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A B S T R A C T

The energy transition is inevitable since approximately two-thirds of the current global GHG emissions are
related to energy production. Subsurface can provide a great opportunity for innovative low-carbon energy
solutions such as geothermal energy production, hydrogen storage, carbon capture, and sequestration, etc. Well
and borehole operations play an important role in all these applications. In order to operate wells intelligently,
there must be a robust simulation technology that captures physics and the expected production scenario.
In this study, we design a numerical framework for predictive simulation and monitoring of injection and
production wells based on the general multi-segment well model. In our simulation model, wells are segmented
into connected control volumes similar to the finite-volume discretization of the reservoir. Total velocity serves
as an additional nonlinear unknown and it is constrained by the momentum equation. Moreover, transforming
nonlinear governing equations for both reservoir and well into linearized equations benefits from operator-
based linearization (OBL) techniques and reduce further the computational cost of simulation. This framework
was tested for several complex physical kernels including thermal compositional multiphase reactive flow and
transport. The proposed model was validated using a comparison with analytic and numerical results.
1. Introduction

Borehole operations are a key component for the management
of any energy-related subsurface activities such as energy storage,
geothermal energy production, CO2 sequestration, oil and gas produc-
tion, wastewater disposal, and thermal recovery processes. Recently,
intelligent wells such as long deviated multi-lateral wells with so-
phisticated inflow control valves have been used to maximize both
the economy of the field and the reliability of the operation. Be-
sides, various wellbore designs are used for the efficient production
of heat from the subsurface in advanced geothermal approaches. The
design, prediction, and optimization of all the processes of interest in
energy production require accurate fully-coupled models for thermal
multi-phase flow in both the reservoir and the boreholes.

There are multiple challenges with the adequate modeling of such
wells. Firstly, capturing accurately the physics (thermal, multiphase
flow, multi-component) in the wellbore is complex. Moreover, chemical
interactions between the wellbore and flowing fluids cannot be ignored
in energy transition applications. The coupling between the wellbore
and the reservoir introduces additional complications. The complexity
stems from the fact that the flow through the wellbore does not follow
Darcy’s law. This means that the momentum equation must be solved

∗ Corresponding author at: Department of Geoscience and Engineering, TU Delft, Delft, Netherlands.
E-mail address: D.V.Voskov@tudelft.nl (D. Voskov).

considering pressure losses due to friction, acceleration, and gravita-
tional forces acting in the fluid. Moreover, the model should be reliable
enough to honor more sophisticated intelligent well topology.

Several coupled reservoir and well models were proposed to sim-
ulate the complex physics present in the wellbore. The most common
approach for modeling a well in reservoir simulation is the standard
well model that considers the well as a point source or sink term
in the perforated reservoir block (Peaceman, 1990). However, the
standard well model is blind to the actual physics of the wellbore.
Moreover, it cannot capture the complex well network topology which
may include chokes, valves, and various surface facilities. To overcome
the above drawback, the multisegmented well (ms-well) model was
proposed (Holmes et al., 1998; Schlumberger, 2007; Jiang, 2008). In
the ms-well model, the borehole is discretized into several segments
with the fluid velocity, node pressure, and other properties simulated
along with the wellbore geometry. The benefits of the general ms-well
model are its flexible approximation of the actual geometry of each
wellbore and its handling of the complex well topology and controls in
the pipeline network. Moreover, introducing velocity as an additional
degree of freedom allows us to account for various pressure losses by
solving the momentum equation.
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Multiple solution strategies for coupled reservoir and well models
were proposed in the literature. Livescu et al. (2008) proposed a
semianalytical thermal multiphase wellbore-flow model for general-
purpose simulation. Pan and Oldenburg (2014) proposed the hybrid
implicit (semi-explicit) solution for the transient momentum equa-
tion in the geothermal wellbore. In addition, a few fully coupled
numerical models with different strategies for thermal wellbore flow
have been suggested (Holmes et al., 1998; Jiang, 2008; Livescu et al.,
2010). All these models operate at various simplifying assumptions
for wellbore physics and wellbore coupling with the reservoir. There
are different formulations for geothermal wellbore simulation exist.
Multiple solution strategies for stand-alone geothermal wellbore simu-
lation that neglect wellbore coupling have been recommended. Tonkin
et al. (2021) makes an in-depth review of the geothermal wellbore
simulation. The analytical solution for coaxial wellbore simulation was
suggested by Horne (1980). Besides a limitation in the coupling, most
existing strategies exclude chemical interactions.

In this study, we are interested in a fully implicit coupling of the
complex Thermal–Hydraulic–Chemical flow model in the wellbore and
reservoir due to unconditional stability. In the fully implicit approach,
we use Newton’s method to linearize and solve a set of nonlinear equa-
tions. Linearization of discrete mass and energy governing equations
of multiphase, multicomponent flow, and transport is a challenging
task due to the highly nonlinear coupling and complex thermodynamic
phase behavior that needs to resolve multiphase partitioning of differ-
ent components at each nonlinear iteration to accurately evaluate the
fluid/rock properties (Collins et al., 1992; Voskov and Tchelepi, 2012).

