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Seismic and medical ultrasound imaging of velocity and density
variations by nonlinear vectorial inverse scattering

Morten Jakobsen,1,a) Kui Xiang,1 and Koen W. A. van Dongen2

1Centre for Modeling of Coupled Subsurface Dynamics, Department of Earth Science, University of Bergen, Bergen, Norway
2Department of Imaging Physics, TU Delft, Delft, Netherlands

ABSTRACT:
We present an iterative nonlinear inverse scattering algorithm for high-resolution acoustic imaging of density and

velocity variations. To solve the multi-parameter nonlinear direct scattering problem, the acoustic wave equation for

inhomogeneous media in the frequency domain is transformed into a vectorial integral equation of the

Lippmann–Schwinger type for the combined pressure and pressure-gradient field. To solve the multi-parameter non-

linear inverse scattering problem, we use the Newton–Kantorovich method in conjunction with matrix-free represen-

tations of the Fr�echet derivative operators and their adjoints. The approximate Hessian information that is accounted

for in our iterative solution of the (nonlinear) multi-parameter inverse scattering problem is essential for the mitiga-

tion of multi-parameter cross talk effects. Numerical examples related to seismic and medical ultrasound breast

imaging illustrate the performance of the new algorithm for multi-parameter acoustic imaging.
VC 2023 Acoustical Society of America. https://doi.org/10.1121/10.0019563

(Received 23 November 2022; revised 21 April 2023; accepted 7 May 2023; published online 31 May 2023)

[Editor: Steffen Marburg] Pages: 3151–3164

I. INTRODUCTION

There are many similarities between seismic and medi-

cal ultrasound imaging.1–6 In the case of seismic imaging,7–9

we record waves passing through the Earth to image the

Earth’s interior in search of anomalies to help in exploring

for natural resources. In the case of medical ultrasound

imaging,10–13 we image the interior of the human body to

diagnose undesirable anomalies. Seismic and medical ultra-

sound imaging methods are often applied prior to costly dril-

ling or surgery, respectively, but they can also be applied in

time-lapse mode to monitor changes in the medium proper-

ties with time. As discussed by Pratt,1 seismic and medical

ultrasound imaging have many similarities, including the

concept of anomalies. However, in the case of seismic imag-

ing, we often hope to discover anomalies (e.g., oil or gas),

whereas in medical imaging, we often hope to not find

anomalies (e.g., tumors).

From the perspective of mathematical physics,14 both

seismic and medical ultrasound imaging can be considered

inverse scattering problems (Fig. 1). In mathematical phys-

ics, the inverse scattering problem is the problem of deter-

mining characteristics of an object, based on data of how it

scatters incoming waves or particles. It is the inverse prob-

lem to the direct scattering problem, which is to determine

how waves or particles are scattered based on the properties

of the object. One distinguishes between the linear and non-

linear inverse scattering problems.15 Whereas an exact solu-

tion to the linear inverse scattering problem can be found

under ideal circumstances in all dimensions, exact solutions

to the (more interesting and relevant) nonlinear inverse scat-

tering problem have only been discovered for one-

dimensional systems.15

Conventional systems for seismic and medical ultra-

sound imaging are typically based on linear inverse scatter-

ing theory and/or simple approximations that model a part of

the wavefield only.3,11,16,17 However, such approximate and

simplified imaging methods give adequate imaging results if

and only if the medium is weakly scattering. To deal with

strongly scattering media of interest to the geophysical and

medical imaging communities, one should ideally use non-

linear inverse scattering theory, which can be equivalent to

performing a full-waveform inversion (FWI).1,5,8,15,18

By using nonlinear inverse scattering theory in the con-

text of seismic and medical ultrasound imaging, one can

potentially obtain images of much higher quality and resolu-

tion than the conventional methods that make use of travel

time and/or amplitude data only.8,18,19 However, the nonlin-

ear inverse scattering approach has several practical and fun-

damental challenges, including its huge computational cost

and the sensitivity of the iterative nonlinear inversion results

to the starting model.8 In seismic and medical ultrasound

imaging, the density is often assumed to be constant,4,8

although this can lead to errors in the imaging and interpreta-

tion. Multi-parameter nonlinear inverse scattering problem is

challenging,19–23 due to multi-parameter cross talk effects

and problems associated with having different parameter

classes with different ranges and different effects on the scat-

tered fields.22,23 We focus here on the simultaneous estima-

tion of velocity and density profiles using a nonlinear inverse

scattering approach, namely, the Newton–Kantorovich (NK)

method method.8,9,21,24–26 The novelty of this study isa)Electronic mail: Morten.Jakobsen@uib.no
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partially related to the use of a single vectorial integral equa-

tion for the direct scattering problem and a matrix-free

adjoint vectorial integral equation that accounts for approxi-

mate Hessian information in the inverse scattering problem.

The NK method we have developed is based on the

minimization of a data mismatch functional using a regular-

ized least squares solution.8,27,28 Although we use an inte-

gral equation rather than a differential equation approach to

solve the nonlinear direct scattering problem, the NK

method we have developed is essentially a matrix-free

multi-parameter distorted Born iterative (DBI) method for

the frequency domain FWI method.14,27–29 This implies that

our conventional iterative approach to the nonlinear inverse

scattering algorithm is guaranteed to converge if and only if

the initial model is sufficiently close to the unknown true

model.29,30

Weglein et al. have criticized conventional iterative meth-

ods for solving nonlinear inverse scattering problems and pio-

neered inverse acoustic scattering methods that do not require

an assumed propagation velocity of the medium.18,31 Their

more direct nonlinear inversion approach is based on the Born

series solution of the Lippmann– Schwinger equation and a

concomitant expansion of the interaction in orders of the

data.18,32 Reversion of the Born series leads to an order-by-

order scheme for evaluating the terms of the series representa-

tion of the interaction in terms of the measured data.32 In the

inverse scattering series (ISS) method, no a priori information

about the acoustic medium is in principle required.32 The finite

radius of convergence of the underlying Born series seems to

be the only fundamental limitation of the ISS method.15,32,33

Sub-series of the inverse scattering series corresponding to dif-

ferent sub-tasks of seismic processing have been found to be

convergent.18,33–38 Also, promising attempts to extend the

radius of convergence using renormalization techniques have

been made.32,39,40 The ISS method is both interesting and

potentially useful for medical ultrasound as well as seismic

imaging, but its further development is beyond the scope of the

present study.

