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Abstract: The light emitted or reflected by a medium can exhibit a certain degree of polarization.
Most of the time, this feature brings valuable information about the environment. However,
instruments able to accurately measure any type of polarization are hard to build and adapt to
inauspicious environments, such as space. To overcome this problem, we presented recently
a design for a compact and steady polarimeter, able to measure the entire Stokes vector in a
single shot. The first simulations revealed a very high modulation efficiency of the instrumental
matrix for this concept. However, the shape and the content of this matrix can change with the
characteristics of the optical system, such as the pixel size, the wavelength or the number of
pixels. To assess the quality of the instrumental matrices for different optical characteristics, we
analyze here the propagation of errors, together with the impact of different types of noise. The
results show that the instrumental matrices are converging towards an optimal shape. On this
basis, the theoretical limits of sensitivity on the Stokes parameters are inferred.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

The understanding of reality can be hugely improved with the help of polarization. This property
of light, referring to the orientation of the electric field, can be related to many characteristics of
the environment. Therefore, with tremendous success, now we use polarization in astronomy
[1–3], remote sensing [4], medicine, biology, chemistry, etc. [5–9].

However, despite the large number of applications, the measurement of polarization remains
difficult. The main reason for this is the fact that the human eye and the optical detectors are not
sensitive to the polarization of light. We need to use special instruments to measure it. These
instruments are bulky, very sensitive to the measurement conditions, and only measure a limited
set of polarization states.

In recent research, a new method for a non-imaging measurement of polarization was presented
[10–12]. As a novelty, this method employs a new type of optical modulator. This component
allows for overcoming most of the traditional problems related to polarization measurements. It
gives the possibility to build an instrument compact, robust, and suitable even for use in harsh
environments, like space. Moreover, it can measure any type of polarization through a single
shot.

However, in contrast with the traditional way of measuring polarization, where a limited
number of equations are used in the modulation schemes, the new instrument can employ much
more equations. Therefore, the instrumental matrix can have a very large format. In addition,
this matrix will depend on the geometry of the modulator or on the number of pixels, their size,
and the used wavelength. Thus, finding an optimal form for these matrices is no longer easy.

Based on the previous results [10], a specific geometrical configuration can be chosen for the
modulator to obtain the highest efficiency of the modulation scheme [13]. This way, only three
variables are required in the analysis. The system’s quality depends on the number of pixels,
their size and the wavelength. Therefore, the theory of the impact of noise [14–17] can be used
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for different configurations depending on these variables in order to assess the quality of the
instrumental matrices that can be obtained.

This paper uses two main concepts to analyze these matrices: the condition number (CN)
and the equally weighted variance (EWV). The CN provides information about how errors are
propagated through the instrumental matrix. The EWV tells how the retrieved Stokes parameters
are impacted by the type of noise. This way, we can see if the proposed instrument behaves or
not like an optimal one.

The results of simulations show that, in certain conditions, the instrument is very close to
an optimal one. No matter the wavelength, the matrices are converging towards an ideal form.
In conclusion, the proposed design not only solves many practical difficulties related to the
measurement of polarization, but also provides a very high degree of accuracy.

2. Measurement of polarization

The classical methods for the determination of polarization rely on Stokes formalism and on
the Mueller calculus. The Stokes formalism is a straightforward mathematical description of
polarization. At the basis is a vector with four parameters, S⃗ = (S0, S1, S2, S3)

T , that can represent
any type of polarization. Here S0 stands for the total intensity of light, S1 for the linear horizontal
or vertical state of polarization, S2 for the linear 45◦ or 135◦ states, and S3 for the circular right or
left polarization, while T denotes the transposition operator. Finding the four Stokes parameters
requires at least four measurements under different configurations of the optical system. The
Stokes vector is related to the structure of the system through the Mueller calculus. Therefore,
the state of polarization, S⃗out = (Sout0, Sout1, Sout2, Sout3)

T , emerging from a system described by a
4 × 4 Mueller matrix, M, is:

S⃗out = M·S⃗, (1)

where S⃗ is the incoming state of polarization. Given the fact that the detectors are sensitive
only to the intensity of light, only the first term of the emerging vector, Sout0, must be taken into
consideration for the measurement of polarization. Therefore, the detected intensity is:

Sout0 = M00S0 +M01S1 +M02S2 +M03S3, (2)

where (M00, M01, M02, M03) are the terms of the first line of the Mueller matrix, M. When the
configuration of the system changes, these terms may also change. To simplify the representation
of a system that can embrace N configurations, it is useful then to change the notation from M
into W, and from Sout0 to I, so that:{︄

(M0i)k = Wki+1

(Sout0)k = Ik
for i = 0, .., 3; k = 1, .., N, (3)

where k is the index of the configuration. Consequently, the N equations that allow the
measurement of polarization can be written in the following form [13,18]:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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.
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or, in a more contracted expression:
I⃗ = W ·S⃗, (5)

where I⃗ is the vector of the detected intensities (i.e. number of photo-electrons), W is the
instrumental matrix and S⃗ is the incoming Stokes vector that must be measured.

If the transition from one configuration to another requires the move or the rotation of
certain components of the instrument, then we are dealing with the sequential measurement of
polarization. On the other hand, if the different configurations coexist, then we are speaking
about the division of amplitude procedure.

If W is an invertible matrix, the Stokes vector is immediately accessible via

S⃗ = W−1·I⃗. (6)

Because noise is always present in this kind of measurement, increasing the number of lines of
the system (Eq. (4)) may help mitigate the influence of spurious signals and enhance the precision
of the polarization determination. However, if N>4, then the W matrix is no longer invertible.
The only possibility to solve the system (Eq. (5)) is to use the left-inverse matrix, W†:{︄

W†=(WTW)−1WT

W†W = ⊮,
(7)

where T represents the matrix transposition. According to the theory [19], the left inverse matrix
exists only if the rank of the matrix W(N × 4) is equal to 4, when N ≥ 4. Therefore, the use of
the left-inverse matrix should be conditioned by the verification of this necessary and sufficient
condition. Multiplying at left side the Eq. (5) with W†, we obtain

S⃗ = W† I⃗. (8)

3. Continuous phase variation spectropolarimeter concept

Most of the classical approaches to generate the W matrix are using the sequential method or
the division of amplitude. Therefore, these kinds of instruments often are bulky, limited to
certain types of polarization, or not suitable for harsh environments. In this context, we recently
presented a new concept of spectropolarimeter able to solve most of these difficulties [10–12].
Using the division of amplitude method, the new instrument allows the full determination of the
Stokes vector with a single measurement. Working with a collimated beam, this instrument is
adapted for the non-imaging working mode.

The main part of the instrument, the modulator, is composed of three prisms in Magnesium
Fluoride (MgF2), optically glued together and with the fast axis differently oriented in each wedge
(see Fig. 1, (a, b)). Therefore, the first prism, (1), of apex angle ξ, has a fast axis oriented along
the x-axis. In the middle part of the modulator, (2), the fast axis is oriented along the z-axis, while
in the third wedge, (3), of apex angle ψ, the fast axis makes an angle of 45◦ with the x-axis, in the
(xy)-plane. These particular orientations of the fast axes ensure a complete modulation along the
vertical direction (i.e. the y-axis) of any incoming state of polarization arriving collimated from
the left side of the instrument. Given the variation of the optical thickness along the vertical
direction inside the modulator, the phase difference between the two orthogonal components
of light varies continuously along the vertical direction. Therefore, a continuous variation of
polarization is achieved along the vertical direction on the exit face of the modulator. Because the
phase difference induced by the MgF2 prisms depends also on the birefringence of the material,
the modulation of the signal is also spectrally dependent. By placing a linear polarizer after
the modulator, with the transmission axis oriented at an angle θ with respect to the horizontal
direction, the variation of polarization along the vertical direction can be converted into an
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intensity variation, as it is shown in Fig. 1(c). To avoid a high angular separation between the
ordinary and extraordinary rays inside the modulator, small values of apex angles must be used.
Therefore, the simulations conducted here rely on ξ = 2.6◦ and ψ = 1.8◦, whereas the orientation
of the analyzer was considered θ = 72◦. These values were chosen also in order to ensure a very
high efficiency of the modulation scheme [10,13].