The linearization stage for such problems is always a demanding
task due to the complexity of Jacobian assembly in the presence of
fully coupled physical–chemical interactions. A new approach for the
linearization of governing equations called operator-based linearization
(OBL), was proposed by Voskov (2017) following ideas from tie-simplex
parametrization (Iranshahr et al., 2013a,b). In this approach, the exact
physics kernels of the governing partial differential equations were ap-
proximated using abstract algebraic operators. Later this technique was
extended and implemented in the open-source Delft Advanced Research
Terra Simulator (DARTS, 2023). DARTS is a scalable parallel modeling
framework that aims to accelerate the simulation performance while
capturing multi-physics geo-application processes such as hydrocarbon
production (Lyu et al., 2021c,a), geothermal energy extraction (Khait
and Voskov, 2018; Wang et al., 2020) and CO2 sequestration (Kala and
Voskov, 2020; Lyu et al., 2021b; Pour et al., 2023).

In this work, we develop a new computational framework in DARTS
applying the general decoupled velocity formulation and extend OBL to
couple well and reservoir model. Well and reservoir are both discretized
similarly into nodes and connections following the general unstructured
grid framework (connection list approach, e.g., Lim, 1995) using the
finite volume method. Total velocity serves as an additional nonlinear
unknown written at each interface (connection) on the total computa-
tional domain and bounded by a suitable momentum equation. Similar
to the staggered gridding method, this framework adopts a simulta-
neous approach by coupling the mass and energy balance equations
at the center of each cell with the momentum balance equations at
the cell interfaces. Moreover, transforming both reservoir and well
nonlinear governing equations into an operator form benefits from
OBL techniques and reduce further the computational cost related to
linearization.

The paper is organized as follows. First, the governing equations de-
scribing thermal, multiphase multi-component flow in the wellbore and
the reservoir are presented in detail. Next, we present our decoupled
velocity design and OBL solution strategies for solving coupled wellbore
and reservoir equations. We first test the accuracy and consistency of
the method through a set of benchmark tests. Next, more complex
numerical experiments are conducted to take into account a more
realistic wellbore coupled with a field model.
2
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2. Governing equations

For the investigated domain with volume 𝛺, bounded by surface
𝛤 , the mass and energy conservation can be expressed in a uniformly
integral way along with the proper momentum equation as shown in
the Table 1.

Here, we introduce all terms in the equations as functions of spatial
coordinate 𝝃 and physical state 𝝎 :

• 𝜙(𝝃,𝝎)- porosity,
• 𝑥𝑐𝑗 (𝝎) - mole fraction of component c in phase j,
• 𝑠𝑗 (𝝎) - phase saturations,
• 𝜌𝑗 (𝝎)- phase molar density,
• 𝐯𝑗 (𝝃,𝝎)- phase velocity,
• 𝑈𝑗 (𝝎) - phase internal energy,
• 𝑈𝑟(𝝎) - rock internal energy,
• ℎ𝑗 (𝝎) - phase enthalpy,
• 𝜅 - thermal conduction.

Next, we formulate a one-dimensional momentum balance equation
or the entire fluid in the wellbore. Assuming the coordinate z points
long the well, this equation is given by Hibiki and Ishii (2003) and Issa
nd Kempf (2003).

𝜕𝑝𝑤

𝜕𝑧
= −𝜌𝑚𝑔 −

𝜕𝑝𝑤

𝜕𝑡
(𝜌𝑚𝑉𝑚) −

𝜕(𝜌𝑚𝑉 2
𝑚 )

𝜕𝑧
−

𝑓𝑡𝑝𝜌𝑚𝑉 2
𝑚

2𝑑𝑖𝑛
− 𝑅𝑚 (1)

We focus on well momentum equation in Table 1, where 𝜌𝑚(𝝎) is the to-
tal mixture density, 𝑔 is the gravitational acceleration in the z direction,
𝑑𝑖𝑛 is the internal diameter of the well, where 𝑓𝑡𝑝 is the friction factor,
which is a function of the dimensionless Reynolds number 𝑅𝑒 (ratio of
inertial forces to viscous forces), 𝑑 is the diameter of the segment, and
𝑉𝑚 is the velocity of the fluid mixture in the segment.

𝑓𝑡𝑝 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

16∕𝑅𝑒, 𝑅𝑒 ≤ 2000 (laminar flow)

1∕
(

−3.6 log
( 6.9
𝑅𝑒

+ ( 𝜖
3.7𝑑

)
10
9

))2
, 𝑅𝑒 ≥ 4000 (Torbulent flow)

16∕2000 + 𝑘𝑓 (𝑅𝑒 − 2000), 2000 < 𝑅𝑒 < 4000

(2)

The general momentum equation (1) can be simplified to the steady
state momentum equation as follows
𝜕𝑝𝑤

𝜕𝑧
= (

𝜕𝑝
𝜕𝑧

)ℎ + (
𝜕𝑝
𝜕𝑧

)𝑓 + (
𝜕𝑝
𝜕𝑧

)𝑎. (3)

The equation above simply states the total pressure loss over any
control volume (segment) of the well as the sum of three components’
forces (acceleration, friction, and hydrostatic).

