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A B S T R A C T

Resilience indicators are a convenient tool to assess the resilience of engineering systems. They are often used in
preliminary designs or in the assessment of complex systems. This paper introduces a novel approach to assess
the time-dependent resilience of engineering systems using resilience indicators. A Bayesian network (BN) ap-
proach is employed to handle the relationships among the indicators. BN is known for its capability of handling
causal dependencies between different variables in probabilistic terms. However, the use of BN is limited to
static systems that are in a state of equilibrium. Being at equilibrium is often not the case because most en-
gineering systems are dynamic in nature as their performance fluctuates with time, especially after disturbing
events (e.g. natural disasters). Therefore, the temporal dimension is tackled in this work using the Dynamic
Bayesian Network (DBN). DBN extends the classical BN by adding the time dimension. It permits the interaction
among variables at different time steps. It can be used to track the evolution of a system's performance given an
evidence recorded at a previous time step. This allows predicting the resilience state of a system given its initial
condition. A mathematical probabilistic framework based on the DBN is developed to model the resilience of
dynamic engineering systems. Two illustrative examples are presented in the paper to demonstrate the applic-
ability of the introduced framework. One example evaluates the resilience of Brazil. The other one evaluates the
resilience of a transportation system.

1. Introduction

Research on disaster resilience has recently been fostered due to the
noticeable increase in the number of natural and human-caused dis-
asters. Resilience has been defined differently depending on the field of
study [21],31,57]. In engineering, resilience is the ability to withstand
a disturbance caused by an external agent and recover quickly if da-
mage occurs [9,10,12]. Current scientific contributions are aimed at
understanding disaster resilience and finding new ways to measure it,
quantitatively or qualitatively. Several solutions exist in the literature
to measure resilience at the community level [17,43,46] and at the
infrastructure level [24,56,65]; however, research on resilience quan-
tification is still in the early stage of development and no universal
method exists so far. Among others, resilience indicators are an effec-
tive tool to compute the resilience of engineering systems because they
allow modeling complex systems easily and effectively [13,14,18].
Several authors have proposed indicator-based methodologies to

evaluate the resilience of engineering systems; some are deterministic
[26,45,49] and the others are probabilistic [15], [20,44,48,64].
Nevertheless, developing a standardized indicator-based methodology
to quantify resilience is still challenging. The main challenge is the
presence of uncertainty in the resilience model and its inputs. The in-
terdependency and the weighting factors distribution among the vari-
ables are also other issues that cannot be handled in a deterministic
way. Therefore, probabilistic methods are usually preferred over de-
terministic methods. Probabilistic models are more powerful to model
uncertainties and interdependencies and they are more appropriate to
represent reality. In fact, deterministic models are considered a parti-
cular case of probabilistic models [60].

While probabilistic models solve the gap of modeling capability that
deterministic models suffer from, not all probabilistic approaches are
suitable to model the behavior of engineering systems, especially in
cases where past data is not readily available [7]. One way to properly
model the behavior of a system in a probabilistic manner is through the
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use of Fuzzy analysis and Bayesian Networks (BNs). Fuzzy theory re-
presents a method for solving problems which are related to uncertainty
and vagueness. It has been implemented in several research works to
study the resilience of infrastructure systems [19,50]. Fuzzy theory is
usually implemented in cases with no data, which is replaced with
expert judgements. The output of fuzzy-based methods are heavily
subjective given that they are based on opinions rather than data. On
the other hand, BN is a Directed Acyclic Graph where the nodes re-
present variables of interest and the links between them indicate causal
dependencies. BNs are widely used for knowledge representation and
reasoning under uncertainty, especially in the context of partial in-
formation. They are effective when different types of variables and
knowledge from various sources need to be integrated within a single
framework. In addition, BN provides probabilistic relationships among
the variables, which allows modeling the interdependencies among
them. In the literature, there is a limited number of research con-
tributions that use the BN in resilience analysis. Johansen and Tien [37]
proposed a probabilistic methodology based on the BN approach to
model the interdependencies between critical infrastructure systems.
Their research aims at understanding the effect of interdependencies on
the fragility of the overall system. Cai et al. [6] developed a universal
resilience metric for infrastructure systems. A BN approach was em-
ployed to calculate the resilience metric value. The proposed resilience
metric can be used to design and/or optimize different types of en-
gineering systems against various hazards, such as earthquakes, floods,
cyber-attacks [42], etc. Moreover, Hosseini and Barker [30] introduced
a resilience quantification methodology using BN. In their research, the
resilience is defined using three parameters: absorptive capacity,
adaptive capacity, and restorative capacities. A case study on an inland
waterway port, an essential component in the intermodal transporta-
tion network, was used to demonstrate the methodology. Hosseini et al.
[29] employed a BN to quantify the supply chain system resilience of
sulfuric acid manufacturer in Iran. Their work consists of a formulation
for supplier selection, that accounts for operational (e.g., customer
demand) and disruption (e.g., natural disaster) risks and their effect on
resilient suppliers. Hossain et al. [28] applied Bayesian Network to rank
ports infrastructure assets. Their study proposes a formulation for
supplier selection, accounting for operational (e.g., customer demand)
and disruption (e.g., natural disaster) risks and their effect on resilient
suppliers. Hossain et al. [28] introduced a BN approach to rank port
infrastructure assets. Eldosouky et al. [23] introduced a novel analytical
resilience index to measure the effect of each critical infrastructure's
physical component on its probability of failure using Bayesian net-
work. The proposed framework was applied to a case study of hydro-
power dams and their interdependence to the power grid. Finally,
Hossain et al. [27] addressed a range of possible risks to the electrical
power system and its interdependent networks (EIN) using the BN.

Rather than the static approaches, Tabandeh et al. [68] developed
an indicator-based probabilistic formulation to model the societal im-
pact and estimate the impact considering the immediate consequences
and the recovery condition. The methodology uses DBN to integrate the
predictive model of the indicators. BNs have also been employed by
researchers in fields other than disaster resilience [15,35,38,39,47,66].
For example, Cockburn and Tesfamariam [15] used BNs to estimate the
risk of several cities located in Canada, Kabir et al. [39] evaluated the
risk of water mains failure using a BN model, while Siraj et al. [66]
employed BNs in the seismic risk assessment of high voltage transfor-
mers.

Resilience can be an outcome (static) or a process (dynamic) [18].
While most of the abovementioned researches focused on analyzing
engineering resilience from a static point of view, there is a significant
gap in assessing the dynamic nature of resilience through quantitative
approaches. In fact, BN does not capture the behavior of dynamic sys-
tems and the interdependencies among the system's components and
variables. BN is a snapshot of the system, which implies that the re-
storation process, which is inherently time-dependent, cannot be

modeled. Moreover, a feedback loop is not allowed in a BN model; thus,
it cannot be used to model a cyclic relationship. Although there are
some research works that use the DBN as an inference tool to express
resilience in a dynamic manner, the resilience models adopted in those
researches and the transitional model from one step to another in the
time space was not clearly defined.

This paper first proposes a static framework to model systems of
static nature (e.g., assessing a system's performance at a specific in-
stance of time). It employs the BN as a tool to quantify the system's
resilience. The framework is demonstrated using a case study in which
the resilience of a country, namely Brazil, is assessed. In general, BN is
good tool to assess a physical-causal model; however, learning and
updating a BN requires an extensive computational load. Updating a BN
is necessary for resilience modeling, especially in monitoring the pos-
sibility of disruptive events. Thus, this paper also presents a dynamic
framework to quantitatively assess the resilience of systems of dynamic
nature (i.e., critical infrastructures, buildings, communities, etc.) The
framework can be used to assess the resilience of multiple systems at
once and it adopts the DBN as an inference tool. In fact, a DBN model
can be obtained by expert knowledge, from a database using a combi-
nation of machine-learning techniques, or both. These properties make
the DBN formalism very useful in the disaster resilience domain as this
domain has an abundance of both expert knowledge and databases
records. Moreover, a DBN allows performing a transient analysis of the
system after the occurrence of disruption until the system was re-
covered from its disruptive states. The transient analysis can be rather
useful to model the restoration process of the damaged system. The
proposed resilience framework is presented in the form of a mathe-
matical formulation that integrates the probability distribution of all
variables’ states. An illustrative example of a transportation network is
used to demonstrate the proposed methodology. Results show the
ability of the framework to dynamically model complex systems even in
cases where data are scarce.