In this study, we focus on the development of a conven-

tional iterative (local optimization) approach to nonlinear

inverse scattering. More specifically, we develop a computa-

tionally efficient matrix-free variant of the NK method for

multi-parameter nonlinear inverse scattering in acoustic

media with variable density and velocity. The outline of this

paper is simple. First, we discuss the direct and inverse scat-

tering problems. Then we derive expressions for the linear

Fr�echet (data sensitivity) operators related to perturbations

in the bulk modulus and mass density fields (sufficient to

reconstruct the velocity field). Since our goal is to develop a

matrix-free traditional iterative nonlinear inverse scattering

algorithm, our approach to the inverse scattering problem

will be based on a continuous formulation. Our numerical

examples are related to seismic and medical ultrasound

(breast imaging) and illustrate the fact that we have found

an efficient manner to deal with approximate Hessian infor-

mation in the context of multi-parameter acoustic inversion.

II. THE DIRECT SCATTERING PROBLEM

A. Two coupled integral equations

In the frequency domain, the acoustic wave equation

for inhomogeneous media can be written as41

r � 1

qðxÞrpðxÞ
� �

þ x2

jðxÞ pðxÞ ¼ �sðxÞ; (1)

where sðxÞ is the (frequency-dependent) volume source den-

sity of injection rate, x is the angular frequency, and qðxÞ
and jðxÞ are the mass density and bulk modulus fields at

point x 2 R3. We have assumed that pðxÞ is proportional to

eixt, where x is the angular frequency.

Under the assumption that the medium is unbounded

and the wavefield goes to zero at infinity, the solution of the

acoustic wave Eq. (1) is given by41

pðxÞ ¼
ð

d3x0gðx; x0Þsðx0Þ; (2)

where the Green’s function gðx; x0Þ for the actual inhomoge-

neous medium satisfies

FIG. 1. (Color online) Illustration of inverse scattering problems in the context of (surface) seismic and medical ultrasound (breast) imaging at the top and

the bottom, respectively. The scattering object of interest is characterized by bulk modulus, mass density, and speed of sound profiles and surrounded by a set

of transducers that can act as sources and receivers. In contrast to medical imaging, seismic imaging is single-sided (unless borehole receivers are also used).
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rx �
1

qðxÞrxgðx; x0Þ
� �

þ x2

jðxÞ gðx; x
0Þ ¼ �dðx� x0Þ: (3)

To derive a volume integral equation for the pressure pðxÞ,
we first define the contrast function m1ðxÞ and m2ðxÞ by

1

jðxÞ ¼
1

jð0ÞðxÞ 1þm1ðxÞ½ �; 1

qðxÞ ¼
1

qð0ÞðxÞ 1þm2ðxÞ½ �; (4)

where jð0ÞðxÞ and qð0ÞðxÞ are the bulk modulus and mass

density fields of an arbitrary homogeneous reference

medium. With the definitions in Eq. (4), we ensure that the

(normalized) contrast functions m1ðxÞ and m2ðxÞ have more

or less similar numerical values, which could be helpful

when trying to mitigate the problem with multi-parameter

cross talk. Then we combine Eqs. (1) and (4) and

obtain19,39,40,42,43

r � 1

qð0ÞðxÞrpðxÞ
� �

þ x2

jð0ÞðxÞ pðxÞ

¼ �sðxÞ � x2 m1ðxÞ
jð0Þ

pðxÞ � r � m2ðxÞ
qð0Þ

rpðxÞ
� �

: (5)

The last two terms on the right-hand side of Eq. (5) may be

referred to as monopole and dipole contrast-sources for bulk

modulus and mass density perturbations, respectively.

By using the Green’s function theorem and treating the

contrast-sources and the primary source sðxÞ in Eq. (5) in a

similar manner, we obtain19,39,40,42,43

pðxÞ ¼pð0ÞðxÞþ
ð

M

d3x0gð0Þðx;x0Þ

� x2 m1ðx0Þ
jð0Þ

pðx0Þþr � m2ðx0Þ
qð0Þ

rpðx0Þ
� �� �

; (6)

where M is the model space where the contrast functions are

non-zero. In Eq. (6), the background field pð0ÞðxÞ is given by

pð0ÞðxÞ ¼
ð

X
dx0gð0Þðx; x0Þsðx0Þ; (7)

where gð0Þðx; x0Þ is the Green’s function for the reference

medium, which satisfies

rx �
1

qð0ÞðxÞrgð0Þðx; x0Þ
� �

þ x2

jð0ÞðxÞ g
ð0Þðx; x0Þ

¼ �dðx� x0Þ: (8)

Explicit analytical formulae for two-dimensional (2D) and

three-dimensional (3D) Green’s functions in the case of

homogeneous acoustic media can be found in the book of

Cerveny.41

By using partial integration and assuming that all fields

within the unbounded medium approach zero at infinity,

integral Eq. (6) can be rewritten exactly as

pðxÞ ¼ pð0ÞðxÞ þ x2

ð
M

d3x0gð0Þðx; x0Þm1ðx0Þ
jð0Þ

pðx0Þ

�
ð

M

d3x0rx0g
ð0Þðx; x0Þ � m2ðx0Þ

qð0Þ
rpðx0Þ: (9)

By taking the spatial derivative of the fields on both sides of

Eq. (9), we find that the gradient vector of the pressure field

satisfies the following integral equation:

rpðxÞ ¼rpð0ÞðxÞ þ x2

jð0Þ

ð
M

d3x0rxgð0Þðx;x0Þm1ðx0Þpðx0Þ

�
ð

M

d3x0rxrx0g
ð0Þðx;x0Þ �m2ðx0Þ

qð0Þ
rpðx0Þ:

(10)

