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Chimera: an atlas of regular vines 
on up to 8 nodes
Oswaldo Morales-Nápoles  1 ✉, Mojtaba Rajabi-Bahaabadi2, Gina Alexandra torres-alves1 & 
Cornelis Marcel Pieter ’t Hart1,3

Vine copulas have become the standard tool for modelling complex probabilistic dependence. It has 
been shown that the number of regular vines grows extremely quickly with the number of nodes. 
Chimera is the first attempt to map the vast space of regular vines. Software for operating with 
regular vines is available for R, matlab and Python. However, no dataset containing all regular vines 
is available. Our atlas of regular vines, Chimera, comprises all 24 4 × 4 matrices representing regular 
vines on 4 nodes, 480 5 × 5 matrices representing regular vines on 5 nodes, 23,040 6 × 6 matrices 
representing regular vines on 6 nodes, 2,580,480 7 × 7 matrices representing regular vines on 7 nodes 
and 660,602,880 8 × 8 matrices representing regular vines on 8 nodes. Regular vines in Chimera 
are classified according to their tree-equivalence class. We fit all regular vines to synthetic data to 
demonstrate the potential of Chimera. Chimera provides thus a tool for researchers to navigate this vast 
space in an orderly fashion.

Background & Summary
Regular vines are graphs (or a sequence of graphs) that facilitate the characterization of complex multidimen-
sional probability distributions. Regular vines used together with bivariate copulas, are the building blocks of 
multivariate distributions commonly referred to as vine copulas. The first vine copula and non explicitly also 
the first regular vine was introduced by Joe in 19941 while the first formal definition of regular vines (and vine 
copulas) was presented by Cooke in 19972. Only in 2009, were vine copulas presented as statistical models3. 
Their flexibility has made them become the standard tool for modelling complex multidimensional probability 
distributions in different fields. Vine copulas add flexibility because they construct a probability distribution 
from bi-variate pieces rather than trying to represent a joint distribution with a particular multidimensional 
parametric family.

While theoretical developments are still being made, vine copulas on a different number of variables have 
found application in virtually all fields of science and engineering. Recent example applications can be found in 
finance, business and economics4–10, coastal management11, earth sciences12–14 and engineering15–23, where the 
number of variables in their respective vine copula models ranges from 3 to 10 variables. In a recent study by 
the authors, vine copulas on 6 variables (23,040 models) are fit to two sets of variables including waves, currents 
and hydrodynamic forces acting on a submerged floating tunnel for its evaluation under different design con-
figurations. In health sciences, the spatial dependence for COVID-19 infection rates was modeled with a vine 
copula of 21 variables24, while a vine copula of 4 variables was implemented to create a secure method to transfer 
sensitive data without accidental leakages25.

Despite their popularity for modelling multidimensional probability distributions, the use of vine copulas on 6 
or more variables relies mostly on heuristics26. This is partly because the non-unique decomposition of the multidi-
mensional probability distributions in bi-variate building blocks causes the number of regular vines to grow 
extremely quickly with the number of variables under consideration. In particular, previous research has shown that 

the number of regular vines on d nodes is ×
−( )2d d!
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2
2 27,28. Notice that this number for 4 to 8 nodes corresponds 

already to 663,206,904 regular vines. The heuristics previously mentioned have been poorly tested, to some extent 
because a dataset containing all regular vines on more than 5 nodes is not available. In fact, an atlas of regular vines 
in higher dimension would enable brute force testing of all possible regular vine structures (assuming unlimited 
computational power) paving the way to improved heuristics. Regular vines in 5 nodes have been obtained in the 
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past though permutation per equivalence classes (see for example29). To our knowledge, this method has not been 
successfully used for more than 5 variables, neither a dataset with regular vine matrices on more than 5 variables is 
available.

In order to fill this gap, in this paper we introduce our atlas of regular vines from 4 to 8 elements: Chimera. 
A Chimera is an imaginary creature from Greek mythology that has the head of a lion, mid body of a goat and 
lower body of a serpent. Like all fantastic creatures, it is made up of “simpler” pieces of other real or imaginary 
creatures. Trees are the “simpler” pieces that give rise to vines. Regular vines are very much created like the 
zoology of the fantastic. In order to remind us of this fact our atlas is named Chimera. The data contained in 
Chimera consists of 663,206,904 matrices representing the regular vines of interest. The objective of this paper is 
thus to make these matrices available to researchers rather than providing new algorithms for producing them 
or a new proof of the number of regular vines as a function of the number of nodes. The data is available for R, 
matlab and Python since software implementations for manipulating vine copulas exist in all 3 languages30–32. 
Finally, we illustrate the potential of Chimera by fitting all vine copulas from 4 to 8 nodes to synthetic data. 
Along this paper we used the high performance computer DelftBlue33 to implement our atlas and fit vine copulas 
to synthetic data.