The rest of the paper is organized as follows: Section 2 is dedicated
to review the basics of the BN and DBN. Section 3 introduces a fra-
mework to assess the resilience of static systems where the BN is used as
the inference method. In Section 4, an illustrative example is presented
to show the applicability of the static resilience framework. Section 5
discusses the general framework for modeling and quantifying the re-
silience of dynamic systems using the DBN approach. A transportation
network is presented in Section 6 to illustrate the effectiveness of the
proposed framework. In Section 7, further considerations and applica-
tions are discussed. Finally, conclusions are given in Section 8 together
with the proposed future work.

2. Bayesian and dynamic Bayesian networks

2.1. Bayesian network (BN)

The Bayesian Network, also known as Bayesian Belief Network, is a
graphical model that allows the design of stochastic relationships
among a group of variables. Applications of BN can be found in a
variety of fields, from social to economic and biological disciplines
[35,63]. BN permits the usage of different types of knowledge, both
quantitative and qualitative, and can cope with missing data con-
sidering the uncertainty embedded in the system [2]. To construct a BN,
several hypotheses have to be made. Each hypothesis is decomposed
into a set of random variables. Each variable can take values within a
finite set of states (also known as beliefs), mutually exclusive and col-
lectively exhaustive (MECE) [25]. The dependency of one variable on
another is represented in the network as a directed edge (or link). The
relationships between the variables in a BN are expressed in terms of
family relationships. The link starts from the so-called father node and
points at the son node, which is the impacted variable. The set of edges
and nodes builds a directed acyclic graph. The network itself is nor-
mally learned from data or specified by experts who not only provide
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the main hypotheses (and consequently the variables to be considered
in the model), but also the dependencies between the variables. The
foundation and the inference process of BN is set in the Bayes' Theorem.
Given a state b for a variable B and a number k of MECE states aj, j= 1,
…, k for a variable A, the updated probability is computed as:

=P a b
P b a P a

P b
( | )

( | ) ( )
( )j
j j

(1)

where P(aj|b) is one's belief for hypothesis aj upon observing evidence b,
P(b|aj) is the likelihood that b is observed if aj is true, P(aj) is the
probability that the hypothesis holds true, and P(b) is the probability
that the evidence takes place. P(aj|b) is known as posterior probability
and P(aj) is called prior probability [52]. The dependencies of one
variable (the son node) on another (the father node) are usually
quantified using a Conditional Probability Table (CPT), where the
likelihood of the son node to assume a certain state under a certain
father node state is assigned [25]. In the case of a variable with no
parents, the probabilities are reduced to the unconditional probability.
The quantitative part of the BN starts by assigning conditional prob-
ability distributions (CPD) to the nodes. Each node in a BN has a CPT
that determines the CPD of the random variable. The CPTs provide
information on the probability of a node given its parents [59].

Once the BN is constructed, we pinpoint that the outcome is highly
dependent on the assigned probabilities [35]. To test the robustness of
the model and the dependency of the outcome on each father node, a
sensitivity analysis is usually performed. This allows identifying the
most important and impactful variables, leading to consequent em-
phatic attention in the collection of data for the concerned variables
[52]. For more details, several examples of BN applications can be
found in the literature [15,35,38,39,66].

2.2. Dynamic Bayesian network (DBN)

BNs are used when the analyzed system is in a static state. This is
often not the case in a dynamic, continuously changing world. This
raises the need for a tool that is capable of accounting for system
changes, such as the Dynamic Bayesian Network. DBN is a Bayesian
network extended with additional mechanisms that are capable of
modeling influences over time [59]. It extends the classical BN by
adding the time dimension. It is suitable for describing dynamic systems
where the performance fluctuates (e.g. before and after a disaster). Like
the BN, the DBN is a directed acyclic graphical model used for statistical
processes. A DBN consists of multiple BNs (often referred to as time-
slices or time steps), each with its own variables. The variables within a
single and/or successive time-slices are connected using links. A DBN
can be defined as (B1, B→), where B1 is a BN that specifies the initial
distribution of the variable states P(Z1) [59], where Zt = (Ut, Xt, Yt) is
the input, hidden, and output variables of the model at time step t,
while B→ is called a “two-slice temporal Bayesian network” (2TBN),
which defines the transition model P(Zt|Zt-1), as in Eq. (2). The nodes in

the first slice of the 2TBN network do not have parameters associated
with them, while CPTs are required for the nodes in the second slice.

=
=

p Z Z p Z Pa Z( | ) ( | ( ))t t
i

N

t
i

t
i

1
1 (2)

where Zt
i is the ith node at time t and could be a component of Xt, Yt, or

Ut. Pa(Zt
i) are the parents ofZt

i, which can be in the same or the previous
time-slice.

The process in a DBN is stationary and the structure repeats after the
second time-slice, so the variables for the slices t = 2, 3, ..,T remain
unchanged. This allows expressing the system using only two slices
(i.e., the first and the second time-slices). Therefore, an unbounded
sequence length could be modeled using a finite number of parameters.
The probability distribution for a sequence of time-slices can be ob-
tained by unrolling the 2TBN network, as follows:

=
= =

p Z Pa Zp(Z ) ( | ( ))T
t

T

i

N

t
i

t
i

1:
1 1 (3)

The DBN is often seen as a generalization of other temporal rea-
soning developments, such as the hidden Markov model (HMM) and the
Kalman filter model (KFM) [32]. These models, which can be expressed
in a compact form, are popular for their fast learning and fast inference
techniques. In fact, DBNs generalize HMMs by expressing the state
space in not only a single discrete random variable but also in a factored
form.

2.2.1. Temporal plate and contemporal nodes
The temporal plate is the area within the DBN model that includes

temporal information (i.e., information that changes from a time step to
another). The temporal plate includes the variables that evolve over
time. These variables are the part of the DBN that can be unrolled.
However, nodes that have a constant value at every time step are
considered a waste of memory and computational power if copied in
each time step. Therefore, it is wise to introduce these nodes outside the
temporal plates. The collection of these nodes is called the contemporal
space, and the nodes are called contemporal nodes [59].

2.2.2. Anchor and terminal nodes
One extension of the original DBN formalism was established in

[32], where the author introduced nodes that are only connected to the
first and last time slices of the DBN. Such variables do not affect the
intermediate time slices like the contemporal nodes.

• Anchor node (A): a node that is outside the temporal plate but has at
least one child node inside the temporal plate in the first time slice
of the unrolled DBN.
• Terminal node (T): a node that is outside the temporal plate and has
at least one parent inside the temporal plate in the last time slice of
the unrolled DBN.

