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Summary

D
Due to the current climate crisis, railway transport is receiving increased attention owing
to its capability of running fully on electricity, which can be generated from renewable
sources. High-speed railway networks and the new concepts, such asHyperloop, are already
competing with road and aviation transport. However, the increased demand on railway
transport causes an acceleration in infrastructure degradation leading to an increased
frequency ofmaintenance and repair operations. Consequently, what beforewas considered
normal "wear and tear" of the infrastructure is quickly turning into serious challenges
causing disruptions to the normal operation of traffic.

When it comes to track degradation, the so-called transition zones require significantly
more frequent maintenance than the regular parts of the railway track. Transition zones in
railway tracks are areas with substantial variation of track properties (e.g., foundation stiff-
ness) encountered near rigid structures such as bridges, tunnels, culverts, or rail-crossings.
The occurrence of differential settlements at transition zones has been known for a long
time and a multitude of mitigation measures have been designed to cope with this problem.
Nonetheless, the mitigation measures have had just limited success and in some cases have
even exacerbated the problem. Although the failure of some mitigation measures stems
from inadequate design and poor implementation, overall, the lack of efficiency of mitig-
ationmeasures can be attributed to the lack of understanding of the mainmechanism(s)
that drive(s) the differential settlement.Therefore, to design efficient mitigation measures,
one needs to advance the understanding of the physical processes leading to differential settlements at
transition zones. This constitutes the first objective of this dissertation.

The settlement mechanisms are studied in this dissertation through models rather
than in-situ measurements or lab experiments.Themajority of previous studies have used
models to (i) understand and (ii) predict the response of railway tracks at transition zones.
Researchers aiming at (i) have usually used simplified phenomenological models in which
system characteristics that are not of interest are excluded. More recently, the models’ com-
plexity has increased tremendously by incorporating many system characteristics, making
these models ideal for (ii), but less ideal for (i) due to the many mechanisms simultaneously
at play.This led to the second objective of this dissertation, which is to investigate the effect of
specific characteristics of the railway system on the degradation at transition zones. In other words,
the second objective entails improving the simplifiedmodels by incorporating additional
characteristics and determining which of these characteristics is of importance and which
can be neglected.

xi



xii Summary

Naturally, this dissertation can only focus on a few of the many aspects involved in this
complex problem, and the twomain constraints are presented in the following. Improving
the maintenance operations themselves by employing new technologies could lead to a
reduction in the maintenance frequency. However, to develop a long-term solution, one
should aim at eliminating the root cause.Therefore, this dissertation investigated the initi-
ation phase of the settlement, and not the accumulation phase. Furthermore, this dissertation
focused on the differential settlement stemming solely from the amplification of stresses
and strains that occur at transition zones, which is significant at relatively large train velocit-
ies. Consequently, this dissertation has not treated other sources of differential settlements,
such as the different rates at which autonomous settlement develops in the open-track and
at the man-made structure.

Using a simple phenomenological model representative of the railway track, Chapter 2
demonstrates that the response amplification at transition zones is caused by the interfer-
ence between the steady-state field and the free field generated by the transition process.
Consequently, the more pronounced the free field, the larger the resulting amplification.
It also shows that the soft-to-stiff and stiff-to-soft transitions have significantly different
behaviour, strongly suggesting the need of different mitigationmeasure designs for the two
types of transition. Finally, the transition radiation energy is shown to be invariant between
the soft-to-stiff and stiff-to-soft scenarios, finding which was unexpected considering the
above-mentioned difference in behaviour.

Investigating the vehicle-structure interaction, Chapter 4 demonstrates that the ampli-
fication of the wheel-rail contact force caused purely by a change in foundation stiffness and
damping (i.e., a track without initial imperfections) can be significant. Previous literature
studies concluded the opposite; however, these studies considered only quasi-static velocit-
ies and small effective changes in foundations properties.The findings presented in this
chapter, thus, supplement earlier findings to offer a more complete picture. Nonetheless,
even though the vehicle-structure interaction leads to a stronger transition radiation, it
leads to a reduction of the response amplification at the critical locations in transition zones
where settlement is usually observed.

Chapter 5 identifies three response amplification mechanisms at transition zones in
systems that have a periodic nature.The amplification is the product of a system with peri-
odic nature and with a local inhomogeneity, and if one of these characteristics is omitted,
the amplification does not occur. While these mechanisms can be influential for the railway
over-head wires and for the emerging Hyperloop transportation system, they have a negli-
gible influence in the conventional railway track. Consequently, for investigations focused
on transition zones and response amplification at low frequencies, the periodicity of the
railway track can be successfully approximated by the equivalent continuously supported
one without neglecting influential amplification mechanisms.

Chapter 6 introduces the ballast settlement and investigates its influence on the trans-
ition process. It shows that the development of the initial settlement leads to a redistribution
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of the transition radiation energy during the transition not only between frequencies, but
also between the soft and stiff media.This redistribution is mainly attributed to the sep-
aration between the beam and foundation at the settlement location. Consequently, if the
developed settlement is not large enough to allow for this separation, the influence of the
nonlinear foundation on transition radiation is negligible.

Chapter 8 investigates the influenceof the foundationnonlocality on transition radiation.
It shows that the nonlocality of the soil layer has an increasingly pronounced effect on the
steady-state response with its decreasing shear stiffness. Consequently, modelling the
nonlocality of the supporting structure can be important for railway tracks founded on soft
soils. Furthermore, for ballasted tracks founded on soft soils, the response amplification at
transition zones can bemore pronounced in the soil layer than in the ballast layer depending
on the transition type. This is caused by the vertical stiffness of the ballast layer can be
significantly larger than the one of the soil.This finding suggests that soil settlement should
be accounted for if the long-term behaviour is to be correctly represented.

The investigation of several mechanisms of response amplification at transition zones
performed in this study has led to a deeper understanding of the mechanisms leading to
differential settlement at transition zones in railway tracks.This knowledge can serve future
researchers and engineering in designing more efficient mitigation measures.





Samenvatting

D
Door de huidige klimaatcrisis krijgt het spoorvervoer meer aandacht omdat het volledig
kan rijden op elektriciteit, die kan worden opgewekt uit hernieuwbare bronnen. Hogesnel-
heidsspoornetwerken en de nieuwe concepten, zoals Hyperloop, concurreren nu almet weg-
en luchtvaartvervoer. De toegenomen vraag naar spoorwegvervoer veroorzaakt echter een
versnelling van de achteruitgang van de infrastructuur, wat leidt tot een hogere frequentie
van onderhouds- en reparatiewerkzaamheden. Bijgevolg verandert wat voorheen als nor-
male "slijtage"van de infrastructuur werd beschouwd, snel in serieuze uitdagingen die de
normale werking van het verkeer verstoren.

De zogenaamde overgangszones vergen beduidend vaker onderhoud dan de reguliere
delen van het spoor als het gaat omdegradatie van het spoor. Overgangszones in spoorlijnen
zijn gebiedenmet substantiële variatie in spooreigenschappen (bijv. funderingsstijfheid)
die men tegenkomt in de buurt van starre constructies zoals bruggen, tunnels, duikers of
spoorwegovergangen. Het optreden van zettingsverschillen in overgangszones is al lang
bekend en er is een veelheid aanmitigerende maatregelen ontworpen om dit probleem het
hoofd te bieden. Desalniettemin hebben demitigerendemaatregelen slechts beperkt succes
gehad en in sommige gevallen zelfs het probleem verergerd. Hoewel het mislukken van
sommige mitigerende maatregelen het gevolg is van een ontoereikend ontwerp en slechte
implementatie, kan het gebrek aan efficiëntie vanmitigerendemaatregelen over het alge-
meen worden toegeschreven aan het gebrek aan begrip van de belangrijkste mechanismen
die de differentiële afwikkeling aansturen. Daarommoet men, om efficiënte mitigerende
maatregelen te ontwerpen, het begrip vergroten van de fysieke processen die leiden tot differentiële
vestigingen in overgangszones. Dit vormt de eerste doelstelling van dit proefschrift.

De zettingsmechanismenworden in dit proefschrift bestudeerd doormiddel vanmodel-
len in plaats van in-situmetingen of laboratoriumexperimenten. Demeeste eerdere studies
hebbenmodellen gebruikt om (i) de respons van spoorlijnen in overgangszones te begrijpen
en (ii) te voorspellen. Onderzoekers die zich richten op (i) hebbenmeestal vereenvoudigde
fenomenologische modellen gebruikt waarin systeemkenmerken die niet van belang zijn,
worden uitgesloten.Meer recentelijk is de complexiteit van demodellen enorm toegenomen
door het incorporeren van veel systeemkenmerken, waardoor dezemodellen ideaal zijn voor
(ii), maar minder ideaal voor (i) vanwege de vele mechanismen die tegelijkertijd spelen. Dit
leidde tot de tweede doelstelling van dit proefschrift, namelijk het onderzoeken naar het effect
van specifieke kenmerken van het spoorwegsysteem op de degradatie in overgangszones. Met andere
woorden, de tweede doelstelling bestaat erin de vereenvoudigde modellen te verbeteren

xv



xvi Samenvatting

door aanvullende kenmerken in te bouwen en te bepalen welke van deze kenmerken van
belang zijn en welke verwaarloosd kunnen worden.

Uiteraard kan deze dissertatie zich slechts richten op enkele van de vele aspecten die
betrokken zijn bij dit complexe probleem, en de twee belangrijkste beperkingen worden in
het volgende gepresenteerd. Verbetering van de onderhoudswerkzaamheden zelf door inzet
van nieuwe technologieën kan leiden tot een verlaging van de onderhoudsfrequentie. Om
een langetermijnoplossing te ontwikkelen, moet men echter streven naar het wegnemen
van de onderliggende oorzaak. Daarom onderzocht dit proefschrift de initiatie-fase van de
vestiging, en niet de accumulatie-fase. Verder richtte dit proefschrift zich op de zettings-
verschillen die uitsluitend voortkomen uit de versterking van spanningen en rekken die
optreden in overgangszones, wat significant is bij relatief hoge treinsnelheden. Bijgevolg
heeft dit proefschrift geen andere bronnen van differentiële zettingen behandeld, zoals de
verschillende snelheden waarmee autonome zetting zich ontwikkelt in het open spoor en in
de door de mens gemaakte structuur.

Met behulp van een eenvoudig fenomenologischmodel dat representatief is voor het
spoor, laat hoofdstuk 2 ziendat de responsversterking bij overgangszoneswordt veroorzaakt
door de interferentie tussen het stationaire veld en het vrije veld dat wordt gegenereerd
door het overgangsproces. Bijgevolg, hoe meer uitgesproken het vrije veld, hoe groter de
resulterende versterking. Het laat ook zien dat de zacht-naar-stijf overgangen en de stijf-
naar-zacht overgangen significant verschillend gedrag vertonen, wat sterk suggereert dat
er voor de twee soorten overgangen verschillende ontwerpen vanmitigerende maatregelen
nodig zijn. Ten slotte is aangetoond dat de overgangsstralingsenergie invariant is tussen
de scenario’s van zacht naar stijf en van stijf naar zacht, wat onverwacht was gezien het
bovengenoemde verschil in gedrag.

Hoofdstuk 4, dat de interactie tussen voertuig en constructie onderzoekt, toont aan dat
de versterking van de wiel-railcontactkracht, puur veroorzaakt door een verandering in de
stijfheid en demping van de fundering (d.w.z. een baan zonder initiële onvolkomenheden),
aanzienlijk kan zijn. Eerdere literatuurstudies concludeerden het tegenovergestelde; deze
studies beschouwden echter alleen quasi-statische snelheden en kleine effectieve verande-
ringen in funderingseigenschappen. De bevindingen die in dit hoofdstuk worden gepresen-
teerd, vullen dus eerdere bevindingen aan om een completer beeld te geven. Desalniettemin
leidt de voertuig-constructie-interactie weliswaar tot een sterkere overgangsstraling, maar
tot een vermindering van de responsversterking op de kritieke locaties in overgangszones
waar zetting gewoonlijk wordt waargenomen.

