
 
 

Delft University of Technology

CatIss
An Intelligent Tool for Categorizing Issues Reports using Transformers
Izadi, Maliheh

DOI
10.1145/3528588.3528662
Publication date
2022
Document Version
Final published version
Published in
Proceedings of the 2022 IEEE/ACM 1st International Workshop on Natural Language-Based Software
Engineering (NLBSE)

Citation (APA)
Izadi, M. (2022). CatIss: An Intelligent Tool for Categorizing Issues Reports using Transformers. In
Proceedings of the 2022 IEEE/ACM 1st International Workshop on Natural Language-Based Software
Engineering (NLBSE) (pp. 44-47). Article 9808639 (Proceedings - 1st International Workshop on Natural
Language-Based Software Engineering, NLBSE 2022). IEEE. https://doi.org/10.1145/3528588.3528662
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3528588.3528662
https://doi.org/10.1145/3528588.3528662


CatIss: An Intelligent Tool for Categorizing Issues Reports using
Transformers

Maliheh Izadi
m.izadi@tudelft.nl

Delft University of Technology

Delft, Netherlands

ABSTRACT

Users use Issue Tracking Systems to keep track and manage issue

reports in their repositories. An issue is a rich source of software

information that contains different reports including a problem,

a request for new features, or merely a question about the soft-

ware product. As the number of these issues increases, it becomes

harder to manage them manually. Thus, automatic approaches are

proposed to help facilitate the management of issue reports. This

paper describes CatIss, an automatic Categorizer of Issue reports

which is built upon the Transformer-based pre-trained RoBERTa

model. CatIss classifies issue reports into three main categories of

Bug report, Enhancement/feature request, and Question. First, the

datasets provided for the NLBSE tool competition are cleaned and

preprocessed. Then, the pre-trained RoBERTa model is fine-tuned

on the preprocessed dataset. Evaluating CatIss on about 80 thou-

sand issue reports from GitHub, indicates that it performs very well

surpassing the competition baseline, TicketTagger, and achieving

87.2% F1-score (micro average). Additionally, as CatIss is trained

on a wide set of repositories, it is a generic prediction model, hence

applicable for any unseen software project or projects with little

historical data. Scripts for cleaning the datasets, training CatIss and

evaluating the model are publicly available. 1

KEYWORDS

Issue report Management, Classification, Repositories, Transform-

ers, Machine Learning, Natural Language Processing

ACM Reference Format:

Maliheh Izadi. 2022. CatIss: An Intelligent Tool for Categorizing Issues

Reports using Transformers. In The 1st Intl. Workshop on Natural Language-

based Software Engineering (NLBSE’22), May 21, 2022, Pittsburgh, PA, USA.

ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3528588.3528662

1 INTRODUCTION

Issue reports are used for communication, decision making, and

collecting users’ feedback in software repositories. Any GitHub

user can contribute to the progress of a project using issue reports.

Users open issue reports for different reasons including reporting

1https://github.com/MalihehIzadi/catiss

P.

This work is licensed under a Creative Commons Attribution-NonCommercial-
ShareAlike International 4.0 License.
NLBSE’22, May 21, 2022, Pittsburgh, PA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9343-0/22/05.
https://doi.org/10.1145/3528588.3528662

a bug, requesting a new feature, asking for improvement, asking

questions, and asking for support.

Issues in software repositories must have a title, a description, and

a state (open/closed). They can also have additional data such as la-

bels, assignees, milestone, timestamps, author association, comments,

and more. Issue description usually includes useful information

about the reported problem and even code snippets to elaborate on

the reported problem. Moreover, each issue can have several labels

such as bug report to denote the goal behind opening the issue.
Labels, as a sort of metadata, describe the goal and content of an

issue. They are mainly used for categorizing, managing, searching,

and retrieving issues. Thus, assigning labels to issues facilitates task

assignment, maintenance, and management of a software project.

Cabot et al. [1] analyzed about three million non-forked GitHub

repositories to investigate the label usage and its impact on re-

solving issues. They showed only about 3% of these repositories

had labeled issues. Furthermore, in the repositories which incor-

porated issue labeling, only about 58% of issues were labeled. The

authors showed addressing an issue and the engagement rate both

have a high correlation with the number of labeled issues in a

repository [1]. Recently, Liao et al. [7] investigated the effect of

labeling issues on issue management and found labeled issues were

addressed immediately, while unlabeled issues could remain open

for a long time.

As the number of users and reported issues increases, efficient

and timely management of issue reports becomes harder. Team

members should address these issues as soon as possible to keep

their audience engaged and improve their software product. Thus,

automatic approaches for managing issues are proposed. However,

their accuracy can be improved by using contextual information

better.

