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Abstracting the Traffic of Nonlinear Event-Triggered Control Systems
Giannis Delimpaltadakis , Member, IEEE, and Manuel Mazo, Jr. , Senior Member, IEEE

Abstract—Scheduling communication traffic in networks of
event-triggered control (ETC) systems is challenging, as their sam-
pling times are unknown, hindering application of ETC in networks.
In previous work, finite-state abstractions were created, capturing
the sampling behavior of linear time-invariant (LTI) ETC systems
with quadratic triggering functions. Offering an infinite-horizon
look to ETC systems’ sampling patterns, such abstractions can
be used for scheduling of ETC traffic. Here, we significantly ex-
tend this framework, by abstracting perturbed uncertain nonlinear
ETC systems with general triggering functions. To construct an
ETC system’s abstraction: 1) the state space is partitioned into
regions; 2) for each region, an interval is determined, containing
all intersampling times of points in the region; and 3) the abstrac-
tion’s transitions are determined through reachability analysis. To
determine intervals and transitions, we devise algorithms based
on reachability analysis. For partitioning, we propose an approach
based on isochronous manifolds, resulting into tighter intervals
and providing control over them, thus containing the abstraction’s
nondeterminism. Simulations showcase our developments.

Index Terms—Abstractions, event-triggered control, networked
control systems, nonlinear control systems, scheduling.

I. INTRODUCTION

Event-triggered control (ETC) [1]–[5] determines sampling instants
such that communication between the sensors and the controller is
efficient, while desired performance is met (e.g., stability). The sensors
measure continuously the system’s state, and transmit measurements
only when they detect satisfaction of a certain triggering condition.

Although the vast research on ETC shows promising results on re-
ducing bandwidth/energy usage, there are open problems, hindering its
application in shared networks. One such problem is scheduling of com-
munication traffic in networks of multiple ETC loops, i.e., determining
at each time which of the loops will occupy the communication channel,
such that they all communicate timely without packet collisions, while
the desired performance is met. In contrast to periodic sampling, where
sampling instants are known by construction, ETC sampling times are
generally unknown, due to the sampling’s event-based nature. This
renders scheduling of ETC traffic a challenging problem. One way
of approaching it is the codesign techniques of [6]–[12]. According to
such strategies, given a network of control loops, the controllers, the
sampling instants, and the scheduler are designed in a coupled manner.
However, these approaches lack versatility, as the whole design process
is applied from scratch, when a new loop joins the network.

A different approach is based on abstractions [13], [14]. Accord-
ing to it, ETC systems are abstracted by finite-state quotient systems
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(abstractions), capturing the ETC systems’ sampling behavior. The
abstraction’s set of output sequences contains all possible sequences
of intersampling times that the given ETC system may exhibit, thus
providing an infinite-horizon look into its sampling patterns. Employing
this property, Kolarijani and Mazo [13] and Gleizer and Mazo [14]
showed that such abstractions can be employed for scheduling of
ETC traffic. This approach is more versatile compared to the codesign
techniques, as the abstraction of each system in the network is computed
only once offline, and does not change with the presence of a new
system.

To construct the abstraction, the system’s state space is partitioned
into finitely many regions R̃i,j , representing the abstraction’s states. For
each region R̃i,j , an interval [τ R̃i,j

, τ R̃i,j
] is determined, containing

all intersampling times corresponding to states in the region. These
intervals serve as the abstraction’s output. Finally, the abstraction’s
transitions, given a starting region, indicate where the system’s trajec-
tories end up after an elapsed intersampling time. The abstraction’s
nondeterminism, encoding how coarsely it captures the actual system’s
behaviors, depends on the intervals’ tightness and the transition-set’s
size. Previous works [13], [14] abstracted linear time-invariant (LTI)
systems with quadratic triggering functions.

Here, we significantly extend the above framework by abstract-
ing the traffic of nonlinear ETC systems with bounded distur-
bances/uncertainties and general triggering functions.1 To determine
the timing intervals and the transitions, we propose an algorithm
based on reachability-analysis computational tools (e.g., [15], [16]).
Regarding state-space partitioning, we propose an approach that is
based on approximations of isochronous manifolds (IMs, sets in the
state-space with uniform intersampling time), previously derived in [17]
and [18]. By partially inheriting the merits of partitioning with actual
IMs, this approach aims at providing control over the timing intervals
and improving their tightness, thus containing one source of the abstrac-
tion’s nondeterminism. Simulation comparisons between the proposed
partition and a naive partition support our arguments, as the proposed
partition achieves tighter intervals (for metrics capturing tightness, refer
to Section VI). Finally, we note that a preliminary version of this article,
focusing only on homogeneous systems and triggering functions, has
been presented in [19]. To summarize our contributions, in this work
we:
1) construct traffic abstractions of perturbed uncertain nonlinear ETC

systems with general triggering functions, thus significantly ex-
tending abstraction-based scheduling of ETC traffic, which was
only applicable to LTI systems with quadratic triggering functions
so far [13], [14],

2) formulate and solve reachability analysis problems, providing in-
tervals containing the intersampling times of all points in a given
state-space region,

1Throughout this article, we mainly focus on systems without distur-
bances/uncertainties, but Remarks 5 and 10 describe how our approach directly
extends to perturbed uncertain systems. Moreover, applicability of our approach
to perturbed systems is demonstrated by a numerical example in Section VI-A.
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3) propose a state-space partition that provides control over the timing
intervals and improves their tightness, thus containing a source of
the abstraction’s nondeterminism.

