[-6,6] 

Trust (DV) TiA-Trust Likert 5-point, 1:strong distrust, 5: strong trust 

Covariates ATI 
TiA-PtT 

Likert 
Likert 

6-point, 1: low, 6: high 
5-point, 1: tend to distrust, 5: tend to trust 

Other Helpfulness of Explanation Likert 5-point, 1: not helpful, 5: very helpful 

4.4 Procedure 
The full procedure that participants followed in our study is illus-
trated in Figure 3. All participants frst read the same basic instruc-
tions on the logical reasoning task. Next, participants were asked 
to complete a pre-task questionnaire to measure their propensity 
to trust and afnity for technology interaction. 

Instructions Pre-task
Questionnaire Task Batch 1

Tutorial BatchTask Batch 2Post-task
Questionnaire

ATI, TiA-PtT

Post-task
Questionnaire

Done

Start

Self-assessment,
TiA-trust

Self-assessment, TiA-
trust, helpfulness of
explanations

6 trial cases 4 trial cases,
Performance feedback

6 trial cases

Figure 3: Illustration of the procedure participants followed 
within our study. This fow chart describes the experimen-
tal condition ✓ Tutorial,✓ XAI. Blue boxes represent the 
questionnaire phase, orange boxes represent the task phase. 

Participants were then assigned to one experimental condition, 
which difered in whether or not tutorial feedback is provided and 
the system’s prediction is supplemented with explanation. In × 
Tutorial,× XAI and × Tutorial,✓ XAI conditions, participants 
worked on the four trial cases without any diference with the task 
batch, no extra information was provided. After that, participants 
will work on 16 tasks (two task phases with six tasks, and one 
tutorial phase with four tasks). Selection of these cases is described 
in section 3.4. After each task phase, post-task questionnaires were 
adopted to assess their self-assessment and trust in AI systems (TiA-
trust). Participants in the × Tutorial,✓ XAI and ✓ Tutorial,✓ 
XAI conditions were additionally asked for their perceived help-
fulness of the explanations they were presented with. To further 
ensure the reliability of responses gathered in the questionnaire and 
the task phases, we added four attention check questions spread 
out at random through the diferent stages of the procedure [30]. 

5 RESULTS 
In this section, we present the results of our study. We discuss 
descriptive statistics, the outcomes of the hypothesis tests we con-
ducted, and our exploratory fndings. Our code and data can be 
found on Github.6 

5.1 Descriptive Statistics 
In our analysis, we only kept participants who passed all atten-
tion checks, which deemed to be more reliable. Participants were 
distributed in a balanced fashion over the four experimental condi-
tions as follows: 63 (× Tutorial,× XAI), 62 (✓ Tutorial,× XAI), 
62 (× Tutorial,✓ XAI), 62 (✓ Tutorial,✓ XAI). On average, 
participants spend around 32 minutes (�� = 11 minutes) in our 
study. We found no signifcant diference in the time spent across 
the four experimental conditions. 

Figure 4: Distribution of participants with underestimated, 
accurate, and overestimated self-assessment across all exper-
imental conditions in the frst batch of tasks. 

Distribution of Covariates. The covariates’ distribution is as 
follows: ATI (� = 3.73, �� = 0.99, 6-point Likert scale, and 1: low, 6: 

6https://github.com/RichardHGL/CHI2023_DKE 
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Table 3: Kruskal-Wallis H-test results for infated self-assessments (H1) on reliance-based dependent variables. “††” indicates the 
efect of variable is signifcant at the level of 0.0125. “Under”, “Accurate”, abd “Over” refers to participants who underestimated 
, accurately estimated, and overestimated their performance on the frst batch of tasks, respectively. 

Dependent Variables � � � ± ��(Under) � ± ��(Accurate) � ± ��(Over) Post-hoc results 
Accuracy 74.06 <.001†† 0.72 ± 0.16 0.61 ± 0.15 0.45 ± 0.19 Under > Accurate > Over 

Agreement Fraction 10.87 .004†† 0.70 ± 0.18 0.69 ± 0.21 0.59 ± 0.24 Under, Accurate > Over 
Switch Fraction 23.31 <.001†† 0.50 ± 0.28 0.53 ± 0.31 0.32 ± 0.32 Under, Accurate > Over 
Accuracy-wid 87.94 <.001†† 0.65 ± 0.21 0.53 ± 0.27 0.28 ± 0.22 Under > Accurate > Over 

RAIR 46.91 <.001†† 0.65 ± 0.36 0.58 ± 0.37 0.27 ± 0.33 Under, Accurate > Over 
RSR 30.23 <.001†† 0.67 ± 0.44 0.41 ± 0.47 0.27 ± 0.43 Under > Accurate, Over 

high), TiA-Propensity to Trust (� = 2.95, �� = 0.60, 5-point Likert 
scale, 1: tend to distrust, 5: tend to trust). 
Distribution of Participants. Among 249 participants, we identi-
fed the participants who underestimated their performance (i.e., Self-
assessment < 0), those with an accurate self-assessment (i.e., Self-
assessment = 0), and those with overestimation of their perfor-
mance (i.e., Self-assessment > 0) according to their performance in 
the frst batch of tasks (shown in Figure 4). In general, participants 
showed relatively balanced distribution into the three types of self-
assessment across conditions: (1) the number of participants with 
underestimated self-assessment lies in the range of 15 ∼ 20, (2) the 
number of participants with accurate self-assessment lies in the 
range of 15 ∼ 25, (3) the number of participants with overestimated 
self-assessment was in the range of 20 ∼ 30. We also compared 
the time spent by participants with diferent self-assessment and 
participants with diferent experimental conditions, and found no 
statistically signifcant diference with Kruskal-Wallis H-tests. 