In this tool paper, using data-driven approaches, The author fine-

tunes a Transformer-based pre-trained RoBERTa-based model to

predict the category of issue reports. These categories are the three

frequent reasons for opening an issue, namely Bug reports, En-

hancement requests, and Questions. CatIss achieves 87.2% F1-score

as the micro average score for all three categories of issues. Further-

more, CatIss obtains 89.6%, 87.9%, and 69.1% of per class F1-score

for bugs, enhancements, and questions, respectively. As CatIss is

built using a Transformer architecture, it is able to better utilize the

contextual information in issue reports, hence providing more accu-

rate predictions. CatIss surpasses TicketTagger [5, 6], the baseline

approach in all categories and for all metrics. More importantly,

based on the Recall score of classes, CatIss significantly outperforms

TicketTagger by 89% for the Question category. Compared to Bug
and Enhancement, “Question” is the least-represented class in the

datasets, and consequently suffered from weak accuracy scores in

previous studies. However, CatIss is able to obtain much higher

44

2022 IEEE/ACM 1st International Workshop on Natural Language-Based Software Engineering (NLBSE)

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3528588.3528662&domain=pdf&date_stamp=2023-02-01


NLBSE’22, May 21, 2022, Pittsburgh, PA, USA Maliheh Izadi

Figure 1: CatIss workflow

results. CatIss is open source and can be accessed on GitHub. 2

The Jupyter notebooks describes data processing, model training,

and evaluation. Note that this work is based on our previous study

on the management of issue reports through categorization and

prioritization [2].

2 TOOL DESCRIPTION

The author first cleans and pre-processes the dataset provided for

the NLBSE tool competition [4]. Then, she proceeds to fine-tune

the pre-trained Transformer-based RoBERTa model [8] on the pre-

processed data, and finally, evaluates it on the competition test set.

In the following, CatIss will be described in more detail. Figure 1

presents a concise summary of the proposed approach.

2https://github.com/MalihehIzadi/catiss

2.1 Preprocessing Data

Data processing techniques used to clean the provided training

set are as follows. Using the “describe” function of the Pandas

dataframes, it is evident that the training set consists of duplicate

issue reports. Thus, the author first removes the duplicate issues

using their issue URL as their unique ID. This process removes

26220 from the 722899 available issues in the training set. Note

that deduplication is only performed on the training set to avoid

modifying the samples’ distribution in the test set.

Next, the author perform normalization on the text of issue titles

and bodies. Normalization refers to the technique of replacing the

content of a concept in the text with the name of that concept. For

instance, function names are extracted using regular expressions

and replaced with a fixed token 〈𝐹𝑈𝑁𝐶𝑇𝐼𝑂𝑁 〉. Text normalization
is conducted with two objectives; (1) to keep the existence of a func-

tion in text, and (2) to reduce the vocabulary size for the machine

learning models [3].

Then, punctuation marks, and non-ASCII characters are removed

from both title and body of issues. Next, the text in titles and

bodies is converted to lower case. The base URL of repositories

(https://api.github.com/repos/) is also removed from the repository_url
column as it does not provide additional information for the model.

After removing white spaces from the title and body columns,

the five remaining columns are concatenated together to construct

the input for the model (excluding issue_url column). These five
columns are: (1) issue_create_at: the time that an issue was

created, (2) issue_author_association: the issue author role, (3)
repository_url: the repository ‘owner + repository’ names, (4)
issue_title, and finally (5) issue_body.
In the end, the text columns in both train and test datasets are

truncated based on the average and median number of tokens in

issue titles and bodies of the train set. Note that one must not rely

on the test set’s statistical information as the model will not see the

test set before training. The average numbers of tokens for issue

titles and bodies after cleaning are 6 and 49 tokens. Also, the median

number of tokens for the latter is about 100 token. Hence, the cutoff

point is to 200 tokens in the text column. Note that the issue classes

in the label column (bug, enhancement, and question) are also
converted to their categorical codes (0, 1, 2) and then fed to the

model.