II. NOTATION AND PRELIMINARIES

A. Notation

The Euclidean norm of x ∈ Rn is denoted by |x|. For vectors, we

also use the notation (x1, x2) =
[
x�
1 x�

2

]�
. For a set X , 2X denotes

its power set. Given two sets Xa,Xb ⊆ X , dH(Xa,Xb) denotes their
Hausdorff distance. Given an equivalence relation Q ⊆ X ×X , the set
of all equivalence classes is denoted by X/Q.

Consider the system of ordinary differential equations:

ζ̇(t) = f(ζ(t)), (1)

where ζ(t) ∈ Rn and f : Rn → Rn. A solution to (1) with initial
condition ζ0 and initial time t0 is denoted by ζ(t; t0, ζ0). When t0
(and ζ0) is clear from the context, we omit it by writing ζ(t; ζ0)
(respectively ζ(t)). Given a set of initial states I ⊆ Rn, the reachable
set of (1) at time T is X f

T (I) := {ζ(T ; ζ0) : ζ0 ∈ I}. Likewise, the
reachable flowpipe of (1) in the time interval [τ1, τ2], with initial set I,
is X f

[τ1,τ2]
(I) := ⋃

T∈[τ1,τ2]
X f

T (I).

B. Systems and Simulation Relations

Here, we recall notions of systems and simulation relations
from [20], which are employed later.

Definition II.1 (System [20, Def. 1.1]). A system S is a tuple
(X,X0, −→, Y,H), where X is the set of states, X0 the set of initial
states, −→⊆ X ×X a transition relation, Y the set of outputs, and
H : X → Y the output map.

We have omitted the action set U in Definition II.1, since we focus
on autonomous systems. If X is a finite (or infinite) set, then S is called
finite-state (respectively, infinite-state). A system S is called a metric
system if Y is equipped with a metric d : Y × Y → R+

0 ∪ {+∞}.
Definition II.2 (ε-Approximate Simulation Relation [20, Def. 9.2]).

Consider two metric systems Sa and Sb with Ya = Yb and a constant
ε ≥ 0. A relation Q ⊆ Xa ×Xb is an ε-approximate simulation rela-
tion from Sa to Sb if it satisfies:

� ∀x0a ∈ X0a : ∃x0b ∈ X0b such that (x0a , x0b) ∈ Q,
� ∀(xa, xb) ∈ Q : d(Ha(xa),Hb(xb)) ≤ ε,
� ∀xa, x

′
a ∈ Xa with (xa, x

′
a) ∈−→

a
: if (xa, xb) ∈ Q then

∃(xb, x
′
b) ∈−→

b
such that (xa,

′ x′
b) ∈ Q.

If there exists an ε-approximate simulation relation fromSa toSb, we

say thatSb ε-approximately simulatesSa and writeSa

ε Sb. Moreover,
let us introduce an alternative definition of power quotient systems. For
the original definition, see [20].

Definition II.3 (Power Quotient System [13, Def. 6]). Consider
a system S = (X,X0,−→, Y,H) and an equivalence relation Q ⊆
X ×X . The power quotient system of S is the tuple S/Q=
(X/Q,X0/Q

,−→
/Q

, Y/Q,H/Q), where:

� X/Q = X/Q and X0/Q
= {x/Q ∈ X/Q : x/Q ∩X0 �= ∅},

� (x/Q, x
′
/Q) ∈−→

/Q
if ∃(x, x′) ∈−→ such that x ∈ x/Q and x′ ∈

x′
/Q,

� Y/Q ⊆ 2Y and H/Q(x/Q) =
⋃

x∈x/Q

H(x).

Lemma II.1 ([13, Lemma 1]). Consider a metric system S , a
relation Q ⊆ X ×X , and the power quotient system S/Q. For

any ε such that ε ≥ sup
x∈x/Q,x/Q∈X/Q

dH(H(x),H/Q(x/Q)), S/Q ε-

approximately simulates S , i.e., S ε S/Q.

C. Event-Triggered Control Systems

Consider the following control system with state feedback:

ζ̇(t) = f
(
ζ(t), υ(ζ(t))

)
, (2)

where ζ : R+
0 → Rn, f : Rn → Rn and υ : Rn → Rm. In a sample-

and-hold implementation of (2), the input is constant between consec-
utive sampling times ti and is only updated at sampling times:

ζ̇(t) = f
(
ζ(t), υ(ζ(ti))

)
, t ∈ [ti, ti+1). (3)

The so-called sampling-induced error is the deviation of the last state
measurement from the current state of (3):

εζ(t) = ζ(ti)− ζ(t), t ∈ [ti, ti+1).

Observe that εζ(t) resets to zero, at each sampling time ti. By employ-
ing εζ(t), we can write (3) as:

ζ̇(t) = f
(
ζ(t), υ(ζ(t) + εζ(t))

)
, t ∈ [ti, ti+1). (4)

In ETC, sampling times are defined as follows:

ti+1 = ti + inf{t > 0 : φ(ζ(t;xi), εζ(t)) > 0} (5)

and t0 = 0, where xi = ζ(ti) is the last state measurement, φ(·, ·) is
the triggering function, (5) is the triggering condition, and ti+1 − ti is
called intersampling time. Each point x ∈ Rn is associated to a unique
intersampling time τ(x):

τ(x) := inf{t > 0 : φ(ζ(t;x), εζ(t)) > 0}. (6)

Between two sampling times ti and ti+1, the triggering function starts
negative φ(ζ(ti), 0) < 0 (εζ is zero at sampling times) and remains
negative until it becomes zero at t−i+1. At t+i+1, the state is sampled
again, the sampling-induced error resets to zero, the triggering function
resets to a negative value, and the control action is updated.