Figure 5: Distribution of participants with perceived helpful-
ness of logic units-based explanations. 

For participants in conditions with explanation (i.e., [× Tutorial, 
✓ XAI] and [✓ Tutorial,✓ XAI]), we assessed the helpfulness of 
logic units-based explanations. The ratios of perceived helpfulness 
are illustrated with Figure 5. As we can see, most people (57.2%) 
think it slightly or very slightly helpful, while only 28.3% partici-
pants show positive feedback to the logic units-based explanations. 
Performance Overview. On average across all conditions, par-
ticipants achieved an accuracy of 56.9% (�� = 0.16) over the two 

batches of tasks, still lower than the aforementioned AI accuracy 
of 66.7%. The agreement fraction is 0.665 (�� = 0.17) while the 
switching fraction is 0.453 (�� = 0.27). With these measures, we 
confrm that when disagreement appears participants in our study 
did not always switch to AI advice or blindly rely on the AI system. 
As all dependent variables are not normally distributed, we used 
non-parametric statistical tests to verify our hypotheses. 

5.2 Hypothesis Tests 
5.2.1 H1: efect of inflated self-assessments on AI system reliance. 
To analyze the main efect of participants’ infated self-assessment 
(i.e., overestimation of performance) on their reliance on the AI 
system, we conducted Kruskal-Wallis H-tests by considering how 
participants varied in their self-assessment. We categorize all partic-
ipants into three groups according to the self-assessment: (1) partic-
ipants who underestimated their performance (i.e., Self-assessment 
< 0), (2) participants with accurate performance self-assessment 
(i.e., Self-assessment = 0), and (3) participants who overestimated 
their performance (i.e., Self-assessment > 0). For this analysis, we 
considered all participants across the four experimental conditions, 
and the performance metrics are calculated based on the frst batch 
of tasks (i.e., 6 tasks). The results are shown in Table 3. 
Efect of Overestimated Self-Assessments on Objective Re-
liance. For all reliance-based measures, we found a statistically 
signifcant diference between the performance of the participants 
who overestimated their performance and those with accurate 
self-assessment. Post-hoc Mann-Whitney tests using a Bonferroni-
adjusted alpha level of 0.0125 ( 0. 4

05 ) were used to make pairwise 
comparisons of performance, revealing that participants who did 
not overestimate their performance in fact performed signifcantly 
better than those who did (The only exception is on metric RSR). 
Overall, participants with accurate self-assessment and underes-
timation of their own performance performed much better than 
participants who overestimated their own performance. The main 
reason is that they showed more reliance on the AI system and 
achieved better appropriate reliance when their initial decision dis-
agreed with AI advice. The results indicate that participants who 
overestimate their own performance rely signifcantly less on AI 
systems compared to those who do not. Due to such under-reliance 
and inappropriate reliance when initial disagreement exists, they 
achieved a signifcantly lower accuracy on average. Thus, we fnd 
support for hypothesis H1. 

We also found that participants who underestimated their per-
formance achieved signifcantly higher Accuracy, Accuracy-wid, 
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Table 4: Wilcoxon signed ranks test results for H3 on reliance-based dependent variables. For participants with initial underes-
timation, we report results with one-sided hypothesis that the performance / reliance decrease after tutorial. For participants 
with initial overestimation, we report results with one-sided hypothesis that the performance / reliance increase after tutorial. 
“†” and “††” indicates the efect of variable is signifcant at the level of 0.05 and 0.0125, respectively. 

Participants Underestimation Overestimation 
Dependent Variables � � � ± ��(frst) � ± ��(second) Trend � � � ± ��(frst) � ± ��(second) Trend 

Accuracy 
Agreement Fraction 
Switch Fraction 
Accuracy-wid 

RAIR 
RSR 

407.5 
212.5 
267.5 
418.0 
313.0 
204.0 

.000†† 

.543 

.592 
.000†† 

.006†† 

.000†† 

0.73 ± 0.17 0.55 ± 0.21 
0.68 ± 0.20 0.70 ± 0.23 
0.47 ± 0.29 0.48 ± 0.36 
0.68 ± 0.22 0.44 ± 0.29 
0.68 ± 0.37 0.45 ± 0.38 
0.72 ± 0.43 0.30 ± 0.44 