Explicit analytical expressions for the first- and second-

order spatial derivatives of gð0Þ in the case of a homoge-

neous reference medium were derived by Xiang et al.43

B. Equivalent vectorial integral equation

The two coupled integral equations [Eqs. (9) and (10)]

for the pressure and pressure gradient fields can be com-

bined into a single vectorial integral equation of the

Lippmann–Schwinger type,43

wðxÞ ¼ wð0ÞðxÞ þ
ð

M

d3x0Gð0Þðx; x0Þ � Vðx0Þ � wðx0Þ; (11)

where

wðxÞ ¼ pðxÞ; @1pðxÞ; @2pðxÞ; @3pðxÞ½ �T (12)

and

wð0ÞðxÞ ¼ pð0ÞðxÞ; @1pð0ÞðxÞ; @2pð0ÞðxÞ; @3pð0ÞðxÞ
h iT

(13)

are four-dimensional state vectors that describes the pres-

sure and the pressure gradient fields in the actual medium

and in the heterogeneous background medium, respectively.

The 4� 4 matrix fields VðxÞ and Gð0Þðx; x0Þ in the vectorial

integral Eq. (11) are defined by

VðxÞ ¼

x2 m1ðxÞ
jð0Þ

0 0 0

0
m2ðxÞ
qð0Þ

0 0

0 0
m2ðxÞ
qð0Þ

0

0 0 0
m2ðxÞ
qð0Þ

2
66666666666664

3
77777777777775

(14)

and
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Gð0Þðx; x0Þ ¼

gð0Þðx; x0Þ �@10g
ð0Þðx; x0Þ �@20g

ð0Þðx; x0Þ �@30g
ð0Þðx; x0Þ

@1gð0Þðx; x0Þ �@1@10g
ð0Þðx; x0Þ �@1@20g

ð0Þðx; x0Þ �@1@30g
ð0Þðx; x0Þ

@2gð0Þðx; x0Þ �@2@10g
ð0Þðx; x0Þ �@2@20g

ð0Þðx; x0Þ �@2@30g
ð0Þðx; x0Þ

@3gð0Þðx; x0Þ �@3@10g
ð0Þðx; x0Þ �@3@20g

ð0Þðx; x0Þ �@3@30g
ð0Þðx; x0Þ

2
66664

3
77775; (15)

respectively. For later reference, we note that the matrix of

modified Green’s function defined in Eq. (15) satisfies the

generalized reciprocity relations G
ð0Þ
ab ðx; x0Þ ¼ G

ð0Þ
ba ðx0; xÞ,

where a; b ¼ 1; 2; 3; 4.

When implementing this theory on a computer using a

matrix-free approach, the vectorial integral equation is nor-

mally rewritten in the form of a linear operator system

Aw ¼ wð0Þ; (16)

where the operator A is defined by

Aw � w� Gð0ÞVw: (17)

The linear system (16) is typically solved iteratively using a

Krylov subspace method, such as GMRES.43 Since the

(modified) Green’s functions for a homogeneous reference

medium are translation invariant, one can use the fast

Fourier transform (FFT) algorithm to accelerate the convo-

lution of Gð0Þ with various contrast-source terms of the type

Vw. As discussed by Xiang et al.,43 the memory require-

ments and computational cost of this (matrix-free) FFT-

based algorithm scale like N and N log ðNÞ, where N denotes

the number of grid blocks in a discretized acoustic model.

III. THE INVERSE SCATTERING PROBLEM

A. Multi-parameter NK method

We now turn our attention to the multi-parameter non-

linear inverse scattering problem, that is, the problem of

estimating the bulk modulus field jðxÞ and mass density

field qðxÞ from observations of the state vector wðrÞ at the

receiver surface.

The parameterization of the acoustic model is important

when dealing with multi-parameter inverse scattering prob-

lems. In this work, we define a model vector field mðxÞ by

mðxÞ ¼ m1ðxÞ;m2ðxÞ½ �T ; (18)

where the contrast functions m1ðxÞ and m2ðxÞ associated

with the bulk modulus and mass density fields were defined

in Eq. (4).

Our nonlinear multi-parameter inverse scattering prob-

lem is highly ill-posed, so we reformulate it as a local opti-

mization problem, where the goal is to minimize the

following error functional:

E mðxÞ½ � ¼ 1

2

ð
d3rd3sjjwðcÞðr; sÞ � wðoÞðr; sÞjj2; (19)

where wðoÞðr; sÞ and wðcÞðr; sÞ are the observed and com-

puted values of the wavefield at position r due to a point

source at s. The computed values of the wavefield wðcÞðr; sÞ
are functionals of the model vector field mðxÞ, but we sup-

press this dependency to simplify the notation. In any case,

the optimal solution to our inverse scattering problem is

defined as the estimate of mðxÞ that minimizes the above

error functional.

To minimize the error functional (19), we use the DBI

method,25 which is known to be equivalent with the so-

called NK method.14 This implies that the DBI method con-

verges if the initial model is sufficiently close to the

(unknown) true model. The DBI (or NK) method involves a

linearization of the forward model around a heterogeneous

background model. To perform this linearization, we per-

form a first-order functional Taylor expansion of the com-

puted data wðcÞðr; sÞ, recorded at receiver position r due to a

source at s, around a heterogeneous background model

(equal to the inverted model from the previous iteration),14

wðcÞðr; sÞ � wðbÞðr; sÞ þ Fdm½ �ðr; sÞ; (20)

where wðbÞðr; sÞ is the field in the background model with

model vector field mðbÞðxÞ. We shall come back to the exact

definition of the Fr�echet derivative operator F . It follows

from Eqs. (19) and (20) that

E mðxÞ½ � � 1

2

ð
d3rd3sjjDwðr; sÞ þ Fdm½ �ðr; sÞjj2; (21)

where

Dwðr; sÞ � wðbÞðr; sÞ � wðoÞðr; sÞ (22)

is the vectorial data residual. Thus, we can update the model

vector field after each iteration by using

mðxÞ ¼ mðbÞðxÞ þ dmðxÞ; (23)

where dm is the solution to the normal equation,

F †F
� �

dmðxÞ ¼ � F †

Dw

h i
ðxÞ: (24)