The momentum equation for the reservoir part is simplified to
Darcy’s law, and phase velocity is computed as:

𝑣𝑗 = −
𝐊𝑘𝑟𝑗
𝜇𝑗

(∇𝑝𝑗 − 𝜌𝑗𝑔∇𝑑). (4)

here

• 𝐊(𝝃) – permeability tensor,
• 𝑘𝑟𝑗 (𝝎) – relative permeability,
• 𝜇𝑗 (𝝎) – phase viscosity,
• 𝒑𝑗 (𝝎) – vector of pressures in phase 𝑗,
• 𝜌𝑗 (𝝎) – phase density,
• 𝑑(𝝃) – vector of depths (positive downwards).

. OBL solution strategy with decoupled velocity formulation

Unlike the conventional DARTS formulation, in which the problem’s

rimary unknowns were written on the cell centers and velocity was not



Geoenergy Science and Engineering 227 (2023) 211926K.M. Pour et al.
Table 1
Mass, energy and momentum balance equations.
Description Equation

Conservation of mass and energy 𝜕
𝜕𝑡 ∫𝛺

𝑀𝑘𝑑𝛺 + ∫𝛤
𝐹 𝑘 .𝑛𝑑𝛤 = ∫𝛺

𝑞𝑘

Mass accumulation 𝑀𝑘(𝜔, 𝑣𝑚) = 𝜙
𝑛𝑝
∑

𝑗 = 1
𝑥𝑐𝑗𝜌𝑗 𝑠𝑗

Energy accumulation 𝑀𝑘𝑒(𝜔, 𝑣𝑚) = 𝜙
𝑛𝑝
∑

𝑗 = 1
𝑥𝑐𝑗𝜌𝑗 𝑠𝑗𝑈𝑗 − (1 − 𝜙)𝑈𝑟

Mass flux 𝐹𝑘(𝜉, 𝜔, 𝑣𝑚) =
𝑛𝑝
∑

𝑗 = 1
𝑥𝑐𝑗𝜌𝑗𝑣𝑗

Energy flux 𝐹𝑘𝑒(𝜉, 𝜔, 𝑣𝑚) =
𝑛𝑝
∑

𝑗 = 1
𝑥𝑐𝑗𝜌𝑗𝑣𝑗ℎ𝑗 + 𝜅∇𝑇

Reservoir momentum equation 𝑣𝑗 = −
𝐊𝑘𝑟𝑗
𝜇𝑗

(∇𝑝𝑝 − 𝜌𝑗𝑔∇𝐷)

Well momentum equation 𝜕𝑝𝑤

𝜕𝑧
= −𝜌𝑚𝑔 −

𝜕𝑝𝑤

𝜕𝑡
(𝜌𝑚𝑉𝑚) −

𝜕(𝜌𝑚𝑉 2
𝑚)

𝜕𝑧
−

𝑓𝑡𝑝𝜌𝑚𝑉 2
𝑚

2𝑑𝑖𝑛
− 𝑅𝑚
w
m
b
r
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N
c
[

one of them, the decoupled velocity formulation considers velocity as
an additional nonlinear unknown (state) of the problem written at each
interface between two nodes. On each node, the following independent
variables are defined:

• 𝜔 = [ 𝑝𝑖, ℎ𝑖, 𝐳𝑖 ] which corresponds to pressure, enthalpy, and the
vector of overall molar fractions respectively.

Note that the above variables are all defined at the center of the node.
On each connection, we define total velocity:

• v𝑚, Total velocity

3.1. Governing equations for fully coupled approach

After discretizing governing Table 1, using the finite volume scheme
and backward Euler approximation in time, we transform the mass and
energy residuals into an operator form as follows:

𝑅𝑛𝑚(𝜔, 𝑣) = 𝑉𝑛𝜙
(

𝛼𝑐 (𝜔) − 𝛼𝑐 (𝜔𝑛)
)

+ 𝛥𝑡
∑

𝑙
𝛽𝑙𝑐 (𝜔)𝑣

𝑙
𝑚(𝝃, 𝜔) = 0. (5)

In Eq. (5), operators read as:

𝛽𝑐 (𝜔) =
∑

𝑗
𝑥𝑐𝑗𝑓𝑗𝜌𝑗 , (6)

𝛼𝑐 (𝜔) =
(

1 + 𝑐𝑟(𝑝 − 𝑝𝑟𝑒𝑓 )
)
∑

𝑗
𝑥𝑐𝑗𝜌𝑗𝑠𝑗 , (7)

The discretized energy conservation equation in operator form can be
written as:

𝑅𝑛𝑒(𝝎, 𝑣) = 𝑉𝑛𝜙
(

𝛼𝑓 (𝝎) − 𝛼𝑓 (𝝎𝑛)
)

+ (1 − 𝜙)𝑉𝑛𝑈𝑟

(

𝛼𝑒𝑟(𝝎) − 𝛼𝑒𝑟(𝝎𝑛)
)