↓ 
-
-
↓ 
↓ 
↓ 

303.0 
451.0 
367.5 
338.0 
194.0 
151.0 

.075 

.605 

.147 
.013† 

.038† 

.020† 

0.46 ± 0.18 0.51 ± 0.22 
0.60 ± 0.23 0.57 ± 0.23 
0.31 ± 0.33 0.36 ± 0.31 
0.27 ± 0.20 0.41 ± 0.28 
0.24 ± 0.32 0.36 ± 0.36 
0.29 ± 0.45 0.52 ± 0.48 

-
-
-
↑ 
↑ 
↑ 

and RSR than participants demonstrating accurate self-assessment. 
Since they showed similar degrees of reliance (Agreement Frac-
tion and Switch Fraction) on the AI system, the improvement 
of overall accuracy is mainly due to appropriate reliance. In gen-
eral, they showed signifcantly better RSR, which indicates that 
they have a better chance to rely on themselves to make correct 
decisions when they initially disagree with misleading AI advice. 

In the frst batch of tasks, we found no diference (with Kruskal-
Wallis H-tests) in reliance and accuracy metrics when comparing 
participants in XAI conditions (i.e., × Tutorial,✓ XAI and ✓ 
Tutorial,✓ XAI) with participants in non-XAI (i.e., × Tutorial,× 
XAI and ✓ Tutorial,× XAI). To verify how the provided logic 
units-based explanations afect participants with diferent self-
assessments, we compared the performance and reliance measures 
of participants with XAI and without XAI in underestimation, ac-
curate self-assessment, and overestimation. No signifcant efects 
were found from the logic units-based explanation on performance 
and reliance for participants with overestimated self-assessment. 

5.2.2 H2: efect of the tutorial on self-assessment. 
To verify H2, we used Wilcoxon signed rank tests to compare 
the performance of participants before and after the tutorial. We 
considered participants who are provided with the tutorial for self-
assessment calibration (i.e., ✓ Tutorial,× XAI and ✓ Tutorial,✓ 
XAI). Meanwhile, we exclude participants who have accurate as-
sessment on the frst batch of tasks from this analysis. Finally, we 
have 87 participants reserved for analysis of H2. On average, the 
participants’ self-assessment get improved after receiving the tuto-
rial (i.e., decreased Degree of Miscalibration, � ± ��(frst) = 1.67 
± 0.91, � ±��(second) = 1.14 ± 1.04; a smaller value indicates more 
accurate self-assessment). A Wilcoxon signed rank test indicated 
that the diference was statistically signifcant, � =1175.0, �<0.001, 
which supports H2. To further check how the tutorial intervention 
has an impact on participants with diferent types of miscalibration, 
we separately conducted Wilcoxon signed rank tests on partici-
pants underestimating their own performance and overestimating 
their own performance separately. The results indicate that: (1) par-
ticipants underestimating their own performance calibrated their 
self-assessment, the diference is signifcant (� =229.0, �=0.002); (2) 
participants overestimating their own performance calibrated their 
self-assessment, the diference is signifcant (� =381.5, �=0.012). The 
detailed analysis of participants with diferent types of miscalibra-
tion also supports H2. 

To further explore the efect of logic units-based explanation on 
calibrating self-assessment, we conducted a Kruskal-Wallis H-test 
(among these participants) by considering whether the explanation 
is provided. We found no signifcant results, which indicates that 
logic units-based explanations cannot amplify the efect of the 
tutorial intervention (i.e., calibrating self-assessment). 

5.2.3 H3: efect of the tutorial on appropriate reliance. 
Similar to the analysis for H2, we only considered the participants 
who showed miscalibration in the frst batch of tasks. Overall, there 
is no signifcant diference in reliance and performance measures 
when we compare the participants’ performance before and af-
ter receiving the tutorial. To further check how our tutorial in-
tervention will afect participants with diferent miscalibration of 
self-assessment, we conducted analysis for participants with under-
estimation and overestimation separately. The results of Wilcoxon 
signed rank tests corresponding to each of the reliance measures 
are shown in Table 4. Both participants with underestimation and 
overestimation did not show any signifcant diference in reliance 
measures (i.e., Agreement Fraction and Switch Fraction). For 
participants who underestimated their performance in the frst 
batch of tasks, they showed signifcantly worse performance and 
appropriate reliance after receiving the tutorial. In contrast, we 
found some improvement of Accuracy and appropriate reliance 
measures (i.e., Accuracy-wid, RAIR, RSR) for participants who 
overestimated their performance in the frst batch of tasks. How-
ever, the improvement is non-signifcant at the level of 0.0125. Thus, 
on the whole, we fnd partial support for H3. 