Fig. 1. (a) The initial network of a DBN. (b) The 2TBN or a second order DBN. (c) The unrolled DBN model for T = 4 slices.
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Fig. 1(a) presents a single time slice of a DBN (a snapshot of the
system) where all variables appear to be static. Fig. 1(b) shows a gen-
eral DBN where the variables that are in the temporal plate (the dotted
rectangle) are those that are repeated when the DBN is unrolled, and
the variables that are outside the temporal plate are the static (con-
temporal, anchor, or terminal) nodes. Fig. 1(c) shows the unrolled DBN
where the variables that are inside the temporal plate are connected
with one another through temporal arcs and appear in every time-step,
while the other variables appear only once since their value is constant.
The transition model of the DBN can be represented as follows:

=
=

p Z Z Z Z C p Z Pa Z C( | , , ..., , ) ( | ( ), )t t t t k
i

N

t
i

t
i i

1 2
1 (4)

where Pa(Zt
i) is the parents of Zt

i inside the temporal plate, Cifor
=i N1, ..., are the contemporal variables that are a parent ofZt

i. The
joint distribution of a DBN sequence of length T including the addi-
tional variables (A) and (T) is given as follows:

=
= = =

=

p Z Pa Z A C p Z Pa Z C

p T Z C
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( | , )

T
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t

T

i

N

t
i

t
i i

i

N
i

T
i i

1:
1

1
2 1

1 (5)

where Ai is the anchor variables that are a parent of Z i
1, Tiis the terminal

variables that are a child of ZT
i .

3. Quantifying resilience using Bayesian network: a univariate
static approach

3.1. Static resilience model

In this work, we adopt a model based on the resilience definition
provided by Bruneau and Reinhorn [5] and Bruneau et al. [4], who
describe the resilience of a system using the following three indicators
(hereafter we call them the three resilience pillars): reduced failure
probability (reduced vulnerability); reduced consequences from failure
(robustness); and reduced time to recovery (recoverability) (Fig. 2):

• Reduced vulnerability: the reduced likelihood of damage & failure to
critical infrastructure systems and components (P1);
• Robustness: the damage level, in terms of injuries, lives lost, physical
damage, and negative economic and social impacts (P2);
• Recoverability: the time required to restore a specific system or a set
of systems to normal or pre-disaster level of functionality (P3).

A system with a low probability of failure, high robustness, and high
recoverability capacity is considered resilient. The three resilience pil-
lars can be typically described using a set of indicators representing the
analyzed system. The choice of indicators can be made by experts in the
relevant field. Fig. 3 shows a general resilience functionality curve
where the three resilience pillars are allocated to three time-spans:

• The pre-disaster time span, defined by the system's probability of
failure.
• The disaster time span, determined by the robustness level of the
system.
• Post-disaster time span, defined by the recovery capacity of the
system.

3.2. Network structure and elements connectivity

Assume that we have a system composed of N indicators (X1, X2, …,
XN). The indicators are connected to the three resilience pillars ac-
cording to their relevance. Such connections can be obtained from past
experience or expert knowledge. One indicator can contribute to mul-
tiple pillars, as shown in the Bayesian network in Fig. 4, where in-
dicator X6 is connected to R1 and R2 while X7 is connected to R2 and R3.
The final output (resilience index) represents a combination of all factors
that contribute towards the resilience pillars.

3.3. Unconditional and conditional probability tables

Once the connections between the son nodes (i.e., resilience pillars)
and the father nodes (i.e., indicators) are completed, the CPTs of the
resilience pillars given the indicators’ states must be defined. The in-
dicators states (or the unconditional probabilities of the basic nodes)
are defined using experts knowledge or available data. Only three levels
(states) are assigned to each resilience pillar node (High (H), Medium
(M), and Low (L)) in order to maintain a low complexity of the network,
while five states are assigned to the indicators (High, Good, Medium,
Low, and vulnerable), coded as 4, 3, 2, 1, 0 respectively. To obtain a
numerical value for the son node, the sum of the numerical values of the
father nodes is computed and then divided for the sum of their

Fig. 2. The three resilience pillars.

Fig. 3. A general resilience function of a system.

Fig. 4. Bayesian network to compute the resilience index of a static system.
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maximum values, building a global relative value x for the son node
ranging between 0 and 1 (Eq. (6)). Eq. (6) is indeed a special case of the
min-max normalization where the minimum value is zero.

= =
×

=

=

=x
y y

nmax max
i
n

i

i
n

i

i
n

i1

1

1

(6)

where x is the global relative value for the analyzed son node, i is the
father node index, n is the number of father nodes under a son node, yi
is the value of the father node i, maxi is the maximum value a father
node i can take (fixed for all nodes).

To illustrate this, consider three father nodes [A; B; C], each with a
three-level scale High, Medium, and Low, converted to 2, 1, and 0 re-
spectively. Assuming a combination of [Medium, Medium, High] re-
spectively for the three father nodes [A; B; C], which is equivalent to [1;
1; 2], the value x of the son node is computed as follows:

= + +
+ +

=x 1 1 2
2 2 2

0.667 (7)

For each combination of father nodes values, the distribution among
the three levels (High, Medium and Low) of the son node S is calculated
as x2, x x2 (1 ), and x(1 )2 respectively. This distribution ensures the
normalization of the distribution and a suitable continuous para-
metrization, being a binomial distribution were the probability of
success is x [54]. In fuzzy theory, those equations are called member-
ship functions. A membership function (MF) is a curve that defines how
each point in the input space is mapped to a membership value (or
degree of membership) between 0 and 1. Transforming the x value into
a degree of membership is called fuzzification. One can choose from
several types of membership functions, for instance triangular mem-
bership functions (for x [0, 0.5] → the membership functions are
(−2x + 1, 2x, 0) and for x [0.5, 1] → the membership functions are
(0, −2x + 2, 2x – 1)). The summation of values at any point should
always be equal to one regardless of the membership functions used. In
this study, we opted for a set of continuous membership functions. A
portion of the CPT of the son node S is presented in Table 1 where the
total number of combinations is 27 (3^3).

For the final output (resilience node in Fig. 4), five states are de-
fined: High, Good, Moderate, Low, and Vulnerable. In this case, five
degrees are preferred for a more accurate understanding of the output
level. The same procedure described in the previous paragraphs applies
here with the resilience node being the son node and the resilience
pillars being the father nodes.

3.4. Joint probability distribution

Each node in a Bayesian network is characterized by a probability
distribution. All probabilities together form the joint probability dis-
tribution (JPD) of the BN. The JPD of a BN can be written as follows:

=
=

P Z P Z Pa Z( ) [ | ( )]
i

N
i i

1 (8)

where Z is the set of all variables, P(Z) is the joint probability of the
variables, Pa(Zi) is the set of variables that are parents of Zi, P(Xi| Pa
(Xi)) is the local probability distribution, N is the number of variables.
Considering the system in Fig. 4, the JPD can be calculated using
Eq. (9).

=P X R Re P X P X P X P X P X P X P X P X
P R X X X X P R X X X X P R X X
P Re R R R

( , , ) ( )· ( )· ( )· ( )· ( )· ( )· ( )·...· ( )·
( | , , , )· ( | , , , )· ( | , ..., )·
( | , , )

N

N

1 2 3 4 5 6 7

1 1 2 4 6 2 3 5 6 7 3 7

1 2 3

(9)

4. Example 1: resilience evaluation of the state of Brazil using BN

4.1. Model definition: Hyogo Framework for Action

This section illustrates the static resilience framework introduced in
Section 3. Given the increase in the number of natural and man-made
disasters, the United Nations (UNISDR) have formulated a structured
approach to help communities cope with unexpected disruptions. The
conceived framework, firstly presented in the 2005 UNISDR report
[34,70], is known as the Hyogo Framework for Action (HFA). It is now
considered a global blueprint for minimizing risk associated with nat-
ural hazards through the implementation of national laws for risk
management and control [61]. The HFA was originally conceptualized
in Kobe, Japan with the goal of encouraging countries to implement
resilient measures in their respective laws. The lifespan for the im-
plementation was from 2005 to 2015. After that, each of the partici-
pating countries was required to submit a report (a detailed ques-
tionnaire) on their own progress. A score was then given by the UN to
each of the submitted reports based on the progress each country had
made [46,71]. The progress recorded by every country is computed on
the basis of a five-point scale for each indicator, where ‘one point’ in-
dicates weak progress while ‘five points’ implies a great endeavor and
commitment in that specific area. The scores of the 22 indicators for 37
countries assessed by the United Nations are reported in Appendix.