+ 𝛥𝑡
∑

𝑙
𝛽𝑙𝑒(𝝎)𝑣

𝑙
𝑚(𝝃,𝝎)

+ 𝛥𝑡
∑

𝑙
𝛤 𝑙(𝑇𝑖 − 𝑇𝑗 )

(

𝜙0𝛾𝑒𝑓 (𝝎) + (1 − 𝜙0)𝑘𝑟𝛼𝑒𝑟(𝜔)
)

= 0. (8)

𝛽𝑒(𝝎) =
∑

𝑗
𝑥𝑐𝑗𝑓𝑗𝜌𝑗ℎ𝑗 , (9)

𝛼𝑓 (𝝎) =
(

1 + 𝑐𝑟(𝑝 − 𝑝𝑟𝑒𝑓 )
)

∑

𝑗
𝑥𝑐𝑗𝜌𝑗𝑠𝑗𝑈𝑝, (10)

𝛼𝑒𝑟(𝝎) = 1
1 + 𝑐𝑟(𝑝 − 𝑝𝑟𝑒𝑓 )

, (11)

𝛾𝑒𝑓 =
(

1 + 𝑐𝑟(𝑝 − 𝑝𝑟𝑒𝑓 )
)

∑

𝑗
𝑠𝑗𝑘𝑗 , (12)

The momentum equations are defined at the interface (connections
of two nodes). For each connection between node block i and j, we
write a discrete momentum equation in residual form as follows de-
3

pending on the connection whether it is between wells or reservoir
blocks.

𝐑𝑐 =

{

𝑣𝑚𝑖𝑥 + 𝑇𝑐𝜆(𝜔)(𝑃𝑖 − 𝑃𝑗 ), reservoir connection,
𝑃𝑖 − 𝑃𝑗 − (𝛥𝑃ℎ + 𝛥𝑃𝑓 + 𝛥𝑃ℎ), well connection.

(13)

In the Darcy velocity equation (13), 𝑇𝑐 is the transmissibility and
𝜆(𝝎) is the total mobility operator of the upwind grid block. For the
momentum equation in a wellbore, 𝛥𝑃𝑤 is the pressure drop between
two nodes, and 𝛥𝑃𝑤

ℎ , 𝛥𝑃𝑤
𝑓 and 𝛥𝑃𝑤

𝑎 are the hydrostatic, frictional
and acceleration components of the pressure drop, respectively. For
simplicity, we only take into account the friction losses. The frictional
pressure difference between two nodes is defined as

𝛥𝑃𝑤
𝑓 = (

2𝑓𝑡𝑝𝜌𝑠𝑒𝑔𝑉 2
𝑚

𝑑
)𝛥𝑥𝑖, (14)

where 𝑓𝑡𝑝 is the friction factor which is a function of the dimensionless
Reynolds number 𝑅𝑒 (ratio of inertial forces to viscous forces) explained
previously, 𝑑 is the diameter of the segment, and 𝑉𝑚 is the velocity of
the fluid mixture in the segment connection.

The hydrostatic pressure difference between two nodes is:

𝛥𝑃𝑤
ℎ = 𝜌𝑡𝑔𝛥𝐻, (15)

Acceleration pressure losses are given by the following formula:

𝛥𝑃𝑤
𝑎 =

2𝑚𝑖𝑛𝑉𝑚
𝐴

, (16)

where 𝑚𝑖𝑛 =
∑

𝑝 𝜌𝑝(𝜔)𝑄𝑝 is the mass flow rate of the mixture entering
the segment defined as

𝑚𝑖𝑛 =
𝑁𝑝𝑒𝑟𝑓
∑

𝑖

(

𝑊 𝐼(𝑝𝑤𝑢 − 𝑝𝑝𝑒𝑟𝑓 )𝜆(𝜔)𝜌𝑡𝑜𝑡(𝜔)
)

𝑖
, (17)

here 𝛥𝐻 is the height difference between two nodes and 𝜌𝑡 is the total
ass density. 𝑝𝑤𝑢 is the pressure of the upwind node for connection c

etween two well segments and 𝑃𝑃𝑒𝑟𝑓 is the pressure in the perforated
eservoir block.

.2. Solution of equations

The fully coupled method is a commonly used method to solve
oupled problems implicitly. In this method, equations for all the sub-
roblems are solved simultaneously. We assemble our global Jacobian
atrix based on the variables defined on each node and connection

𝑅𝑁 (𝜔𝑛+1, 𝒗𝑛+1𝑡 ) = 0, Node equations;
𝑅𝐶 (𝜔𝑛+1, 𝒗𝑛+1𝑡 ) = 0, Connection equations.

(18)

ewton’s method is applied to the entire system and the Newton update
an be obtained by solving a single linear system:

𝐽𝑁𝑁 𝐽𝑁𝐶
] [

𝛿𝜔
]

= −
[

𝑅𝑁
]

, (19)

𝐽𝐶𝑁 𝐽𝐶𝐶 𝛿𝒗𝑡 𝑅𝐶
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Fig. 1. Decoupled velocity Jacobian matrix for 3-D reservoir, zooming into momentum equation part.
where matrices 𝐽𝑁𝑁 , 𝐽𝐶𝑁 corresponds to derivatives with respect to
node unknowns 𝜔𝑛+1 and 𝐽𝑁𝐶 , 𝐽𝑁𝑁 correspond to derivatives with
respect to 𝑣𝑛+1𝑡 respectively.