Meanwhile, to check how the tutorial intervention afects the 
participants with initial accurate self-assessment, we also conducted 
Wilcoxon signed rank tests for their performance before and after 
the tutorial intervention. No signifcant diference is found. Com-
bined with the fndings from participants with initial miscalibration, 
we found that: (1) the designed tutorial intervention does not show 
much impact on participants with accurate self-assessment, (2) the 
designed tutorial intervention has positive impact on appropri-
ate reliance for participants who initially overestimate themselves, 
while negative impact on participants with initial underestimation 
of their performance. 
Relation Between Self-assessment Calibration and the Change 
in Reliance. To further explore the relationship between the change 
in self-assessment and change with (appropriate) reliance, we con-
ducted the Spearman rank-order test separately for participants 
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with overestimation and underestimation in the frst batch of tasks. 
As the impact of tutorial intervention on Agreement Fraction 
and Switch Fraction is insignifcant, we ignore the two metrics 
in calculating the correlation. The results are shown in Table 5. 
We found a strong negative monotonic relationship between the 
two variables in participants with overestimation. Thus, in logical 
reasoning tasks, the calibration efect in self-assessment accounted 
for 59.3% of the improved Accuracy (�2 = 0.593, � < 0.001), 55.5% 
of the improved Accuracy-wid (�2 = 0.555, � < 0.001), 32.0% of 
the improved RAIR (�2 = 0.320, � < 0.001), and 12.9% of the im-
proved RSR (�2 = 0.129, � = 0.005). Similarly, the calibration of 
self-assessment also accounted for 26.2% of the decreased Accu-
racy (�2 = 0.262, � = 0.001), 14.8% of the decreased Accuracy-wid 
(�2 = 0.148, � = 0.009) for participants with underestimation. 

Table 5: Correlation of self-assessment change and reliance 
change. “††” indicates the efect of variable is signifcant 
at the level of 0.0125. “†” indicates the efect of variable is 
signifcant at the level of 0.05. 

Participants Underestimation Overestimation 
Dependent Variables � � � � 

Accuracy -0.512 .001†† -0.770 .000†† 

Accuracy-wid -0.385 .009†† -0.745 .000†† 

RAIR -0.293 .039† -0.566 .000†† 

RSR -0.349 .068 -0.359 .005†† 

In general, for all participants with miscalibrated self-assessment, 
the diference in self-assessment shows strong negative correlation 
with the diference in performance and appropriate reliance. In 
other words, the increase in self-assessment (trend to overestima-
tion) will lead to decrease in performance and appropriate reliance, 
which is consistent with our fndings in H1. While the signif-
cant negative correlation exists for performance measures in all 
participants with miscalibrated self-assessment, only participants 
with overestimation showed signifcant correlation (in the level 
of 0.0125) with RAIR and RSR. The diference indicates that the 
change of self-assessment can hardly explain why participants with 
underestimation showed worse appropriate reliance. 

To further explore the impact of logic units-based explanations 
on performance improvement (the diference between performance 
metrics from the second batch of tasks and those from the frst 
batch of tasks), we conducted a Kruskal-Wallis H-test (among these 
participants) by considering whether explanations are provided. 
Overall, no signifcant diference is found for all behavior-based 
dependent variables considering all 87 participants who showed 
miscalibration in the frst batch and then received the tutorial inter-
vention. We further check the logic units-based explanation impact 
according to participants with underestimation (37 participants) 
and overestimation (50 participants) respectively (cf. Table 6). No 
signifcant diference is found for all behavior-based dependent 
variables. Although participants with explanations show better per-
formance improvement in RSR, such diference is not signifcant. 

5.2.4 H4: Two-factor analysis for final performance. 
To verify H4, we conducted a two-way ANOVA to compare the 
performance and (appropriate) reliance measures of participants 

under the efect of providing tutorial intervention and logic units-
based explanations. In this analysis, only the second batch of tasks 
are taken into consideration, as the performance of the frst batch 
of tasks is not afected by the tutorial intervention. According to 
the test results shown in Table 7, no signifcant impact (in the 
signifcance level of 0.0125) is found for tutorial intervention, logic 
units-based explanations and their interaction efect. Thus, H4 is 
not supported. 

According to the results of H3, the tutorial intervention shows 
positive impact on participants with initial overestimation, no sig-
nifcant efect on participants with accurate self-assessment, and 
negative impact on participants with initial underestimation. As 
indicated by Figure 4, the participants show compatible distribu-
tion in the three groups with diferent initial self-assessment. The 
contradicting efects on the participants with miscalibrated self-
assessment get canceled. That may explain why the tutorial in-
tervention does not show signifcant impact across experimental 
conditions. On the other hand, we did not fnd any support for 
efectiveness of logic units-based explanations in reliving DKE or 
facilitating appropriate reliance in analysis of H1 - H3. 