B. Block structure of the normal equations

The Fr�echet derivative operator F corresponding with

the model parameter vector field in Eq. (18) can be

expressed in block-matrix form as23

F ¼ ðF 1;F 2Þ; (25)

where F 1 and F 1 are associated with variations in the bulk

modulus and mass density fields, respectively. By using the

above representation of F in the normal Eq. (24), we obtain

3154 J. Acoust. Soc. Am. 153 (5), May 2023 Jakobsen et al.
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F †

1

F †

2

 !
ðF 1;F 2Þ

dm1

dm2

 !
¼ �

F †

1

F †

2

 !
Dw; (26)

which is equivalent with23

F †

1F 1 F †

1F 2

F †

2F 1 F †

2F 2

 !
dm1

dm2

 !
¼ �

F †

1

F †

2

 !
Dw: (27)

The off diagonal blocks represent the correlations between

the sensitivity kernels associated with the parameters of dif-

ferent natures and, hence, reflect the trade-off effects

between these parameters. Similarly, the diagonal elements

of each sub-matrix provide information of coincident-in-

space model parameters of different natures, and the off

diagonal elements provide information about the interaction

between parameters of different natures in different spatial

locations.23 Incorporating the inverse of the Gauss–Newton

approximate Hessian will correct these effects and re-scale

the magnitudes of different parameters during the optimiza-

tion process.23 This can be regarded as some kind of implicit

regularization.

C. Multi-parameter Tikhonov regularization

When solving the normal Eq. (27) using a matrix-free

Krylov subspace method, such as GMRES, there is some

kind of regularization involved.25 However, our experience

is that some kind of (additional) regularization is always

needed for applications to realistic models.25 There exist a

range of different methods that can potentially be used to

solve ill-posed nonlinear inverse scattering problems.8 In this

paper, we use a generalized Tikhonov regularization method;

that is, we simply add a block-diagonal regularization opera-

tor to the left side of the normal Eq. (27) so that we obtain

F †

1F 1 F †

1F 2

F †

2F 1 F †

2F 2

 !
þ k2

1I 0

0 k2
2I

 !" #
dm1

dm2

 !

¼ �
F †

1

F †

2

 !
Dw; (28)

where I is the identity operator and ki; i ¼ 1; 2 are regulari-

zation parameters. There exist a range of different methods

for selecting optimal regularization parameters, but most of

these methods have been developed under the assumption

that the inverse problem is linear and characterized by a sin-

gle parameter field.44 In the case of multi-parameter nonlin-

ear inverse problems, the selection of optimal regularization

parameters can be based on a combination of theory and

heuristic methods. In this paper, we ensure that the ratio

between the two regularization parameters remains fixed

during the iterative nonlinear inversion process, and we use

a variant of the Levenberg–Marquard method to select the

optimal value for a single independent regularization param-

eter.45 Typically, we start with a relatively large value for

the independent regularization parameter and then decrease

this gradually with the number of iterations.8,44 Rather than

having a fixed ratio between the two regularization parame-

ters, it is also possible to change the ratio of the two regula-

rizations during the iterative inversion so that one

alternating updates the bulk modulus and mass density

fields. In any case, having two regularization parameters

allows for more flexibility in the attempts to mitigate the

effects of multi-parameter cross talk.

IV. FR�ECHET DERIVATIVES AND ADJOINTS

A. Decomposition of the acoustic scattering potential

When dealing with multi-parameter inverse scattering

problems in acoustic media, it is convenient to decompose

the scattering potential matrix V in the following manner:26

VðxÞ ¼
X2

p¼1

BðpÞmpðxÞ; (29)

where

Bð1Þ ¼

x2

jð0Þ
0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

2
66666664

3
77777775

Bð2Þ ¼

0 0 0 0

0
1

qð0Þ
0 0

0 0
1

qð0Þ
0

0 0 0
1

qð0Þ

2
66666666664

3
77777777775
:

(30)

In this way, we separate the tensorial and scalar parts of the

scattering potential, which is convenient for the derivation

of Fr�echet derivative and adjoint operators.

B. The Fr�echet derivative operators

The linear Fr�echet derivative operator F represents a

mapping from the model space (M) to the data space (D)

that can be expressed as

Fdm½ �ðrÞ ¼
X2

p¼1

Fpdmp½ �ðr; sÞ

¼
X2

p¼1

ð
M

d3xFpðr; x; sÞdmpðxÞ; (31)

where Fpðr; x; sÞ is the data sensitivity kernel of the pth

Fr�echet derivative operator. Physically, the Fr�echet deriva-

tive represents a linearization of the forward model around a

heterogeneous background model (equal to the inverted

model from a previous iteration). To perform this lineariza-

tion, we use the distorted Born approximation (see

Appendix A). This leads to the following expression for the

data sensitivity kernels:

Fpðr; x; sÞ ¼ GðbÞðr; xÞ � BðpÞ � wðbÞðx; sÞ: (32)

The above expression for ½F pdmi�ðrÞ requires an update of

the background medium Green’s function, and its spatial
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derivatives after each iteration. Since this is an extremely

costly process, we prefer to use an equivalent (FFT-friendly)

expression that only involves the Green’s function for the

homogeneous reference medium.

Essentially generalizing the ideas of Hesford et al.25 to

the multi-parameter case, we now make use of the physical

interpretation of the Green’s function GðbÞðr; xÞ for the het-

erogeneous background medium and find that the action of

the operator ½F idmi�ðr; sÞ is equal to an auxiliary four-

dimensional vector field w
ðpÞ
J ðr; sÞ that satisfies the data

equation

w
ðpÞ
J ðr;sÞ ¼w

ð0;pÞ
J ðr;sÞþ

ð
M

d3xGð0Þðr;xÞ �VðbÞðxÞ

�wðpÞJ ðx;sÞ; (33)

where w
ðpÞ
J ðx; sÞ is the solution to the corresponding domain

equation

w
ðpÞ
J ðx; sÞ ¼ w

ð0;pÞ
J ðx; sÞ þ

ð
M

d3x0Gð0Þðx; x0Þ � VðbÞðx0Þ

� wðpÞJ ðx0; sÞ: (34)

Here, w
ð0;pÞ
J ðx; sÞ is defined by

w
ð0;pÞ
J ðx; sÞ ¼

ð
M

d3x0Gð0Þðx; x0Þ � JðpÞðx0; sÞ; (35)

where JðpÞðx0; sÞ ¼ BðpÞ � wðbÞðx0; sÞdmpðx0Þ is the contrast-

source corresponding to perturbations in the pth model

parameter field. Thus, to find the variation in the wavefield

due to simultaneous perturbations in jðxÞ and qðxÞ, we sim-

ply solve a vectorial integral equation of the

Lippmann–Schwinger type using the FFT-Krylov iterative

method, with the auxiliary current density source JðpÞðx0; sÞ
instead of the physical source.