By observing that ε̇ζ(t) = −ζ̇(t), we write the dynamics of the ETC
system in the following extended form:

ξ̇(t) =

⎡
⎣ f

(
ζ(t), υ(ζ(t) + εζ(t))

)
−f

(
ζ(t), υ(ζ(t) + εζ(t))

)
⎤
⎦ =: fe(ξ(t)), t ∈ [ti, ti+1)

ξ(t+i+1) =
[
ζ�(t−i+1) 0�

]�
, (7)

where ξ = (ζ, εζ) ∈ R2n. At each sampling time ti, the state of (7)
becomes ξi = (xi, 0). Thus, since we focus on intervals between con-

secutive sampling times [ti, ti+1), instead of writing φ
(
ξ(t; (xi, 0))

)
(or τ

(
(xi, 0)

)
), we abusively write φ(ξ(t;xi)) (or τ(xi)) for conve-

nience.
Remark 1. In practice, the strict inequality φ(ζ(t;xi), εζ(t)) > 0

in (5) might be replaced by a relaxed inequality ≥ 0, for numerical
robustness. Here, we consider the strict inequality, because it allows
us to include the well-known Tabuada’s triggering function [2] in our
study; if a relaxed inequality is used in combination with Tabuada’s
function, the system exhibits infinitely fast sampling at the origin (since
φ(0, 0) = 0), which is to be avoided in practice. Nevertheless, our
developments apply to the relaxed-inequality case, as well.

Authorized licensed use limited to: TU Delft Library. Downloaded on June 12,2023 at 14:03:07 UTC from IEEE Xplore.  Restrictions apply. 
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III. PROBLEM STATEMENT

In this article, we construct traffic abstractions of nonlinear ETC sys-
tems; we construct finite-state systems, whose set of output sequences
contains all possible intersampling time sequences of the given ETC
system. For clarity, we mainly consider the case without disturbances
or uncertainties, but we also point out through remarks (Remarks 5
and 10) how the proposed approach directly applies to systems with
bounded disturbances or uncertainties. In fact, the numerical example in
Section VI-A demonstrates application of our approach on a perturbed
system.

We adopt a problem formulation similar to [13]. Consider the ETC
system (4)–(5). Let us introduce the system:

S = (X,X0,−→, Y,H), (8)

where X = X0 ⊆ Rn, Y ⊆ R+, H(x) = τ(x) and the transition re-
lation −→⊆ X ×X is such that (x, x′) ∈−→ ⇐⇒ ζ(τ(x);x) = x′.
Observe that the set of output sequences of system (8) contains all pos-
sible intersampling time sequences of the ETC system (4)–(5), which
correspond to trajectories confined in X . However, it is infinite-state
and cannot serve as a computationally handleable abstraction.

We, also, introduce the following set of assumptions:
Assumption 1.

1) The origin is the only equilibrium of (2).
2) The vector field fe(·) from (7) is locally bounded.
3) φ(0, 0) ≤ 0 and φ(x, 0) < 0 for all x �= 0. Moreover, for any

compact setK ⊂ Rn, there exists εK > 0 such that for allx0 ∈ K,
φ(ξ(t;x0)) ≤ 0 for all t ∈ [0, εK).

4) The set X is compact and connected.
Item 1 serves for clarity of presentation. Item 3 imposes thatφ(·, 0) is

negative-definite and that the given ETC system cannot exhibit infinitely
fast sampling; this is satisfied by most functions in the ETC literature
(e.g., Tabuada’s [2], dynamic triggering [4], mixed triggering [3],
Lebesgue sampling [1]). Item 4 suggests that we are interested in
trajectories of the system that stay in the compact connected set X .

Since (8) captures exactly the sampling behavior of the ETC system
(4)–(5), abstracting the ETC system is equivalent to abstracting (8).
This gives rise to the following:

Problem Statement. Consider the system S (8). Let Assumption
1 hold. Construct a power-quotient system S/Q= (X/Q,X0/Q

,−→
/Q

,

Y/Q,H/Q) with:
� X/Q = X/Q := {R̃1,1, . . . , R̃i,j , . . . , R̃q,m} and X0/Q

=

X/Q, where R̃i,j ⊆ X and
⋃ R̃i,j = X .

� (x/Q, x
′
/Q) ∈−→

/Q
if ∃x ∈ x/Q and ∃x′ ∈ x′

/Q such that

ζ(H(x);x) = x′.
� Y/Q ⊆ 2Y = 2R+

and H/Q(R̃i,j) := [τ R̃i,j
, τ R̃i,j

], with:

τ R̃i,j
≤ inf

x∈R̃i,j

H(x), τ R̃i,j
≥ sup

x∈R̃i,j

H(x). (9)

The states R̃i,j of the abstraction are regions in the ETC system’s
state-space, i.e., R̃i,j ⊆ X ⊂ Rn (the i, j-subscript becomes clear
later). A transition from R̃i,j to R̃k,l is defined if there exists a
trajectory starting from x ∈ R̃i,j , which ends up in R̃k,l after an
elapsed intersampling time τ(x). Hence, a transition is taken every
time the triggering condition (5) is satisfied. Finally, (9) indicates
that the abstraction’s output of a state R̃i,j is an interval containing
all intersampling times corresponding to states x ∈ R̃i,j . Thus, given
a sequence of intersampling times τ1, τ2, . . . that the ETC system
may generate during a run, there is a corresponding output sequence
[τ R̃i,j

, τ R̃i,j
], [τ R̃k,l

, τ R̃k,l
], . . . of the abstraction, which is such that

τ1 ∈ [τ R̃i,j
, τ R̃i,j

], τ2 ∈ [τ R̃k,l
, τ R̃k,l

], ... As such, the abstraction
offers an infinite-horizon look into the ETC system’s sampling patterns,

i.e., it abstracts the ETC system’s traffic. In fact, by Lemma II.1, we

conclude that S ε S/Q for all ε ≥ max
i

{τ R̃i,j
− τ R̃i,j

}.