Hoofdstuk 5 identificeert drie responsversterkingsmechanismen bij overgangszones
in systemen die een periodiek karakter hebben. De versterking is het product van een
systeem met een periodiek karakter en een lokale inhomogeniteit, en als een van deze
kenmerken weggelaten wordt, vindt er geen versterking plaats. Hoewel deze mechanis-
men van invloed kunnen zijn op de bovenleidingen van het spoor en op het opkomende
Hyperloop-transportsysteem, hebben ze een verwaarloosbare invloed op het conventionele
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spoor. Bijgevolg kan voor onderzoeken gericht op overgangszones en responsversterking
bij lage frequenties de periodiciteit van het spoor met succes worden benaderd door de
equivalente continu ondersteunde zonder invloedrijke versterkingsmechanismen te ver-
waarlozen.

Hoofdstuk 6 introduceert de ballastzetting en onderzoekt de invloed ervan op het transi-
tieproces. Het laat zien dat de ontwikkeling van de initiële zetting leidt tot een herverdeling
van de overgangsstralingsenergie tijdens de overgang, niet alleen tussen frequenties, maar
ook tussen de zachte en stijve media. Deze herverdeling wordt voornamelijk toegeschreven
aan de scheiding tussen de balk en de fundering op de zettingslocatie. Bijgevolg, als de
ontwikkelde zetting niet groot genoeg is omdeze scheidingmogelijk temaken, is de invloed
van de niet-lineaire fundering op de overgangsstraling verwaarloosbaar.

Hoofdstuk 8 onderzoekt de invloed van de non-lokaliteit van de fundering op overgangs-
straling.Het laat zien dat de non-lokaliteit van de grondlaag een steeds groter effect heeft op
de stationaire respons met zijn afnemende afschuifstijfheid. Bijgevolg kan het modelleren
van de non-lokaliteit van de ondersteunende constructie belangrijk zijn voor spoorlijnen
die op zachte grond zijn gefundeerd. Bovendien kan voor geballaste sporen op zachte grond
de responsversterking bij overgangszones meer uitgesproken zijn in de grondlaag dan in
de ballastlaag, afhankelijk van het overgangstype. Dit wordt veroorzaakt doordat de ver-
ticale stijfheid van de ballastlaag aanzienlijk groter kan zijn dan die van de grond. Deze
bevinding suggereert dat er rekeningmoet worden gehoudenmet bodemzetting om het
langetermijngedrag correct weer te geven.

Het onderzoek van verschillendemechanismen van responsversterking bij overgangs-
zones uitgevoerd in deze studie heeft geleid tot een beter begrip van de mechanismen
die leiden tot differentiële zetting bij overgangszones in spoorlijnen. Deze kennis kan toe-
komstige onderzoekers en ingenieurs van dienst zijn bij het ontwerpen van efficiëntere
mitigatiemaatregelen.
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English poet Alexander Pope wrote a beautiful epitaph for Isaac Newton, which goes like:
"Nature and Nature’s laws lay hid in night; God said ’Let Newton be!’ and all was light". This
is something that will never be said about the following pages, which contain a significant
part of the research I performed during my doctoral study. But yet again, it is dangerous to
aim that high.

Froman early age, I foundmyself naturally drawn tomathematics and some time later to
physics, butmy early interest in these subjects followedmore of a periodic patternwith time
rather than an exponential increase. Eventually, I chose to follow a bachelor degree in Civil
Engineering, hoping to harmoniously combine the two disciplines. Although this harmony
did not materialize during my undergraduate studies, I was lucky enough to have an ideal
blend of mathematics and physics during the master’s degree at TU Delft. I must confess
that I feel less and less of an engineer each day, but I am grateful for the path that brought
me to the research group I am currently part of and in which I performedmy doctoral study.

To me, the PhD was a journey of discovery in which I foundmy research direction. Even
before embarking on this academic endeavor, I foundmyself instinctively attracted to the
conceptual challenges rather than the more practical ones.This preference has shaped the
approach tomydoctoral research. I tried to avoid—sometimes consciously andmany others
unconsciously—complexmodelswhich require significant effort to set up and experimental
campaigns that are challenging to organize — in my view both are rather practical chal-
lenges. Instead, I focused on interpretation of results obtained with somewhat simplified
models and aimed at identifying underlyingmechanisms (or cause-and-effect connections).
Practically oriented readers might perceive this as a weakness of the dissertation, but I
believe it to be quite the opposite. While it may not offer a straightforward solution to the
industry problem, it goes beyond the boundaries of solely addressing practical concerns—
and Ifirmly believe that academic research should encompasses a broader perspective.What
this dissertation offers the reader is in-depth understanding of the physical mechanisms
that generally underlie the degradation at railway transition zones.

The end evokes a bittersweet sentiment as I reflect upon the fulfilling journey I have
experienced, made possible by the contribution of numerous individuals of the utmost
quality whom I would like to express my heartfelt gratitude. First and foremost, I am
immensely thankful tomy supervisory dream-team,whose guidance and support have been
instrumental inmakingmyPhD journey an enjoyable one.Karel, youhave been an invaluable
mentor, imparting countless valuable research skills throughout our fruitful collaboration
spanning over six years, with the hope of manymore to come. Your unwavering enthusiasm
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to tackle the everyday challenges I encountered along the way has been truly remarkable.
Andrei, your valuable research oversight and the consistent generation of relevant questions
continues to amaze me. I appreciate you enabling me to embrace the broader research
perspective rather than getting entangled inminor obstacles. It is a life’s quest to find an
exceptional mentor, and I found two!

Furthermore, an integral part of my fulfilling PhD experience was the vibrant research
group to which I belong, and I would like to express my gratitude to eachmember.There
was no hurdle that couldn’t be overcome with a coffee break, a Bright-minds meeting, a
seminar, or the cherished Thursday PSOR drink. Despite the inevitable ebb and flow of
individuals from diverse backgrounds and cultures, which is inherent to a research group,
the collective spirit was always nurtured. Though I haven’t been a part of many research
groups, I sense a distinct uniqueness in this particular one, which I strongly believe should
be cherished and preserved in the years to come.

Indirect support also came frommy friends around the world, with a special mention
to those from the Netherlands and Romania.The nature of the PhDmakes it encompass
your whole life including the personal one. Most of the much needed breaks came in the
form of socializing, so I want to express my gratitude for keeping me sane.

I extendmy sincere gratitude also tomy family.Without your unwavering support inmy
endeavors far away from home I would not have reached this moment in my journey. While
it may often go unnoticed, I am also grateful for your understanding during my occasional
extended periods of limited communication whenmy primary focus was dedicated to my
research. Your continuous support and understandingmean a great deal tome.Mult,umesc!

Lastly, my deepest gratitude goes to Paula, my partner in crime (life, I mean). Work-life
balance is a vague concept when pursuing a PhD, and your support and encouragement
in the difficult moments when focus was primarily channelled towards research is a key
factor in the success of this journey. But more importantly, you brought peace into my life,
teaching me to cherish the little joys life has to offer. I could not have asked for a better
partner!

As I near the completion of this phase ofmy academic pursuit and reflect back at the jour-
ney, the countlessmoments of frustration barely come tomind. Prevalent inmymemory are
the engaging interaction with my supervisors and colleagues, the countless philosophically-
inclined discussions, and the friendships made along the way which I hope will last a
life-time.

Andrei Bogdan Fărăgău
Cluj-Napoca, June 2023



1
Introduction

Cathedral thinking [...] humbly acknowledges that work performed in the present builds on what has
been done in the past, while actively engaging with a future that transcends a lifetime and utilitarian

gains. It is carried forward with the knowledge and intention that it will outlast the present, and is
conducted in a team spirit that spans generations.

Helga Nowotny

I
Infrastructure networks, such as air, road, and railway transport, are crucial to the well
functioning of a society and its economy. On their regular functioning dependmillions of
commuters, travellers, and businesses worldwide every day. Nevertheless, the transport
sector is the second largest emitter of green-house gases (GHG), currently being responsible
for around 24 % of the total C02 emissions worldwide [1]. Moreover, transport is considered
to be the hardest sector to decarbonize [2]. With the increasing risk of climate disaster, the
demand for emission free infrastructure networks is growing, and the transportation sector
seems to pose a considerable challenge in achieving such a goal.

Amongmodes of transportation, road and aviation are responsible for the largest part
of GHG emission in the transportation sector (see Fig. 1.1). In contrast, rail transport is
responsible for the lowest percentage (1.6%) of GHG emission in the transportation sector
(see Fig. 1.1). For this reason (among others), railway transport has received increasing
attention lately, especially due to its capability of running fully on electricity, which can
be generated from green sources. Consequently, governmental bodies (such as EU) have
imposed targets for themodal split in freight cargo, basically imposingmore freight cargo to
be transported by rail (see Fig. 1.2). As for passenger transport, the same trend will be most
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Figure 1.1:Green-house gases (GHG) emissions by mode of transport. Source: Figure 8.1 from IPCC AR5 report [3].

likely imposed. High-speed railway networks and the new concepts, such as Hyperloop,
plan to compete (and are already competing) with road and aviation transport (the parts
that do not require trans-oceanic voyages).

1.1. Problem statement and motivation
The increased demand on railway transport causes an acceleration in infrastructure degrad-
ation leading to an increased frequency of maintenance and repair operations (see Fig. 1.3).
On top of that, the increase in railway traffic (more trains per period of time) also reduces
the track availability for maintenance operations, thus leading to a negative feedback loop.
Consequently, what before was considered normal "wear and tear" of the infrastructure is
quickly turning into challenging problems causing disruptions to the normal operation of
traffic. The way to overcome these problems is through innovative design and materials,
both for the newly built tracks and for the repair and rehabilitation of the already existing
tracks.This is an especially big challenge for railway engineers since the design of the clas-
sical (and to some extent modern) railway track is based on load-bearing considerations
andmaintainability [4], and does rarely take into account long-term durability.

A substantial part of the railway infrastructuredegradation relates to the vertical position
of the track, which changes over time due to ballast and soil settlement.Themain reason for
losing track geometry is the deformation and densification of the ballast layer, representing
75% of the total track position maintenance [5]. Position correction constituted (in 2007)
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Figure 1.2: Projected freight modal split in the EU-25 in 2030 comparing 2011 shares with future business-as-usual
shares without target and with EUWhite Paper modal split target. Source: Figure 8.8 from IPCC AR5 report [3].

around 40% of maintenance operations on railway infrastructure in the Netherlands [6],
with a similar trend also seen in other countries [5]. Consequently, position correction is
one of the most important causes of reduced availability of the railway and the subsequent
disruption that results.

When it comes to position correction, the so-called transition zones require 3–8 times
more frequent maintenance than the regular parts of the railway track [5, 6]. Transition
zones in railway tracks are areas with substantial variation of track properties (e.g., found-
ation stiffness) encountered near rigid structures such as bridges, tunnels, culverts, or
rail-crossings (see Fig. 1.4).The reason for more frequent maintenance required at trans-
ition zones is that differential settlements at these locations are muchmore pronounced
than in the rest of the track (referred to in this thesis as the open-track); for example, Nielsen
et al. [7] found a strong correlation between the track stiffness inhomogeneity and local
irregularities in the vertical track geometry (i.e., differential settlement). Compared to the
open-track, significant differences in settlements develop at transition zones over a relat-
ively small distance leading to an even higher variability of the support properties, and in
more extreme cases to unsupported sleepers (also known as hanging sleepers [8]). Once the
differential settlements exceed a certain threshold, maintenance is (preferably) scheduled
in order to avoid limiting the velocity of the train at these locations.