C. The adjoint of the Fr�echet derivative operators

The adjoint operator F †

represents a mapping from the

data space (D) to the model space (M). By using the defini-

tion of the adjoint of an arbitrary operator, we show in

Appendix B that the adjoints of the operators F p are given

by

F †

pDw
h i

ðxÞ ¼ wðaÞðxÞ � BðpÞ � wðbÞðxÞ
h i�

; (36)

where the adjoint wavefield wðaÞ is given by

wðaÞðxÞ �
ð

D

d3rd3sGðbÞðx; rÞ � Dwðr; sÞ: (37)

The above expressions for the adjoints of the operators F p,

p¼ 1, 2 also involve the updating of the background

medium Green’s function after each iteration. Generalizing

the adjoint integral equation method of Hesford et al.25 to

the multi-parameter case, we make use of the physical

interpretation of GðbÞðr; xÞ and find that the adjoint wave-

field is given by

wðaÞðxÞ ¼ wða;0ÞðxÞ þ
ð

M

d3x0Gð0Þðx; x0Þ � VðbÞðx0Þ

� wðaÞðx0Þ (38)

and

wða;0ÞðxÞ ¼
ð

D

d3rd3sGð0Þðx; rÞ � Dwðr; sÞ½ ��: (39)

Essentially similar to the adjoint method used in regular FWI

but based on an integral equation formulation, we can com-

pute the action of the adjoint operators F p on the data resid-

ual vector by solving two vectorial forward problems: First,

we solve a vectorial Lippmann–Schwinger equation for wðbÞ

using the real source. Then we solve for a similar vectorial

Lippmann–Schwinger equation for the adjoint field wðaÞ using

the complex-conjugate of the data residual wðr; sÞ observed

(for each source) at the receiver surface as the source term.

V. NUMERICAL EXAMPLES

A. Seismic imaging example

To test the presented multi-parameter inverse scattering

method and especially its ability to deal with multi-parameter

cross talk effects, we first inverted synthetic seismic wave-

form data associated with the seismic model shown in Fig. 2.

The left column of images in Fig. 2 shows the spatial distri-

bution of sources and receivers in conjunction with the bulk

modulus and mass density fields of the true model, respec-

tively. In this example, we employ 32 sources and 128

receivers that are uniformly distributed at the top of the

model. The right column of images in Fig. 2 shows the initial

model of the bulk modulus and mass density fields we used

at the first iteration of the iterative nonlinear inverse scatter-

ing method. The initial models were constructed from the

true models by employing a Gaussian averaging window

with an averaging length equal to 8 grid blocks.

FIG. 2. (Color online) Synthetic seismic model. The upper and lower panels

in the left column show the bulk modulus field with the sources and the

mass density field with the receivers, respectively. The upper and lower

panels in the right column show the corresponding initial models used for

nonlinear inverse scattering.
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In applications of inverse scattering or FWI methods to

real seismic waveform data, the initial model is typically

constructed from migration velocity analysis and/or the anal-

ysis of seismic travel times and/or amplitudes. In any case,

our local optimization approach to multi-parameter nonlin-

ear inverse scattering generally requires a good initial model

for convergence. To generate the synthetic measurement

data, we solved the vectorial integral Eq. (11) using a FFT-

based GMRES algorithm. We employed a Ricker wavelet

source with a centre frequency of 10 Hz (see Fig. 3), and

space and time were discretized using step sizes of Dx ¼ 20

m and Dt ¼ 0:0033 s, respectively.

The temporal sampling interval Dt was selected in

accordance with standard Nyquist sampling theory.46 To

minimize the numerical errors associated with a discretiza-

tion of the volumetric scattering integrals, the spatial sam-

pling interval Dx should be chosen significantly smaller than

the smallest seismic or acoustic wavelength. Since our

implementation involves the FFT algorithm, one can also

use Nyquist sampling theory to determine Dx, albeit with

spatial frequencies and wavelengths rather than temporal

ones. In any case, the selection of Dx is closely related to the

seismic or acoustic imaging resolution. Typically, we ensure

that Dx is at least four times smaller than the dominant (or

smallest) wavelength., which is often regarded as the resolu-

tion limit for FWI.29 To account for the singularity of the

Green’s function, we implemented its weak form that is

obtained by computing its spherical mean.42,47–49 The spher-

ical mean approach can in principle also be used to compute

so-called correction factors for non-singular cells, for even

more accurate spatial discretization.49

To avoid being trapped in a local minimum of the data

mismatch function, we inverted the synthetic acoustic wave-

form data associated with the seismic tomography model

using the well-known frequency-hopping method. In this

multi-scale regularization method, we start with the lowest

available frequency and gradually invert higher and higher

frequency components, with the inverted model from a pre-

vious frequency as the starting model for the inversion of

the current frequency.

Figure 4 illustrates the behavior of the NK method

when it is used in conjunction with the frequency-hopping

method. The upper and middle plots in Fig. 4 show how the

residual data error �d and the normalized difference between

the true and inverted model vectors �m decrease monotoni-

cally with the number of iterations. The lower plot in Fig. 4

provides information about how many iterations were

involved at each frequency before full-filling the stopping

criterion. We terminated the iterations at each frequency as

soon as �d started to increase or when the maximum number

of iterations was reached.