a)

c)

Polarimeter

Signal modulation

10

20

0.8

y(mm)

0

0.13

0.46

Incoming
collimated

polarized light

Modulator Analyzer
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Fig. 1. The general principle of the spectropolarimeter: a) the polarized light arriving
collimated from the left side passes through the modulator, the analyzer, and then is dispersed
horizontally by a dispersive element. Each prism of the modulator has a particular orientation
of the fast axis: along the x axis in (1), along z in (2), and at 45◦ in (3). The modulation
of the signal obtained with this modulator is spectrally dependent (c). The period of the
signal increases with the wavelength. In addition, each incoming state of polarization
is characterized by a unique pattern of the intensity. An arbitrary state of polarization
S⃗ = [1, 0.5, 0.4, 0.3] was simulated here.

Since the modulation of the signal is spectrally dependent, due to the birefringence of the
modulator, (see Fig. 1(c)), a dispersive element can be placed after the analyzer to disperse the
light spectrally along the x−axis, orthogonal to the polarimetric modulation. For an incoming
Stokes vector, S⃗ = (S0, S1, S2, S3)

T , the intensity of light in the detector plane is described by the
following equation:

I(θ, y, λ) =
1
2
[S0 + S1·m(θ, y, λ) + S2·n(θ, y, λ) + S3·p(θ, y, λ)] (9)

where θ is the angle of the linear analyzer with respect to the x-axis, y is the position in the
vertical direction, and λ is the wavelength. The functions m, n, p, computed with the help of the
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Mueller calculus, are given by:⎧⎪⎪⎪⎨⎪⎪⎪⎩
m(θ, y, λ) = cos(2θ) cos(∆ϕ3)

n(θ, y, λ) = sin(2θ) cos(∆ϕ1) + cos(2θ) sin(∆ϕ1) sin(∆ϕ3)

p(θ, y, λ) = sin(2θ) sin(∆ϕ1) − cos(2θ) cos(∆ϕ1) sin(∆ϕ3)

, (10)

where ∆ϕ1 and ∆ϕ3 are the phase differences induced by the prisms (1) and (3):{︄
∆ϕ1 =

2π
λ ∆n(λ)(h − y) tan(ξ)

∆ϕ3 =
2π
λ ∆n(λ)(h − y) tan(ψ)

, (11)

in which ∆n(λ) = |no(λ) − ne(λ)| is the absolute value of the difference between the ordinary and
the extraordinary indices of refraction, also called the birefringence of the medium, while h is the
height of the modulator.

Discretizing in the vertical direction the height of the ensemble formed by the modulator and
the analyzer into Nt pixels of the same size as the detector pixels, ∆y, then each small part of this
ensemble will act as a polarimeter with a different configuration. Consequently, a column of
Nt pixels from the detector plane will record the signal coming from Nt different polarimeters
disposed on the same vertical. For a precise wavelength and orientation of the analyzer, the
intensity measured by the illuminated pixels is:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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=
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2
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W

·
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S0

S1

S2

S3

⎞⎟⎟⎟⎟⎟⎟⎟⎠⏞⏟⏟⏞
S⃗

. (12)

In the following discussions, the number of lines of the instrumental matrix, N, will always
satisfy the relation N ≤ Nt, where Nt = h/∆y is the total number of pixels from a column of
the detector. The number of pixels N used in the construction of the W matrix can take any
value between 4 and Nt. Therefore, using different values of N will not change the received flux
per pixel. In addition, the size of the pixel, ∆y, will be taken into account by considering the
integrated value of the functions m, n, and p over the pixel size (see Eq. (12)). When N>4, W is
no longer invertible. However, working with N>4 may help to mitigate the impact of the noise if
the W matrix is well-conditioned and close to an optimal one. Therefore, the objective of the
current research is to show that the W matrices are converging toward optimal forms for certain
couples of the number of pixels, N, and their size, ∆y.