As discussed in [13], the abstraction S/Q is semantically equivalent
to a timed-automaton. The automaton’s guards are determined by the in-
tervals [τ R̃i,j

, τ R̃i,j
], and its transitions are the ones ofS/Q. The tighter

the intervals and the smaller the transition set, the less nondeterministic
becomes the automaton; hence, it simulates more accurately the original
system, and the scheduling algorithms provide less conservative results.

To address the problem, we have to partition X into regions R̃i,j

(which automatically generates the relationQ), derive the intervals, and
determine the transitions. In what follows, partitioning the state-space is
decoupled from determining the intervals and transitions. Specifically,
in Section IV, we propose reachability-analysis-based algorithms to
determine the timing intervals and transitions, given any partition.
Later, in Section V, we propose a specific partition, providing better
control over the intervals and their tightness, thus containing one source
of the abstraction’s nondeterminism.

IV. TIMING INTERVALS AND TRANSITIONS

In this section, we assume that the partition is given and show how
reachability analysis can be employed to determine timing intervals and
transitions.

A. Reachability Analysis for Timing Intervals

The following proposition, employing reachable sets and flowpipes,
provides conditions that determine lower and upper bounds on inter-
sampling times of points in a given region R̃i,j :

Proposition IV.1. Consider the ETC system (4)–(5) and its extended
form (7). Let Assumption 1 hold. Let R̃i,j ⊆ X . Define the sets:

Ii,j := {(x, 0) ∈ R2n : x ∈ R̃i,j}

U≥0 := {(x, e) ∈ R2n : φ
(
(x, e)

)
≥ 0}

U≤0 := {(x, e) ∈ R2n : φ
(
(x, e)

)
≤ 0}

If:

X fe
[0,τmin]

(Ii,j) ∩ U≥0 = ∅, (10)

then for all x ∈ R̃i,j: τ(x) ≥ τmin, where τ(·) is as in (6). Similarly,
if:

X fe
τmax

(Ii,j) ∩ U≤0 = ∅, (11)

then for all x ∈ R̃i,j : τ(x) ≤ τmax.
Proof. Equation (10) implies that ∀x ∈ R̃i,j , we have that:

φ(ξ(t;x)) < 0 for all t ∈ [0, τmin]. Thus, τ(x) ≥ τmin, i.e., τmin is
a lower bound on intersampling times of region R̃i,j .

Similarly, if X fe
τmax

(Ii,j) ∩ U≤0 = ∅, then for all x ∈ R̃i,j , we have
that φ(ξ(τmax;x)) > 0. Thus, τ(x) ≤ τmax. �

To obtain the timing intervals [τ R̃i,j
, τ R̃i,j

] for regions R̃i,j , we
employ one line search for each one of the variables τmin and τmax

and iterate until we find that (10) or (11), respectively, are satisfied.
To check (10) and (11), we employ reachability-analysis computa-
tional tools (e.g., [15], [16]). Such tools, given a system (1), a set
of initial conditions I ⊂ Rn, and a set U ⊆ Rn, overapproximate the
reachable flowpipes X f

[τ1,τ2]
(I) and the set U by overapproximations

X̂ f
[τ1,τ2]

(I) ⊇ X f
[τ1,τ2]

(I) and Û ⊇ U , and check if X̂ f
[τ1,τ2]

(I) ∩ Û =

∅. Moreover, by the implication:

X̂ f
[τ1,τ2]

(I) ∩ Û = ∅ ⇒ X f
[τ1,τ2]

(I) ∩ U = ∅, (12)

Authorized licensed use limited to: TU Delft Library. Downloaded on June 12,2023 at 14:03:07 UTC from IEEE Xplore.  Restrictions apply. 
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they can determine if X f
[τ1,τ2]

(I) ∩ U = ∅. Hence, by employing line
searches on τmin and τmax, via a reachability-analysis tool we check
iteratively if X̂ fe

[0,τmin]
(Ii,j) ∩ Û≥0 = ∅ or X̂ fe

τmax
(Ii,j) ∩ Û≤0 = ∅, re-

spectively, until these conditions are satisfied. Satisfaction of these
conditions implies (10) and (11) (due to (12)), which imply that τ(x) ≥
τmin = τ R̃i,j

and τ(x) ≤ τmax = τ R̃i,j
for all x ∈ R̃i,j , respectively,

by Proposition IV.1.
Remark 2. Certain regions might not admit upper bounds on their

intersampling times (e.g., in equilibria x, τ(x) = +∞). In practice, to
cope with this, an arbitrary maximum intersampling time τh is intro-
duced (called “heartbeat”), such that sampling instants are determined
by ti+1 = ti +min(τ(xi), τh), wherexi is the last measured state and
τ(·) is defined in (6). Thus, for such regions R̃i,j , we can arbitrarily
dictate an upper bound τ R̃i,j

= τh to be equal to the heartbeat, and

force the sensors to sample according to ti+1 = ti +min(τ(xi), τh).