Methods
Since our data relates to graphs, we introduce the basic definitions required for characterizing regular vines and 
representing them as matrices. We assume that the reader is familiar with concepts of graph theory and repeat 
the most important concepts required for our purpose for completeness.

Definitions. In this section we introduce some basic definitions. A more extended treatment may be found 
for example in30. A vine is a set of nested trees. A tree is an undirected acyclic graph. More formally, a connected 
graph T = {N, E} is called a labeled tree with nodes N = {1, 2…, d} and edges E, where E is a subset of pairs of N 
with no cycle. In this paper the interest is on regular vines.

A regular vine V on d elements (edge or nodes) is a sequence of trees … −T T, , d1 1 such that: (i) T1 is a tree with 
node set N d{1, , }1 = …  and edge set E1, (ii) For j 2≥ , Tj is a tree with node set Nj = Ej−1 and edge set Ej, and 
(iii) For j d2, , 1= … −  and a b E{ , } j∈  it must hold that a b 1∩ = . Property (iii) is often referred to as the 
proximity condition which ensures that if there is an edge e connecting a and b in tree Tj, ≥j 2, then a and b 
(which are edges in Tj−1) must share a common node in Tj−1. Thus, A regular vine on d elements is one in which 
two edges in tree j are joined by an edge in tree j + 1 only if these edges share a common node in tree j.

For e ∈ Ej, ≤ −j d 1, the constraint set associated with e is the complete union U *e  of e, that is, the subset of 
= …N d{1, , }1  reachable from e by the membership relation.
For = … −j d1, , 1, ∈e E if =e i k{ , } then the conditioning set associated with e is ∩=D U U{ }* *e i k  and 

the conditioned set associated with e is =C C U D U D{ , } { \ , \ }* *e i e k i e k e, , . Note that for ∈e E1, the conditioning set 
is empty. Note as well that the order of an edge is the cardinality of its conditioning set. For e Ej∈ , ≤ −j d 1, 

=e i k{ , } we have ∪=U U U* *e i k . Thus, nodes of T1 reachable from a given edge via the membership relation 
are elements of the constraint set of that edge. When two edges in Tj are joined by an edge in Tj+1, the intersec-
tion of the respective constraint sets forms the conditioning set. The symmetric difference of the constraint sets 
is the conditioned set of this edge. Figure 1 presents examples of regular vines on 5 elements. Note that the con-
ditioned and conditioning set are presented as C C D,e i e k e, , .

Regular vines can be stored as matrices to facilitate their manipulation. The matrix representation was intro-

duced to show that the number of regular vines on d nodes is ×
−( )2d d!

2

2
2 27. The matrix representation is used 

in software implementations in R30, Python32 and matlab31. Our data consists precisely of all 24 4 × 4 matrices 
representing regular vines on 4 nodes, 480 5 × 5 matrices representing regular vines on 5 nodes, 24,030 6 × 6 
matrices representing regular vines on 6 nodes, 2,580,480 7 × 7 matrices representing regular vines on 7 nodes 
and 660,602,880 8 × 8 matrices representing regular vines on 8 nodes.

Since R is by far, the most widely used implementation, we follow the definition provided in30 of a regular 
vine matrix. Let M be an upper triangular matrix with entries mi, j for i≤j. The elements mi, j take values in  
{1, …, d}. The matrix M is called a regular vine matrix or a matrix representation of a regular vine, if it satisfies 
the following conditions:

 1. … ⊂ …m m m m{ , , } { , , }i i i j j j1, , 1, ,  for ≤ ≤ ≤i j d1 . This means that, the entries of a specific column are 
also contained in all columns right of this column.

 2. mi,i ∋ {m1, I,…, mi−1, i−1}. This means that, the diagonal entry of a column does not appear in any column 
further to the left.

 3. For i = 3, …, d and k = 1, …, i−1 there exist (j, l) with j i≤  and l j≤  such that 
… = …− { }m m m m m m{ , { , , }} , { , , }k i i k i j j j l j, 1, 1, , 1, ,  or 
… = …− −{ }m m m m m m m{ , { , , }} , { , , , }k i i k i l j j l j j j, 1, 1, , 1, 1, , . This last statement means that the elements of M 

should comply with the proximity condition for regular vines.