5.3 Further Analysis On the DKE 
According to Dunning and Kruger [43], participants demonstrating 
the DKE are less competent and overestimate their performance. 
For further analysis of DKE in our study, we follow the method in 
the original study as well as consequent replications [29, 43], to split 
the participants in all conditions into performance-based quartiles. 
The top-quartile corresponds to those demonstrating high perfor-
mance (top 25%), the bottom quartile corresponds to those with low 
performance (bottom 25%), and we combine the two quartiles in 
the middle comprising of participants with a medium level of per-
formance in the frst batch of tasks. As our tutorial is demonstrated 
to be efective in calibrating self-assessment, we do not take the 
second batch of tasks into consideration. In total, 101 participants 
among 249 participants showed an overestimation of performance 
in the frst batch of tasks. In high accuracy group (63 participants), 
35 participants showed underestimation of their own performance, 
and 21 participants demonstrated accurate self-assessment, while 
only 7 participants (11.1%) show overestimation of performance 
in the frst batch of tasks. In comparison, 46 participants (73.0%) 
in low accuracy group (63 participants) show an overestimation 
of performance in the frst batch of tasks, while only 6 partici-
pants and 11 participants showed underestimation of their perfor-
mance and demonstrated accurate self-assessment, respectively. 
This aligns with the observation of Dunning and Kruger [16, 18]: 
top-performance group shows the tendency to underestimate their 
performance, while low-performance group shows tendency to 
overestimate their performance. With this observation, we can 
take low accuracy group as a representative group of participants 
with DKE, and take high accuracy group as a representative group 
of participants without DKE. This aligns with and validates our 
motivation to design a tutorial intervention to mitigate DKE, and 
improve self-assessment and appropriate reliance on AI systems. 
The impact of DKE on Reliance. To further analyze how the 
DKE afects user reliance on AI systems, we compared the reliance-
based measures of high accuracy group and low accuracy group 
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Table 6: Kruskal-Wallis H-test results for logic units-based explanations on performance improvement of reliance-based 
dependent variables. 

Participants Underestimation Overestimation 
Dependent Variables � � � ± ��(Exp) � ± ��(No Exp) � � � ± ��(Exp) � ± ��(No Exp) 

Accuracy 0.00 .963 −0.19 ± 0.15 −0.18 ± 0.24 1.38 .241 0.10 ± 0.27 0.00 ± 0.30 
Agreement Fraction 0.00 .963 0.01 ± 0.25 0.04 ± 0.32 0.88 .349 0.01 ± 0.38 −0.06 ± 0.28 
Switch Fraction 0.04 .843 −0.03 ± 0.39 0.04 ± 0.41 0.02 .884 0.06 ± 0.47 0.05 ± 0.33 
Accuracy-wid 0.00 .951 −0.25 ± 0.30 −0.22 ± 0.31 0.50 .478 0.16 ± 0.36 0.11 ± 0.39 

RAIR 0.02 .878 −0.23 ± 0.48 −0.24 ± 0.57 0.00 .968 0.11 ± 0.46 0.14 ± 0.46 
RSR 0.96 .327 −0.33 ± 0.50 −0.50 ± 0.51 1.84 .175 0.35 ± 0.72 0.10 ± 0.66 

Table 7: ANOVA test results for H4 on behavior-based dependent variables in the second batch of tasks. 

Dependent Variables Accuracy Agreement Fraction Switch Fraction Accuracy-wid RAIR RSR 
Variables � � � � � � � � � � � � 

Tutorial 2.41 .122 3.74 .054 3.87 .050 1.63 .203 4.70 .031 0.20 .652 
XAI 2.10 .148 0.30 .587 1.00 .319 3.35 .068 2.05 .153 0.23 .632 

Tutorial × XAI 0.05 .824 0.00 .990 0.00 .956 0.10 .746 0.00 .923 0.05 .832 

Table 8: Kruskal-Wallis H-test results for reliance-based mea-
sures on high accuracy group and low accuracy group. “††” 
indicates the efect of variable is signifcant at the level of 
0.0125. 

Dependent Variables � � � ± ��(High) � ± ��(Low) 
Agreement Fraction 54.68 <.001†† 0.75 ± 0.15 0.46 ± 0.18 
Switch Fraction 13.09 <.001†† 0.46 ± 0.32 0.27 ± 0.21 
Accuracy-wid 81.00 <.001†† 0.74 ± 0.24 0.21 ± 0.15 

RAIR 25.71 <.001†† 0.64 ± 0.45 0.21 ± 0.21 
RSR 46.41 <.001†† 0.76 ± 0.39 0.18 ± 0.37 

using a Kruskal-Wallis H-test. The results are shown in Table 8. 
Post-hoc Mann-Whitney tests using a Bonferroni-adjusted alpha 
level of 0.0125 ( 0. 4

05 ) also confrmed the signifcant diference. As 
we can see, participants in the low accuracy group (representative 
for participants with DKE) achieve a relatively poorer appropriate 
reliance than participants in the high accuracy group. Participants 
in the low accuracy group demonstrate signifcantly less reliance 
and appropriate reliance on AI systems, which also refects that 
under-reliance is to blame for their low performance. We also com-
pared the time spent by participants in the high accuracy group 
with participants in low accuracy group through a Kruskal-Wallis H-
test. The diference of time spent on tasks between the two groups 
is non-signifcant (� = 0.018, borderline signifcance in Kruskal-
Wallis H-test). On average, the high accuracy group spent around 
30 minutes (SD=12 minutes), while the low accuracy group spent 
around 34 minutes (SD=13 minutes). Interestingly, despite the fact 
that participants in the low accuracy group spent longer time on 
the task they still relied poorly on the AI system. This is consistent 
with what has been widely understood as an impact of the DKE 
metacognitive bias. 