The coupled system will be solved until reaching the global conver-
gence criteria:
{

‖𝑅𝑁 (𝜔𝑛+1, 𝒖𝑛+1𝑡 )‖ < 𝜖𝑛, Node equations;
‖𝑅𝐶 (𝜔𝑛+1, 𝒖𝑛+1𝑡 )‖ < 𝜖𝑐 , Connection equations.

(20)

We subdivide the node equations and connection equations of the
reservoir into the node or well parts and define the specific tolerance
for each subdomain as follows

⎧

⎪

⎪

⎨

⎪

⎪

⎩

‖𝑅𝑁𝑅(𝜔𝑛+1, 𝒖𝑛+1𝑡 )‖ < 𝜖𝑛𝑟, Node equations for reservoir blocks
‖𝑅𝑁𝑊 (𝜔𝑛+1, 𝒖𝑛+1𝑡 )‖ < 𝜖𝑛𝑤, Node equations for well blocks
‖𝑅𝐶𝑅(𝜔𝑛+1, 𝒖𝑛+1𝑡 )‖ < 𝜖𝑐𝑟, Connection equations for reservoir interfaces
‖𝑅𝐶𝑊 (𝜔𝑛+1, 𝒖𝑛+1𝑡 )‖ < 𝜖𝑐𝑤, Connection equations for well interfaces

(21)

The global Jacobian matrix for a decoupled velocity engine is shown
in Fig. 1. The global Jacobian matrix has a multilevel matrix structure.
It can be divided into two parts at the first level. The upper row is
related to the derivatives of the node variables, while the lower row
is related to the derivatives of the connection variables. Each part in
the second level can be further subdivided into the reservoir part and
the well parts. Fig. 1 shows how the matrix can be further subdivided
into connection equations with respect to the reservoir and well parts
by zooming in on the momentum parts.

While treating velocity as an additional degree of freedom can be
computationally expensive, it is necessary to accurately model regions
that deviate from Darcy velocity, such as the wellbore. Using decoupled
velocity in both reservoir and wellbore allows us consistently translate
the pressure gradient in a fully implicit manner. Decoupled velocity
formulation allows for an application of different momentum equations,
like Darcy–Forchheimer or Darcy–Brinkman, in the near-well reservoir
region.

3.3. General well pipeline modeling

Ms-well is discretized into nodes and connections in a similar fash-
ion to a reservoir using a finite-volume scheme. Any well segment can
be connected with an arbitrary number of reservoir control volumes,
representing well perforations. We write the control equation either as
a pressure control also known as BHP control for the ghost cell (Fig. 2)
or we write it as rate control and solve it for the first connection as
4

follows:
⎧

⎪

⎨

⎪

⎩

𝑅𝑠𝑒𝑔
1 = 𝜔𝑠𝑒𝑔

1 − 𝜔𝑡𝑎𝑟𝑔𝑒𝑡, BHP control

𝑅𝑐𝑜𝑛𝑛
1 =

𝑣𝑠,𝑗𝑗
𝜌𝑠𝑐𝑗

.(
∑

𝑐
∑

𝑝 𝜌𝑝𝑄𝑝𝑥𝑥,𝑝) −𝑄𝑡𝑎𝑟𝑔𝑒𝑡
𝑗 , Rate control

(22)

As shown in Fig. 2, each well segment can have zero, one, or
multiple perforations. Each segment of the ms-well wellbore is a sep-
arate object that can have different geometrical properties from other
segments. Currently, in DARTS, two types of tube and annulus segments
are available as shown in Fig. 3.

4. Numerical results

We test the proposed implementation by comparing it with an-
alytical solutions or numerical results using conventional simulation
techniques.

4.1. Verification of heat loss model

In this test, we validate our numerical model with the analytical
heat loss model in which the overall resistance of the well is calculated
with an analogy to the resistance circuits as follows (Fontanilla, 1980).

𝑅𝑡𝑜𝑡𝑎𝑙 =
1

2𝜋𝐿

( 1
ℎ𝑓 𝑟𝑖

+ 1
𝜆𝑝

𝑙𝑛(
𝑟𝑜
𝑟𝑖
) + 1

ℎ𝑝𝑟𝑜
+ 1

𝜆𝑖𝑛𝑠
𝑙𝑛(

𝑟𝑖𝑛𝑠
𝑟𝑜

) + 1
ℎ𝑟𝑐𝑟𝑖𝑛𝑠

)

, (23)

𝑞 =
(𝛥𝑇 )𝑡𝑜𝑡𝑎𝑙
𝑅𝑡𝑜𝑡𝑎𝑙

, (24)

Here ℎ𝑓 is the heat transfer coefficient of heat transfer between the
fluid inside the pipe and the wall, ℎ𝑝𝑖 is the coefficient of heat transfer
across any deposits of scale and dirt at the inside wall of the pipe and
insulation, 𝑟𝑖 is the inner radius of the pipe, 𝑟0 is the outer radius of the
pipe and essentially the inner radius of the insulation, 𝑟𝑖𝑛𝑠 is the external
radius of the insulation, and 𝜆𝑝 and 𝜆𝑖𝑛𝑠 are the thermal conductivities
of the pipe and insulation, 𝑞 is the overall heat loss.