The regular vine matrices for the examples in Fig. 1 are:
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Where matrix A corresponds to the vine in the top of in Fig. 1, matrix B corresponds to the vine in the middle and  
matrix C corresponds to the vine at the bottom in Fig. 1. For example, the edges of T1 of the first regular vine in Fig. 1 
correspond to =a a a a a a a a{( , ), ( , ), ( , ), ( , )} {(1, 2), (2, 3), (3, 4), (4, 5)}5,5 1,5 4,4 1,4 3,3 1,3 2,2 1,2 . The edges of T2 
for the same figure correspond to =a a a a a a a a a{( , ), ( , ), ( , ) (1, 3 2), (2, 4 3), (3, 5 4)}5,5 2,5 1,5 4,4 2,4 1,4 3,3 2,3 1,3 . 
For T3, edges are given by =a a a a a a a a{( , , ), ( , , )} {(1, 4 3, 2), (2, 5 4, 3)}5,5 3,5 2,5 1,5 4,4 3,4 2,4 1,4 . The single 
edge of T4 for this regular vine is given by =a a a a a{( , , , )} {(1, 5 4, 3, 2)}5,5 4,5 3,5 2,5 1,5 . Chimera stores regular 
vines as matrices, following the definition of regular vine matrix presented above and exemplified with the first 
regular vine in Fig. 1 and its representation as regular vine matrix A. More details about how the matrices are 
presented in Chimera will be shown later in section Data Records.

The first catalogues classifying regular vines are presented in27 for up to 7 elements and in28 for up to 8 ele-
ments. Those catalogues however do not present data corresponding to the regular vine matrices of all vines but 
only enumerate them. The construction of those catalogues consisted in roughly: i) generate all trees in the first 
level of the regular vine through Prüfer codes34 (see section Technical Validation for a description of Prüfer’s 

Fig. 1 Examples of regular vines on 5 nodes.
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procedure), and ii) construct the line graph (below a definition of line graph) of each tree recursively in the 
regular vine and find all possible spanning trees of each tree of the regular vine. This procedure warranties the 
uniqueness of each vine. The procedure followed to construct Chimera is similar to the one presented in27 and28 
except it does not use Prüfer codes. It however still relies on the concept of a line graph.

Given a graph G = (N, E), its line graph L(G) is a graph � �N E( , ) such that:

•	 Every ∈e E corresponds to an ∈n N� � and,
•	 n n N,i j ∈ �, with ≠i j are adjacent if and only if their corresponding edges share a common endpoint (“are 

incident”) in G.

That is, L(G) is the intersection graph of the edges of G, representing each edge by the set of its two endpoints. 
Notice that by definition, all spanning trees of the line graph will comply with the regularity condition for vines. 
Line graphs are also known as derived graphs, interchange graphs, adjoin and edge to vertex dual. Harary35 notes 
that the concept of the line graph of a given graph is so natural that it has been rediscovered independently by 
many authors. The line graphs of the first tree of the regular vines presented in Fig. 1 are shown in Fig. 2. Notice 
that the first line graph shown in Fig. 2 has only one spanning tree. These type of graphs are usually referred to 
as “lines” while the line graph of the first tree of the third regular vine shown in Fig. 1 (which is usually referred 
to as a “star”) is a complete graph (all nodes are adjacent to each other) and hence it has 44−2 = 16 spanning trees.

The steps taken to generate all regular vine matrices contained in Chimera are:

 1. A library of non-isomorphic trees is constructed. Two graphs G = {V, E} and H = {W, F} are isomorphic if 
there is bijective function f : V→W such that ∀ v v V,1 2 ∈ , v v E f v f v F{ , } { ( ), ( )}1 2 1 2∈ ⇔ ∈ . Loosely 
speaking, two trees are non-isomorphic if they do not have the same structure. This library constructed for 
Chimera consists of the 45 trees presented in Table S1 of the supplement. The trees are denoted T4, T5, …, 
T47, T48. Notice that by labeling these trees through different permutations all possible trees on 4 up to 8 
nodes are obtained.