B. Reachability Analysis for Transitions

Let us show how the abstraction’s transitions can be derived via
reachability analysis. Recall the transitions’ definition, from the Prob-
lem Statement:

(R̃i,j , R̃k,l) ∈−→
/Q

, if :

∃x ∈ R̃i,j and ∃x′ ∈ R̃k,l such that ζ(H(x);x) = x′.

This definition can be relaxed as follows:

(R̃i,j , R̃k,l) ∈−→
/Q

, if : X f
[τ R̃i,j

,τ R̃i,j
]
(R̃i,j) ∩ R̃k,l �= ∅. (13)

Thus, inspired by (12), via a reachability analysis tool, we check if
X̂ f

[τ R̃i,j
,τ R̃i,j

]
(R̃i,j) ∩ R̃k,l �= ∅, which approximates condition (13),

and if satisfied, we define a transition (R̃i,j , R̃k,l) ∈−→
/Q

.

In this way, the constructed abstraction contains all possi-
ble transitions (R̃i,j , R̃k,l) defined as in (13). Notice that, since
(13) is a relaxation of the original transitions’ definition, and
X̂ f

[τ R̃i,j
,τ R̃i,j

]
(R̃i,j) ∩ R̃k,l �= ∅ does not necessarily imply that

X f
[τ R̃i,j

,τ R̃i,j
]
(R̃i,j) ∩ R̃k,l �= ∅, the abstraction may contain addi-

tional transitions (R̃i,j , R̃k,l) for which ∃/ x ∈ R̃i,j and ∃/ x′ ∈
R̃k,l such that ζ(H(x);x) = x′. Nonetheless, the existence of spurious
transitions does not alter the fact that S/Q ε-approximately simulates
S (see [20]).

Remark 3. Since reachability analysis uses overapproximations,
the computed intervals and transitions are not exact. Nonetheless,
higher accuracy settings for reachability analysis imply more accurate
intervals and transitions, establishing a tradeoff between accuracy and
offline computations.

Remark 4. Overapproximations X̂ f
[τ R̃i,j

,τ R̃i,j
](R̃i,j) of the flow-

pipes of the ETC system (4) can be readily obtained by the -already
computed from the previous step- flowpipes X̂ fe

[τ R̃i,j
,τ R̃i,j

]
(Ii,j)

of the extended system (7), by projecting to the ζ-variables:
X̂ f

[τ R̃i,j
,τ R̃i,j

]
(R̃i,j) = πζX̂ fe

[τ R̃i,j
,τ R̃i,j

]
(Ii,j). Thus, the only compu-

tation needed to determine transitions is calculating the intersections
πζX̂ fe

[τ R̃i,j
,τ R̃i,j

](Ii,j) ∩ R̃k,l. This is in contrast to [13], where com-

puting timing intervals and determining transitions are two distinct
computational steps.

Remark 5. The above method directly extends to systems with
bounded disturbances/uncertainties, since many reachability analysis
tools, such as Flow* [16], can handle bounded unknown signals.

Fig. 1. IMs (dashed lines) of a homogeneous ETC system for times
τ1 < τ2. The region R1 (filled region) satisfies (14).

V. PARTITIONING THE STATE SPACE

Here, we propose a way of partitioning the state space into regions
R̃i,j , based on approximations of IMs, derived in [17] and [18], pro-
viding control over the timing intervals and improving their tightness,
compared to naively partitioning X into hyperrectangles. First, we
present the ideal (albeit nonachievable) partitioning in these terms,
which employs IMs. Afterward, we show how to approximate it via
inner approximations of IMs: we start with homogeneous ETC systems,
and then we generalize employing a homogenization procedure. Finally,
we provide a thorough discussion on the advantages of the proposed
approach. For this section, we add the following mild assumptions:

Assumption 2. The vector field fe(·) of (7) is continuous. The
function φ(·) is continuously differentiable.

Assumption 2 is necessary in order to be able to derive inner-
approximations of IMs. For more information, see [17] and [18].

A. Isochronous Manifolds and Ideal Partitioning

Here, we demonstrate how IMs, if obtained exactly, enable a partition
(hereby termed IM-partition) which is ideal w.r.t. the timing intervals:
it 1) provides complete control over the intervals, and 2) is optimal
in terms of correspondence between timing intervals and state-space
regions. We focus on homogeneous systems and triggering functions,
for clarity.

Definition V.1 (Homogeneous function [17, Definition IV.1, sim-
plified]). Consider a function f : Rn → Rm. We say that f is homo-
geneous of degree α ∈ R, if for all x ∈ Rn and any λ > 0: f(λx) =
λα+1f(x).

A dynamical system (1) is called homogeneous of degree α ∈ R if
f is homogeneous of the same degree.

Definition V.2 (Isochronous Manifold [17, Definition IV.3]). Con-
sider an ETC system (4)–(5). The set Mτ� = {x ∈ Rn : τ(x) = τ�},
where τ(x) is as in (6), is called isochronous manifold of time τ�.

It becomes clear how IMs constitute a notion relating regions in a
system’s state-space and intersampling times: they are sets of points in
the state-space, with the same intersampling time. As discussed in [17]
and [18], for homogeneous ETC systems and triggering functions, IMs
satisfy certain useful properties (e.g., listed in [18, Prop. IV.3]). Due to
these properties, the sets Ri consisting of the points lying between two
manifolds of times τi, τj with τi ≤ τj (see Fig. 1) satisfy:

Ri = {x ∈ Rn : τ(x) ∈ [τi, τj ]}, (14)

i.e., Ri is the set of all points with intersampling times in [τi, τj ].
Thus, if IMs were obtained exactly, one could choose a set of times
{τ1, τ2, . . ., τq}, generate the IMsMτi , and use the regionsRi between
successive IMs to partition the state-space.