4. Tools for the analysis of the instrumental matrix

From the Eqs. (10), (11) and (12) we see that, for a given configuration of the polarimeter (i.e.
the angles ξ, ψ and θ, and the height, h), and a given wavelength, the elements of the matrix W,
as well as its dimension and other properties are determined by the number of pixels, N, their
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size, ∆y, and their location in the vertical direction. Therefore, the size of the matrix can span
between 4 × 4 and 4 × N. To see if these matrices W, that can be formed, are suitable or not for
the retrieval of polarization, we need to assess their "quality". The best "instruments" for this
are the condition number and the equally weighted variance [15,20–22]. Both will be analyzed
hereafter. The advantage of the condition number is the fact that allows us to observe if the
inverse of the W matrix can be computed with accuracy. On the other hand, the equally weighted
variance tells us how the retrieval of the Stokes vector is impacted by different types of noise
when a certain W matrix is used.

Both concepts, along with the demodulation of the signal, based on Eqs. (6) and (7), are relying
on the possibility to compute the inverse of the instrumental matrix, W. As was underlined
before, this happens only if the rank of W is 4, for any N ≥ 4 and for any λ. To have a rank
equal to 4, the columns of W should be linearly independent. In addition, more than 4 rows
should also be linearly independent. Our previous paper [10], proved that the functions m, n and
p are linearly independent. Therefore, the columns of W are also linearly independent. A quick
inspection of the Poincaré sphere (see Fig. (2)), where m, n, p are represented on a sphere of
radius 1, reveals also that the points (m(yi), n(yi), p(yi)), (i = 1. . .N) are covering the entire sphere,
for any value of λ. Therefore, the rank of W is 4 and the necessary and sufficient condition for W
to have a left-inverse is satisfied. Furthermore, an arbitrary example can be chosen to verify the
demodulation procedure based on Eq. (8). Therefore, by considering an incoming normalized
Stokes vector s⃗ = (1, 1/

√
3, 1/

√
3, 1/

√
3)T , this procedure was applied to retrieve the polarization,

ignoring, at this moment, any other sources of errors. The results (see Fig. (3)) show that for
N>6, the relative error on the normalized Stokes parameters is of the order of 6.5·10−12. For
N = 4, the highest error is observed on s1 parameter (approximately 5.4·10−8).

Fig. 2. Poincaré representation of the points (m(yi), n(yi), p(yi)), (i = 1, .., N) on a sphere of
radius 1, for two values of N. For these simulations, the size of the pixel was considered to
be ∆y = 10µm and the wavelength λ = 0.35µm.

4.1. Condition number

The condition number provides simultaneously information about how well-conditioned the
W matrix is for inversion and how sensitive the system is to changes. Therefore, a small CN
indicates a well-conditioned matrix. Small changes in the vector I⃗, due to noise, and in the
matrix W, due to integration over pixel size, are converted into small variations of the computed
Stokes vector ˆ︁S with respect to the real incoming state of polarization, S⃗. Meanwhile, for an
ill-conditioned W matrix, (large CN), small changes of I⃗ and W generate large changes in the
computed state of polarization, ˆ︁S [23]. The smallest value of CN is 1 and it corresponds to a
unitary matrix, while the highest value is infinity, corresponding to non-invertible matrices. In
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Fig. 3. Relative error on the normalized Stokes parameters as a function of the number
of pixels, N. For these simulations, the size of the pixel was considered to be ∆y = 10µm,
the wavelength, λ = 0.35µm, whereas the incoming normalized polarization was arbitrarily
chosen as s⃗ = (1, 1/

√
3, 1/

√
3, 1/

√
3)T .

the case of a polarimeter, where W is no longer a square matrix, the CN is defined as [15,22]:{︄
CN(W) = ∥W†∥∥W ∥

∥W ∥ =
√︁

Tr(WTW)
, (13)

where Tr is the trace operator. In [22] it was proved that the minimum condition number computed
with this formula for an optimal W matrix is

√
20.