The objective of the HFA is the significant reduction in losses after
disasters [11]. Following the resilience model introduced in Section 3.1,
the HFA indicators are unfolded under the three resilience pillars:

a) Reduced Vulnerability: Includes consideration of disaster risk that is
aimed at preventing and mitigating disaster as well as reducing
vulnerability;

b) Robustness: Strengthening of institutions and mechanisms at all level
aiming at increasing resilience (P2);

c) Adaptive and Recovery Capacity: Structural embedding of risk re-
duction methods for emergency preparation, response, and recovery
(P3).

To increase the level of detail and to convert the strategic goals into
operationalizable activities, the UNISDR introduces five priorities:

1 Ensure disaster risk reduction;
2 Identify, assess and monitor disaster risks and enhance early
warning;

3 Use available physical and non-physical resources to build a culture
of safety and resilience;

4 Reduce the underlying risk factors;
5 Strengthen disaster preparedness for effective response.

Each of the five priorities is further disaggregated into four to six
indicators, summing up to a total of twenty-two Table 2). The indicators
refer to the implementation of activities, mechanisms, or policies with

Table 1
A CPT of a son node given the states of the father nodes.

Father nodes Global value States distribution of the Son Node S

P1 P2 P3
= =

×x i
n yi

n
1

max
High x2 Medium x x2 (1 ) Low x(1 )2

2 2 2 1.00 1.0000 0.0000 0.0000

2 2 1 0.83 0.6944 0.2778 0.0278
2 2 0 0.67 0.4444 0.4444 0.1111
2 1 2 0.83 0.6944 0.2778 0.0278
2 1 1 0.67 0.4444 0.4444 0.1111
2 1 0 0.50 0.2500 0.5000 0.2500
2 0 2 0.67 0.4444 0.4444 0.1111
2 0 1 0.50 0.2500 0.5000 0.2500
2 0 0 0.33 0.1111 0.4444 0.4444
1 2 2 0.83 0.6944 0.2778 0.0278
… … … … … … …
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the aim of risk reduction, preparation, and recovery.

4.2. Network structure and elements connectivity

To build the network, linking the indicators with the resilience
pillars is necessary. Despite not being introduced in the UNISDR reports
[34,70]), the assignment of the indicators to one of the resilience pillars
is performed as follows:

• If the indicator clearly refers to a regulatory requirement or action
with proactive intent of risk reduction, it is assigned to P1;
• If the indicator clearly refers to the implementation of institutional
mechanisms or the building of resources for the proactive estab-
lishment of resilience capabilities, it is assigned to P2;
• If the indicator clearly refers to the implementation of practices,
mechanisms, and programs for emergency response and recovery, it
is assigned to P3. Note that it is possible for an indicator to affect
more than one resilience pillar.

Table 2 shows a list of the indicators of the HFA grouped by priority.

The BN is built following the procedure described in Section 3.2 (see
Fig. 5). It can be seen that P1 is influenced by seven indicators (Q1, Q2,
Q13, Q14, Q15, Q16, and Q19), P2 is influenced by eleven indicators (Q3,
Q4, Q5, Q6, Q8, Q9, Q11, Q12, Q19, Q21, and Q22), while strategic P3 is
impacted by eight indicators (Q7, Q8, Q10, Q11, Q17, Q18, Q20, and Q21).
Only four indicators present an overlap between different resilience
pillars: Q8, Q11, Q21 (between P2 and P3) and Q19 (between P1 and P2).

4.3. Probability tables and inference

4.3.1. Results
Fig. 6 shows a Bayesian network applied to the data of the country

“Brazil” (row 26 in Appendix). The analysis is done using GeNIe
modeler, a graphical user interface that allows for interactive model
building and learning based on the Bayes’ inference theory [3]. The top
level of the network presents the main activities to be performed at the
national and local levels, the intermediate level includes the three re-
silience pillars, and the bottom level node is the output of the network
(i.e., resilience). As can be noticed in Fig. 6, the three resilience pillars
have a probability distribution for their different states despite that the

Table 2
List of indicators of the Hyogo Framework for Action grouped by priority [71].

Priority Indicator Resilience pillar

(1)
Ensure that disaster risk reduction (DRR) is a national and a local
priority with a strong institutional basis for implementation

Q1- National policy and legal framework for disaster risk reduction exists with
decentralized responsibilities and capacities at all levels.

P1

Q2- Dedicated and adequate resources are available to implement disaster risk
reduction plans and activities at all administrative levels

P1

Q3- Community Participation and decentralization is ensured through the delegation
of authority and resources to local levels

P2

Q4- A national multi sectoral platform for disaster risk reduction is functioning. P2
(2)

Identify, assess and monitor disaster risks and enhance early
warning

Q5- National and local risk assessments based on hazard data and vulnerability
information are available and include risk assessments for key sectors.

P2

Q6- Systems are in place to monitor, archive and disseminate data on key hazards and
vulnerabilities

P2

Q7- Early warning systems are in place for all major hazards, with outreach to
communities.

P3

Q8- National and local risk assessments take account of regional / trans boundary
risks, with a view to regional cooperation on risk reduction.

P2-P3

(3)
Use knowledge, innovation, and education to build a culture of
safety and resilience at all levels

Q9- Relevant information on disasters is available and accessible at all levels, to all
stakeholders (through networks, development of information sharing systems etc.)

P2

Q10- School curricula, education material and relevant trainings include disaster risk
reduction and recovery concepts and practices.

P3

Q11- Research methods and tools for multi-risk assessments and cost benefit analysis
are developed and strengthened.

P2-P3

Q12- Countrywide public awareness strategy exists to stimulate a culture of disaster
resilience, with outreach to urban and rural communities.

P2

(4)
Reduce the underlying risk factors

Q13- Disaster risk reduction is an integral objective of environment related policies
and plans, including for land use natural resource management and adaptation to
climate change.

P1

Q14- Social development policies and plans are being implemented to reduce the
vulnerability of populations most at risk.

P1

Q15- Economic and productive sectorial policies and plans have been implemented to
reduce the vulnerability of economic activities

P1

Q16- Planning and management of human settlements incorporate disaster risk
reduction components, including enforcement of building codes.

P1

Q17- Disaster risk reduction measures are integrated into post disaster recovery and
rehabilitation processes

P3

Q18- Procedures are in place to assess the disaster risk impacts of major development
projects, especially infrastructure.

P3

(5)
Strengthen disaster preparedness for effective response at all
levels

Q19- Strong policy, technical and institutional capacities and mechanisms for disaster
risk management, with a disaster risk reduction perspective are in place.

P1-P2

Q20- Disaster preparedness plans and contingency plans are in place at all
administrative levels, and regular training drills and rehearsals are held to test and
develop disaster response programs.

P3

Q21- Financial reserves and contingency mechanisms are in place to support effective
response and recovery when required.

P2-P3

Q22- Procedures are in place to exchange relevant information during hazard events
and disasters, and to undertake post-event reviews

P2
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indicators are deterministic. This is caused by the CPTs as well as the
characteristics of the Bayesian inference adopted in the study. The final
output of resilience presents a range of uncertainty (16% High, 28%
Good, 31% Moderate, 19% Low, and 7% Vulnerable) (Note: the sum is
101 instead of 100 because the tool used in the analysis rounds the
values to the nearest whole number). In the analyzed scenario, the re-
silience state of the country Brazil is most likely to be “Moderate” given
that this state has obtained the highest probability.

The Bayesian network can also be employed in a backward analysis.
A deterministic resilience state can be set (for instance “Good”) and the
output would be the levels of the indicators required to achieve the
assumed resilience state. This is rather useful in case of system design or
system improvement.