The advantages of IM-partitioning are the following. First, complete
control over the timing intervals is obtained, as the regions Ri are
generated such that the corresponding timing intervals are equal to
the chosen ones [τi, τi+1] (due to (14)). Moreover, the IM-partition
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Fig. 2. Regions Ri,j obtained as intersections of inner-approximations
of IMs Mτi

(dashed lines) and cones Cj .

is optimal w.r.t. correspondence between regions and intervals: due
to (14), there is no set with bigger volume (Lebesgue measure) than
Ri that corresponds to the same timing interval. This implies that
IM-partitioning achieves the tightest intervals possible than any other
partition, given a certain volume (or number) of regions.

Unfortunately, IMs cannot be obtained exactly for most systems.
However, the above advantages of IM-partitioning motivate us to em-
ploy inner-approximations of IMs ( [17], [18]), in order to approximate
this ideal way of partitioning.

B. State-Space Partitioning for Homogeneous Systems via
Inner Approximations of IMs

For clarity of presentation, we first present how inner-
approximations of IMs can be employed to partition the state space
of homogeneous ETC systems with homogeneous triggering functions.
In [17], inner approximationsMτi

of IMsMτi were derived as follows:

Mτi
:= {x ∈ Rn : μ(x, τi) = 0}, (15)

where μ(x, τi) is a function derived in [17, Th. V.3]. Moreover, the sets
Ri between two approximations Mτi

and Mτi+1
(with τi ≤ τi+1) are

defined as follows:

Ri = {x ∈ Rn : μ(x, τi) ≤ 0, μ(x, τi+1) > 0} (16)

and satisfy:

∀x ∈ Ri : τ(x) ≥ τi (17)

To approximate IM-partitioning, one could divide the setX into such
regions Ri (16). However, the sets (16) are large for the reachability-
analysis algorithms of Section IV to be applied (e.g., see Fig. 1). Thus,
we further partition them via conesCj pointed at the origin and spanning
Rn. Hence, we obtain new sets Ri,j as intersections of approximations
Mτi

and cones Cj (see Fig. 2):

Ri,j = Ri ∩ Cj (18)

Finally, the regions R̃i,j representing the states of the abstraction are
obtained as intersections of sets Ri,j and the set of interest X (the
compact state space):

R̃i,j = Ri,j ∩X (19)

To summarize the partitioning method:
1) Define a finite set of times {τ1, . . . , τq} with τi < τi+1 and obtain

the sets Ri according to (16).
2) Define a conic covering into cones Cj and obtain the sets Ri,j by

(18).

3) Obtain the regions R̃i,j by (19), which constitute the partition.
Note that some regions R̃i,j might be empty sets; such regions are

discarded from the abstraction.
Remark 6. The innermost setRq (e.g., the inner white set in Fig. 2) is

defined: Rq = {x ∈ Rn : μ(x, τq) ≤ 0}; μ(x, τq+1) is missing, com-
pared to (16), since there is no τq+1.

Remark 7. As analyzed in [17] and [18], the smaller τ1 is picked the
further away from the origin Mτ1

lies. Thus, τ1 can always be picked
such that X is totally covered by the partition. To check if Mτ1

is far
enough such that X is totally covered, one can employ SMT-solvers
(e.g., [21]).

Remark 8. Although (17) a priori provides a lower bound on inter-
sampling times for each region, simulations indicate that the algorithm
of Section IV-A often provides less conservative bounds. Thus, these
two ways of determining timing lower bounds could be employed
in conjunction. Nonetheless, with the proposed partitioning method,
reachability analysis for timing lower bounds could be skipped entirely,
to reduce offline computational load.

C. State-Space Partitioning for General Nonlinear Systems

Here, we extend the above partitioning method to general nonlinear
systems and triggering functions, by employing a homogenization
procedure, proposed by [22]. The homogenization procedure renders
an ETC system (7) and a triggering function homogeneous of degrees
α > 0 and θ > 0, respectively, by adding a dummy variable w:[

ξ̇

ẇ

]
=

[
wα+1fe(w

−1ξ)

0

]
= f̃e(ξ, w)

φ̃(ξ, w) = wθ+1φ(w−1ξ) (20)

Note that the ξ-trajectories of (20) with initial condition (x0, e0, 1) ∈
R2n+1 coincide with the trajectories of the ETC system (7) with initial
condition (x0, e0) ∈ R2n; i.e., (20) behaves identically to (7), on the
(w = 1)-hyperplane of Rn+1. Thus, the state space of the original ETC
system (4)–(5) (a subset of Rn) is mapped to the (w = 1)-hyperplane
of Rn+1.

Employing this procedure, in [17], nonlinear ETC systems (4)–(5)
are homogenized, and then, inner-approximations Mτi

of IMs of the
homogenized systems (20) are derived in Rn+1. These approximations
can be used in the same way as in the previous section, to partition the
state space. Note that the sets Ri,j (18) are now subsets of Rn+1. Since
X is now mapped to the set {(x, 1) ∈ Rn+1 : x ∈ X}, which becomes
our set of interest, the regions R̃i,j are now obtained as:

R̃i,j = Ri,j ∩ {(x,w) ∈ Rn+1 : x ∈ X,w = 1},
Remark 9. As discussed in [17], in cases where the origin is the

equilibrium of the system and φ(0, 0) = 0 (e.g., the φ from [2]), inner-
approximations of IMs exhibit a singularity along the w-axis. There
is always a small region R̃� on the (w = 1)-hyperplane containing
(0, 0, . . . , 0, 1), which is not covered by partitioning with approxima-
tionsMτi

. R̃� can be made arbitrarily small, by choosing τq sufficiently

large. Moreover, it can be defined as R̃� = {(x,w) ∈ Rn+1 : x ∈
X,w = 1} \ ⋃

i,j

R̃i,j and treated as an extra state of the abstraction.