Plenty of causes have been presented in literature for the differential settlements at
transition zones.These causes can be divided into two categories, namely the causes leading
to the initiation phase of the degradation when the track is considered straight and without
faults, and the accumulation phase in which the track already has differential settlements
leading to negative feedback processes that further aggravate the problem.Themain de-
gradation processes in the initiation phase of the differential settlement at transition zones
are given below:
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Figure 1.3:Number of disruptions and the total duration of the disruptions in the Dutch railway network between
2011 and 2021. Source: https://www.rijdendetreinen.nl/

a) The difference in mechanical properties (e.g., stiffness, mass, damping, etc.) of the
supporting structure at transition zones causes amplification of stresses and strains
when the vehicle passes through this location [4, 9, 10]. At the locations where the strains
are increased (compared to the open-track), the settlement is amplified, thus leading to
differential settlements.

b) Under normal operation conditions, the open-track has a higher settlement rate than
the man-made structure, which is usually built such that it does not settle (e.g., founded
on piles).This leads, over time, to the supporting structure (soil and sub-ballast) in the
open-track to settles more than the man-made structure, thus leading to differential
settlements [11].

As for the accumulation phase, the above-mentioned causes continue to be present, and
are even amplified. For example, the existence of differential settlements may lead to an
even larger difference in mechanical properties of the supporting structure, thus causing a
larger amplification of stresses and strains; this is one of the negative feedback processes
that are present in the accumulation phase. Other significant causes of degradation in the
accumulation phase are presented below:

i) If the profile of differential settlements has a small wavelength and sufficient amplitude,
hanging sleepers can occur. Apart from contributing to a negative feedback loop (as
explained above), the presence of the hanging sleepers can lead to impact loading of
the ballast layer [8] which further exacerbates the degradation.

ii) The differential settlements lead to unlevel rail profile causing an additional amplifica-
tion of stresses and strains when the vehicle encounters such a fault [13].
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Figure 1.4: Different types of transition zones in railway tracks. Culvert (top left; source:
https://joewagnergroup.com.au/projects/western-culverts-replacement/), tunnel (top right; source: [12]),
bridge (bottom left; source: [4]), and switch (bottom right; source: http://www.railroadpart.com/rail-track-
parts/railway-turnout.html).

iii) In the case of hanging sleepers and/or unlevel rail, the redistribution of stresses in the
structure can lead to overloading certain components causing ballast particle breakage
and sleeper deterioration.

Other site specific causes of degradation in the accumulation phase (e.g., ballast fouling,
lateral spreading of ballast, etc.) can be found in literature (e.g., [5, 9, 14]).

Given the plethora of causes for differential settlements at transition zones in railway
tracks, it is reasonable to expect that one type of mitigation measure (most likely) cannot be
efficient for all scenarios. Consequently, the efficiency of a mitigation measure depends on
the ability to identify the governing degradation mechanism(s) in a given scenario.

1.2. Thesis objective
The occurrence of differential settlements at transition zones has been known for a long
time and a multitude of mitigation measures have been designed to cope with this problem
[5, 14]. Nonetheless, the mitigationmeasures have had just limited success [14, 15] and in
some cases have even exacerbated the problem [9]. Although the failure of somemitigation
measures stems from inadequate design and poor implementation [9], overall, the lack
of efficiency of mitigation measures can be attributed to the lack of understanding of
the main mechanism(s) that drive(s) the differential settlement. To design a successful
mitigationmeasure and/or amaintenance procedure that reduces the subsequent frequency
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of maintenance, in the author’s view, one needs to first identify the governing degradation
mechanism(s) in each specific situation and then tailor themitigationmeasure to counteract
thatmechanism(s).Therefore, oneneeds a thoroughunderstandingof thephysical processes
that lead to differential settlements at transition zones.

This leads to the first and main objective of this thesis, which is to investigate and ad-
vance the understanding of the mainmechanisms that lead to railway track degradation at transition
zones. Established researchers in this field already generated knowledge about this problem.
Therefore, this thesis aims to deepen the understanding that will serve future researchers
in designing more efficient mitigation measures.

Inprevious studies, researchers have investigated theproblemofdifferential settlements
at transition zones through fieldmeasurements (or lab experiments) andmodels. Due to the
many types of transition zones, railway track designs, environmental factors, and others, the
knowledge developed based on fieldmeasurements tends to be site specific and it is difficult
to generalize. Consequently, the majority of studies have used models to (i) understand
and (ii) predict the response of railway tracks at transition zones. Researchers aiming at
(i) have usually used simplified phenomenological models in which system characteristics
that are not of interest are excluded (e.g., [16–24]). More recently, the models’ complexity
has increased tremendously by incorporating many system characteristics (e.g., [10, 11,
25–32]), making thesemodels ideal for (ii), but less ideal for (i) due to themanymechanisms
simultaneously at play.

This leads to the second objective of this thesis, which is to investigate the effect of specific
characteristics of the railway system on the degradation at transition zones. In other words, the
second objective entails improving the simplified models by incorporating additional char-
acteristics and determining which of these characteristics is of importance and which can
be neglected. With the knowledge acquired by fulfilling this objective, the gap between the
simplified and complex models can be bridged. It must be emphasized that the second ob-
jective is, to some extent, incorporated in the first one because understanding the influence
of specific system characteristics can advance the knowledge of the mechanisms that drive
settlement at transition zones.

1.3. Scope of the research
Theproblem of accumulated degradation at transition zones in railway tracks involvesmany
fields of expertise, such as moving-load dynamics, soil dynamics, geotechnical engineering,
more applied railway engineering (when it comes to maintenance procedures, for example),
behaviour of granular materials (ballast) with multiple time scales (fast time which repres-
ents the instantaneous damage, and slow time in which the accumulation of damage occurs
over many cycles), mechanical engineering (if one wants to investigate the influence of the
vehicle), etc. Naturally, this dissertation can only focus on a few of these aspects, and this
sub-section presents the chosen focus.
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Tomitigate the degradation in the accumulation phase, innovative maintenance tech-
niques should be developed, or the ones that already exist need to be improved. However, to
propose a long-term solution, one should aim at fixing the root cause.Therefore, this thesis
focuses on the initiation phase. Furthermore, the pronounced differential settlements at
transition zones is a damage accumulation process involving many train passages (i.e.,
many load-unload cycles of the supporting structure). Nonetheless, because this thesis
investigates the initiation phase, it thus focuses on the instantaneous residual deformation
to one (or a few) passages.The knowledge of the instantaneous residual deformation could
be used in amodel that accounts for both the fast time (instantaneous residual deformation)
and slow time (the accumulation over many cycles); however, this is outside the scope of
this thesis.

When it comes to the initiation phase, twomain causes have been presented in Section
1.1. After the first train passage, due to cause b), the open-track would have uniformly
settled a certain amount that is larger than the track laying on the man-made structure,
thus leading to differential settlement. On top of that, the differential settlements in the
transition zone are exacerbated due to response amplification (cause a)). While both causes
can be influential, this thesis focuses only on the differential settlements caused by cause a)
and neglects the settlements caused by cause b). "Find a reason why?" As a consequence of
focusing on the initiation phase and on cause a), the investigated system is representative of
a railway track in good condition (e.g., after tamping processes), meaning that the system
shows (almost) no faults. For amplification of stresses and strains (at transition zones) to
occur in such a system, the vehicle needs to travel at a relatively high velocity.Therefore, this
thesis focuses on high-speed railway or on normal-speed railway founded on very soft soils
(where the critical velocity is low). Furthermore, although some cases have been encountered
where the train exceeded the critical velocity (e.g., the Swedish X-2000 high-speed train
which runs along theWest Coast Line between Gothenburg andMalmö [33]), generally the
train velocity is in the sub-critical regime. Consequently, this thesis focuses on velocities
close to the critical one, but in the sub-critical regime.

As stated in Section 1.2, this thesis aims to deepen the understanding of the behaviour of
railway tracks at transition zones by using simplified models. More specifically, the models
formulated in this thesis are phenomenological, meaning that they isolate one (or a few)
specific phenomenon to be investigated and neglect the others. Although they represent a
distortion of reality, phenomenological models facilitate the understanding of the specific
phenomenon it describes and its corresponding mechanisms. In some situations when,
for example, specific predictions are required, the interference and interaction of multiple
phenomena is important to be taken into account such that the predictions are as close
as possible to reality. For this, predictivemodels are best suited (e.g., 3-D finite element
models [10, 11, 26, 27, 31]). With predictive models, although not impossible, it is difficult
to investigate one (or few) specific phenomenon in great detail because of the difficulty in
distinguishing the contribution of each phenomenon that is present in the process and
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complex (sometimes unknown) interactions between phenomena. For this reason, phe-
nomenological models are preferred. In this thesis, the phenomenon that the models are
designed to investigate is the transition radiation phenomenon (explained thoroughly in
Chapter 2).The simplifications compared to predictivemodels aremademainly with regard
to the geometry of the track, soil, andman-made structure, and the vehicle model. More
specifically, the 3-D geometry of the track at transition zones is incorporated indirectly
by changing stiffness, damping, and mass properties of the 1-D and 2-D phenomenolo-
gical models. When it comes to the vehicle model, the response under a single wheel is
investigated and the influence of the rest of the vehicle is neglected.

Finally, this thesis focuses on the transition radiation phenomenon (explained thor-
oughly in Chapter 2). In an initially straight track (no differential settlements and no faults)
with a transition zone, transition radiation is the phenomenon that is associated to the re-
sponse amplification in the transition zone. Consequently, some researchers have identified
transition radiation as one of the causes of track and foundation degradation [4, 9, 15, 34].
However, other researchers (e.g., [13, 35]) have found that the contribution of transition radi-
ation to the response amplification and, consequently, to track deterioration is insignificant
compared to other contributions such as, for example, unlevel rail. Although their findings
offer an incomplete picture and are, consequently, slightly misleading (see Section 4.3.5),
for the the set of parameters investigated, their findings are correct.The reason this thesis
focuses on transition radiation is that, as specified in the previous paragraphs, it focuses
on (i) the initiation phase (therefore, none of the feedback processes are considered, such
as unlevel rail, hanging sleepers, etc.), and (ii) on the response amplification at transition
zones (cause a)).

1.4. Thesis outline
This thesis starts by introducing the phenomenon that leads to amplification of stresses
and strains at the transition zones, namely transition radiation [36–38]. Transition radiation
is demonstrated in its purest form by using a 1-D model consisting of an infinite Euler–
Bernoulli beamonWinkler foundation,where the foundationhas anabrupt jump in stiffness.
Themechanism that causes response amplification is identified and investigated, and the
influence of load velocity on the response amplification is addressed. Chapter 2 concludes
with the analysis of energy exchange between different components of the system as the
load traverses the transition zone.

The third chapter investigates the influence of the critical velocity and its relation to the
train velocity on transition radiation and, consequently, on the response amplification at
transition zones. Some simplifiedmodels of the railway track (e.g., Euler–Bernoulli beam
onWinkler foundation) neglect themass of the ballast and sub-grade causing a serious over-
estimation of the critical velocity compared to reality.This raises two questions: (i) should
the velocity of the load be chosen to match the velocity of the train, or should it be chosen
such that the load velocity relative to the critical one matches the real scenario?, and (ii)
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what is the influence of over-estimating the critical velocity on the response amplification?
Both these questions are addressed in Chapter 3.

Chapter 4 studies of the effect of taking into account the vehicle’s own degree of freedom
on the response amplification at transition zones. More specifically, the vehicle is modelled
as a loaded oscillator in which the mass represents the wheel and the constant load on the
mass represents the deadweight of the rest of the carriage. A parametric study is performed
by varying the velocity and theproperties of the transition zone, and the results are compared
to the ones obtained using a moving constant load instead of an oscillator. This chapter
addresses not only the second goal of this thesis (determining the influence of certain
modelling choices), but also generates some knowledge by showing that the conclusions of
some preceding studies are not general, but limited to a quasi-static velocity regime.