4.4. Sensitivity analysis

Sensitivity analysis can help validate the probability parameters of a
Bayesian network. It is done by investigating the effect of small changes
in the values (probabilities) of the input parameters on the output.
Identifying highly sensitive parameters allows for a directed allocation
of effort in order to obtain accurate results of a Bayesian network
model.

In this example, an algorithm proposed by [51] is implemented.
Given a set of target nodes, a complete set of the derivatives of the
posterior probability distributions over the target nodes over each of
the numerical parameters of the Bayesian network are efficiently cal-
culated. These derivatives indicate the importance of precision of net-
work numerical parameters for calculating the posterior probabilities of

the targets. A large derivative of a parameter p leads to a large variation
in the posteriors of the targets given a variation in the parameter p. If
the derivative is small, then even large changes in the parameter make
little difference in the posteriors.

Each state of the target node is treated individually when performing a
sensitivity analysis. Hence, the sensitivity analysis shows the most sensi-
tive parameters for a selected state of the target node. Fig. 7–9 show the
sensitivity analysis done for the resilience target node states High, Mod-
erate, and Low. The bar shows the range of changes in the target state as
the parameter changes in its range. Only the 10 most influential para-
meters are plotted. The color of the bar shows the direction of the change
in the target state, red expresses negative and green expresses positive
change. We can clearly see that each parameter state can have a different
sensitivity on the target node. For instance, as we can see in Fig. 7, the
parameter Q19 with a state “High” is the most sensitive parameter to the
target node Resilience with state High. This is followed by Q11(High) and
Q8(High). In Fig. 8, in which the sensitivity analysis for Resilience with
state “Moderate” is done, the most sensitive parameter is Q11(High). This
is followed by Q8(High) and Q21(High). Fig. 9 presents a different order of
sensitive parameters where the analysis is for Resilience with state “Vul-
nerable”. It is worth to note that these sensitivity results are affected by the
conditional probabilities given by the user.

5. Time-dependent resilience analysis using dynamic Bayesian
networks

In general, the resilience of a system tends to be a process rather
than a state; thus, accounting for the performance variation of a system

Fig. 5. Bayesian Network of the Hyogo framework indicators.
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can be important. Ordinary Bayesian Networks are unable to account
for the time dimension in the analysis as they are limited to static
systems. In this section, we propose a new methodology to assess the
resilience of engineering systems in a dynamic manner.

5.1. Dynamic resilience model

The resilience model used in the dynamic resilience analysis is
based on the resilience definition by Bruneau and Reinhorn [5] who
describe the resilience of a system using four components, also called
the four R's of resilience (4R's):

• Robustness (R1): refers to the ability of a system to stand a certain
level of stress preserving its functionality;
• Redundancy (R2): indicates the alternative resources in the recovery
stage when the primary ones are inadequate;
• Rapidity (R3): the capacity to contain losses and avoid future dis-
ruption. It represents the slope of the functionality curve during the
recovery phase;
• Resourcefulness (R4): considers the human factor and the capacity to
move needed resources.

This model is more detailed and more suitable to study dynamic
events than the one described in Section 3.1; therefore, this model will
be used hereafter. As shown in Fig. 10, the first two resilience com-
ponents (R1 and R2) define the damage level the system may encounter
if exposed to a certain hazard. Robust and redundant systems would
most likely experience less damage and function almost normally after

the disaster. On the other hand, once damage occurs, the system's re-
covery starts. The recovery process is defined by the recovery capacity
and resources availability, such as human resources. Thus, the other
two components (R3 and R4) interfere during the recovery stage as they
are the main drivers of the system's recovery.

5.2. Network structure and elements connectivity

DBN is a series of Bayesian networks with changing conditions. The
elements connectivity within a single time step of a DBN is treated simi-
larly to what introduced before (see Section 3.2 and Fig. 4). One main
characteristic of DBN is that elements are connected through different
time-steps. For example, element At can be linked to element Bt+1 using a
temporal link if element Bt+1 has a dependency on At, where t is the time
step. The connections between elements at different time steps is done
using expert knowledge or from past data. Fig. 11 shows a DBN where the
individual networks at the different time steps are connected with one
another. In our methodology, an element in a BN at time-step t can only
affect itself at time-step t + 1 (i.e., At affects At+1 and Bt affects Bt+1).

Regarding the four resilience components (4R's), they are in-
corporated in the network at different time-steps. In Fig. 11, the first
step (t = 1) corresponds to the initial state of the system (i.e., before
hazard occurrence). At this stage, none of the 4R's is involved as the aim
is to assess the initial performance of the system. The second step
(t = 2) is dedicated to assessing the damage that would incur if a ha-
zard of a certain magnitude occurs. The level of damage, or the drop in
the functionality, can be determined by acquiring information about
the hazard (H) and the system's characteristics (i.e., R1 and R2). The

Fig. 6-. BN analysis and resilience results of the country “Brazil”.
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combination of the parameters H, R1, and R2 can provide valuable in-
formation on how a system with a predefined initial state would be-
have. Thus, the two resilience components R1 and R2 are connected to
the DBN at the second time-step (t = 2).

Once the drop in the serviceability is determined, the recovery
needs to be evaluated. Since recovery is not an instantaneous action,
several DBN time steps are needed here. Therefore, the recovery period
is divided into a finite number of time-steps. Information about the
rapidity and the resourcefulness (R3 and R4) of the system is integrated
at all recovery time-steps as they will define how the variables (i.e., the
indicators) will evolve from one step to another. Therefore, the same
Bayesian network is copied from time-step t =3 until time step t = T.

The result of each BN is a performance point. The collection of the
performance points creates a resilience function that shows the changes
in the system's performance, starting from a stable state (the first uni-
form part of the function in Fig. 11) and ending with a stable state,
when the system is fully recovered (the second uniform part of the
function). Once obtained, the resilience function can be used to obtain a
resilience index. One method uses the area above the resilience curve
and links it to the notion “loss of Resilience” [5,8] while other methods
consider other metrics to quantify the resilience [65].

5.3. Joint probability distribution

The proposed dynamic resilience analysis using the DBN approach
can be mathematically written in probabilistic terms, as follows:

= = = =

= = =

= =
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where C is the set of all static variables (contemporal variables), Z is the
set of all dynamic variables (temporal variables), P(C) is the joint
probability of the static variables, Pa(Zi) is the set of variables that are
children of Zi, H is the hazard variable, R1 is the Redundancy variable,
R2 is the Redundancy variable, R3 is the Rapidity variable, R4 is the
Resourcefulness variable, N is the number of dynamic indicators, T is
the total number of time steps. The first term on the right-hand side of
Eq. (10) refers to the joint probability of the variables at the first time-
step, the second term refers to the joint probability of the variables at
the second time-step, while the third part of the equation considers the
remaining time steps.

6. Example 2: resilience evaluation of a transportation network
using DBN

6.1. Model definition: modeling the physical aspect of a transportation
network

To illustrate the dynamic methodology introduced above, an illus-
trative example of a typical transportation system is used. The resilience
of engineering systems can be systematically described using a layered
diagram. Fig. 12 shows a scheme of a general engineering system, being
resilience the top level. The resilience node is defined using a set of
dimensions. Each dimension is divided into components, and the
components are further divided into indicators. The lower level of the
diagram is the “Measures” layer, which provides descriptions on how
the indicators can be numerically evaluated. Having different layers
allows for a detailed description of the system. A similar approach of
modeling a port infrastructure system is introduced in [1].

For the sake of this study, a general indicator-based model to de-
scribe transportation systems is proposed. The model consists of Seven
dimensions divided into 21 Components. The components are further

Fig. 7. Sensitivity analysis for Resilience with a state High.