5.4 Further Analysis of Trust 
In addition to the behavior-based reliance measures, we also as-
sessed the subjective trust of participants in AI systems. In this 

subsection, we explore the impact of our tutorial intervention and 
logic units-based explanation on user trust in the AI system. 
The efect of tutorial intervention on trust. To explore whether 
our tutorial intervention had any efect on user trust in AI system, 
we conducted Wilcoxon signed ranks test comparing the trust 
before and after the tutorial. On average, participants’ trust in 
the AI system does not show signifcant diference after the tutorial 
intervention (increased from 2.996 to 3.016; � = 1063.5, � = 0.952). 
This suggests that the main impact of the tutorial was on helping 
users calibrate their competence (i.e., their self-assessment) without 
directly shaping their trust in the AI system. 

Table 9: ANCOVA test results on trust-related dependent 
variables. With diferent self-assessmnet patterns, we divide 
all participants into three groups. “††” indicates the efect of 
variable is signifcant at the level of 0.0125. 

Variables � � �2 

Group 1.15 .318 .009 
ATI 1.22 .271 .004 

TiA-PtT 10.21 .002†† .040 

To further analyze how other covariates shape user trust in AI 
system, we decided to conduct AN(C)OVAs despite the anticipation 
that our data may not be normally distributed because these analy-
ses have been shown to be robust to Likert-type ordinal data [60]. As 
no signifcant diference is found between the trust before and after 
the tutorial, we aggregated the trust across the two batches of tasks 
as users’ trust in the AI system. Considering our main hypothesis, 
we aimed to explore whether overestimation of performance and 
accurate self-assessment shape user trust in the AI system. For that 
purpose, we consider the three groups of participants (based on self-
assessment, the same criteria in H1) with diferent self-assessment 
patterns. The results are shown in Table 9. As we can see, propensity 
to trust was the only user factor which corresponded to a signifcant 
impact on TiA-Trust. In a further Spearman rank-order test, we 
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observed that there is a signifcant positive correlation between 
TiA-PtT and TiA-Trust, � (249) = 0.22, � < .001; suggesting a 
weak linear relationship between users’ propensity to trust an AI 
system and the subjective trust measured with respect to the AI sys-
tem in our study. We also conducted the Spearman rank-order tests 
with TiA-PtT and other reliance-based variables. No signifcant 
correlation was found between TiA-PtT and reliance measures. 

6 DISCUSSION 

6.1 Key Findings 
Our analysis of the impact of miscalibrated self-assessment on re-
liance suggests that participants with DKE tend to overestimate 
their own competence and rely less on AI systems, which results in 
under-reliance and much worse performance. To mitigate such cog-
nitive bias, we introduced a tutorial intervention including perfor-
mance feedback on tasks, alongside manually crafted explanations 
to contrast the correct answer with the users’ mistakes. Experi-
mental results indicate that such an intervention is highly efective 
in calibrating self-assessment (signifcant improvement), and has 
some positive efect on mitigating under-reliance and promoting ap-
propriate reliance (non-signifcant results). We also note that after 
making participants who overestimated their performance aware of 
their miscalibrated self-assessment, participants tend to rely more 
(appropriately) on the AI system (i.e., increased Switch Fraction 
and appropriate reliance measures, non-signifcant results, from 
Table 4) and achieve a higher performance improvement when 
logic units-based explanations are provided (insignifcant results 
from Table 6). However, we did not fnd any signifcant evidence 
to support that the logic units-based explanations can amplify the 
efect of the tutorial intervention in calibrating self-assessment, or 
relieving the impact of DKE. 

The tutorial and calibrated self-assessment demonstrate a posi-
tive impact in facilitating appropriate reliance for participants who 
overestimated themselves, but an opposite trend was observed on 
participants who underestimated themselves. We found such dif-
ference can be explained partially by the change of self-assessment. 
The calibration of overestimation can bring positive impact, while 
the calibration of underestimation may also turn into overestima-
tion or algorithm aversion, which may explain the decrease in 
performance and appropriate reliance. The tutorial was initially de-
signed to reveal the shortcomings of participants with DKE. While 
for participants without DKE, there is a risk that some participants 
did not get exposed to their shortcomings in this tutorial and only 
found the AI system also made mistakes, which in turn even caused 
overestimation of themselves. An alternative explanation is that the 
performance feedback in tutorial intervention showed one mistake 
from the AI system, which led to algorithm aversion. As pointed out 
by [12]: “people more quickly lose confdence in algorithmic than 
human forecasters after seeing them make the same mistake.” These 
fndings advance our current understanding of human-AI decision 
making, and provide useful insights that can drive guidelines for 
designing interventions to promote appropriate reliance. 
Positioning in Existing Literature. In our study, we found that 
DKE can have a negative impact on user reliance on the AI system 
and our proposed tutorial intervention can mitigate such an impact. 
In the context of human-AI decision making, DKE is closely relevant 

to a popular stream of research around user confdence[10, 33]. For 
the participants who overestimated their performance, the designed 
tutorial intervention calibrated their self-confdence (as refected in 
their self-assessment) and facilitated appropriate reliance. In con-
trast, the negative impact on participants who underestimated their 
performance can be explained by: (1) the calibrated self-assessment 
which can also bring over-confdence, or (2) their confdence/trust 
in the AI system being eroded by the observed mistake(s) of the AI 
system [3, 76]. The latter is consistent with fndings in the literature 
on algorithm aversion [12]. More empirical studies are required 
to confrm and explain these observations, breeding promising 
grounds for future research. 