4.2. Equally weighted variance

The error on Stokes parameters has two main sources: the algorithm of computation, through
the matrix W, and the noise. To mitigate the impact of W, the best strategy is to search for the
matrices with the smallest condition number. On the other hand, to assess the impact of noise,
the concept of equally weighted variance (EWV) can be used [15,20–22]. When the noise is
present in the optical system, Eq. (5) must be adjusted:

I⃗ = WS⃗ + B⃗, (14)

where B⃗ is the noise vector. This noise can be related to the electronics of the instrument,
speaking in this case about the Gaussian additive white noise (AWN), or to the number of the
received photons, referred to as non-additive Poisson shot noise (PSN). Multiplying at left side
with W†, the previous relation became: ˆ︁S = S⃗ +W†B⃗, (15)

whereˆ︁S = W† I⃗ is the corrupted Stokes vector. Because in our case W can embrace various forms,
the purpose is then to see how the precision of the Stokes parameters is impacted by these forms
when the different types of noise are present (see Fig. (4)) . We can assess this impact with the
help of the equally weighted variance. From its definition [20,21,24], the EWV is nothing else
but the sum of the variances on the Stokes parameters of the vectorˆ︁S,

EWV(W) =

3∑︂
k=0

var(ˆ︁Sk) = Tr[Γˆ︁S], (16)

where Γˆ︁S is the covariance matrix ofˆ︁S.
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Fig. 4. Schematic representation of the working principle of the polarimeter in the presence
of noise, for a single wavelength. The vertical modulation of the signal (I⃗), obtained over
a column of pixels, is corrupted by the noise B⃗. Consequently, the measured state of
polarization is Ŝ instead of S⃗. An optimal modulation matrix W allows the minimization of
the difference between Ŝ and S⃗.

Therefore, the imprecision on the Stokes parameters and on the degree of polarization can be
directly accessed. In the case of a Gaussian white noise of standard deviation σ, EWV becomes

EWV(W) = σ2Tr
[︁
(WTW)−1]︁ , (17)

and the minimal values of EWV(W) correspond to optimal W matrices [25]. Previous studies
[21,22] have shown that, in the presence of Gaussian noise, for the minimal values of EWV(W),
Γ
ˆ︁S has the form

Γ
ˆ︁S = σ2(WTW)−1 =

4
N
σ2

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

0 3 0 0

0 0 3 0

0 0 0 3

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (18)

where N is the total number of lines of the matrix W. For this value of Γˆ︁S, the EWV is 40σ2/N.
In the presence of a Poisson, non-additive noise, the expression of the covariance matrix is

different as it depends on the intensity, and therefore on the Stokes parameters. In this case, the
matrix is given by [14,21]:

Γ
ˆ︁S
ij =

3∑︂
k=0

Sk

N∑︂
n=1

W†

inW†

jnWnk for i, j = 0, .., 3. (19)
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For a design characterized by an optimal modulation scheme, the variances of the Stokes
parameters, corresponding to the diagonal terms of the matrix (19) are [21]:{︄

Γ
ˆ︁S
0,0 =

2S0
N

Γ
ˆ︁S
j,j =

6S0
N , j = 1, 2, 3

, (20)

whereas the covariance between S0 and the rest of the terms is no longer zero. Following Eqs. (13),
and (20), the minimum value of the EWV is 20S0/N.