In the ballasted railway tracks, the rail is periodically supported by sleepers.The peri-
odicity of the supports causes additional propagating waves in the response generated by
the moving load. Chapter 5 investigates if the additional propagating waves are influential
for the response amplification at transition zones. The chapter identifies amplification
mechanisms that are caused by the combination of (i) the periodicity of the support and (ii)
the transition zone, initially for a system representative of catenary wires in railway tracks.
Then, these amplification mechanisms are investigated for a system representative of a
railway track and, finally, for a system representative of a Hyperloop transportation system.
Like Chapter 4, this chapter addresses both aims of this thesis by investigating the influence
of including/excluding the sleeper periodicity from the model and determining additional
response amplification mechanisms.

Since the degradation/compaction of ballast is a nonlinear process, Chapter 6 introduces
a nonlinear supporting structure to a simplified 1-D model. While all previous chapters
have studied track degradation indirectly by investigating the response amplification, this
chapter investigates the degradation directly.The nonlinear material model represents the
instantaneous settlement of the ballast.The degradation after one and few load passages
is studied, and the influence of load velocity and some mitigation measures (which are
indirectly accounted for) is investigated through a parametric study.

The nonlinear material model introduced in Chapter 6 leads to a more computationally
intensive procedure to determine the response of the system.While the computational effort
in the case of the 1-D model formulated in Chapter 6 is not too high, the computational
effort required for a 2-D model of the track can easily make the problem unfeasible to
solve. To this end, Chapter 7 investigates three different solutionmethods to solve such a
nonlinear problem. More specifically, the three solution methods are compared in terms of
accuracy, computational efficiency, and feasibility of application to more complex systems
(especially to a2-Done).Thecomparison in termsof accuracy andcomputational efficiency is
performed quantitatively using the 1-Dmodel formulated in Chapter 6, while the feasibility
of application to more complex systems is analysed qualitatively.
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There are many significant differences between 1-D and 2-Dmodels of a railway track.
The one that is most relevant for this work is the fact that the supporting structure in the
2-Dmodel, unlike in the 1-Dmodel, is frequency-wavenumber dependent, thus making the
response of the beamnonlocal in both time and space. To investigate how this influences the
response amplification at the transition zones, and using the knowledge gained in Chapter
7, a 2-Dmodel is formulated in Chapter 8. Nonetheless, the 2-Dmodel is kept simple such
that the observations made are as general as possible.The degradation is investigated in
this system, and it is concluded that the 1-Dmodel (Chapter 7) over-estimates the plastic
deformation.Then, the influence of accounting for the nonlocality in both time and space
of the supporting structure is investigated by an extensive comparison to equivalent 1-D
models.

Finally, the thesis concludes with Chapter 9 which summarizes the conclusions drawn
from this research together with several directions for future investigations.



2
Transition radiation in a system

representative of a railway track

In fiecare teoretician, se afla un utopist.
Inside every theoretician lies an utopist.

Lucian Boia

T
The amplification of stresses and strains at transition zones in railway tracks can be associ-
ated to the phenomenon of transition radiation [38]. Transition radiation is emitted when a
source (without an inherent frequency)moves along a straight linewith constant sub-critical
velocity and acts on or near an inhomogeneous medium [37].This phenomenon was first
analysed by Ginzburg and Frank [36] who described radiation of electromagnetic waves
by a charged particle crossing the boundary between an ideal conductor and vacuum. In
the early studies it was already apparent that transition radiation was universal from the
physical point of viewmeaning that it occurs irrespective of the nature of the waves.Thus,
later on it was also studied in acoustics [39] andmechanics of solids [38].

The first study of transition radiation of elastic waves excited by mechanical objects
travelling in inhomogeneous elastic systems was done by Vesnitskii andMetrikine [38]. It
occurs, for example, when a train approaches and crosses an inhomogeneity in the railway
track (i.e., a transition zone).When this happens, there is an exchange of energy between the
train and track [16]. Transition radiation is the radiation caused solely by the inhomogeneity,
which is emitted into the railway track in the form of waves. It has been addressed as one of

11
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the primary causes of track and foundation settlement in transition zones due to the often
strong amplification of the stress and strain fields [4, 9, 15, 34].

In its purest form, transition radiation is addressed in structures acted uponby amoving
constant load.The first study [38], was performed using an elastically supported infinite
string subjected to a constantmoving load. To also account for theflexural rigidity, Vesnitskii
and Metrikin [16] studied a semi-infinite beam subject to a moving mass. Later on, the
problem of a beam resting on a piecewise-homogeneousWinkler foundation subjected to a
moving constant load was addressed using different solutionmethods: modal expansion
techniques [18, 40] and the moving-element method [35]. To study wave propagation in the
ground due to transition radiation, 2-Dmodels of a piecewise-homogeneous continuum
acted upon by a moving load [20, 21, 41, 42] as well as 3-Dmodels of the complete track/soil
system [27, 29, 30, 43] were analysed.

In this chapter, transition radiation is demonstrated on a system representative of a
railway track and its most important characteristics are described.Themotivation of this
chapter is not its novelty because most results in this chapter have already been presen-
ted in literature, but rather to give the reader an introduction to the transition radiation
phenomenon, which is beneficial for understanding following chapters. Nevertheless, the
current chapter presents some novelty, namely the analysis of the energy balance and its
derivation based on the equation ofmotion (presented in Section 2.4). A similar analysis has
previously been performed using a string onWinkler foundation by Vesnitskii andMetrikin
[16], while here an Euler–Bernoulli beam is used instead. In the following, a simplified
model of a railway track with a transition zone is formulated, the steady-state and transient
responses are derived and analysed, after which the analysis of the energy balance is presen-
ted. To focus the reader’s attention to the qualitative analysis of the transition radiation
phenomenon, the figures presented in this chaptermostly omit the x-, y-, and z-axis values.
The parameter values used in this chapter are given in Table 6.1 with kd,l = kA

d,l.

2.1. Model formulation
The systemwhich can demonstrate transition radiation in its purest form and is also repres-
entative of a railway track is the infinite Euler-Bernoulli beam resting onWinkler foundation
acted upon by a moving constant load (Fig. 2.1). The Winkler foundation has a jump in
stiffness at x = xtc (subscript tc stands for transition centre), dividing the infinite inhomo-
geneous domain into two semi-infinite homogeneous ones.The equation of motion of the
system reads

E I
∂̃4w

∂̃x4
+ρ ∂̃

2w

∂̃t 2
+kd(x)w =−F0δ(x − v t ), ∀x,∀t , (2.1)

w(x, t ) =
{

wl(x, t ), x ≤ xtc,

wr(x, t ), x ≥ xtc,
kd(x) =

{
kd,l, x < xtc,

kd,r, x ≥ xtc,
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Figure 2.1:Model schematics: infinite Euler–Bernoulli beam resting on a piecewise-homogeneousWinkler found-
ation, subject to a moving constant load.

where ∂̃
∂̃x
and ∂̃

∂̃t
represent generalized derivatives with respect to space and time, respect-

ively. Compared to the classical derivatives, the generalized ones can have discontinuities,
and are necessary in Eq. (2.1) due to the Dirac delta function δ(. . . ) on the right-hand side,
which is a generalized function [44]. E I and ρ are the bending stiffness andmass per unit
length of the beam, respectively, while kd,l and kd,r are the (homogeneous) foundation stiff-
nesses of the left and right semi-infinite domains, respectively. F0 and v are the magnitude
and the velocity of the moving load, while wl and wr represent the displacements of the
left and right semi-infinite domains, respectively.The space and time dependency of the
unknown displacements is omitted frommost expressions for brevity. Furthermore, the
use of both the≤ and≥ signs in the definition ofw(x, t ) emphasizes that there is continuity
in this quantity at the interface between the two domains (see below).

At the interface between the two domains, continuity in displacement and slope as
well as in shear force and bending moment is imposed. Furthermore, the displacements at
infinite distance from the moving load should not be infinite (they can be non-zero due to
the absence of material damping).The interface and boundary conditions thus read

wl(xtc, t ) = wr(xtc, t ), w ′
l (xtc, t ) = w ′

r(xtc, t ), (2.2)

w ′′
l (xtc, t ) = w ′′

r (xtc, t ), w ′′′
l (xtc, t ) = w ′′′

r (xtc, t ), (2.3)

lim
(x−v t )→−∞

wl(x, t ) <∞, lim
(x−v t )→∞

wr(x, t ) <∞, (2.4)

where primes denote classical partial derivatives with respect to x.
As the system is infinite and only locally inhomogeneous, the response is assumed to

be in the steady state before the load reaches the transition zone. Consequently, initial
conditions do not need to be formulated. Thus, Eqs. (2.1) to (2.4) constitute a complete
description of the current problem. In the next section, the steady-state solution is derived.
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2.2. Steady-state solution
In the limit case kd,l = kd,r = kd, the system described above becomes homogeneous and,
consequently, its solution is in the steady state for all timemoments. Although transition
radiation is a transient process, it is of importance to first introduce the steady-state solu-
tion, also referred to as the eigenfield, because it determines certain characteristics of the
transition radiation. This problem was first solved by Timoshenko [45] and many others
have reconsidered and extended the problem (e.g., [46–49] among others).The solution is
well-known, so only the characteristics important to this thesis are presented.

The equation of motion of the systemwith homogeneousWinkler foundation reads

E I
∂̃4w

∂̃x4
+ρ ∂̃

2w

∂̃t 2
+kdw =−F0δ(x − v t ), ∀x,∀t . (2.5)

To obtain the steady-state solution to Eq. (2.5), the infinite domain can be divided into two
semi-infinite ones, as follows:

w(x, t ) =
{

wb(x, t ), x ≤ v t ,

wf(x, t ), x ≥ v t ,
(2.6)

where wb and wf are the solutions behind and in front of the moving load, respectively. At
the interfaces between the two domains, continuity in displacement, slope, and bending
moment as well as balance of vertical forces is imposed. Furthermore, the displacements
at infinite distance from themoving load should not be infinite

(
similar to the conditions

imposed in Eq. (2.4)
)
. The interface and boundary conditions of the homogeneous system

thus read

wb(x = v t , t ) = wf(x = v t , t ), w ′
b(x = v t , t ) = w ′

f(x = v t , t ), (2.7)

w ′′
b(x = v t , t ) = w ′′

f (x = v t , t ), w ′′′
f (x = v t , t )−w ′′′

b (x = v t , t ) = F0

E I
, (2.8)

lim
(x−v t )→−∞

wb(x, t ) <∞, lim
(x−v t )→∞

wf(x, t ) <∞. (2.9)

The resulting equations of motion (of the domains behind and in front of the load)
are now homogeneous because the forcing has been transferred from the right-hand-side
of Eq. (2.5) to the interface condition expressing the vertical force equilibrium at x = v t .
Consequently, the solutions of the homogeneous equations of motion can be assumed in
the form of harmonic waves, as follows:

wh(x, t ) = Ahei(ωt−kx), h = {b, f}, (2.10)

whereω is the angular frequency and k the wavenumber of the harmonic wave. Substituting
Eq. (2.10) in the homogeneous equations ofmotion, the dispersion equation is obtained,which
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Figure 2.2:Dispersion curves (black) and the kinematic invariant for a sub-critical (blue), the critical (orange), and
a super-critical velocity (green).

reads
E I
ρ k4 −ω2 +ω2

co = 0, (2.11)

whereωco =√
kd/ρ is the cut-off frequency. To explicitly determine bothω and k, an addi-

tional equation is required; this comes in the form of the kinematic invariant that expresses
the relation between the wavenumber, frequency, and the velocity of the load. For this
system, its expression reads

ω= kv. (2.12)

From a physical perspective, the kinematic invariant ensures the phase equality of the
generatedwaves at the point of themoving load. Amore detailed derivation of the kinematic
invariant is presented in Appendix A.