 2. Starting with a complete graph on d nodes (see the definition of a complete graph above), all dd−2 labelled 
trees on d nodes are found by brute force. Arthur Cayley36 was the first to note that for every positive integer 
d, the number of trees on d labeled nodes is dd−2. For any labeled complete graph with d nodes, the number of 
spanning trees of this graph must be thus dd−2. For example, the line graph at the bottom of Fig. 2 is a 
complete graph (all nodes share an edge with each other) on 4 nodes. This graph must have 16 labeled 
spanning trees of which 4 are of the type T5 in Table S1 of the supplement and 12 are of the type T4 in the 
same table. Once all trees for the first level of the regular vine are found, they are categorized according to 
their non-isomorphic tree from step 1. For example, T4 in Table S1 of the supplement will have = 124 !

2
 ways 

of being labelled. That is, all possible permutations of numbers in 1, 2, 3, 4 divided by 2 to avoid repetitions 
(for example, a tree 1-2-3-4 is equal to 4-3-2-1 hence this permutation must not be double counted). 
Similarly T5 in Table S1 of the supplement, has 4 possible ways to be labeled assigning the number 1, …, 4 to 
the node adjacent to all other nodes. These will be used as the trees in the first level of the regular vines.

 3. At this step Prüfer codes are also obtained for each labeled tree. See section technical validation below 
where Prüfer codes are discussed. Steps 1 to 3 are performed using the Python script geninput.py which 
is available in the 4TU data repository under the Python data collection37.

Fig. 2 Line graphs for the first tree of the regular vines in Fig. 1.

https://doi.org/10.1038/s41597-023-02252-6
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 4. For each non-isomorphic tree in step 1, a line graph is constructed for the edges of the tree in the first level 
of the regular vine, and all spanning trees of this graph are obtained again by brute force. For example, the 
line graph of T1 in the first regular vine of Fig. 1 is the first graph presented in Fig. 2. Notice that this line 
graph is a tree (a so called line) and has only one spanning tree (which is the graph itself). The line graph of 
T1 of the second regular vine is the second graph in Fig. 2. This graph has 3 spanning trees. The edge sets of 
these spanning trees are {{(1, 2), (2, 3)}, {(2, 3), (3, 4)}, {(3, 4), (3, 5)}}, {{(1, 2), (2, 3)}, {(2, 3), (3, 5)}, {(3, 5),  
(3, 4)}} and {{(1, 2), (2, 3)}, {(2, 3), (3, 5)}, {(2, 3), (3, 4)}}. T1 of the third regular vine shown in Fig. 1 is a 
so called star (all edges share a common node which is node 3 in this case). Its line graph is the complete 
graph shown at the bottom of Fig. 2 which as explained in step 2 above has 42 = 16 spanning trees.

 5. Step 4 is repeated for each tree in each level of the regular vine until the last level of the vine. The results are 
written as a regular vine matrix if the first tree of the vine corresponds to a line (such as in the first regular 
vine presented in Fig. 1) or matrices whenever the first tree of the regular vine is not a line. Notice that at 
this point regular vines are classified according to their tree-equivalent class. Two vines are tree-equivalent 
if they share the same non-isomorphic tree in each level of the vine. For example by permuting nodes 4 and 
5 in the first regular vine shown in Fig. 1, two distinct regular vines (and hence regular vine matrices) are 
obtained. However, these fall in the same tree-equivalent class. Notice that by permuting nodes 4 and 5 in 
the second and third regular vines shown in Fig. 1 exactly the same regular vines (and hence regular vine 
matrices) are obtained. However by permuting nodes 5 and 3 (for example), distinct regular vines within 
the same tree equivalent class will be obtained respectively. Tree-equivalent classes for all regular vines on 
up to 8 nodes are presented through their tree sequence in Table S2 of the supplement. The number of dis-
tinct regular vines (and regular vine matrices) within each tree equivalent class is also shown in the same 
table.

 6. Finally all regular vines (and consequently their matrix representation) within each tree equivalent class 
are found through permutation. Steps 4 to 6 are performed using the Python script genmatrix.py which 
is available in the 4TU data repository under the Python data collection37. This script was specifically 
modified and implemented for use in the high performance computer DelftBlue33 of the Technical Univer-
sity of Delft.