5. Optical system analysis

The two concepts previously introduced, for CN and EWV , are hereafter explored while applied
to our spectropolarimeter. To simplify the analysis, the structural parameters of the polarimeter
are considered fixed. Therefore, the analyzer is oriented at the angle θ = 72◦, while the prisms of
the modulator, built in MgF2, have the apex angles ξ = 2.6◦, and ψ = 1.8◦. The only parameters
driving the shape of the W matrix for a given wavelength, λ, are in this case the pixel size, ∆y,
and the number of lines, N, corresponding also to the number of pixels in the vertical direction.
As was underlined before, a change in the size or number of pixels is not accompanied here
by a variation of the flux. The limits of variation for ∆y and N are imposed by the size of the
modulator, which is here 2cm × 2cm. Consequently, the questions that we try to answer here
are how many pixels we need to build an optimal modulation matrix and what is the suitable
dimension of these pixels.

5.1. Condition number

Using the Eq. (13), the CN was computed for various pixel sizes, ∆y, and number of lines, N, of
the matrix W. Precise values of the wavelength were arbitrarily chosen within the transmission
range of MgF2. Therefore, the Fig. (5)-left was plotted for λ = 0.35µm, and it shows that ∆y
and N are inversely correlated. An increase of the size of pixel corresponds to a decrease of the
number of lines, N, required to obtain the same value of the CN. In addition, it is noticeable
that the smallest value of CN is situated between 5 and

√
20, and is reachable for almost any

value of the pixel size. This tendency is visible in the Fig. (5)-right. Here, the level of CN was
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Fig. 5. Left: CN as a function of the pixel size, ∆y, and number of lines, N, of the matrix
W. For this example, an arbitrary wavelength λ = 0.35µm was considered. Level lines
corresponding to CN = 20, 10 and 5 were also plotted. Right: CN as a function of the
number of lines, N, for a pixel size ∆y = 10µm and three wavelengths. The dotted vertical
lines correspond to τmax(λ1), τmax(λ2), and τmax(λ3) respectively.
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monitored with respect to the value of N for three different wavelengths. The plot shows that for
any wavelength, the CN converges similarly towards the optimal value of

√
20. The only impact

of the wavelength is to shift the position of the minimum from where the convergence manifests.
Approximately, the convergence occurs after the number of pixels, N, covers along the y−axis a
distance equal to the largest period of the functions m, n, p. From Eq. (10) it can be easily shown
that this period is:

τmax(λ) =
λ

∆n(λ)·(tan(ξ) − tan(ψ))
. (21)

6. Equally weighted variance (EWV)

As it was already proved, the notions of condition number and equally weighted variance are
closely related [15]. However, the CN only provides information about the propagation of errors
through the W matrix. It gives no hint about the level of errors on the Stokes parameters when
the noise affects the measurements. For this, the EWV should be studied. This is based on
the covariance matrix of the retrieved Stokes vector (see Eq. (16)). Therefore, it can provide
information about the variances of the Stokes parameters and about the correlation existing
between them.

6.1. Gaussian noise

When the system is subject to the Gaussian noise, the covariance matrix of the Stokes parameters,
Γ
ˆ︁S, is provided by Eq. (17). In the case of an optimal polarimeter, characterized by an equal

impact of the noise on the Stokes parameters, the covariance matrix embraces the form from
Eq. (18). Therefore, for such a polarimeter, the variances on S1, S2, and S3 are three times higher
than for the intensity term, S0. Because the rest of the matrix is zero, the presence of this noise
brings no correlation between the Stokes parameters. Varying one of them will not affect the
others.

As we saw in the study of CN, by changing the number of pixels, N, or the size of the pixels
on the y direction, ∆y, the shape and the "quality" of W can be changed. Thus, by increasing N,
we noticed that CN converged towards the optimal value of

√
20. Conducting the same type of

simulation for the covariance matrix, we want to see now if this trend can be retrieved again.
To simplify the comparison between the results for our instrument and an optimal case,

described by the Eq. (18), we have monitored the evolution of the terms of the matrix G, defined
by

G = Γˆ︁S· N
4σ2 , (22)

which is a normalized form of the covariance matrix. Therefore, if the modulation provided by
the presented spectropolarimeter converges toward an optimal one, then we should also have:

G N
−→

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

0 3 0 0

0 0 3 0

0 0 0 3

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (23)

The upper graph from the Fig. (6) shows that the diagonal terms of the matrix G are converging,
with the number of lines N, towards the values 1 and 3. This convergence occurs approximately
after N = 200. Concerning the rest of the matrix, given the symmetry, only the lower terms are
presented in Fig. (6)-bottom. The plots suggest a convergence towards zero. However, for this
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trend to manifests, a higher value of N is required. Approximately, this value should satisfy the
relation:

N·∆y>10·τmax(λ). (24)

In conclusion, we can say that Eq. (24) is verified for instrumental matrices with a large number
of lines. In this case, in the presence of Gauss noise, the studied model of spectropolarimeter
behaves like an almost optimal one. By reducing N, the correlation between the Stokes parameters
starts to increase. The most affected couples are (S1, S2) and (S1, S3). Therefore, despite the fact
that such modulation of the intensity allows the retrieval of the polarization state with a number
of pixels covering the largest period, τmax(λ), using a larger number proves to be better in the
presence of Gauss noise.
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Fig. 6. Gaussian noise: evolution of the terms of the matrix G with the number of lines of
the instrumental matrix W. An arbitrary value of the pixel size, ∆y = 15µm, was used for
this simulation. The wavelength was set to 0.35µm. To point out the trend of the G terms,
the maximum value of N was fixed now to 2000.

Concerning the value of the EWV , from the Eqs. (16), (17) and (23)) and from the results
presented in Fig. (6), we may infer also that:

EWV(W(N)) =
40σ2

N
, (25)

for N·∆y>τmax(λ). Therefore, the equally weighted variance also converges towards the optimal
value. This trend can be observed in Fig. (7) -left, where EWV was plotted with respect to N for
an arbitrary pixel size of 15µm and λ = 0.35µm. The convergence manifests in this case quicker
than for the G terms because N is considered in the final expression of the EWV .

6.2. Poisson noise

The non-additive noise is dependent on the level of intensity. For our polarimeter, this level varies
from one pixel to another, in the vertical direction, following a sinusoidal shape (see Fig. (1)).
Therefore, the noise will vary also in the vertical direction, distorting differently the pattern of
intensity from one pixel to another. To assume the impact of this non-additive contribution, the
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Fig. 7. EWV as a function of the number of lines of the matrix W, for ∆y = 15µm, and
λ = 0.35µm, in the presence of Gaussian noise (left), and Poisson noise (right). The plotted
values were normalized by σ, supposed to be constant here, in the case of Gauss noise, and
by S0, for the Poisson noise.

relations (16) and (19) must be used. It can be noticed that the covariance matrix is different now
from the case of the additive noise, as the terms of this matrix are related to the incoming state of
polarization.

Using the same procedure as in the case of the Gaussian noise, we have computed the terms of
the matrix G, where

G =
N

2S0
Γ
ˆ︁S, (26)

for an arbitrary incoming Stokes vector S⃗ = (3, 1.5, 1.4, 1.3)T , as a function of the covered distance
on the y direction. Because the obtained covariance matrix was proved to be symmetrical, again,
only the lower part was presented in Fig. (8). The diagonal terms are showing strong convergence
towards the optimal values (see Eq. (20)). However, the rest of the terms are no longer converging
towards zero, as in the previous case. A certain trend or average value can be pointed out for
each term of the covariance matrix, but the variation around these values is stronger than in the
case of additive noise. Using again a large value of N, so that N·∆y ≥ 10·τmax, the covariance
matrix becomes, approximately:

Γ
ˆ︁S →

S1
N

⎛⎜⎜⎜⎜⎜⎜⎜⎝

2 1 1 1

1 6 0 0

1 0 6 0

1 0 0 6

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (27)

Just like in the case of the additive noise, the variances on the Stokes parameters are three times
higher than for the intensity term. However, the Stokes parameters are no longer uncorrelated
now. Therefore, non-diagonal terms of the matrix Γˆ︁S are no longer zero. For small values of
N (i.e. N·∆y ≤ 10·τmax(λ)), there is also a small correlation between all the Stokes parameters.
That means that a variation of one of the Stokes parameters will influence, most likely in a small
amount, the value of all the others.