Solving Eq. (2.11) together with Eq. (2.12) leads to four pairs (ω,k) = (
ωe

1−4,ke
1−4

)
, and

their nature depends on the load velocity. The superscript e is used to emphasize that these
quantities are solutions of the dispersion equation and kinematic invariant, and are no
longer more variables.The expressions of the four wavenumbers are given in Appendix B,
while the expression of the four frequencies can be obtained from Eq. (2.12).

The dispersion curves and the kinematic invariant are graphically represented in Fig.
2.2. For a velocity below the so-called critical velocity, there is no intersection between the
kinematic invariant and the dispersion curves leading to complex-valued (ωe,ke) pairs. In
this scenario, thewavedefined inEq. (2.10) is evanescent for every (ωe,ke)pair,meaning that
there is no energy radiation away from the load. For a super-critical velocity, the kinematic
invariant intersects the two dispersion curves at four locations giving rise to real-valued
(ωe,ke) pairs. In this scenario, all waves are propagating and energy is radiated away from
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the load. At the critical velocity, the kinematic invariant is tangential to the dispersion
curves resulting in repeated real-valued (ωe,ke) pairs. The repeated nature of the roots
is the mathematical condition for resonance (analogous to the single-degree-of-freedom
system). From a physical point of view, resonance occurs because energy is being radiated
at the critical velocity (real-valued pairs), but the group velocity (graphically represented
by the slope of the tangent to the dispersion curve at the point of intersection between
the kinematic invariant and the dispersion curves) of the radiated waves is equal to the
load velocity, meaning that the radiated waves cannot propagate away from the load.This
causes energy build-up leading to resonance.The expression of the critical velocity ccr of
this system reads [50]

ccr = 4

√
4kdE I

ρ2 . (2.13)

With the known pairs (ωe,ke), the solutions are given by the following expression:

wh(x, t ) = Ahe−ike
1 (x−v t )+Bhe−ike

2 (x−v t )+Che−ike
3 (x−v t )+Dhe−ike

4 (x−v t ), h = {b, f}. (2.14)

Itmust be emphasized that Eq. (2.14) is not valid for the scenario when v = ccr.The eight un-
known amplitudes are determined from the interface and boundary conditions.Throughout
this thesis, the wavenumbers of the eigenfield are chosen such that

Re(ke
1) > 0, Im(ke

1) ≤ 0, (2.15)

Re(ke
2) > 0, Im(ke

2) ≥ 0, (2.16)

Re(ke
3) < 0, Im(ke

3) ≥ 0, (2.17)

Re(ke
4) < 0, Im(ke

4) ≤ 0. (2.18)

Consequently, when applying the boundary conditions at infinite distance from the moving
load, the waves with ke

2 and ke
3 are admissible in the domain that extends to −∞ and the

waves with ke
1 and ke

4 are admissible in the domain that extends to+∞; this leads to Ab =
Db = Bf =Cf = 0. The other four amplitudes are determined from the interface conditions
Eqs. (2.7)–(2.8), and are presented in Appendix B.The eigenfield, thus, becomes

we(x, t ) =
{

Bbe−ike
2 (x−v t ) +Cbe−ike

3 (x−v t ), x < v t ,

Afe
−ike

1 (x−v t ) +Dfe
−ike

4 (x−v t ), x ≥ v t .
(2.19)

It must be noted that we in Eq. (2.19) is real-valued.
This thesis investigates mainly sub-critical velocities, therefore, only this scenario is

elaborated in the following. Fig. 2.3 presents the real and imaginary parts of thewavenumber
ke and the amplitude of one of the waves (i.e., Af) against the velocity of the load. (Just one
wavenumber and amplitude are presented because the other ones differ through just the
sign of the real or imaginary parts, and not through their magnitude).The imaginary part
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Figure 2.3:Thewavenumber (top left panel) and amplitude (top right panel) of the steady-state response against
the load velocity and a snap-shot of the eigenfield for two different sub-critical load velocities (bottom panel).

of the wavenumber determines the decay of the eigenfield with distance from the load.
As can be seen, the imaginary part of the wavenumber decreases with increasing velocity
meaning that the width of the eigenfield increases with increasing velocity.The real part
of the wavenumber dictates the wavelength of the eigenfield. For a small load velocity, the
wavelength is large, and together with the exponential decay of the eigenfield with distance
from the load (dictated by the imaginary part of the wavenumber), this leads to an eigenfield
that has a quasi-monotonic decrease away from the load (black line in bottom panel of Fig.
2.3). However, with increasing velocity, the wavelength decreases leading to a more wavy
eigenfield. Furthermore, as can be seen from the right panel of Fig. 2.3, the amplitude of
the eigenfield increases with increasing velocity, the increase beingmore pronounced above
v ≈ 0.75ccr; this is the velocity regime on which this thesis focuses.

The bottom panel in Fig. 2.3 presents a snap-shot of the eigenfield for different load
velocities.Thedisplacements field in the sub-critical velocity regimemoves togetherwith the
load and is unchanged in the reference frame thatmoveswith the load (i.e., ξ= x−v t ); this is
due to the fact that the (ωe,ke) pairs are complex-valued and there is nowave radiation away
from the load. It can be seen that at a larger velocity, the eigenfield is broader, more wavy
and has a significantly higher amplitude, confirming the observations made previously.

2.3. Transient solution
The response of the inhomogeneous system described by Eqs. (2.1)–(2.4) can be obtained
semi-analytically in various ways (e.g., [51]), but cannot be determined fully analytically. We
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choose to apply the Fourier transform* over time and represent the response as a summation
of wave modes because we consider this method to be most elegant for this problem.The
response obtained in the Fourier domain is analytical and the inverse transform is then
performed numerically.The equation of motion in the Fourier domain reads

w̃ ′′′′+k4(x)w̃ =− F0

E I v
e−iω x

v , (2.20)

k(x) =

kl = 4
√

−ρω2 +kd,l, x ≤ xtc,

kr = 4
√

−ρω2 +kd,r, x ≥ xtc,
(2.21)

where the tilde denotes the quantity in the Fourier domain, the overbar indicates that the
quantity is scaled by E I , andω ∈ (−∞,∞) is the Fourier-domain variable. To determine w̃

from Eq. (2.20), a particular solution is superimposed to the solution of the homogeneous
equation. The particular solutions w̃p,l and w̃p,r are sought for having the same spatial
distribution as the forcing and read

w̃p,l(x,ω) =− F0

E I

v3

ω4 −k4
l v4

e−iω x
v , x ≤ xtc, (2.22)

w̃p,r(x,ω) =− F0

E I

v3

ω4 −k4
r v4

e−iω x
v , x ≥ xtc. (2.23)

The particular solution w̃p,l is the frequency-domain eigenfield of a homogeneous system
with the properties of the left domain (and analogously for w̃p,r). In other words, evaluating
the inverse Fourier transformof the particular solution (as done through contour integration
in [49]) would lead to the eigenfield described in Section 2.2.The complete solutions to Eq.
(2.20) (including the solutions of the homogeneous equation) are given as follows:

w̃l(x,ω) = Ale
−iklx +Ble

iklx +Cle
klx +D le

−klx + w̃p,l(x,ω), x ≤ xtc, (2.24)

w̃r(x,ω) = Are−ikrx +Breikrx +Crekrx +Dre−krx + w̃p,r(x,ω), x ≥ xtc. (2.25)

The four branches of kh (where h = {l, r}) are all complex valued when ω is below the cut-
off frequency ωco,h = √

kd,h/ρ and when ω > ωco,h, there are two real-valued and two
imaginary-valued branches. Throughout this thesis, the branches of kh are chosen such
that the imaginary part is negative and the real part is positive. This choice leads to Al =
D l = Br =Cr = 0when the boundary conditions imposing a finite displacement at infinite
distance from the load are applied, leading to the following expression for the displacement:

w̃(x,ω) =
{

Ble
iklx +Cle

klx + w̃p,l(x,ω), x ≤ xtc,

Are−ikrx +Dre−krx + w̃p,r(x,ω), x ≥ xtc.
(2.26)

*Throughout this thesis we use e−iωt as the kernel for the forward transform and eiωt for the inverse transform.
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Figure 2.4:Snapshots of the displacement field at different timemoments for the systemwith a jump in foundation
stiffness; the vertical dashed line indicates the location of the jump in stiffness.

The remaining four amplitudes are determined from the interface conditions
(
Eqs. (2.2) and

(2.3)
)
.Their expressions are not given here for brevity, but can be obtained straightforwardly

by using a symbolic mathematical software (e.g., Maple or Mathematica). To obtain the
solution in the time domain, the inverse Fourier transform is applied numerically.

Fig. 2.4 presents the transient response in the time domain together with the eigenfield
(of an homogeneous system with the properties of the left domain) for comparison. Far
away from the transition zone, the two responses are practically identical (theoretically they
are identical only at t →−∞). When themoving load is close to the transition, the transient
response is distorted in comparison to the eigenfield. In the process of the load passing the
transition, waves are radiated; the most noticeable are propagating in negative x-direction,
although the wave radiation occurs in both directions. Furthermore, evanescent waves that
remain in the vicinity of the transition zone are also excited. It can also be observed that the
wave propagation still occurs even when the load has left the transition zone (provided that
the damping in the system is small).

For certain timemoments, amplification of the response can be observed in the vicinity
of the load, both downwards and upwards (e.g., the twomiddle panels in Fig. 2.4).This is the
amplification of stresses and strains that can be associated with the differential settlements
at transition zones

(
although Fig. 2.4 presents displacements, the force in the foundation

is obtained when multiplying the displacement by kd(x)
)
. The response amplification is

caused by the interference of the incoming eigenfield and the reflected wave-field at the
transition, referred to as the free field. Mathematically, the free field is nothing else than the
homogeneous solution

(
see Eq. (2.26)

)
that is necessary to satisfy the interface conditions. It

becomes obvious that the more pronounced the free field is compared to the eigenfield, the
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Figure 2.5: Snapshots of the eigenfield and free field in the left domain at different timemoments for the system
with a jump in foundation stiffness; the vertical dashed line indicates the location of the jump in stiffness.

larger the amplification (the amplification is always relative to the approaching eigenfield).
The two fields (eigenfield and free-field) are represented separately for the soft domain in
Fig. 2.5. The free-field is excited once the eigenfield is close enough to the jump in stiffness.
This implies that the broader the approaching eigenfield, the more interference between
the two fields, potentially leading to a larger zone over which the amplification occurs.

The left panel in Fig. 2.6 presents the displacement evaluated under the moving load
for two load velocities. As shown in the previous section, the eigenfield width increases
with increasing velocity (see bottom panel in Fig. 2.3). The wider eigenfield leads to a larger
zone over which the response amplification occurs, confirming the statement made in the
previous paragraph. Furthermore, the maximum amplification increases with increasing
velocity, as presented in Fig. 2.8 (blue lines).

Fig. 2.7 presents the amplitude spectra of the eigenfield (i.e., w̃p,l) and of the free field
(i.e., w̃ without w̃p,l) evaluated close to the jump in stiffness and far away to its left. It can
be seen that far away from the transition, the free field is non-zero only above the cut-off
frequency because the evanescent waves decay before reaching this location. Meanwhile,
the amplitude spectrum of the free field close to the transition is non-zero both below and
above the cut-off frequency of the soft domain; this shows that the transition radiation
process generates both evanescent and propagating waves. For a large load velocity, most of
the spectrum content in the near field is located above the cut-off frequency. Consequently,
quantities evaluated in the far field (e.g., energy flux) can be good indicators of the amp-
lification that occurs due to the transition. However, for lower velocities, there is content
both below and above the cut-off frequency meaning that analysing solely quantities in the
far field is not representative of the amplification that occurs in the near field. In this case,
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Figure 2.6:The transient response evaluated under themoving load in the soft-to-stiff scenario (left panel) and stiff-
to-soft one (top right panel).The stiff domain is represented through the grey background, while the horizontal
dashed lines indicate the maximum steady-state displacement in the soft domain.

other quantities (e.g., power input by the load) that include information about the near field
need to be included in the investigation.These quantities are addressed in Section 2.4.