O. Kammouh, et al. Reliability Engineering and System Safety 198 (2020) 106813

9



divided into 78 indicators, which are allocated with measures to pro-
vide practical information on the computation of each indicator. The
indicators included in the model have been collected from exclusively
renowned literary publications and then allocated to the proper com-
ponents. The components themselves have been proposed ensuring a
good coverage of the different aspects of the transportation infra-
structure. Much effort has been done to reduce the overlap among in-
dicators by removing the duplicated ones. For this, expert opinions
have been used. This has led to a condensed list of indicators. The
authors have also proposed some indicators when needed to ensure the
exhaustiveness of the model.

Table 3 presents the seven dimensions of the proposed model: (1)
Physical infrastructure, (2) User's behavior, (3) Resources, (4) Plan, (5)
Organization and management, (6) Social-economic characteristics,
and (7) Environment and climate. To keep it simple, only the first di-
mension (Physical infrastructure) is used in this study, and therefore
only the first dimension is expanded with the list of components, in-
dicators, and measures (Table 3). The last two columns in the table
represent the importance factor (I) and the Nature (Nat) of the in-
dicators, respectively. The importance factor provides a tool to weight
the variable. Several methods for defining the importance factors exist
in the literature. For example, Kammouh et al. [49] proposed a matrix-
based methodology to compute the weight of variables based on the
level of interdependency with other variables. That is, if many variables
depend on a certain variable, the latter is assigned a high importance
factor. Other methods suggest a subjective assignment of the weighting
factors by an expert in the related field. This process is simpler but can
produce inaccurate results. The Nature of the indicator (Nat) divides
the indicators according to their type “static” or “dynamic”.

Fig. 13 shows a graphical representation of a static and dynamic
indicators. For static indicators, the functionality remains constant with
time given that they are not affected by hazards. Dynamic indicators, on

the other hand, are affected by hazards, and consequently their func-
tionality changes with time. Dynamic indicators are defined using a set
of variables (q0, q1, Tr, qf) where q0 is the normalized serviceability
before the event, q1 is the residual functionality after the disaster, qr is
the functionality after recovery, Tr is the restoration time or the time
needed to finish the recovery process.

Each indicator is normalized with respect to a fixed quantity, the
target value (TV). The target value is an essential quantity that provides
the baseline to measure the resilience of a system. The system's existing
functionality at any instance of time is compared to the target value to
know how much functionality deficiency is experienced by the system.

6.2. Network structure and elements connectivity

Fig. 14 presents the network structure and elements connectivity
using the software GeNIe [3]. The network has been built following
Section 5.2. A color code is used to distinguish the variables in the
network. Variables that are outside the box are static variables. They
are assigned unconditional probability tables (UPTs) that do not change
throughout the analysis. Variables inside the green box are dynamic
variables. The dynamic indicators (i.e., variables inside the green box
and colored in yellow) are assigned UPTs for the first time-step and
CPTs for the remaining time steps. The CPTs are used to define the
functionality of the indicator at time (t + 1) given its functionality at
time (t) and given external variables (i.e., damage and recovery vari-
ables). The damage variables H, R1, and R2 are used to determine the
amount of damage the indicators are exposed to following the hazard.
Therefore, the damage variables interfere only at the second time-step
(see Fig. 11) and their effect is reflected in the CPTs of the dynamic
indicators at time slice 2. On the other hand, the recovery variables R3
and R4 feed the dynamic indicators from time slice 3 until the last time-
slice (see Fig. 11). The effect of these variables is reflected in the CPTs

Fig. 8. Sensitivity analysis for Resilience with a state Moderate.
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of the dynamic indicators for all time slices starting from time slice 3.
For the first time-slice, the system is assessed for its initial condition.
That is, the effect of the damage and recovery variables is not con-
sidered, and so the dynamic indicators have no father nodes for this
time slice. The tool used for the analysis allows determining at what
step each variable interferes.

Other variables inside the green box are the variables colored in
Orange (components) and Blue (dimensions). such variables are dy-
namic, and their value is defined using CPTs that consider the values of
their father nodes. The father nodes of the components are the in-
dicators while the father nodes of the dimensions are the components.
The damage and recovery variables do not affect the components or the
dimensions directly. Their effect is transmitted through the indicators
to the lower levels of the network. The connectivity between the in-
dicators and the components or between the components and the di-
mensions can be defined using expert knowledge and experience.

6.3. Probability tables and inference

In the dynamic analysis, CPTs are assigned to variables that have
father nodes in the same or different time-slice. For example, “com-
ponents” are assigned CPTs that consider their father nodes (i.e., in-
dicators), while each dynamic indicator (i.e., indicator that has a
temporal link) is assigned a CPT that considers the indicator itself at a
previous time-slice as well as the damage and recovery variables, de-
pending on the time step. The same procedure used in Section 3.3 can
be used to conclude all CPTs and UPTs of the model's variables.

6.4. Results

Five scenarios have been implemented for comparative reasons.
Table 4 summarizes the inputs of the damage and recovery variables for
the different scenarios. For the sake of simplicity, each variable is as-
signed a three-level scale (High, Medium, and Low). For all scenarios,
the states of the static indicators are assigned a uniform probability
distribution. This is usually done when little or no information about
the variables is available. However, when data is available, different
probability distribution among the three states can be set. The result of
the analysis is the performance level of the system. Since the analysis is
dynamic, the result is a curve showing the variation of the performance
in time. Four time-steps (or time-slices) are assigned to the analysis as a
time interval. In the following, each scenario is tackled separately then
a comparison between the scenarios highlighting the effect of the dif-
ferent variables on the performance level of the system is performed.

6.4.1. Scenario 1
Fig. 15 shows the result of the first scenario. The states of the da-

mage and recovery variables are set according to Table 4: the damage
variables are set to negative impact (i.e., H is set to “High” while R1 and

Fig. 9. Sensitivity analysis for Resilience with a state Vulnerable.

Fig. 10. The four resilience components (4R's) and their interaction with the
resilience curve.
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R2 are set to “Low”) while the recovery variables are set to positive
impact (i.e., R3 and R4 are set to “High”). To discuss the analysis results,
we will focus on the node “Performance” (i.e., node in Blue color). The
result is presented as a probability variation for each of the three states
of the variable. From Fig. 15, we can see that the probability for the
node “Performance” being “High” starts very low then it increases ra-
pidly to reach a stable state. This result is expected since our initial
input for the damage is set to negative impact, which caused the prob-
ability for the system's performance of being “High” to be low in the
beginning. On the other hand, the recovery variables have been set to
positive impact, and this caused the probability of the system's perfor-
mance of being “High” to increase rapidly over time. The probability
does not reach 1 because of the uncertainties introduced in the static
indicators, which have been transmitted throughout the network. As a
complementary, the probability of being “Low” starts relatively high
then it reduces over the time with the same rate.

6.4.2. Scenario 2
In the second scenario (Fig. 16), the damage variables are kept as

before (high damage or negative impact) but the recovery variables
have been changed from high to low. The effect of setting the recovery
variables to low is reflected in the performance node. We can see that
the initial probabilities are exactly like the first scenario, as the damage
variables are the same, but the probabilities do not evolve similarly
with time. The probability of being “High” starts low and remains low
for all time steps, unlike in the first scenario where there was a no-
ticeable increase in this probability. This is due to the recovery vari-
ables which have been set to low, where low stands for limited or no
recovery activities.

6.4.3. Scenario 3
As for the third scenario, the damage variables have been switched

from negative impact to positive impact. This is done by setting H to
“Low” and both R1 and R2 to “High” (Fig. 17). On the other hand, the

Fig. 11. Dynamic Bayesian network of an engineering system considering external factors such as the resilience characteristics (4R's) and the Hazard.