In figure. 4. We mimic the well–bore connection to the reservoir
with different resistance materials. In Fig. 4.b we compare the numeri-
cal solution vs analytical solution of the temperature profile due to the
heat losses. It can be seen that both solutions match quite close.

4.2. Simple 3D reservoir with ms-well

In this test case, the reservoir dimension is 3 × 10 × 10 (taking
from SPE1 benchmark, see Odeh, 1981) with lateral permeabilities of
𝐾𝑥𝑦 = 100, and 500 mD, while the vertical permeability was set as
𝐾𝑧 = 𝐾 ∕100. We inject water in pressure 405 bar and produce oil.
𝑥𝑦
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Fig. 2. Ms-well–reservoir network schematic.
Fig. 3. Well segment type.
Fig. 4. (a) wellbore–reservoir heat losses schematic and (b) comparison of analytical model (Prats, 1986) vs numerical solutions.
the reservoir is initially in 400 pressure bar and we produce at 395 bar
for the producing well. Two vertical multi-segmented wells with three
segments each are placed at the opposite corners of the model. Each
segment is connected to the corresponding layer with different well
indices 10, 20, and 30 (see Fig. 5).

Initially, the reservoir is saturated with oil at 400 bar. We inject
water in the injection ms-well at 405 pressure and produce at 395 bar
at the production ms-well. We run the simulation for 4000 days. The
comparison between DARTS and AD-GPRS with the ms-well model is
shown in Figs. 6. From this graph, we can observe that there is a
perfect match between both DARTS and ADGPRS for this model. You
can see that the breakthrough happens quite quickly in the model
following the most permeable layer and gradually increasing while
5

oil production is following a backward trend. Due to the changing
mobility, the injection rate is growing non-monotonically. Notice that
the production rate is shown in negative volume when the injection rate
is shown in positive. Fig. 7 compares the snapshot of the water overall
molar fraction profile at time 80 days in the production well segments.
Here again, we compare solutions produced by ADGPRS and DARTS.
Except for a small difference in segment 2, all results are matching
quite close. Finally, in Fig. 8 we compare the performance of DARTS
vs ADGPRS. In both simulators, a nonlinear tolerance of 10−3 is set
for mass and momentum conservation. For this test case, the nonlinear
solver using Newton’s method and the local chop of overall fractions
with a maximum allowable update of 0.1 is selected for both ADGPRS
and DARTS. In DARTS, the direct SUPERLU solver is used to obtain the
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Fig. 5. Coupled Reservoir-ms-well model.

linear solution for decoupled velocity formulations. In order to make a
fair comparison, a similar setting was employed in ADGPRS.

We can see that the number of Newton iterations and CPU time are
lower in DARTS which can be explained by the utilization of molar
nonlinear formulation and the OBL approach.

4.3. Heterogeneous low-enthalpy geothermal model

In this test case, we show the capabilities of the decoupled velocity
engine for the simulation of a geothermal reservoir with heterogeneous
properties. A single-layer model extracted from a synthetic geological
setting of the West Netherlands Basin Wang et al. (2020) is chosen here.
The model has dimensions of 60 × 40 × 1 and a grid size of 30 m × 30 m
× 1 m. Two horizontal multi-segmented wells with 10 segments each
are placed at the left and right center of the model. Fig. 9 illustrates the
permeability and porosity distribution as well as locations of the model.
The initial pressure of the reservoir is 200 bar, with a temperature of
348 K. We inject water at 308 K with a constant pressure of 250 bars
and produce with BHP control at 125 bars.

Fig. 10(a) shows the pressure and enthalpy distribution after 3650
days and compares it with the conventional DARTS engine without
considering velocity as an additional nonlinear unknown following
approach suggested in Moridis et al. (2022). In this approach, the
wellbore is discretized and modeled using Darcy’s law. As we can see,
a good match is obtained using this approach conventional DARTS
engine with an error of less than 0.05%. Fig. 10(b) compares the well
temperature profile along the wellbore comparing the solution using
ms-well with the solution using a simplified well model. It is clear that
for conventional (near steady-state) geothermal simulation, the pseudo-
porous medium approach is accurate enough and can be used instead
of the more expensive ms-well approach with a decoupled momentum
equation.

In Table 2, we compare the performance of decoupled velocity
formulation with ms-well vs conventional DARTS formulation using a
pseudo-porous medium approach. We can see that the number of non-
linear iterations and CPU time are lower in the case of the conventional
approach. The primary reason for this is that the decoupled velocity
approach involves an additional degree of freedom with respect to
velocity, increasing each iteration’s computational cost. Furthermore,
the conventional approach typically requires fewer nonlinear iterations
because of the simplified momentum equation.