Soft-to-stiff vs stiff-to-soft transition
Although the soft-to-stiff and stiff-to-soft transitions seem to poses a certain symmetry,
their responses are quite distinct. This has also been observed in field measurements where
the settlement profile was different in the two situations. In this sub-section, we investigate
the cause of the different behaviour between the soft-to-stiff and stiff-to-soft transitions.

Fig. 2.6 presents a comparison of the two transition scenarios.The displacement eval-
uated under the moving load is presented for a quasi-static load velocity and one close
to the critical velocity. To highlight the response amplification, the steady-state displace-
ment under the moving load in the soft domain is also presented through the horizontal
dashed lines; only the one in the soft domain is presented because we are interested in the
response amplification before (soft-to-stiff) and after (stiff-to-soft) the stiff zone. It can
be seen that for a relatively small load velocity, the results in the two scenarios are similar,
even though the amplification in the stiff-to-soft scenario is slightly larger than in the soft-
to-stiff one. More importantly, the amplification in both scenarios for the small velocity
is significantly lower compared to the large velocity. For the large velocity, the responses
in the two scenarios are different. In the soft-to-stiff scenario, the eigenfield travelling in
positive x-direction interferes with the free-field travelling in negative x-direction, leading
to the response under the moving load to oscillate with a high frequency. In the stiff-to-soft
scenario, both interfering fields (eigenfield and free field) travel in positive x-direction, and
for the large load velocity (v = 0.95ccr), they have similar travelling velocities.This leads to
their constructive interference to occur over a much larger distance (as seen in the different
domain length scales between the left and top panels), and to a low frequency oscillation
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Figure 2.7:The frequency spectra of the response for a high velocity (top panel; v = 0.95ccr) and lower velocity
(bottom panel; v = 0.7ccr). The near/far field corresponds to a location close to/far away from the jump in stiffness.

of the response under the moving load.This implies that, for a relatively large velocity, the
settlement in the soft-to-stiff scenario will occur close to the stiff zone and will have a small
wavelength, while the opposite is true for the stiff-to-soft scenario.

Although themaximumresponseamplification inboth scenarios is similar inmagnitude,
this is only the case for the system without material damping. Once damping is accounted
for in the foundation, the free field decays with distance from the transition.This causes
the amplification in the stiff-to-soft scenario, which occurs at a large distance from the
transition, to decrease considerably even when prescribing a small amount of damping.
This is shown in Fig. 2.8 that presents the maximum amplification in both scenarios versus
relative load velocity (v/ccr), for a small (top panel) and a large (bottom panel) amount
of damping.The addition of damping causes the maximum amplification in the stiff-to-
soft case to decrease at large relative velocities to values even smaller than at low relative
velocities, while the presence or amount of damping does not significantly influence the
amplification trend in the soft-to-stiff case (it does affect the magnitude, but not the trend).
It is important to note that, at low tomedium relative velocities, themaximumamplification
in the stiff-to-soft scenario can be larger than in the soft-to-stiff one, but the velocity range
over which this occurs decreases the higher the damping is.

To better understand the results presented in Figs. 2.6 and 2.8, we investigate each of
the two waves that compose the free field and their individual contribution to the response
amplification.We also study the influence of the foundation viscous damping on the two
waves.Theviscous foundationdamping is givenbyanadditional term (+cdẇ ) in the equation
of motion (Eq. 2.1), where the viscous damping coefficient cd is define through a damping
ratio ζ, which throughout this thesis is defined similarly to that of a single-degree-of-
freedom system, and reads

cd(x) = 2ζ
√
ρkd(x). (2.27)
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Figure 2.8:Themaximum amplification versus velocity of the moving load for a small amount (top panel) and a
large amount (bottom panel) of foundation damping for both soft-to-stiff and stiff-to-soft scenarios.

As can be seen, the damping coefficient in the two domain is chosen such that the damping
ratio is kept constant.

Figs. 2.9 and 2.10 present the individual waves in the time domain (i.e., the time-domain
counterparts of the free waves from Eq. (2.26)) in the soft-to-stiff and stiff-to-soft scenarios,
respectively. Because the maximum downward response amplification generally occurs
under the moving load, the waves are evaluated at x = v t . The left panels present the wave
with argument ±ikl,rx which we refer hereafter as the propagating wave, and the right
panels show the wave with argument±kl,rx referred to as the evanescent wave. Although
both waves have a continuous frequency spectrum meaning that both are evanescent at
frequencies under the cut-off one, we refer to them as aforementioned because one has
a stronger propagation component while the other has the opposite. Finally, these waves
are presented for three velocities (low, medium, and large relative velocity) and for varying
amount of foundation damping.The way to interpret these plots is to understand that each
wave in the left panel is superimposedwith its counterpart from the right panel to obtain the
full free field under the moving load; the full free field is superimposed with the eigenfield
(which has a constant value under the moving load) to obtain the full transient response.
Note that the downward response amplification is of interest throughout this analysis.

The soft-to-stiff scenario presented in Fig. 2.9 shows that for relatively low (top panels)
and medium (middle panels) velocities, the propagating wave enables the downward ampli-
fication while the evanescent wave reduces the amplification because it has mostly positive
values. For the large velocity (bottom panels), while both waves contribute to the amplifica-
tion, the propagating one has amuch larger overall contribution. Interestingly, the increase
of damping leads to a magnitude decrease of the evanescent wave (i.e., a smaller reduction
in the amplification) for the low andmedium relative velocities, while it does not cause a sig-



2

24 2. Transition radiation in a system representative of a railway track

0

2

4

·10−4

w
(x

=
v
t)

(m
)

v = 0.5ccr

0

2

4

·10−4

ζ = 0

ζ = 0.05

ζ = 0.1

ζ = 0.2

−2

0

2

4

6

·10−4

w
(x

=
v
t)

(m
)

v = 0.8ccr

0

2

4

6

·10−4

17 17.5 18 18.5 19
−1

0

1

2
·10−3

x (m)

w
(x

=
v
t)

(m
)

v = 0.95ccr

17 17.5 18 18.5 19
−1

0

1

2
·10−3

x (m)

Figure 2.9:The propagating (left panels) and evanescent (right panels) free waves evaluated at x = v t for different
values of the foundation viscous damping.The soft-to-stiff transition is presented and xtc = 19m.

nificant change to the propagating wave.This leads, in other words, to a more pronounced
amplificationwith increasing foundation damping, which is counter-intuitive. For the large
velocity, increasing the damping leads to a reduction in the downward displacement of both
the propagating and evanescent waves, and, thus, to a diminishing amplification. Finally, it
is interesting to note that increasing the damping leads to the maximum amplification to
shift closer to the stiff zone for all load velocities, but especially at large velocities.

The behaviour is considerably different in the stiff-to-soft scenario presented in Fig. 2.10.
At low relative velocity (top panels), both waves contribute to the amplification and their
downward maximum occurs at approximately the same location (i.e., they are in phase).
For medium velocity (middle panels), the two waves are out of phase. Close to the stiff
zone, the large upward displacement of the propagating wave cancels out the downward
displacement of the evanescent wave. Further away from the stiff zone, the evanescent wave
has decayed almost completely while the propagating one reaches its maximum downward
displacement, thus governing the downward amplification. At large velocity and non-zero
damping, the propagating wave decreases monotonically from positive values to zero (even
for small damping ratios)meaning that it damps out before reaching adownwardmaximum,
and although the evanescent wave has a downward maximum, it is cancelled out by the
much larger magnitude of the propagating wave. It is important to remember that the
wave is evaluated under the moving load (x = v t ), and at the large velocity considered
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Figure 2.10:The propagating (left panels) and evanescent (right panels) free waves evaluated at x = v t for different
values of the foundation viscous damping.The stiff-to-soft transition is presented and xtc = 0m.

(v = 0.95ccr), the reference framemoves almost together with the wave (both the load and
the wave propagate in positive x-direction in the stiff-to-soft scenario). This means that
if the reference frame moves together with the crest of the wave, for example, we would
solely observe a decrease in amplitude due to dispersion and damping, explaining the lack
of oscillations seen in the propagating wave. Finally, from the damping point of view, it can
be seen that its increase has a positive effect on reducing the amplification for all velocity
regimes.

The analysis of the effect of individual waves on the amplification under themoving load
has explainedmore in depth the results obtained in Figs. 2.6 and 2.8. Together with those
results, it becomes clear that the characteristics of the transient process are significantly dif-
ferent between the soft-to-stiff and stiff-to-soft transitions.The wave types that contribute
positively and negatively to the downward amplification are different in the two scenarios
and increasing the foundation damping can have negative effects on the amplification in
the soft-to-stiff case while having a beneficial effect in the stiff-to-soft case.This strongly
suggests that for a mitigation measure to be efficient, it should be designed differently for
the two types of transition.
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2.4. Energy analysis
In this section, the transition radiation process is analysed from an energy perspective and
the exchange of energy between different system components is investigated. To this end,
the equation of motion

(
Eq. (2.1)

)
is rewritten as follows:

E I
∂̃4w

∂̃x4
+ρ ∂̃

2w

∂̃t 2
+kd,lw H(xtc −x)+kd,rw H(x −xtc) =−F0δ(x − v t ), (2.28)

where H(. . . ) is the Heaviside function. To obtain an equation expressing the energy bal-
ance from one that expresses equilibrium of forces per unit length, the whole equation is
multiplied by the velocity and integrated over space and time. We firstly multiply by the
velocity ẇ and integrate over space to obtain the equilibrium of power, which, after some
mathematical manipulations, reads

E I
(
w ′′′ẇ −w ′′ẇ ′)∣∣∣x→+∞

x→−∞+
∫ +∞

−∞
∂

∂t

1

2

(
E I w ′′2 +ρẇ2 +kd,lw

2H(xtc −x)

+kd,rw2H(x −xtc)
)
dx =−F0

∂w

∂t

∣∣∣
x=v t

,

(2.29)

where the overdots represent classical derivatives with respect to time. To obtain the equa-
tion expressing the energy balance, Eq. (2.29) is integrated over time, as follows:

E I
∫ +∞

−∞
(
w ′′′ẇ −w ′′ẇ ′)∣∣∣x→+∞

x→−∞dt +
∫ +∞

−∞
1

2

(
E I w ′′2 +ρẇ2 +kd,lw

2H(xtc −x)

+kd,rw2H(x −xtc)
)∣∣∣t→+∞

t→−∞dx =−F0

∫ +∞

−∞
∂w

∂t

∣∣∣
x=v t

dt .