Fig. 12. An indicator layered-model to systematically describe engineering systems.
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recovery variables are kept “Low”. The Performance node appears to
start with a high probability of being “High” and remains constant with
time. This is because, as the inputs suggest, the damage is low and there
is no recovery. No recovery is observed for two reasons: a) there is no
damage margin to recover, and b) the recovery variables are set to low.

6.4.4. Scenario 4
In the fourth scenario, the damage variables are kept as in the third

scenario (i.e., positive impact) while the recovery variables are swit-
ched back to “High”. The result is shown in Fig. 18 where the prob-
ability of being “High” starts relatively high and then slightly increases
before it becomes stable. The only difference between the result in this
scenario and the previous scenario is the slight increase in the perfor-
mance. This slight increase in the probability is due to the high recovery
capacity of the system. However, the high recovery capacity of the

system was not needed in this case as there was not a damage margin to
recover.

6.4.5. Scenario 5
Last scenario is similar to the first scenario with the only difference

that the recovery variables are set to medium instead of high (Fig. 19).
As a result, the increase in the probability of being “High” of the per-
formance node in this scenario is less than that in scenario 1. We can see
a steady increase in the probability until it reaches a stable state at the
end of the curve.

In all the cases, we can see that the state “Medium” of the perfor-
mance node has a certain probability. As mentioned before, this is due
to the uncertainty introduced in the static indicators which are propa-
gated in the network. Moreover, the dynamic variables inside the box
(i.e., dynamic indicators and dynamic components) are impacted by

Table 3
Variables of the proposed transportation network model with corresponding importance factors (I) and nature (Nat).

Dimension/ component/ indicator Measure (0 ≤ value ≤ 1) Reference I Nat

1- Physical infrastructure 3
1-1- Links/ Connectors 3
-Accessibility Number of links/passageways per destination / TV [33] 3 D
-Road density Number of alternative links between an origin and destination / TV [36] 3 D
-Road width Average width of road / TV [36] 2 S
-Lanes of road Number of lanes available / TV [55] 2 D
-Link (road, track, etc.) condition % links with full functionality during the event 3 D
1-2- Vehicles 2
-Mode of transport Number of multi-mode choices per destination / TV [33] 3 D
-Service level Average speed of vehicles in normal condition / TV [62] 1 S
-Characteristics of vehicles Degree of preference of specific vehicles (regarding performance, comfort level, etc.) / TV 1 S
1-3- Other Facilities/ Structures 3
-Quality of facilities 1-(% deficiency of facilities in past events / TV) [69] 3 S
-Critical components Number of roundabout/emergency lanes / TV [40], [41] 2 S
-Maintenance of facilities Number of maintenances during an interval of period / TV [69] 3 S
-Essential infrastructure robustness % infrastructures that remained operational during emergencies in past events [72] 2 S
-Traffic load capacity Number of excessive capacity (emergency lanes, tracks, airlines, etc.) / TV [16] 3 D
-Urban form Number of city centers per 100,000 people / TV [58] 3 S
-Size of network (connectivity) Number of connectivity of intersection / TV [73] 2 D
-Size of network (betweenness) 1-(Number of betweenness of intersections / TV) [73] 2 D
1-4- Accessories 1
-Tool kit inside vehicles 1 (Presence of tool kits, like extinguisher, escape hammer, etc.); 0 (otherwise) 2 S
-Path environment Number of safety elements (isolation strips, traffic lights, etc.) per km / TV [67] 2 S
1-5- Serviceability 2
-Characteristics of traffic lines Frequency and capacity of each line /
TV [22] 3 D
-Travel time reliability number of punctual service assisted by control system / total number of service [53] 2 S
2- User's behavior
3- Resources
4- Plan
5- Organization and management
6- Social-economic characteristics
7- Environment and climate

Fig. 13. (a) Event-non-sensitive indicator (static). (b) Event-sensitive indicator (dynamic).
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external variables such as the static indicators and the damage/re-
covery variables. The dynamic indicators, in particular, are affected by
the indicators themselves at previous time steps due to the presence of
temporal links (arrow going from the indicator to itself).

7. Further considerations and applications of DBN

In our formulation in Eq. (10), we assume that only one hazard
event can occur. The work can be extended to include a sequence of
multiple hazards (e.g. foreshock and aftershock). In this case, the da-
mage variables (H, R1, and R2) would appear in other time slices. This is
shown in Fig. 20 where the resilience function has two drops in func-
tionality instead of one drop due to the presence of two hazards. In such
a case, the joint probability formation introduced before in Eq. (10)
should be rewritten to account for the damage variables at other time
slices. There would also be some instances where both damage and
recovery variables interfere together.

Moreover, the damage and recovery variables have been expressed
using a single variable. However, each of the variables can be described
in a separate network that consists of several variables. This allows
considering more details that would not be possible to be included if
only one variable is considered. Eq. (11) presents the damage variables
as joint probabilities of other variables.

=
=
=

P H P H H H
P R P R R R
P R P R R R

( ) ( , , , )
( ) ( , , , )
( ) ( , , , )

k

m

m

1 2

1 1
1

1
2

1

2 2
1

2
2

2 (11)

As mentioned in Section 2.2, there is also the possibility of in-
troducing special nodes to the first slice or last slice of the DBN when
needed (Fig. 21). This can be done by introducing the nodes A (anchor)
and T (terminal). In this case, Eq. (10) must be adjusted accordingly to
include the additional variables.

The use of DBN to model and analyze engineering systems has been
very limited in literature. DBN adds to the conventional BN the ability
to consider time as a parameter in the analysis. All engineering systems
are becoming strongly interdependent and this results in increased
dynamic behavior of the systems. The DBN addresses the challenge of
dynamic modeling of engineering systems while it preserves all features
of BN. While in this study we employ DBN to model and analyze the
resilience of transportation infrastructure, the proposed model can be
used to study the resilience of other infrastructure types as well as other
engineering (and non-engineering) phenomenon that requires con-
sideration of time. To give some examples of future applications, the
proposed DBN formulation can be used to model, analyze, and improve
the intervention activities of infrastructure in terms of scheduling and
cost. This type of analysis cannot be performed with a static tool like
BN. This, however, entails a detailed model of infrastructure interven-
tion strategy. Another example can be structural degradation modeling

Fig. 14. DBN connectivity of the transportation network model.

Table 4
Values for the different input variables.

Input Scenario
1
(Fig. 15)

Scenario
2
(Fig. 16)

Scenario
3
(Fig. 17)

Scenario
4
(Fig. 18)

Scenario
5
(Fig. 19)

Hazard (H) − − + + −
Redundancy (R1) − − + + −
Robustness (R2) − − + + −
Resourcefulness (R3) + − − + Medium
Rapidity (R4) + − − + Medium

Note: the (−) implies negative impact on the performance, the (+) implies a
positive impact.
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Fig. 15. System's performance results for the first scenario of the simulation (high damage, high recoverability).

Fig. 16. System's performance results for the second scenario of the simulation (high damage, low recoverability).

O. Kammouh, et al. Reliability Engineering and System Safety 198 (2020) 106813

15



Fig. 17. System's performance results for the third scenario of the simulation (low damage, low recoverability).

Fig. 18. System's performance results for the fourth scenario of the simulation (low damage, high recoverability).
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and analysis. Degradation is a time-dependent process that cannot be
studied at an instance of time, and this provides a good medium for
DBN to be utilized. It should be noted that the use of DBN in such
applications should be limited to cases where more complex tools
cannot be used either due to modeling complexity of data availability.