Using all regular vine matrices in Chimera to fit vine copulas to synthetic data. Vine copulas 
characterize complex multidimensional probability distributions. In real-case applications, the structure of the 
vine copula (e.g., trees and bi-variate dependence) is fitted (and its goodness of fit evaluated) based on available 
observations. In our case, to illustration the possibilities of Chimera, we fit all vine copulas in 4, 5, 6, 7 and 8 var-
iables to synthetic data. Five synthetic data sets, of 1000 observations each, are generated with regular vines. The 
details are given in section 2 of the supplement. For example, in section 2.1.1 of the supplement, 1000 samples are 
generated from a regular vine whose first tree is 2-3-1-4 (see M1) with bi-variate copulas and parameters shown in 
Tables S3, S4. All 24 vine copulas on 4 variables are fitted to the synthetic data using the 24 regular vine matrices 
representing regular vines on 4 nodes included in Chimera. The selected fit through a brute-force procedure, 
that is, the one with minimum Akaike’s Information Criterion (AIC), is also shown as R1 in section 2.1.2 of the 
supplement. Tables S6, S7 of the supplement show the bi-variate copulas and parameters corresponding to R1. 
Notice that in this case a brute-force procedure is able to find the regular vine which is used originally to generate 
the synthetic data. The Python package “pyvinecopulib”32 was used.

This process was repeated for synthetic datasets with 5, 6, 7 and 8 variables. Notice that in most cases a 
brute-force procedure based on AIC is able to capture the regular vine that generates the synthetic data except 
for 7 variables where M4 ≠ R4. The copulas in each tree are not always captured exactly. However, general charac-
teristics (upper or lower tail dependence for example) of the joint distribution are. Datasets on 4 and 5 variables 
can be fitted relatively easily (depending on the sample size) in a personal computer with the aid of Chimera. 
Relatively small samples (300 for example) of a 6 dimensional distribution can be fitted within days in a standard 
personal computer. In order to fit 7 and 8 dimensional vine copulas to data the DelftBlue supercomputer was 
used. Notice that the computational time required to fit all vine copula models on 8 elements to the sample, 
amounts to approximately 12 years (Table S29 in section 3.4 of the supplement). Fitting all vine copula models to 
1000 samples of a 7-dimensional data set in the DelftBlue super computer is a matter of hours when computing 
on parallel. The fitting of vine copulas on 8 variables is however more challenging and takes days of parallel com-
puting rather than hours. A more extended discussion of the computational challenges of fitting vine copulas 
on 7 or more variables is presented in section 3 of the supplement. A box plot showing AIC for all vine copula 
models that use regular vines (represented by their regular vine matrices) included in Chimera to synthetic data 
is presented in Fig. 3. An investigation of one of the most commonly used fitting algorithms26 for vine copulas 
on up to 8 nodes using Chimera is the subject of recent research by the authors.

Data Records
Our atlas Chimera is hosted in the 4TU research data repository37. For the different platforms (R, matlab and 
Python) different files are available. The data containing regular vine matrices was originally created in Python 
and then transformed to R and matlab formats. The naming convention for the available files is presented in 
Table 1.

Figure 4 shows a screen shot of file submats_4_T4Matlab.mat. The matlab data in Fig. 4 is a structure array 
named “MatlabVineArrays”. It contains a total of 12 elements, each with 3 fields. The “Type”, which corresponds 
to a tree-equivalent regular vine class, the regular vine matrix number (“Number”) and the matrix (named 
“VineMatrix”) itself. The tree-equivalent class refers to the tree sequence corresponding to the particular tree in 
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each level of the regular vine. The non-isomorphic trees used in the construction of tree-equivalent regular vines 
included in Chimera are presented in the supplement.

Table S1 of the supplement presents non-isomorphic trees (and their labels) used in the construction of each 
regular vine included in Chimera. Table S2 of the supplement presents: (i) all tree-equivalent classes (using the 
tree sequence), (ii) the naming convention (with Python extension) and (iii) the number of regular vine matri-
ces included in each tree-equivalent class. There are a total of 22 matlab files submat_4_T4Matlab.mat,…, sub-
mats_7_T25Matlab.mat which contain all regular vine matrices for regular vines on 4, …, 7 nodes. All together 
the 22 matlab files occupy ≈40 Mb.

Figure 5 shows a representation of the dataset in R. The data is ordered within lists, the main list is called 
“RVineArrays” and the nested lists contain the vine matrices (“Matrix”) and their respective tree sequences (“Type”).

For Python, the extension of the file is “pbz2”, because the amount of data increases drastically after 7 nodes 
(the total size of the Python data is ≈3.9 Gb). The initial ascii files are compressed using the cPickle module 
in Python and supplied in a digital format. An example Python script is included to retrieve data from binary 
files (see section Code Availability). Essentially, each matrix available in the file is presented with an index num-
ber (“index”), the tree type in the first level of the vine (“mat_type”) and the matrix (“matrix”) to be used within 
pyvinecopulib32 which is the Python library available for operating with regular vines.

Fig. 3 Box plots of Akaike’s Information Criteria for fits of all regular vines included in Chimera.