The multi-parameter inverse scattering results for the

seismic model are shown together with the true model in

Fig. 5. These inversion results illustrate the problem with

multi-parameter cross talk that the NK method is able to

deal with in a partially successful manner. The fact that the

NK method takes into account approximate Hessian infor-

mation during the iterative inversion process helps to bal-

ance the contributions of the bulk modulus and mass density

perturbations on the scattered field data. Note that we have

also shown the true and inverted acoustic wave speeds cðxÞ,
which were obtained from the relevant bulk modulus and

mass density fields by using cðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðxÞ=qðxÞ

p
.

B. Ultrasound breast imaging example

Figure 6 shows a realistic acoustic model of a cancerous

breast based on MR data from a clinical study. This model
FIG. 3. (Color online) Excitation profile in time and frequency domain used

in the numerical example related to seismic imaging.

FIG. 4. (Color online) Behavior of the iterative NK method we use to solve

the nonlinear multi-parameter inverse scattering problem in the case of the

synthetic seismic model. The top and middle panels show the relative resid-

ual data and model errors as functions of the number of iterations, respec-

tively. The bottom panel provides information about how many iterations

were used at each frequency in the frequency-hopping strategy. The initial

value of the regularization parameter k1 associated with perturbations in the

bulk modulus field was 102, and we reduced this value by 10% after each

iteration. The corresponding value of k2 associated with perturbations in the

mass density field was equal to k2 ¼ 5k1.
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of the bulk modulus and mass density profiles was used to

test our multi-parameter inverse scattering algorithm under

more realistic conditions. The left and right parts of Fig. 6

also show the spatial distribution of sources and receivers,

respectively. As one can see, we employ 32 sources and 64

receivers that are located in a circle in the water tank sur-

rounding the cancerous breast. In our numerical solution to

the multi-parameter direct scattering problem, space and

time are discretized using step sizes of Dx ¼ 1:2 mm and

Dt ¼ 2:5 ls, respectively.

The source wavelet used for probing the wavefield is

shown in Fig. 7; a Gaussian modulated pulse with a centre

frequency f0 ¼ 10 kHz. Although the bandwidth of the sig-

nal is representative of medical ultrasound, its centre fre-

quency is relatively low. Following Taskin et al.,22 this is

done to avoid cycle skipping as well as to be able to handle

the large acoustic contrast during the inversion. The fre-

quency components used for the inversion are indicated by

the red dots. Due to the low centre frequency of the

employed source wavelet, attenuation by absorption can be

FIG. 5. (Color online) Multi-parameter inverse scattering results for the

synthetic seismic model based on our matrix-free implementation of the

NK method. The left column shows the true bulk modulus, mass density,

and speed of sound profiles; the right column shows the inverse scattering

reconstruction using synthetically generated pressure field data. Note that

the bulk modulus and mass density fields are independent components of

the model parameter vector field involved in the nonlinear inverse scatter-

ing, whereas the velocity field is computed from the inverted bulk modulus

and mass density fields.

FIG. 6. (Color online) Synthetic ultrasound model based on a cancerous

breast based on MR data. The upper and lower panels in the left column

show the bulk modulus field with the sources and the mass density field

with the receivers, respectively. The upper and lower panels in the right col-

umn show the corresponding initial models used for nonlinear inverse

scattering.

FIG. 7. (Color online) Excitation profile in time and frequency domain used

in the numerical experiment related to medical ultrasound breast imaging.

FIG. 8. (Color online) Behavior of the iterative NK method we use to solve

the nonlinear multi-parameter inverse scattering problem in the case of the

synthetic ultrasound model of a cancerous breast. The top and middle pan-

els show the relative residual data and model errors as functions of the num-

ber of iterations, respectively. The bottom panel provides information about

how many iterations were used at each frequency in the frequency-hopping

strategy. The initial value of the regularization parameter k1 associated with

perturbations in the bulk modulus field was 102, and we reduced this value

by 10% after each iteration. The corresponding value of k2 associated with

perturbations in the mass density field was equal to k2 ¼ 5k1.
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neglected.22 To avoid being trapped in a local minimum of

the data mismatch function, we inverted the synthetic acous-

tic waveform data associated with the more realistic model

of a cancerous breast using the frequency-hopping method

described above. Figure 8 illustrates the behavior of the NK

method when it is used in conjunction with the frequency-

hopping method for the more realistic acoustic model in Fig. 6.

The multi-parameter inverse scattering results for the

model of a cancerous breast are shown together with the

true model in Fig. 9. Again, we have shown the true and

inverted speed of sound profiles that can be computed from

the corresponding bulk modulus and mass density profiles.

As one can see in Fig. 9, the match between the inverted and

true profiles for the bulk modulus, mass density, and wave-

speed is relatively good. Although the spatial variations in

the different model parameter are relatively complicated,

the multi-parameter cross talk appears to be not too chal-

lenging for our nonlinear inverse scattering approach. In any

case, the fact that we can now reconstruct the mass density

in addition to the bulk modulus (or velocity) fields means

that one can in principle perform a more detailed characteri-

zation of the different tumors involved in ultrasound breast

imaging. This is because different types of tumors corre-

spond to different combinations of the three parameter fields

we have shown in our numerical experiments, and by recon-

structing all these three acoustic model parameter fields

from the ultrasound waveforms, one can answer more

detailed questions about the condition of a cancerous breast.

VI. DISCUSSION

Although the acoustic test models we employed in Sec.

V are fairly realistic, they are not optimal when it comes to

the illustration of multi-parameter cross talk effects. The rea-

son for this is that the bulk modulus and mass density fields

have the same spatial variations and are correlated to some

degree. To better understand the effects of multi-parameter

cross talk in the contexts of seismic and medical ultrasound

imaging, we have therefore performed some additional

numerical experiments based on synthetic acoustic waveform

data for more artificial acoustic models where the variations

in the bulk modulus and mass density are completely inde-

pendent and occur at different spatial locations.