4.4. Reactive transport test case

One of the major impacts in geothermal systems is related to re-
active transport. Precipitation inside the geothermal well can influ-
6

Table 2
Comparison between decoupled velocity and conventional well formulation in DARTS
with pseudo porous media assumptions.

DARTS formulation Nonlinear iteration CPU time[sec]

Pseudo-porous medium 73 8.44
Decoupled velocity 160 21.4

Table 3
Simulation parameters for reactive transport test case.

Parameter Value

Initial porosity 𝜙0 [-] 0.26
Initial pressure, 𝑝0 [bar] 95
Initial overall fraction [H2O,Ca

2+ + CO−2
3 ,CaCO3] [0.09, 0.01, 0.8901]

Injection overall fraction [H2O,Ca
2+ + CO−2

3 ,CaCO3] [0.8, 0.01, 0.18]
Solubility constant, 𝐾𝑠𝑝[-] 55
Simulation time, 𝑡 [days] 1.8e5
Injection pressure, 𝐵𝐻𝑃𝑖𝑛𝑗 [bar] 135
Production pressure, 𝐵𝐻𝑃𝑝𝑟𝑜𝑑 [bar] 65

ence heavily the production results. Moreover, dissolution in the near-
wellbore area due to acidification can, on the contrary, increase pro-
ductivity. All these processes involve the chemical alternation of fluid
and solid components near or inside the wellbore. Currently, the imple-
mented ms-well technology is only tested with the dissolution model
in DARTS and in this test, we demonstrate the capability of the DARTS
framework.

Here we use the decoupled velocity with an unstructured mesh
and demonstrate how it can capture the near-wellbore dissolution of
carbonates. For this test case, we analyze the dissolution of calcite
which can be written as a simple kinetic equation:

CaCO3 ↔ Ca2+ + CO2−
3 , (25)

We treat this reaction as an equilibrium one. The equilibrium relations
are defined by the law of mass action and are given as

𝑄 −𝐾𝑞 =
𝐶
∏

𝑐=1
𝛼
𝑐𝑐𝑞
𝑐 −𝐾𝑞 = 0 (26)

Here, 𝛼𝑐 is the activity of component c, 𝑄𝑞 is the reaction quotient and
𝐾𝑞 is the equilibrium reaction quotient or equilibrium solubility limit in
the case of dissolution/precipitation of minerals. The rigorous descrip-
tion of reactive transport modeling in DARTS is described in Kala and
Voskov (2020). The injection well is perforating the left boundary and
the production well is located on the right boundary of the reservoir.

The model has a dimension of 100 by 100 m. A constant perme-
ability of 1mD is used with random noise of 5%. Fig. 11(a) shows
both the permeability of the reservoir and the locations of the wells and
Fig. 11(b) shows the unstructured grid domain of the model. The pro-
posed model aims to simulate the phenomenon of unstable wormhole
formation that occurs due to minor permeability perturbations near the
injector wellbore. The reservoir features an injector well on one side
that is perforated across its entire thickness, and a producer well on the
other side, spanning the entire thickness of the reservoir. This example
model has dimensions of 100 meters by 100 m. Table 3 specifies the
simulation parameter for this test case. Fig. 12 illustrates the solution
of solid overall molar fraction CaCO3 at 3 three different times: 0.13
𝑡𝑑 , 0.25 𝑡𝑑 , and at 𝑡𝑑 where 𝑡𝑑 is the dimensionless time.

It is clear that chemical interactions can be incorporated into the
developed ms-well extension of the DARTS framework. In future work,
we are going to implement precipitation of minerals in the wellbore
and near-well reservoir to accurately capture injectivity decline in the
geothermal wells.
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Fig. 6. Benchmark testcase with ADGPRS for SPE1 reservoir.
Fig. 7. Water overall molar fraction inside the wellbore after 80 days.

4.5. Closed-loop wellbore model

In this example, we will test the developed framework for modeling
advanced geothermal setups. Fig. 13 schematically illustrates a single
closed-loop also known as coaxial wellbore setup. In order to, model
7

Fig. 8. Performance comparison between DARTS and AGPRS.

such wells, the wellbore is discretized into nodes and connected to
the reservoir using a finite-volume scheme. Any well segment can
be connected with an arbitrary number of reservoir control volumes,
representing conductive heat flux. There are currently two types of
tube and annulus segments available in DARTS that allow us to model
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Fig. 9. Permeability (right figure) and porosity distribution with well locations (left figure).
Fig. 10. (a) Comparison 2-D heterogeneous pressure and low enthalpy solution obtained with the decoupled velocity and the pseudo-porous medium approach (b) Temperature
profile along the wellbore for both approaches.
Fig. 11. (a) Reservoir permeability map with specified well locations and (b) discretization mesh.
coaxial wellbores. In order to model such well, we need to create a
special connection list. Fig. 14 schematically illustrates the discretized
wellbore and corresponding connection list for such wells.