The participants with DKE show under-reliance on AI systems, 
which also aligns with the fnding from Schafer et al. [65]. Authors 
found that participants who reported higher familiarity with the 
task domain relied less on the intelligent assistant. The efective-
ness of our tutorial intervention to calibrate self-assessment and 
mitigate under-reliance is also consistent with existing work using 
user tutorial / education interventions to mitigate unexpected and 
undesirable reliance patterns. All these tutorial interventions share 
a common objective of changing the mindset of users. For example, 
Chiang et al. [8] reported that user tutorials such as machine learn-
ing literacy interventions can efectively help high-performance 
individuals to reduce over-reliance without afecting the reliance 
of low-performance individuals. Similarly, Chiang et al. [9] showed 
that a brief education session about the possible performance dis-
parity of an ML model (on data with diferent distribution) can 
efectively reduce over-reliance on such cases. While their work 
focused more on changing human understanding of AI systems 
(performance, uncertainty, etc.), our work aims to help users cali-
brate their competence (i.e., their self-assessment) on specifc tasks. 
As a result, their main objective was to realize when AI systems are 
not reliable to reduce over-reliance, while we attempt to mitigate 
under-reliance for participants who overestimate themselves. 
Logic Units-based Explanations Do Not Have the Expected 
Efect. In our study, the logic units-based explanations did not aid 
in further amplifying the calibration efect of the tutorial interven-
tion. This is in line with the fndings of Wang et al. [79] and Schafer 
et al. [65]. With a comparative study about four types of diferent 
explanations, authors found that “on decision making tasks that 
people are more knowledgeable, explanation that is considered to 
resemble how humans explain decisions (i.e., counterfactual expla-
nation) does not seem to improve calibrated trust.” One potential ex-
planation is that such explanations do not fulfll the three desiderata 
of AI explanations [79] (refer to section 2.1): the logic units-based 
explanations may help participants understand the AI, but fail to 
help them recognize the uncertainty underlying the AI or calibrate 
their trust in the AI in AI-assisted decision making. Another poten-
tial cause is such explanations may introduce automation bias [65], 
which will cause over-reliance. Our results suggest that logic units-
based explanations may still be hard to follow, because participants 
still need to connect and interpret the logic units by themselves. 
A limitation of our current work is that we did not gather explicit 
input from participants on their perceived understanding of the 
explanations. One further step to ground such logic units into read-
able logical claims may work better for users. However, we do not 
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deny the prospect that some XAI methods may have the potential 
to help mitigate DKE and calibrate user confdence in human-AI 
decision making. For example, contrastive explanations may work 
in the context of human-AI decision making [51, 59]. 

6.2 Implications 
As our fndings suggest that participants with DKE tend to rely 
less on AI systems, it implies that future work should look more 
closely at the efects of self-assessment in human-AI collaboration. 
Although our tutorial intervention shows signifcant improvement 
in calibrating self-assessment, the improvement in appropriate re-
liance is still limited (with borderline signifcance). Meanwhile, such 
calibration of self-assessment may even hurt the team performance 
for participants with initial underestimation of their performance. 
For these participants, the tutorial calibrated their underestimation, 
which may also lead to illusion of superior performance (overes-
timation of themselves). In order to further promote appropriate 
reliance in human-AI collaboration, we need to develop more efec-
tive human-centered tutorials. Meanwhile, participants who show 
lower performance in our scenario have signifcantly higher proba-
bility to overestimate their performance, which aligns with DKE 
properties. Thus, we can leverage overestimation of individual per-
formance as an indicator of such a meta-cognitive bias and further 
mitigate it with personalized or appropriate interventions. 
Guidelines for Tutorial Designs to Promote Appropriate Re-
liance. While our tutorial intervention proved to be efective in 
helping users calibrate their self-assessment, accurate self-assessment 
does not necessarily translate to optimal appropriate reliance. Com-
pared with participants with accurate self-assessment, the partici-
pants with underestimation showed a signifcantly better perfor-
mance in RSR (see Table 3), and calibrating such underestimation 
may even lead to decreased appropriate reliance (see Table 4), which 
indicates accurate self-assessment does not necessarily lead to op-
timal appropriate reliance. One possible cause is that while the 
tutorial makes such users aware that they underestimated them-
selves and they can make correct decisions when the AI system is 
wrong in the task, users may have an illusion of superior capability 
than the AI system. As a result, on some tasks where AI systems are 
more capable, users make mistakes by exhibiting under-reliance 
on the AI system due to recalibrated overestimation of their own 
competence. Our fndings suggest that we should pay attention to 
avoiding such side efects of making users overestimate themselves 
in comparison to the AI system. To avoid such side efects, tutori-
als designed to mitigate a specifc kind of bias should be carefully 
checked before subjecting them to broad participant pools. This also 
implies that tutorials designed for promoting appropriate reliance 
should not only reveal the shortcomings of users or AI systems 
(i.e., when they are less capable of making the right decision), but 
also their strengths (i.e., when they are capable or more capable). 
This has useful implications for the future design of interventions 
to mitigate cognitive biases in human-AI decision making. 