Platform Naming convention

Python submat_<Number of nodes>_<type of tree>.pbz2

matlab submat_<Number of nodes>_<type of tree>Matlab.mat

R submat_<Number of nodes>_<type of tree>R.RData

Table 1. Naming convention for files containing regular vine matrices in Chimera.

https://doi.org/10.1038/s41597-023-02252-6
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Finally, all files available for Python are presented in Table S2 in the supplement. The 660,602,880 8 × 8 
matrices representing regular vines on 8 nodes are only available for Python. To construct the regular vine 
matrices with the methods described above, the high performance cluster (supercomputer) DelftBluePhase133 
of the Technical University of Delft was used using parallel processing.

For example, as may be seen in Table S2 in the supplement, for the Python data set, submat_7_T25.pbz2 will 
contain all regular vine matrices whose first tree corresponds to T25 (shown in Table S1 of the supplement). A 
total of 22 distinct tree-equivalent regular vines (tree sequences) have T25 in the first tree of their tree-sequence. 
There are a total of 161,280 regular vine matrices distributed among the 22 tree-equivalent classes.

Fig. 4 matlab dataset capture.

Fig. 5 R dataset capture.

https://doi.org/10.1038/s41597-023-02252-6
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There are 576 times more regular vines on 9 nodes than there are on 8. There are also 737,280 times more 
regular vines on 10 nodes than there are on 8. It is not clear at the moment to the authors the computational, 
processing and storage restrictions required to extend Chimera to include regular vine matrices on 9 and 10 ele-
ments. It is also unclear at the moment to the authors the feasibility of using an extended catalogue in practice. 
These will be however subject of future research by the authors and hopefully by other research groups interested 
in Chimera.

technical Validation
Notice that the application of the methods described in section Methods warranty the construction of all unique 
regular vine matrices. The procedure described in section Methods generates labelled trees through brute force. 
By obtaining Prüfer codes in step 3 of the procedure to generate regular vines we make sure that we have taken 
into account exactly dd−2 labelled trees to construct the regular vines in Chimera.

Prüfer’s procedure is based on the fact that there is a one to one correspondence between the set of trees with 
d labeled nodes and sequences of integers in {1, …, d} of length d−2. In his paper Prüfer obtains the correspond-
ence by the following procedure: for a given tree, remove the endpoint with the smallest label (other than the 
root). The endpoints are nodes with degree one in the tree, they are sometimes referred to as leafs. Choose for 
example d as the root. Choosing any other node as the root would not change the procedure except the labelling 
of trees. Then, let 1�  be the label of the unique node which is adjacent to it. Remove the endpoint and the edge 
adjacent to it to obtain a tree on d−1 nodes. Repeat the operation with the new tree on d−1 nodes to obtain �2 
and so on. The process is terminated when a tree on two nodes has been found. The reader may check that the 
trees on the first level of the regular vines shown in Fig. 1 have Prüfer codes (2, 3, 4), (2, 3, 3) and (3, 3, 3) 
respectively.

The catalogues presented in27 and28 enumerate regular vines though Prüfer codes rather than the brute force 
procedures described in the Methods section. Notice that the number of regular vine matrices available in 
Chimera presented per tree-equivalence class in Table S2 of the supplement, coincide exactly with the enumer-
ation presented in27 and28 that was obtained through different procedures. Finally as observed in section Using 
all regular vine matrices in Chimera to fit vine copulas to synthetic data, all regular vine matrices included in 
Chimera were used to fit vine copulas to synthetic data using the Python package “pyvinecopulib”32 resulting in 
unique goodness of fit measures based on likelihood such as Akaike’s Information Criterion (AIC).

Code availability
The scrips used to generate regular vine matrices in Python are included in the 4TU data repository under the 
Python data collection37 (see the Methods section). The files containing regular vine matrices on up to 8 nodes 
for Python are compressed files in pbz2 format. In order to use these files, these need to be decompressed. 
For future users of the dataset a specific script get_matrices.py is available together with the files in 
the repository37. This script provides an example, contains subroutines and the Python tree-equivalent class 
definition for each one of the matrices of interest. Roughly, what the get_matrices.py script will do is get 
the matrices from files in a user specified directory for the specified number of nodes. By default, an array is 
returned with all matrices as a Python class, containing the tree-equivalent class (tree sequence type), index 
and matrix. For convenience, a user can also specify parts of the dataset based on the tree-equivalent class, which 
relates to the files names of the dataset.
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