Remark 10. The proposed partitioning method extends to systems
with bounded disturbances/uncertainties, as approximations of IMs
of such systems have been derived in [18]. In that case, the vector-
field fe(·), which is now a function of the state ξ and the unknown
signal d, i.e., fe(ξ, d), has to be continuous on both ξ and d [18,
Assumption 1].
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D. Discussion

Let us discuss the advantages of the proposed partition, compared to
naively partitioning X into hyperrectangles. The proposed method is
certainly not ideal, as we only have inner approximations of IMs to work
with. Nonetheless, our aim was to approximate the ideal IM-partition
that was presented in Section V-A, in order to partially gain some of
the IM-partition’s advantages.

First, the regions R̃i,j generated by the proposed partition are
expected to result into tighter intervals, compared to hyperrectangles
of approximately the same volume. That is because they approximate
the ideal shape of the regions Ri of Section V-A, which are optimal in
terms of correspondence between intersampling interval and volume.
This claim is supported by simulation results in Section VI, which show
that we can partition X with fewer regions (19) than hyperrectangles
and still obtain tighter intervals. Hence, with the proposed partition, we
contain one source of the abstraction’s nondeterminism.

In addition, due to (17), a region R̃i,j is generated such that τi, which
is chosen freely, is a lower bound on intersampling times (albeit not the
tightest one; see Remark 8). This provides some partial control over
the intervals, in contrast to partitioning into random hyperrectangles,
where there is no obvious way of relating regions and timing bounds
beforehand. Moreover, as a future direction, if outer approximations of
IMs were obtained,2 they could be used to partition and gain control
over the intervals’ upper bounds as well (due to the scaling law [22,
Th. IV.3]). Finally, the proposed partitioning approach has the potential
of approximating arbitrarily well IM-partitioning, by improving the
method of approximating IMs.

VI. NUMERICAL EXAMPLES

Here, we present simulation results supporting our theoretical de-
velopments. First, we apply the techniques of Section IV combined
with a naive partition, to abstract a perturbed nonlinear ETC system.
Afterward, we compare the partition proposed in Section V with naive
partitioning, on an unperturbed system.

For reachability analysis, in the first example, we use Flow*, whereas
in the second, we use dReach. Moreover, the sets Ri,j (18) are over-
approximated by ball segments as described in [19], as they originally
admit a transcendental representation which is not handled well by
either Flow* or dReach. Ball segments can indeed be handled by
dReach, but not by Flow*. On the other hand, dReach cannot handle
disturbances, but Flow* can. That is why we employ naive partitioning
in the perturbed system case. To abstract a perturbed system using
the partition of Section V, other options have to be explored, such as
approximating the sets (18) by Taylor models, which are handled by
Flow*.

To measure the tightness of intervals of a given abstraction, we devise
the two following metrics:

AvgRatio =

∑
i,j

τ R̃i,j

τ R̃i,j

#Regions
, AvgDiff =

∑
i,j τ R̃i,j

− τ R̃i,j

#Regions
(21)

The smaller these metrics, the tighter the intervals. The difference
between them is: in AvgDiff regions with larger intersampling times
contribute more to the metric’s value, while in AvgRatio all regions
contribute the same, regardless of the time scales in which they oper-
ate. For our purposes, AvgRatio is more representative; we have also

2Deriving outer approximations of IMs is a difficult problem, e.g., there is
no guarantee that a lower bound of the triggering function, derived as in [17,
Lemma V.2], exhibits a zero-crossing w.r.t. time for any initial condition.

Fig. 3. Perturbed ETC System: Timing lower and upper bounds for
each region. The horizontal axis shows the regions’ indices.

Fig. 4. Perturbed ETC System: Transitions of the abstraction. Each dot
[(i, j), (k, l)] represents a transition R̃i,j → R̃k,l.

included AvgDiff, because it is closely connected to the definition of
an abstraction’s precision (the ε-constant from Definition II.2).

A. Abstracting a Perturbed Nonlinear ETC System

Consider the following nonlinear ETC system:

ζ̇1 = −ζ1, ζ̇2 = ζ21ζ2 + ζ32 + u+ d, ε̇ζ1 = −ζ̇1, ε̇ζ2 = −ζ̇2

with a Lebesgue-sampling triggering function φ(ζ(t), εζ(t)) =
ε2ζ − 0.012, where u = −(ζ2 + εζ2)− (ζ1 + εζ1)

2(ζ2 + εζ2)−
(ζ2 + εζ2)

3 is the control input, and d ∈ [−0.1, 0.1] is a bounded
unknown parameter (e.g., a disturbance or a model uncertainty).

Let X = [−2, 2]2, and we partition it via 56 equal rectangles. We
choose a heartbeat τh = 0.022. To compute the intervals [τ R̃i,j

, τ R̃i,j
]

and the transitions, we employ the algorithms of Section IV and Flow*.
Fig. 3 depicts the computed timing lower and upper bounds for each re-
gion. The tightness metrics are AvgRatio ≈ 3.14 and AvgDiff ≈ 0.011.
Fig. 4 depicts the abstraction’s transitions (418 in total).