2.2 Model Training

For the past few years, Transformers have significantly impacted

the Natural Language Processing (NLP) domain. Now, Pre-trained

models such as Bidirectional Encoder Representations from Trans-

formers (BERT) can be fine-tuned using additional outputs layers

to create state-of-the-art models for a wide range of NLP tasks,

without major task-specific architecture modifications. Based on

our recent study on issue report management [2], CatIss adapts

a Robustly-optimized BERT approach (RoBERTa) and fine-tunes

it [8]. RoBERTa, developed by Facebook [8], includes additional

pre-training improvements using only unlabeled text from the web,

with minimal fine-tuning and no data augmentation. The authors

modified the Masked Language Modeling (MLM) task in the BERT

using dynamic masking. The authors also eliminated the Next Sen-

tence Prediction (NSP) task since Facebook’s analysis indicated

45



CatIss: An Intelligent Tool for Categorizing Issues Reports using Transformers NLBSE’22, May 21, 2022, Pittsburgh, PA, USA

Figure 2: Fine-tuning RoBERTa for multi-class classification

on issue reports

that it actually hurts the model’s performance. Finally, RoBERTa

was trained using larger mini-batch sizes compared to BERT. The

author defines a multi-class classification layer on top of this model

as the downstream task and fine-tunes it for four epochs on the pre-

processed training set. Figure 2 depicts the architecture of CatIss

and the fine-tuning process.

3 EXPERIMENT SETUP

In this section, first datasets and their characteristics are reviewed,

then the evaluationmetrics are defined. And finally, implementation

details are presented.

3.1 Datasets

The training and test sets provided by the NLBSE workshop [4] are

used for training and evaluating the model. Training and test sets

contain 722899 and 80518 issue reports, respectively. The datasets

contain various types of information on issue reports including

time of creation, repository URL, issue URL, author association

role, label, title, and body. Issue reports are collected from 3093

repositories hosted on GitHub. There are six types of author associ-

ation rules available in the dataset, namely OWNER, MAINTAINER,

CONTRIBUTOR, COLLABORATOR, MEMBER, and MANNEQUIN.

Issues belong to one category of the three labels: bug, enhancement,

and question. About 8𝐾 of issues do not have a body text, that is,

they are lacking any description.

3.2 Metrics

CatIss is evaluated using standard measures of evaluating classifiers,

namely precision, recall, and F1-score. Equations 1, 2, and 3 compute

the above measures for each class of issues, namely bug, enhance-

ment and question. Micro averages of the above measures are also

reported. TP, FP, TN, and FN indicates number of True Positives,

False Positives, True Negatives, and False negatives, respectively.

𝑃𝑐 =
𝑇𝑃𝑐

𝑇𝑃𝑐 + 𝐹𝑃𝑐
(1)

𝑅𝑐 =
𝑇𝑃𝑐

𝑇𝑃𝑐 + 𝐹𝑁𝑐
(2)

𝐹1,𝑐 =
2 · 𝑃𝑐 · 𝑅𝑐
𝑃𝑐 + 𝑅𝑐

(3)

𝑃 =
∑
𝑇𝑃𝑐

∑
(𝑇𝑃𝑐 + 𝐹𝑃𝑐 )

(4)

𝑅 =
∑
𝑇𝑃𝑐

∑
(𝑇𝑃𝑐 + 𝐹𝑁𝑐 )

(5)

𝐹1 =
2 · 𝑃 · 𝑅

𝑃 + 𝑅
(6)

3.3 Implementation

The author uses HuggingFace Transformers 3, PyTorch 4, and Sim-

pleTransformers 5 libraries to train CatIss. She fine-tunes the pre-

trained RoBERTa model accessible through the HuggingFace API 6.

The author also sets the learning rate to 3𝑒 − 5, the number of

epochs to 4, the maximum input length to 200 and the training

and evaluation batch sizes to 100. Experiments are conducted on a

machine equipped with Ubuntu 16.04, 64-bit as the operating sys-

tem, two GeForce RTX 2080 GPU cards, AMD Ryzen Threadripper

1920X CPU with 12 core processors, and 64G RAM. Training lasts

for four hours and 20 minutes.

4 RESULTS

Table 1 presents CatIss’s results on classifying issues of the test

set compared to the provided baseline, TicketTagger [5] and an

additional baseline, Logistic Regression (LR) as a classical classifier.

As depicted, CatIss is outperforming the baselines, and achieving an

F1-score of 0.872 (micro average). Note that the more populated cat-
egories (Bug, and Enhancement), obtain higher classification results

for all metrics compared to the less-represented class Question. This

is probably due to two reasons; (1) the fewer number of samples for

this class, (2) the diversity of information and vocabulary in this cat-

egory. Nonetheless, CatIss significantly outperforms TicketTagger

for the Question category (by 89% based on the Recall). Compared

to Bug and Enhancement, “Question” is the least-represented class

in the datasets, and consequently has suffered from weak accuracy

scores in the previous studies. However, CatIss, utilizing contextual

information using its transformer architecture and the knowledge

transferred from the pre-trained model, is able to obtain higher

scores for this class, specifically for Recall and F1-measure. It is

worth mentioning that the author also performed a data ablation

study. The results of this experiment indicated that including and

concatenating the five sources of information reviewed in Sec-

tion 2.1 provide better results.