Figure 10 shows the artificial seismic model we have

used to study the effects of multi-parameter cross talk in the

context of seismic imaging. The upper and lower parts of

the left column of Fig. 10 show the variation in the bulk

modulus and the mass density as well as the source and

receiver locations, respectively. The upper and lower parts

of the right column of Fig. 10 show the (homogeneous) ini-

tial models of the bulk modulus and mass density fields used

in the inversion. Clearly, one can see that the perturbations

in the bulk modulus and mass density fields relative to a

homogeneous background medium are non-zero at different

spatial locations, and they are correlated in the middle. We

use the same source parameters and grid-size as in the

numerical experiment associated with Figs. 2 and 3.

Figure 11 shows reconstructed bulk modulus, mass den-

sity, and speed of sound profiles obtained by using the NK

method to invert a set of synthetic seismic waveform data

for the artificial seismic model in Fig. 10. Clearly, the match

between the true and inverted models is very good, although

one can see some artefacts on the reconstructed density and

speed of sound profiles related to multi-parameter cross talk.

Figure 12 shows similar inversion results obtained by

performing the inversion using the conjugate gradient (CG)

FIG. 9. (Color online) Multi-parameter inverse scattering results for the syn-

thetic ultrasound model with a cancerous breast based on a matrix-free

implementation of the NK method. The left column shows the true bulk mod-

ulus, mass density, and speed of sound profiles; the right column shows the

corresponding inverse scattering reconstruction. Again, the bulk modulus

and mass density fields are independent components of the model parameter

vector field involved in the nonlinear inverse scattering, whereas the velocity

field is computed from the inverted bulk modulus and mass density fields.

FIG. 10. (Color online) Seismic model designed to investigate the effects of

multi-parameter cross talk on the inversion results. The left and right col-

umns of panels show the true model and the initial model, respectively. The

locations of the receivers and sources are indicated on the true bulk modu-

lus and mass density models, respectively. The excitation profile used in

this numerical experiment is shown in Fig. 3.

J. Acoust. Soc. Am. 153 (5), May 2023 Jakobsen et al. 3159

https://doi.org/10.1121/10.0019563

D
ow

nloaded from
 http://pubs.aip.org/asa/jasa/article-pdf/153/5/3151/17913677/3151_1_10.0019563.pdf

https://doi.org/10.1121/10.0019563


method (Appendix C) instead of the NK method, but keeping

all other parameters fixed. By comparing Fig. 12 with Fig.

11, we can see that inverted results of the CG method are

less good than those of the NK method. However, the CG

method is faster than the NK method, suggesting that it may

sometimes be a good alternative. In any case, both the NK

method and the CG method employ the same expressions for

the Fr�echet derivative and the adjoint operators.

FIG. 11. (Color online) Seismic inver-

sion results for the cross talk model in

Fig. 10 obtained using the NK method.

The left and right columns of panels

show the true and inverted models,

respectively.

FIG. 12. (Color online) Seismic inver-

sion results for the cross talk model in

Fig. 10 obtained using the CG method.

The left and right columns of panels

show the true and inverted models,

respectively.
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Figure 13 shows the artificial ultrasound breast phantom

model we have designed to study effects of multi-parameter

cross talk in the context of medical ultrasound imaging.

The upper and lower parts of the left column of Fig. 13 show

the variations in the bulk modulus and the mass density as

well as the receiver and source locations, respectively. The

upper and lower parts of the right column of Fig. 13 show

the (homogeneous) initial models of the bulk modulus and

mass density fields we have used in the inversion, respec-

tively. Again, one can see that the spatial variations in the

bulk modulus and mass density fields are completely uncor-

related. We use the same source parameters and grid-size as

in the numerical experiment associated with Figs. 6 and 7.

Figure 14 shows reconstructed bulk modulus, mass den-

sity, and speed of sound profiles obtained using the NK

method to invert a set of synthetic ultrasound waveform

data for the artificial ultrasound breast phantom model in

Fig. 13. Again, the match between the true and inverted

models is very good, although some artefacts can again be

seen. The effects of multi-parameter cross talk now appear to

be smaller than in the corresponding seismic case, and we

think this is due to the fact that the ultrasonic source-receiver

configuration allows for a more complete illumination, since

the sources and receivers are completely surrounding the

object of interest.

Figure 15 shows similar inversion results obtained by

performing the inversion using the CG method instead of

the NK method, but keeping all other parameters fixed.

From Figs. 15 and 14, we can see that the inverted results of

the NK method are better than those of the CG method.

Although the CG method is a gradient-based optimiza-

tion method that does not explicitly account for approximate

Hessian information and does not involve any regularization

parameters, it was a little surprising to see that the CG

method performed nearly equally as well as the NK method.

In any case, our multi-parameter implementation of the CG

method is based on the same vectorial integral equation for-

mulation and employs the same expressions for the Fr�echet

derivative and the adjoint as the NK method derived in this

FIG. 13. (Color online) Ultrasonic model designed to investigate the effects

of multi-parameter cross talk on the inversion results. The left and right col-

umns of panels show the true model and the initial model, respectively. The

locations of the receivers and sources are indicated on the true bulk modu-

lus and mass density models, respectively. The excitation profile used in

this numerical experiment is shown in Fig. 7.

FIG. 14. (Color online) Medical ultrasound inversion results obtained using

the NK method.

FIG. 15. (Color online) Medical ultrasound inversion results obtained using

the CG method.
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study. Therefore, most of the theory in this paper is equally

relevant for CG- and NK-based implementations of this tra-

ditional iterative approach to multi-parameter nonlinear

inverse scattering.

VII. CONCLUDING REMARKS

We have generalized an existing NK method based on

the scalar wave equation, so that it can be used for nonlinear

inverse scattering in acoustic media with variable mass den-

sity and bulk modulus, used to reconstruct the velocity pro-

file. This is important since the density carries additional

information about the nature of the anomalies associated

with seismic and medical ultrasound imaging. The results of

a series of numerical experiments performed in this study

suggest it is indeed possible to perform a simultaneous

inversion of acoustic waveform data for the bulk modulus

and mass density field. The multi-parameter DBI algorithm

we have developed is completely matrix-free, in the sense

that we avoid forming and updating the Green’s function for

the background medium after each iteration. Instead, we

employ an adjoint integral equation method that allows us to

take into account approximate Hessian information essential

for the mitigation of multi-parameter cross talk effects in an

efficient manner.