We made two different scenarios for two different flow directions
and investigate the effect of the heat conduction (different resistance)
8

between the annulus and the reservoir part. In this test case, the reser-
voir dimensions are 1 × 1 × 100 with a grid of size 0.30 × 30 × 6.96 m
with impermeable layers. The ms-well with 100 segments for annulus
and the inner tube is fully (conductively) connected to the 100 reservoir
blocks. We ran the test case for 2.4 h while taking into account various
conductive heat transfer coefficients, t𝑑 between the annulus and the
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Fig. 12. Calcium Carbonate dissolution of the wormhole model at three different time snapshots.
Fig. 13. (a) Cross section of a pipe-in-pipe single closed-loop wellbore (b) schematic diagram of a single-well closed loop for different flow direction.
Fig. 14. Connection list of the coaxial wellbore network.
reservoir. In this test case, we also assume a perfect insulation between
the annulus and the inner tube (t𝑖 = 0).

In Fig. 15 we can see the temperature profile along the annulus and
the inner tube while we inject from the annulus and produce from the
inner tube. We can see that by increasing the t𝑑 the temperature profile
goes slightly upward, meaning lower resistance between the annulus
and the reservoir and thus more heat conduction. Fig. 16 corresponds
to the reverse flow direction in which we inject from the inner tube
and produce from the annulus. As we can see there is no effect of
the t𝑑 on the injection well as there is no contact between the inner
tube and the reservoir. On the other hand, the temperature profile
along the annulus is nonlinear and temperature increases by increasing
the conductivity between the annulus and the reservoir. The obtained
solution qualitatively follows the results reported in Chen et al. (2019)
for a similar coaxial setup.

5. Conclusion

We have developed a new computational framework that can simu-
late Thermal–Hydraulic–Chemical (THC) multiphase multi-component
9

fully-coupled flow in the wellbore and the reservoir. The implemen-
tation is based on an operator-based linearization (OBL) method used
in Delft Advanced Research Terra Simulator (DARTS). In the OBL
approach, the governing equations are represented in operator form
which significantly simplifies the solution of highly nonlinear govern-
ing equations with complex physics. In the proposed framework, the
OBL technique is extended to both the governing equations of the
reservoir and the wellbore. During the simulation, multilinear interpo-
lation is used to interpolate the corresponding values and derivatives
of operators, which reduces the computational cost related to lin-
earization. Our simulation model is built on a general unstructured
grid framework, in which the wellbore is divided into segments that
follow a similar scheme as the finite-volume discretization used for the
reservoir. The total velocity serves as an additional nonlinear unknown
that is constrained by the momentum equation, allowing for writing a
suitable momentum equation for a wellbore.

First, we verify the accuracy of the ms-well model by comparing
a solution for thermal, two-phase immiscible physics with Automatic
Differentiation General Purpose Research Simulator (ADGPRS). Our
test produces comparable results to an accurate ms-well model in
both simulation frameworks. The performance comparison of DARTS
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Fig. 15. Comparison of water temperature profile under different thermal conductivity between annulus and reservoir while injecting from annulus pipe.
Fig. 16. Comparison of water temperature profile under different thermal conductivity between annulus and reservoir while injecting from inner pipe.
and ADGPRS simulation shows that DARTS allows for less CPU time
and nonlinear iterations due to the different nonlinear formulation
and OBL approach. We further test the framework for more complex
physics considering thermal effects. We assess the engine’s perfor-
mance for geothermal physics using a heterogeneous reservoir and
compare the results to the conventional method with a pseudo-porous
medium approach. For cases when transient effects can be ignored,
a pseudo-porous medium approach produces a solution comparable to
the accurate well model with a lower computational cost. Besides, we
test the developed framework in modeling the calcite dissolution in
the near-well region on unstructured mesh and the results show that
the framework could capture the dissolution effect near the wellbore.
Accurate discretization of the wellbore allows us to model sophisticated
well technologies such as co-axial wellbores. We made a test case for
a single closed loop wellbore and ran multiple numerical experiments
10
and sensitivity analyses on various factors that affect heat extraction
from the co-axial wellbore.

Our study has identified several promising areas for future research.
One potential direction is to extend the drift-flux model for multiphase
flow in the wellbore into an operator form and integrate more com-
plex chemical interactions in both the wellbore and reservoir. Another
promising area is to investigate the development of an iterative linear
solver for a decoupled velocity engine on both CPU and GPU platforms.
The nonlinear nature of coupled wellbore and reservoir simulations
with complex physical models can cause the nonlinear solver to strug-
gle and slow down the convergence process. Therefore, developing a
nonlinear solver for this framework is an important future direction of
our research. Extending the Trust-region method, which is integrated
into the operator-based linearization framework, to include both the
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coupled wellbore and reservoir simulations would be a promising direc-
tion to pursue. Furthermore, decoupled velocity formulation separates
the momentum equation from mass and energy, as well as the well
and reservoir regions, providing a promising solution for developing
a local nonlinear solver that can identify areas with convergence issues
and resolve them. Additionally, we aim to extend the model to include
more advanced well-network topologies, taking into account surface
capabilities, chokes, and valves.
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