(2.30)

The right-hand side term represents the energy input E in by the moving load and can
further be decomposed into two components. To this end, a variable change is performed
by introducing a coordinate ξ= x −v t moving with the load.The resulting expression reads

E in = E hf + (
W F

l −W F
r

)
, (2.31)

E hf = F0v
∫ +∞

−∞
∂w

∂ξ

∣∣∣∣
ξ=0

dt , (2.32)

W F
l = F0w(ξ= 0)

∣∣∣
t→−∞, W F

r = F0w(ξ= 0)
∣∣∣

t→+∞, (2.33)

where E hf is the energy introduced into the system by the horizontal force ensuring the con-
stant velocity of the moving load (although not explicitly prescribed, this force is implicitly
assumed to act on the system if a constant load velocity is imposed [16]) and∆W F =W F

r −W F
l

is the work done by the moving load at t →+∞ and t →−∞.
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To emphasize the radiation energy, Eq. (2.30) is rewritten as follows:

E rad
l +E rad

r = E hf + (
W F

l −W F
r

)+ (
E e

l −E e
r

)
, (2.34)

E rad
l =−E I

∫ +∞

−∞
(
w ′′′ẇ −w ′′ẇ ′)∣∣∣

x→−∞dt , (2.35)

E rad
r = E I

∫ +∞

−∞
(
w ′′′ẇ −w ′′ẇ ′)∣∣∣

x→+∞dt , (2.36)

E e
l =

∫ +∞

−∞
1

2

(
E I w ′′2 +ρẇ2 +kd,lw

2
)∣∣∣

t→−∞dx, (2.37)

E e
r =

∫ +∞

−∞
1

2

(
E I w ′′2 +ρẇ2 +kd,rw2

)∣∣∣
t→+∞dx, (2.38)

where E rad
l and E rad

r represent the energy-flux through cross-sections at x → −∞ and
x →+∞, respectively, and ∆E e = E e

r −E e
l is the difference in eigenfield energy between

t →+∞ and t →−∞. Eq. (2.34) expresses the energy balance in the system and shows that
the transition radiation energy E rad = E rad

l +E rad
r is composed of the difference in eigenfield

energy between the right and left domains, the work done by the moving load to develop
these eigenfields (at t →±∞), and the energy spent by the horizontal force to maintain the
constant velocity of the moving load. Next, we take each term separately and investigate its
influence on the transition radiation energy.

Eigenfield energy and the work done by the moving load
The energy of the eigenfield can be obtained by substituting Eq. (2.19) in Eq. (2.37) and
evaluating the integral, which can be done analytically. Considering the current model, the
eigenfield energy depends on four system parameters, namely v, kd, ρ, and E I . Here, we
focus on the variation of the eigenfield energy with respect to v and kd. Although ρ and E I

can vary in the transition zone, their variation is known less than the variation of kd.
The left panel in Fig. 2.11 presents the variation of the eigenfield energy with increasing

foundation stiffness. It must be emphasized that the load velocity is chosen such that the
relative velocity v = 0.5ccr is maintained. This is done to eliminate the influence of the
different relative velocity on the eigenfield energy, thus focusing only on the influence of
the foundation stiffness. Consequently, v changes with each value of kd

(
see Eq. (2.13)

)
.

Results show that the higher the foundation stiffness, the lower the energy of the eigenfield;
in the limit of the foundation stiffness going to infinity, the response is trivial and does
not contain energy. Also, the nonlinear dependency of the eigenfield energy on foundation
stiffness means that the contribution ∆E e to the radiation energy does not depend only on
the difference in stiffness ∆kd = kd,r −kd,l, but also on the magnitudes of kd,r and kd,l. A
better indicator of ∆E e is the stiffness ratio p = kd,r

kd,l
, and is, therefore, used throughout the

thesis.
The influence of the relative velocity on the eigenfield energy is presented in the right

panel of Fig. 2.11. It can be seen that the closer it is to the critical one, the larger the energy



2

28 2. Transition radiation in a system representative of a railway track

kd

E
e

0 0.2 0.4 0.6 0.8 1

v/ccr

Figure 2.11:The energy of the eigenfield for different spring stiffness (left panel) and different load velocity (right
panel); the load velocity in the left panel is different for each value of the spring stiffness such that the relative
velocity v = 0.5ccr is maintained.

in the eigenfield.The energy tends to infinity as the load velocity tends to the critical one
because resonance occurs at v = ccr and the response at resonance is infinite due to the lack
of damping.

Fig. 2.12 presents the difference in eigenfield energy∆E e for different load velocities and
stiffness ratios.The absolute value of ∆E e is presented in Fig. 2.12 because its sign depends
if the transition in stiffness is soft-to-stiff or stiff-to-soft. In the soft-to-stiff scenario,
−∆E e

(
as it appears on the right-hand side of the energy balance equation, Eq. (2.34)

)
has

a positive value while for the stiff-to-soft it has a negative value. This means that in the
soft-to-stiff scenario, the difference in eigenfield energy adds to the radiated energy while
in the stiff-to-soft scenario, the opposite is true.

The difference in eigenfield energy is influenced by two factors: (i) the relative velocity
v

ccr
changes because v is constant while ccr changes with the change in foundation stiffness,

and (ii) the stiffness ratio. At low relative velocities, the main contribution to ∆E e comes
from the stiffness ratio because the response is quasi-static in both left and right domains.
As the relative velocity increases, the difference in eigenfield energy increases significantly,
especially as the load velocity approaches the critical one. At large relative velocities (relative
to the critical velocity in the left domain ccr,l), ∆E e is dominated by the change in relative
velocity when the load passes the transition.

As for the work ∆W F done by the load, one can verify that it has qualitatively the same
behaviour as the difference in eigenfield energy.Therefore, for brevity, these results are not
presented here.

Energy input from the horizontal force
The existence of a horizontal force can seem controversial because there is no explicit hori-
zontal force in the system described by Eq. (2.1). However, by prescribing a constant load
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Figure2.13:Thepower input by the horizontal force in the soft-to-stiff scenario; the horizontal dashed line indicates
the location of the jump in stiffness.

velocity, the horizontal force is implicitly imposed to maintain the constant velocity of the
load [16].The energy input by this force represents the energy a train (or other vehicle) needs
to spend to maintain its constant velocity.

Fig. 2.13 presents the power input by the horizontal force as it passes through the trans-
ition zone. Far away from the transition zone where the response is in the steady state, the
power input is zero because, in the absence of damping, there is nomechanism to absorb
energy. As the load passes through the transition zone, the power input fluctuates. It can be
seen that at some locations it introduces power into the system (positive power input) and
at other it takes away power from the system (negative power input). Also, the maximum
power input into the system seems to occur right before the jump in stiffness where also
the maximum response amplification occurs.

Fig. 2.14 presents the energy input (the power input integrated over time) by the hori-
zontal force for different load velocities and different stiffness ratios. In the soft-to-stiff
scenario, the energy input for most velocities and stiffness ratios is negative, meaning that
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Figure 2.14:The energy input by the horizontal force versus load velocity for different stiffness ratios; soft-to-stiff
scenario (left panel) and stiff-to-soft scenario (right panel). In the right panel, the green and red lines overlap.

the energy goes from the structure to the load, and not the other way around, which is, to
some degree, counter intuitive. This can be explained by the fact that in the soft-to-stiff
scenario, the response goes from high-energy state (soft domain) to low-energy state (stiff
domain); part of the difference in eigenfield energy is radiated (transition radiation), but
part goes back to the load. Fig. 2.14 shows that the higher the velocity, meaning a larger
difference in eigenfield energy (see Fig. 2.12), the more energy goes back to the load (except
for very high stiffness ratios). To conclude, for most large load velocities and realistic stiff-
ness ratio (e.g., 1-5), the energy input from the horizontal force in the soft-to-stiff scenario
is negative; this means that instead of adding to the energy radiated, the horizontal force
takes away energy.The opposite is true for the stiff-to-soft scenario where the horizontal
force needs to input energy in the system to develop the high-energy eigenfield.The fact
that the energy input by the horizontal force is always larger for the stiff-to-soft case is
demonstrated in the next section.

Energy radiation
The energy radiated is the energy of the free field that passes the cross-sections at x →±∞.
At this location, the free field and eigenfield are completely separated, allowing us to use
the free-field quantities in Eqs. (2.35) and (2.36). To investigate the frequencies present in
the radiation field, the power spectral density P̃ rad of the radiated field is investigated. Its
expression can be derived from the energy of the radiated field

(
Eqs. (2.35) and (2.36)

)
as

follows [16, 17, 20]

E rad
l =−E I

∫ +∞

−∞
(
w ′′′

f ẇf −w ′′
f ẇ ′

f

)∣∣∣
x→−∞dt

=−E I

π

∫ ∞

0
Re

(
w̃ ′′′

f ṽ∗
f − w̃ ′′

f ṽ∗′
f

)∣∣∣
x→−∞dω,

(2.39)
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Figure 2.15:The power spectral density of the radiation for the soft-to-stiff scenario for v = 0.7ccr,l (top panel) and
v = 0.95ccr,l (bottom panel).

where ṽf = iωw̃f is the Fourier-domain velocity, ∗ represents the complex-conjugate of
the quantity, and subscript f represents the free-field quantity.The expression under the
integral is the power spectral density.

Fig. 2.15 presents the power spectral density of the radiated field to the left and to the
right. It can be seen that, as in Fig. 2.7, there is no energy content below the corresponding
cut-off frequency of each domain because wave propagation does not occur below this
frequency and no energy reaches the cross-sections at x →±∞. The energy radiated to
the left drops significantly above the cut-off frequency of the right domain because energy
transmission into the right domain can occur above this frequency and, consequently, less
energy is reflected to the left domain. This shows that the energy of the free field in the
left domain is mostly composed of frequencies between the cut-off frequencies of the two
domains. Furthermore, it can be seen that the radiation in the soft domain is stronger than
in the stiff domain, but this is not always the case as found by van Dalen et al. [20]. If most
energy content of the approaching eigenfield lies below the cut-off frequency of the stiff
domain, thenmost energy is radiated in the soft domain. However, for high velocities and
low stiffness ratios, most energy content of the eigenfield is above both cut-off frequencies
(see bottom panel of Fig. 2.15). This can result in most energy being radiated in the stiff
domain, as can be seen in the bottom left panel of Fig. 2.16.

Fig. 2.16 presents the energy radiated for different stiffness ratios. In the soft-to-stiff
scenario (left panels), it can be seen that for a relatively low velocity (v = 0.7ccr,l), the energy
radiated in the soft zone is larger than the one in the stiff zone for all stiffness ratios.
However, for a high velocity (v = 0.95ccr,l) and low stiffness ratios, the radiation in the stiff
zone is larger and can be explained using the same rationale as in the previous paragraph.
Nonetheless, once the stiffness ratio increases, the radiation in the soft zone becomes
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Figure 2.16:The energy radiated for different stiffness ratios in the soft-to-stiff (left panels) and stiff-to-soft (right
panels) scenarios for v = 0.7ccr,l (top panels) and v = 0.95ccr,l (bottom panels); note that the vertical scale of the
left and right panels are the same.

dominant. When it comes to the stiff-to-soft scenario (right panels), almost all the energy
radiated is in the soft domain irrespective of load velocity and stiffness ratio.

It is interesting to note that the energy radiation has very similar magnitudes in both
the soft-to-stiff and stiff-to-soft scenarios. After a closer inspection, it seems that the total
energy radiated is invariant for the two scenarios (i.e., soft-to-stiff and stiff-to-soft).This
is shown in Fig. 2.17, where the relative difference in radiated energy between the two
scenarios (relative to the energy radiated in the soft-to-stiff scenario) is almost null; the
small values are caused by numerical integration and an extremely small damping added
to the foundation.This result means that the free-field propagating waves carry the same
amount of energy in both scenarios, which is unexpected (at least for the author).

Since the total radiated energy E rad
t = E rad

l +E rad
r is invariant for the two scenarios, and

∆E e as well as ∆W F differ only in sign (not in magnitude) between the two scenarios, the
following relations can be written for the energy input by the horizontal force:

E hf
1 = E rad

t −|∆E e|− |∆W F|, (2.40)

E hf
2 = E rad

t +|∆E e|+ |∆W F|, (2.41)

where subscripts 1 and 2 stand for soft-to-stiff and stiff-to-soft, respectively. It is clear from
Eq. (2.41) that the energy input by the horizontal force in the stiff-to-soft scenario is always
greater than the one in the soft-to-stiff scenario, as indicated in the previous section.
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2.5. Conclusions
The goal of this chapter was to offer the reader an introduction to the transition radiation
phenomenon and present some of its important characteristics that are referred to in next
chapters. To this end, a simplified model of a railway track with a transition zone was
formulated; more specifically, the model consists of an Euler–Bernoulli beam resting on
aWinkler foundation with a piecewise-homogeneous stiffness in space, acted upon by a
moving constant load.