3https://huggingface.co
4https://pytorch.org/
5https://github.com/ThilinaRajapakse/simpletransformers
6https://huggingface.co/api/models/roberta-base

46



NLBSE’22, May 21, 2022, Pittsburgh, PA, USA Maliheh Izadi

Table 1: Classification Results

Metric CatIss TicketTagger [5] Logistic Regression

P R F1 P R F1 P R F1

Bug 0.894 0.897 0.896 0.831 0.872 0.851 0.841 0.867 0.854

Enhancement 0.874 0.885 0.879 0.815 0.846 0.831 0.822 0.850 0.835

Question 0.720 0.664 0.691 0.652 0.350 0.455 0.655 0.432 0.521

Micro Avg 0.872 0.872 0.872 0.816 0.816 0.816 0.822 0.822 0.822

5 RELATEDWORK

Kallis et al. [5, 6] has proposed TicketTagger, a tool based on Fast-

Text for classifying issues to three categories of Bug, Enhancement
and Question. These categories are among the default labels of the
GitHub issue system. They trained their model on the text (title and

description) of 30𝐾 issue reports from about 12𝐾 GitHub reposito-

ries. Their evaluation reports 82%, 76%, and 78% of precision/recall

scores for three classes of Bug, Enhancement, and Question, re-

spectively. Recently, BEE was proposed by Song and Chaparro [9],

which uses the pre-trained model of TicketTagger to label issues.

Then it proceeds to identify the structure of bug descriptions from

predicted reports that are predicted to be a bug in the issue-objective

prediction phase. In our recent study [2], we propose two models

to first extract issues’ objectives and then prioritize them using the

predicted objectives and other issue features. CatIss is based on this

study.

6 CONCLUSIONS

CatIss is an automatic categorizer of issue reports that is built upon

the Transformer-based pre-trained RoBERTa model. CatIss catego-

rizes issue reports into three main categories of Bug, Enhancement,

and Question. CatIss is trained on the provided training set for the

NLBSE tool competition and achieves 87.2% F1-score (micro aver-

age) on the test set. Specifically, CatIss significantly outperforms

TicketTagger, the main baseline by 89% based on the Recall score of

the Question class. Scripts for cleaning the datasets, training CatIss

and evaluating the model are publicly available. 7

REFERENCES
[1] Jordi Cabot, Javier Luis Cánovas Izquierdo, Valerio Cosentino, and Belén Rolandi.

2015. Exploring the use of labels to categorize issues in open-source software
projects. In 2015 IEEE 22nd International Conference on Software Analysis, Evolution,
and Reengineering (SANER). IEEE, 550–554.

[2] Maliheh Izadi, Kiana Akbari, and Abbas Heydarnoori. 2022. Predicting the ob-
jective and priority of issue reports in software repositories. Empirical Software
Engineering 27, 2 (2022), 1–37.

[3] Maliheh Izadi, Abbas Heydarnoori, and Georgios Gousios. 2021. Topic recom-
mendation for software repositories using multi-label classification algorithms.
Empirical Software Engineering 26, 5 (2021), 1–33.

[4] Rafael Kallis, Oscar Chaparro, Andrea Di Sorbo, and Sebastiano Panichella. 2022.
NLBSE’22 Tool Competition. In Proceedings of The 1st International Workshop on
Natural Language-based Software Engineering (NLBSE’22).

[5] Rafael Kallis, Andrea Di Sorbo, Gerardo Canfora, and Sebastiano Panichella. 2019.
Ticket Tagger: Machine Learning Driven Issue Classification. In 2019 IEEE Interna-
tional Conference on Software Maintenance and Evolution (ICSME). IEEE, Cleveland,
OH, USA, 406–409. https://doi.org/10.1109/ICSME.2019.00070

7https://github.com/MalihehIzadi/catiss

[6] Rafael Kallis, Andrea Di Sorbo, Gerardo Canfora, and Sebastiano Panichella. 2021.
Predicting issue types on GitHub. Science of Computer Programming 205 (2021),
102598. https://doi.org/10.1016/j.scico.2020.102598

[7] Zhifang Liao, Dayu He, Zhijie Chen, Xiaoping Fan, Yan Zhang, and Shengzong
Liu. 2018. Exploring the characteristics of issue-related behaviors in github using
visualization techniques. IEEE Access 6 (2018), 24003–24015.

[8] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A
robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692
(2019).

[9] Yang Song and Oscar Chaparro. 2020. BEE: a tool for structuring and analyzing
bug reports. In Proceedings of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering.
1551–1555.

47