Concerning the equally weighted variance, Fig. (7)-right shows that for N·∆y>τmax(λ) we
have a superposition between the studied concept and the values corresponding to an optimal
modulation scheme.
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Fig. 8. Diagonal and upper right terms of the covariance matrix in the presence of Poisson
noise. The lower-left part of the matrix is identical to the upper-right part, therefore
the covariance matrix is diagonal. The simulations correspond to an arbitrary pixel size,
∆y = 15µm, and to a wavelength λ = 0.35µm.

7. Conclusions

A new concept of spectropolarimeter based on a continuous phase variation was presented here
and analyzed from the perspective of the instrumental matrix that is produced. In contrast with
the ’traditional’ instruments, employing limited and hardly tunable matrices, the instrument
presented here allows the construction of various matrices. These matrices may vary in dimension
and in the value of each line, according to the sizes of pixels used, and in the number of pixels
chosen to extract the polarimetric information.

We have analyzed these matrices from the perspective of the condition number and the equally
weighted variance. The condition number was used to assess the propagation of errors through
the instrumental matrix. The equally weighted variance showed the impact of different types of
noise on the determination of the Stokes vector.

The main parameters used to monitor different instrumental matrices were the number of lines,
N, that corresponds also to the number of pixels used to read the signal on the vertical direction,
and ∆y, the size of the pixel.

For CN, the simulations showed that after a value of N verifying the relation N·∆y = τmax(λ),
we have a convergence towards the optimal value of

√
20. In other words, the signal must be read

at least over the largest period to achieve this convergence.
Concerning the EWV , the study considered two cases: when the system is affected by the

additive Gaussian noise and when it is affected by the non-additive Poisson noise. Because the
computation of the EWV is based on the retrieval of the covariance matrix of the measured Stokes
parameters, special attention was paid to the latter. Therefore, in the presence of the Gaussian
noise, we discovered that the system converges towards an optimal behavior with the number of
lines of the instrumental matrix. After approximately N·∆y = 10·τmax(λ), the covariance matrix
can be assimilated to the one corresponding to an optimal modulation scheme. However, when
smallest values of N are used, a very small correlation between the Stokes parameters begins
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to manifest. The couples (S1, S2) and (S1, S3) are the most affected. Overall, the covariance on
(S1, S2, S3) is three times higher than for the intensity, S0. Searching in practice to improve the
precision of the Stokes parameters beyond these limits will be impossible.

The system proves to be more sensitive in the presence of the Poisson noise. The covariance
matrix also converges towards the optimal one in this case, but the variations around this limit
value are higher. For short covered distances (N·∆y<10·τmax(λ)) all the Stokes parameters prove
to be correlated. A small variation of one of them affects all the rest. However, just like in
the case of the additive noise, for N·∆y>τmax(λ), the covariance on (S1, S2, S3) is three times
higher than for the intensity, S0. Because the covariance of the Stokes parameters follow closely
the optimal scenario if N·∆y>τmax(λ) for both types of noise, the equally weighted variance
converges also towards the optimal value.

In conclusion, this study provided an evaluation of the modulation matrix that can be obtained
with our instrument and of the error characterizing the Stokes parameters when the noise is
present. We saw that, theoretically, the system can be very close to an optimal one and the limits
of precision were inferred.

Still, in a realistic scenario, the modulation in intensity provided by the modulator may
drastically differ from the theoretical pattern used during our analysis here. The misalignment of
the prisms, of the orientations of the fast axis, or the presence of manufacturing errors related to
the size of angles or to the flatness of surfaces may strongly impact the form of the matrix W.
Because of this, the study presented here must be doubled by experimental validation. Therefore,
laboratory implementation will represent the next step of this research.
Disclosures. The authors declare no conflicts of interest.
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