8. Conclusions

Unlike the static resilience analysis which assumes a constant state
of a system and measures the resilience by a static quantity, the dy-
namic resilience analysis additionally models the evolvement of the
system with time. This paper introduced a probabilistic resilience as-
sessment and prediction framework using the Bayesian and Dynamic
Bayesian Networks (BN and DBNs). The framework employed resilience
indicators for its implementation to make it more usable by decision
makers in the industry. The methodology can handle both static and
dynamic engineering systems using quantitative and/or qualitative
data. The uncertainty in the inputs and in the variables relationships is

accounted for and propagated throughout the model; hence, the output
is probabilistic in nature. Two illustrative examples were presented in
the paper. The first is a static system that uses the indicators of Hyogo
Framework for Action (HFA) to assess the resilience of a country, while
the second is a transportation network modelled as a dynamic system.
The examples demonstrate the applicability of the framework for both
static and dynamic systems.

In the static analysis, the indicators are the main determinant of the
resilience output. Highly uncertain state of the indicator (i.e., uniform
probability distribution among the indicator's states) would result in a
high standard deviation in the probability distribution of the resilience's
states. For the dynamic analysis, results show a nonlinear behavior of
resilience as a function of time. The recovery variables play a significant
role in the resilience assessment, where the resilience function shows an
increasing trend whose slope depends on the recovery capacity of the
system. The damage variables also contribute to the overall resilience
output as they are the primary determinant of the system's functionality
drop following the disaster event. A large functionality drop would
result in a longer recovery time under the same recovery characteristics
of a system. In both static and dynamic analyses, the uncertainty is
introduced in the indicators’ initial conditions. This is rather useful
when deterministic numbers are not available to initiate the analysis.

The quantitative resilience analysis tools that can be readily avail-
able to system designers to model and quantify engineering resilience
are still underdeveloped. This paper aims at motivating the resilience
community to agree on the proposed universal resilience framework.
The presented framework provides a tool for decision makers to sys-
tematically learn about the state of their systems given a specific event.
It allows them to improve the systems’ performance using the backward
analysis feature of BN. This is done by setting a desirable state of the
resilience and getting the variables inputs that lead to the predefined
resilience state.

Fig. 19. System's performance results for the fifth scenario of the simulation (high damage, medium recoverability).

Fig. 20. Resilience function with multiple hazards.
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There is a number of limitations in the proposed BN and DBN ap-
proaches. First, the need to include subjectivity during the different
phases of model development and analysis. This is unavoidable because
the main feature of BN is to substitute missing data with expert judg-
ment, which is subjective. This can be partially addressed by using
multiple experts. Another limitation is the increased complexity of the
model as the analyzed system increases in size and detail. When the
system is complex, the mission of classifying the variables and con-
necting them to one another becomes sophisticated and involves more
subjectivity. In addition, BN is a directed acyclic graph, which means
that if a variable depends on another variable the reverse is not true.
This limits the possibility of modeling some real life situations where
two variables can be dependent on each other. This can be artificially
solved by introducing the same variable twice in the network, one time
as a dependent variable and another time as a leading variable.
However, this can also cause some consequences on the final output
and on the dynamics of the system. Finally, DBN presents an additional
limitation, which is the complexity in connecting variables at different
temporal states. It can be challenging to identify which variables can
affect other variables at another time step.

Future work will be oriented towards building detailed networks for
the damage and recovery variables as this would allow expressing the
system in more details. In addition, a procedure to evaluate the inter-
dependency among the variables as well as their weighting factors will

be further addressed. Particularly, weighting the indicators can be
crucial in determining the conditional probabilities of the father nodes.
Future studies can address this aspect using the Analytic hierarchy
process (AHP), which has been extensively used in similar problems for
organizing and analyzing complex decisions.
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Appendix

The scores of the resilience indicators of 37 countries as assessed by the United Nations

Indicators Countries Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q 10 Q 11 Q 12 Q 13 Q 14 Q 15 Q 16 Q 17 Q 18 Q 19 Q 20 Q 21 Q 22

1-Fiji 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
2-Costa Rica 5 4 4 5 3 4 5 4 4 4 5 4 4 4 3 5 5 5 5 5 5 5
3-Singapore 5 5 5 2 5 5 5 5 5 5 5 5 2 5 5 4 1 1 5 5 4 5
4-Japan 5 4 4 5 4 4 4 4 5 4 3 5 4 4 4 4 4 5 5 4 4 4
5-UAE 5 4 5 4 4 4 3 3 3 4 4 5 5 5 5 5 5 5 4 4 3 4
6-Austria 4 5 5 3 4 4 5 5 4 4 3 4 4 4 4 4 4 5 5 4 4 4
7-UK 4 4 5 4 4 4 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5

Fig. 21. Bayesian network with additional variables in the first and last slices.
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8-Greece 4 4 4 4 4 4 5 4 4 4 4 4 4 4 4 5 4 4 4 4 4 4
9-Australia 4 4 4 4 4 4 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
10-Italy 2 4 4 4 4 4 5 4 5 4 4 4 4 3 3 3 5 4 5 5 4 4
11-Cameroon 4 4 4 5 4 4 4 4 4 4 4 4 4 3 4 4 4 4 4 3 4 4
12-New Zealand 4 4 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
13-Germany 5 4 4 4 4 4 4 4 4 3 4 4 4 5 3 4 3 3 4 4 4 4
14-Nigeria 4 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
15-Canada 4 4 5 4 3 4 4 4 4 3 3 4 3 3 4 4 5 4 5 5 3 3
16-France 4 4 4 4 3 4 5 4 4 3 3 3 4 4 3 4 4 3 4 3 5 5
17-Ecuador 4 4 4 4 3 4 3 4 4 4 4 4 4 4 4 4 4 3 4 4 3 4
18-Ethiopia 4 3 4 4 4 4 4 4 4 4 4 4 4 4 3 3 3 4 4 4 4 4
19-USA 4 4 4 3 4 4 4 4 3 4 4 4 3 3 3 4 4 4 4 4 4 4
20-Chile 4 3 3 4 4 3 4 3 4 4 2 4 3 4 4 4 4 4 4 4 5 4
21-Ghana 4 2 2 4 4 4 4 4 5 1 4 4 4 4 3 3 4 4 4 4 4 4
22-Argentina 3 3 4 4 4 3 4 4 3 3 3 4 3 3 3 4 4 4 4 4 2 4
23-South Africa 4 4 4 4 3 3 3 3 3 3 3 3 4 3 3 3 4 4 3 4 4 4
24-Cook Island 4 3 4 4 3 4 4 4 3 3 3 4 4 3 3 3 4 3 4 3 3 3
25-Pakistan 4 4 4 4 3 3 3 4 3 3 3 3 3 3 3 3 4 3 3 4 4 3
26-Brazil 4 3 4 3 4 5 1 2 4 2 2 3 3 5 3 4 4 3 3 4 3 4
27-Egypt 4 2 4 4 4 3 3 3 3 3 2 4 4 3 4 3 3 3 4 4 3 3
28-Iran 4 3 4 4 3 3 2 2 3 4 3 3 3 3 3 4 3 3 4 3 4 3
29-Qatar 3 4 3 3 4 3 3 3 3 2 3 3 4 3 3 3 3 3 4 3 3 3
30-Samua 4 3 3 4 4 2 3 4 3 3 3 4 4 3 3 2 2 1 4 3 3 3
31-Thailand 4 2 4 4 2 2 4 3 3 3 2 4 3 4 2 3 2 3 4 4 4 2
32-Madagascar 4 3 4 4 4 2 2 2 4 5 4 2 2 1 2 2 4 2 4 4 2 4
33-Mexico 4 3 3 4 2 3 4 3 3 2 3 2 3 3 3 2 3 3 3 2 4 3
34-Morocco 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 1 3 3
35-Palestine 3 2 3 4 3 2 4 4 4 3 2 4 3 2 1 2 2 2 3 3 1 2
36-Monaco 3 2 1 3 3 1 3 3 4 4 1 2 3 1 1 1 1 1 3 4 1 1
37-Armenia 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
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