In previous work on mitigating over-reliance with a tutorial 
intervention, researchers focused on revealing the AI systems’ brit-
tleness [8, 9]. Combined with their fndings, we argue that a more 
efective tutorial to promote appropriate reliance can be one that 
helps users understand both themselves and AI systems, and not 

only revealing the weakness but also showing the strengths of each. 
With such a comprehensive understanding, human decision mak-
ers can potentially have a better chance to understand when they 
should rely on AI systems, and when they should rely on them-
selves, ultimately leading to (more) appropriate reliance. More work 
is required to understand whether and how explanations can medi-
ate this process of creating a better understanding among users of 
AI system capabilities in comparison to their own. This resonates 
with recent work exploring human-AI complementarity [3, 44, 52]. 

6.3 Caveats and Limitations 

Potential Biases. Our research questions focused on DKE and re-
liance and how to mitigate such impact. As we cannot pre-identify 
which participants have DKE, we recruit the participants and deter-
mine it with performance assessment. However, such assessment 
may be afected by other factors, which can lead to biased results. 
For example, although we relied on a pilot study to inform our 
task selection while creating two batches of tasks with comparable 
difculty levels, we cannot be certain that they would be perceived 
the same way on average across the participants. 

As pointed out by Draws et al. [15], cognitive biases introduced 
by task design and workfow may have a negative impact on crowd-
sourcing experiments. With the help of Cognitive Biases Checklist 
introduced [15], we analyzed potential bias in our study. Self-interest 
bias is possible, because crowd workers we recruited from the Pro-
lifc platform are motivated by monetary compensation. To alleviate 
any participants with low efort results, we put attention checks to 
remove ineligible participants from our study. As the question and 
context in Reclor dataset may be something participants familiar 
with, familiarity bias and availability bias can also afect our results. 
Transferability Concern. In our study, all analyses are based on 
the logical reasoning task, which most laypeople are capable of 
dealing with. However, in practice, the application scenarios may be 
afected by more factors (like user expertise, familiarity, and input 
modality). This gap can be a potential threat to the transferability of 
our fndings and implications. However, Dunning and Kruger [43] 
showed that participants sufer from DKE across multiple scenarios: 
“participants scoring in the bottom quartile on tests of humor, gram-
mar, and logic grossly overestimated their test performance and 
ability.” These efects were replicated in a number of other tasks, 
like human-AI collaboration [65] and crowdsourcing [63, 76]. Our 
fndings are therefore highly relevant and can play an important 
role in informing the design for appropriate reliance in the context 
of human-AI interaction, collaboration, and teaming. 

7 CONCLUSIONS AND FUTURE WORK 
In this paper, we present a quantitative study to understand the 
impact of the Dunning-Kruger efect (DKE) on reliance behavior of 
participants in a human-AI decision making context. We propose a 
tutorial intervention and explore its efectiveness in mitigating such 
an efect. Our results suggest that participants who overestimate 
their own performance tend to rely less on the AI system. Com-
bined with the fndings that participants with DKE show a much 
higher probability of overestimating their performance, we con-
clude that participants with DKE rely less on AI systems, and such 
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under-reliance hinders them in achieving better performance on 
average (RQ1). Through a rigorous experimental setup and statisti-
cal analysis, we found the efectiveness of our tutorial intervention 
in mitigating DKE (RQ2). However, we found that the tutorial may 
mislead some participants (i.e., participants who underestimated 
themselves) to overestimate their performance or exhibit algorithm 
aversion, which in turn harms their appropriate reliance on the AI 
system. Our fndings suggest that, to fully mitigate the negative im-
pact of the Dunning-Kruger efect and achieve appropriate reliance, 
more comprehensive, insightful, and personalized user tutorials 
are required. We refected on guidelines for better tutorial designs 
based on our key fndings. 

We found that our tutorial intervention failed to make a difer-
ence in participants’ subjective trust in the AI systems. Instead, we 
found that users’ general propensity to trust has a signifcant im-
pact on shaping their subjective trust in the AI system. Future work 
can further look into how user trust can be reshaped with diferent 
interventions or by using more efective explanations (e.g., con-
trastive explanations or logical explanations in natural language). 
We hope the key fndings and implications reported in this work 
will inspire further research on promoting appropriate reliance. 
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