The starting point for our theoretical derivations was

the acoustic wave equation for media with variable mass

density and bulk modulus. In the medical ultrasound imag-

ing community, it is generally accepted that the acoustic

wave equation with variable density is very good starting

point for the development of algorithms for multi-parameter

nonlinear inverse scattering algorithms, at least if the region

of interest is made of soft matter (e.g., a cancerous breast).

In the seismic imaging community, however, researchers

agree that the medium should in principle be assumed to act

like an elastic solid that supports the propagation of shear

waves as well as compressional waves. However, it is still

common to use the acoustic approximation to simplify

mathematical derivations and to reduce the computational

cost associated with large-scale seismic modeling and

FWI.29

Different researchers in the seismic imaging community

seem to have different opinions about the value of imaging

algorithms based on the acoustic approximation. We agree

with Weglein et al. that it does not always make sense to

perform a FWI if one ignores the important effects of shear

waves. However, it makes sense to use the acoustic approxi-

mation when introducing new ideas and concepts. Also, we

think it is interesting that what is considered a relatively

crude approximation by the seismic community can be

highly relevant for medical ultrasound breast cancer detec-

tion and characterization. In any case, a generalization of

the current work based on the anisotropic elastic wave equa-

tion [Eq. (26)] that could potentially be useful for ultrasound

imaging of porous and fractured bone structures, the skull

and the human brain,12 as well as seismic imaging and reser-

voir characterization, is currently under development.
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APPENDIX A: DISTORTED BORN APPROXIMATION

The distorted Born approximation can be derived as fol-

lows. First, we express integral Eq. (11) in operator form as

w ¼ wð0Þ þ Gð0ÞVw: (A1)

Then we compute the variation in the vectorial wavefield w
due to a variation in the scattering potential V around a

heterogeneous background medium where V ¼ VðbÞ and

w ¼ wðbÞ and obtain

dw ¼ Gð0ÞdVwðbÞ þ Gð0ÞVðbÞdw: (A2)

By solving the above equation for the variation w, we obtain

dw ¼ GðbÞdVwðbÞ; (A3)

where

dw ¼ ðI � Gð0ÞVðbÞÞ�1Gð0Þ (A4)

is the Green’s function GðbÞ for the heterogeneous medium

with scattering potential VðbÞ. If we now write down the

above equation explicitly, we obtain

dwðrÞ ¼
ð

M

d3xGðbÞðr; xÞ � dVðxÞ � wðxÞ; (A5)

which is the distorted Born approximation for the scattered

vectorial wavefield in the real-space coordinate representa-

tion. Finally, we note that the matrix of modified Green’s

functions GðbÞðr; xÞ satisfies the usual reciprocity relations

G
ðbÞ
ab ðr; xÞ ¼ G

ðbÞ
ba ðx; rÞ; a; b ¼ 1; 2; 3; 4; (A6)

which are important for matrix-free implementation of the

adjoint integral equation method.

APPENDIX B: ADJOINT OPERATORS

The adjoint F †

p of the Fr�echet derivative operator F p is

defined by

ðF †

pDw; dmÞM ¼ ðDw;FpdmÞD; (B1)

where ð; ÞM and ð; ÞD denote scalar products in the model

and data spaces, respectively. By using the definition of the

scalar products, we can rewrite Eq. (B1) more explicitly asð
d3x F †

pDw
h i

ðxÞ
	 
�

dmðxÞ¼
ð

d3rd3sDw
†ðr;sÞ� F pdm½ �ðr;sÞ:

(B2)
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By using the expression for ½F pdm�ðr; sÞ given in Eqs. (31)

and (32) in conjunction with the above equation, we obtainð
d3x F †

pDw
h i

ðxÞ
	 
�

dmðxÞ

¼
ð

d3rd3sDw
†ðr; sÞ

�
ð

dxGðbÞðr; xÞ � BðpÞ � wðbÞðx; sÞdmðxÞ: (B3)

By rearranging the integrals on the right-hand side of the

above equation, we obtainð
d3x F †

pDw
h i

ðxÞ
	 
�

dmðxÞ

¼
ð

d3x

� ð
d3rd3sDw

†ðr; sÞ �
ð

dxGðbÞðr; xÞ

� BðpÞ � wðbÞðx; sÞ
�
dmðxÞ: (B4)

Thus, it follows from the above equation that

F †

pDw
h i

ðxÞ
	 
�

¼
ð

d3rd3sDw
†ðr; sÞ �

ð
d3xGðbÞðr;xÞ

� BðpÞ � wðbÞðx; sÞ: (B5)

By using the reciprocity property G
ðbÞ
ab ðr; sÞ ¼ G

ðbÞ
ba ðs; rÞ, we

get

F †

pDw
h i

ðxÞ
	 
�

¼ wðaÞ � BðpÞ � wðbÞ; (B6)

where the adjoint field wðaÞ is defined by

wðaÞðxÞ �
ð

d3rd3sGðbÞðx; rÞ � Dwðr; sÞ: (B7)

APPENDIX C: NONLINEAR CG METHOD

Model update in CG optimization method can be

expressed as

mkþ1 ¼ mk þ akpk; (C1)

where ak is the step length and pk is the descent direction.

The step length can be found from50

ak ¼
hF kpk;Dwki
hF kpk;F kpki

; (C2)

where F k is the Fr�echet derivative operator, and h�; �i is

inner product. The descent direction pk can be obtained as

follows:51

pk ¼
�g1; k ¼ 1;

�gk þ ckpk�1; k > 1

(
(C3)

in which

gk ¼ F
†

kDwk: (C4)

In Eq. (C3), ck is estimated from

ck ¼ max 0;min c1
k ; c

2
k

� �� �
; (C5)

where

c1
k ¼

hgk; gk � gk�1i
hpk�1; gk � gk�1i

;

c2
k ¼

hgk; gki
hpk�1; gk � gk�1i

:

8>>><
>>>:

(C6)
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