Finally, we simulate a run of the ETC system to showcase our
results’ validity. Specifically, the system is initialized at (1.3,1.3), and
the disturbance is d(t) = 0.1 sin(10t). The duration is 2 s. Fig. 5
depicts the results. The red line is the evolution of the actual ETC
intersampling times during the run, while the blue lines represent
the intervals [τ R̃i,j

, τ R̃i,j
] generated by the abstraction (by check-

ing at which region R̃i,j the state belonged at each time, and plot-
ting its associated interval). As expected, the intersampling time is
always confined in [τ R̃i,j

, τ R̃i,j
]. Moreover, it caps at τh = 0.022.

The system’s trajectory followed the spatial path: R̃6,7 → · · · →
R̃6,6 → · · · → R̃5,6 → · · · → R̃5,5 → · · · → R̃4,5 → . . . , where the
dots indicate that the trajectory stayed in the previous region for
multiple intersampling intervals. Note that all transitions taken during
the run are contained in the transition set of the abstraction (see
Fig. 4).
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Fig. 5. Time evolution of the ETC system’s intersampling times (red
line) and the intervals [τ R̃i,j

, τ R̃i,j
] (blue lines) generated by the ab-

straction, during a run.

Fig. 6. Naive partition: Lower and upper bounds of intersampling times
for each region.

B. Performance of the Partitioning Approach of Section V

To compare our proposed partition with naive partitioning, con-
sider the unperturbed version of the ETC system presented in the
previous numerical example, let X = [−2, 2]2 and τh = 0.021. For
naive partitioning, we divide again X into 56 equal rectangles and
calculate the intervals [τ R̃i,j

, τ R̃i,j
]. The results appear in Fig. 6.

The tightness metrics are AvgRatio ≈ 1.74 and AvgDiff ≈ 0.0045.
The total transitions of the abstraction are 367. We observe that the
timing intervals are considerably tighter and the number of transitions
is smaller, when the disturbance is absent. That is because unknown
parameters in the dynamics give rise to infinite possible behaviors,
implying larger nondeterminism. Moreover, reachability-analysis tools
behave more conservatively, when unknown parameters are present.

For the partitioning approach of Section V, after homogenizing the
system and the triggering function as in (20) with α = 2 and θ = 1,
we define the set of times {.002, .0028, .0038, .005, .0065, .0075} and
derive inner-approximations of the corresponding IMs and the sets
Ri, as per [17] and (16). To further divide Ri into Ri,j , we use 9
polyhedral cones Cj pointed at the origin of Rn+1 that cover the set
of interest {(x,w) ∈ Rn+1 : x ∈ X,w = 1}; i.e.,

⋃
j(Cj ∩ {(x,w) ∈

Rn+1 : w = 1}) = {(x,w) ∈ Rn+1 : x ∈ X,w = 1}3. Finally, after
obtaining the regions R̃i,j (19), the total number of abstraction states
is 49 (recall that the number of regions R̃i,j can be smaller than
|{Ri}| · |{Cj}|, where | · | denotes set cardinality, since empty inter-
sections (19) are discarded). The computed intervals [τ R̃i,j

, τ R̃i,j
] are

depicted in Fig. 7. The tightness metrics are AvgRatio ≈ 1.54 and
AvgDiff ≈ 0.0032. The total number of transitions is 471.

3A way to create this conic covering is to divide {(x,w) : x ∈ X,w = 1}
into 9 squares, and obtain Cj as the conic hull of the j-th square’s vertices.

Fig. 7. Proposed partition: Lower and upper bounds of intersampling
times for each region.

The partition of Section V achieves considerably tighter intervals
even with a smaller amount of regions, compared to the naive one.
This supports the claims of Section V-D: it leads to tighter intervals,
thus containing one of the sources of nondeterminism. On the other
hand, we observe that it has led to an abstraction with larger transition
set. That may be because the sets (18) have been overapproximated by
ball segments, which in some cases might be a crude approximation
(see [19]), while the naive partition’s rectangles are fed directly to the
reachability-analysis algorithm. In other words, while tighter intervals
are an inherent characteristic of the partition of Section V, the large
number of transitions is probably due to coarse overapproximations.

VII. CONCLUSION

We constructed traffic abstractions of perturbed uncertain nonlinear
ETC systems with general triggering functions. Thus, we have signif-
icantly extended the applicability of abstraction-based scheduling of
traffic in networks of ETC loops, which was only applicable to LTI
systems with quadratic triggering functions so far. To capture the sets
of intersampling times that the given ETC system may generate, we
formulated and solved reachability-analysis problems. In addition, we
proposed a state-space partition based on IMs, which provides partial
control over the abstraction’s accuracy and leads to tighter timing inter-
vals, compared to naive partitioning. However, in the performed simu-
lations it has led to larger transition sets, probably because of the crude
overapproximations used to facilitate reachability analysis. In future
work, we plan to 1) perform experiments showcasing abstraction-based
scheduling on networks of nonlinear ETC systems, 2) develop more
accurate approximations of the sets (18) (e.g., polynomial zonotopes or
Taylor models), to reduce the size of the transition set, while keeping
the timing intervals tight, thus overall containing the abstraction’s
nondeterminism, and 3) employ the derived abstractions to charac-
terize the sampling performance of ETC (e.g., compute performance
metrics of ETC systems, as done in [23] for the average intersampling
time).
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