It was shown that the response amplification at transition zones is caused by the inter-
ference between the steady-state field (eigenfield) and the free field generated during the
transition process. Consequently, themore pronounced the free field compared to the eigen-
field, the larger the resulting amplification.The frequency spectrum of the free field showed
that, depending on the load velocity, the evanescent waves excited during the transition
radiation process can have a strong influence on the response amplification and, therefore,
the investigation of the quantities in the far field should be supplemented with ones from
the near field.

The different behaviour of the system in the soft-to-stiff and stiff-to-soft scenarios
was also investigated in depth. For the soft-to-stiff transition, the response amplification
has been observed to be significant at load velocities between 75% and 100% of the critical
one, and it increases considerably as the load velocity approaches the critical one. Also, the
broader the approaching eigenfield (which occurs with increasing velocity of the load) the
larger the zone over which the amplification occurs. For the stiff-to-soft transition, the
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strongest response amplification occurs at lower velocities than for the soft-to-stiff ones,
namely between 50% and 80% of the critical velocity, after which the amplification decreases.
To understand the causes of these differences, the individual waves composing the free field
have been studied. It was shown that the waves contributing positively or negatively to the
response amplification are different between the two scenarios. Furthermore, the increase
in foundation damping can have negative effects on the response amplification in the soft-
to-stiff case (which is counter intuitive) while having a beneficial effect in the stiff-to-soft
case.These results strongly suggests that for a mitigation measure to be efficient, it should
be designed differently for the two types of transition.

The analysis of the energy balance showed that the transition radiation energy is com-
posed of the difference in eigenfield energy between the right and left domains, the work
done by themoving load to develop these eigenfields, and the energy input by the horizontal
force that maintains the constant velocity of the moving load. It was shown that the max-
imum positive power input by the horizontal force occurs at the same location where the
maximum response amplification is observed, suggesting a link betweenmaximum power
input and degradation. Furthermore, results show that, in the soft-to-stiff scenario, for
most large load velocities and realistic stiffness ratio, the energy input from the horizontal
force is negative meaning that it takes away energy from the system.The opposite is true for
the stiff-to-soft scenario where the horizontal force needs to input energy in the system to
develop the high-energy eigenfield.When it comes to the transition radiation energy, the
spectral energy density in each domain lies above the cut-off frequency of the corresponding
domain. Furthermore, in the left (soft) domain, the majority of the spectral energy density
lies below the cut-off frequency of the right (stiff) domain (i.e., it lies between the cut-off
frequencies of the two domains). It was also shown that for relatively large velocities and
low stiffness ratios, the transition radiation into the stiff domain is more energetic, while
for all other cases the one into the soft domain is dominating. Finally, results show that the
total energy radiated in the soft-to-stiff and stiff-to-soft scenarios is invariant, result which
was unexpected.
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The great menace to progress is not ignorance, but illusion of knowledge.

Daniel Boorstin

T
Themodel formulated in Chapter 2, namely an Euler-Bernoulli beam onWinkler foundation
(EBW), is a phenomenological model. Its aim is to accurately represent one phenomenon,
namely transition radiation (and consequently the response amplification at transition
zones), while neglecting others. The parameter values in a phenomenological model are
chosen according to the phenomenon it represents. For example, depending on the phe-
nomenon of interest, the beam’s mass in the EBWmodel can represent the mass of the
rail (e.g., in problems where noise emission is of interest [52]), it can represent the mass
of the rail and sleepers (e.g., modelling the system response to high-frequency excitation
cause by rail corrugation [53]), or the mass of the whole system (including soil) activated by
the vehicle. Consequently, the question arises what values should the parameters have to
accurately represent transition radiation?

In literature, studies employing 1-D phenomenological models that investigate the
behaviour of railway tracks at transition zones use small alterations of the EBWmodel [10,
19, 25, 35] as well asmodels withmultiple layers [13, 22, 54].The values of parameters used in
these studies vary significantly (depending on the scenario beingmodelled), but there is one

35
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common feature in most studies.The load velocity is chosen as the realistic train velocity
while the critical velocity of the model is not explicitly tuned to match the critical velocity in
the field.This could be problematic since theWinkler foundation is known to significantly
overestimate the critical velocity of the railway track, and as seen in Chapter 2, transition
radiation and the response amplification at transition zones is strongly influenced by the
v/ccr ratio.

From Eq. (2.13), it is clear that the critical velocity depends on the bending stiffness E I ,
support stiffness kd, and mass ρ. While E I is mostly given by the rail, and many studies
have investigated the values to be attributed to kd, the choice of value for the mass per unit
length of the beam is less clear. If one chooses realistic values for E I and kd (see Table 4.1
for the values), and represents the mass of the rail and of the sleepers through ρ (as done
by Grassie et al. [53]; the values is given in Table 4.1), the critical velocity is ccr ≈ 410 m/s
(i.e., 1475 km/h).This is much higher than themeasured critical velocity of railway tracks
in areas with soft soils, where the so-called Rayleigh wave velocity (which usually is the
critical velocity) can be, in extreme cases, as low as 40–50m/s (i.e., 150–180 km/h) [33, 55].
Therefore, choosing a realistic value for the load velocity (e.g., 100–200 km/h) together with
theWinklermodel that overestimates the critical velocity will lead to a quasi-static response
equivalent to the train velocity of 20 km/h on a track with realistic minimum critical velocity
of 180 km/h.This combination can lead to wrong conclusions.

The reason why theWinkler model overestimates the critical velocity is that it neglects
the part of the supporting structure mass (ballast, sub-ballast, soil, etc.) activated by the
vehicle. Models in literature that consider multiple layers of masses [13, 22, 54], although
accurately representing the critical velocity is not their aim, do predict muchmore realistic
critical velocities. However, the critical velocity can also be tuned to match the measured
ones in the EBWmodel by artificially increasing the beam’s mass. Yet another alternative
is to keep the values unchanged and consider a load velocity that leads to a realistic v/ccr

ratio (i.e., artificially increase load velocity). This chapter compares these three modelling
choices and investigates their effect on the response when it comes to model transition
radiation and response amplification at transition zones.*The structure of this chapter is
similar to the one in the previous chapter. Firstly, the two-layer model is formulated and
the steady-state and transient responses are derived.Then, the three models are compared
in terms of dispersion curves, frequency spectra of responses, time-domain responses, and
energy associated to the transition process.

3.1. Model formulation and solution
Themodel formulated in this section is a two-layer (TL)model. It consists of an infinite Euler-
Bernoulli beamwith bending stiffness E I andmass per unit length ρt and a continuously
distributed layer of mass per unit length ρb (the layer of distributed mass can also be seen

*Part of this chapter is based on the MSc thesis of Bilal Ouchene [56] supervised by the author.
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Figure 3.1:Model schematics of the two-layer model.The top layer is the Euler-Bernoulli beamwhile the bottom
layer is a distributed mass layer.

as a beam without bending stiffness). The two are connected through a layer of springs
with stiffness kd,t, while the layer of distributed mass is resting on aWinkler foundation of
stiffness kd,b. (The subscripts t and b stand for top and bottom.) As in Chapter 2, there is a
jump in stiffness at x = xtc, in both layers of springs.The system is depicted in Fig. 3.1 and
its equations of motion read

E I
∂̃4w

∂̃x4
+ρt

∂̃2w

∂̃t 2
+kd,t(x)(w −u) =−F0δ(x − v t ), (3.1)

ρb
∂̃2u

∂̃t 2
+kd,t(x)(u −w)+kd,b(x)u = 0, (3.2)

w(x, t ) =
{

wl(x, t ), x ≤ xtc,

wr(x, t ), x ≥ xtc,
u(x, t ) =

{
ul(x, t ), x ≤ xtc,

ur(x, t ), x ≥ xtc,

kd,t(x) =
{

kd,t,l, x < xtc,

kd,t,r, x ≥ xtc,
kd,b(x) =

{
kd,b,l, x < xtc,

kd,b,r, x ≥ xtc,

where w and u are the displacements of the beam and of the mass layer, respectively.
The interface conditions reveal a particularity of the considered system. On the one

hand, the transient problem requires the same interface conditions x = xtc as in Section
2.1, namely continuity in displacement and slope as well as in shear force and bending
moment (Eqs. (2.2) and (2.3)). Furthermore, the conditions applied to the beam at infinite
distance from themoving load are also the same as in Section 2.1 (Eq. (2.4)). For the layer
of mass, no interface or boundary conditions are imposed since, not having bending or
shear stiffness, it does not to allow for direct transfer of information between neighbouring
cross-sections; i.e., each distinct cross-section of the mass layer is coupled to other cross-
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sections only through the beam, so satisfying the beam’s interface and boundary conditions
is sufficient for the transient problem. On the other hand, to determine the eigenfield
(i.e., homogeneous system) using the approach from Section 2.2, six interface conditions
are required at x = v t (two additional equations to Eqs. (2.7) and (2.8)). The additional
interface conditions at x = v t are continuity in displacement and slope of the mass layer.
It is important to emphasize that there is no inconsistency since the two sets of interface
conditions are distinct, one expresses conditions at x = v t for a homogeneous system
and the other expresses conditions at x = xtc for an inhomogeneous system.The different
number of interface conditions originates from the fact that the considered system allows,
as shown in Sections 3.2 and 3.3, for four free-field waves and for six eigenfield waves.This
particularity vanishes once bending or shear stiffness is attributed to the mass layer.

Similar to the situation in Section 3.1, the initial conditions donot influence the response
in the vicinity of the transition zone.Therefore, Eqs. (3.1) and (3.2) together with Eqs. (2.2)–
(2.4) constitute a complete description of the problem. Next, the steady-state and transient
responses are derived and investigated.

3.2. Steady-state response
When the two layers of springs have constant stiffness throughout the infinite domain,
the model is homogeneous and the response to the moving load is in the steady state.The
characteristics of the steady-state solution, as seen in Chapter 2, help in understanding the
transient response. Consequently, the steady-state response is derived first.The analysis is
similar to the one in the work of Erofeev et al. [57], where they have used a string instead of
a beam.

To obtain the solution in this scenario, we use the same approach described in Section
2.2, which is to divide the infinite domain into two semi-infinite ones, namely behind and
in front of the moving load. As in Section 2.2, the solutions of the homogeneous equations
of motion can be assumed in the form of harmonic waves, as follows:

wh(x, t ) = Ahei(ωt−kx), uh(x, t ) = Bhei(ωt−kx), h = {b, f}, (3.3)

where subscripts b and f stand for behind and front, respectively. After substituting the
assumed solutions in the equations of motion, in order to obtain non-trivial solutions, the
determinant of the systemmatrix is set to zero, resulting in the dispersion equation of the
system:

E I k4 −ρtω
2 +kd,t −

k2
d,t

−ρbω2 +kd,t +kd,b
= 0. (3.4)

The dispersion curves are graphically presented in Fig. 3.2.The two-layer system has four
dispersion curves (two for positive frequencies and two for negative ones; Fig. 3.2 presents
only the curves for positive frequencies), unlike the beam on elastic foundation which has
two dispersion curves.The additional curves appear because the dispersion equation has a
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Figure 3.2:The dispersion curves (black lines) and the possible kinematic invariants that lead to critical velocities
(orange, blue, and green lines) in the two-layer system.The parameter values are chosen such that there are three
critical velocities in the left panel and only one critical velocity in the right panel.

term proportional toω4, while in the previous case the highest power ofω in the dispersion
equation is two. The lower dispersion branch tends to a flat plateau (finite value of ω) as
k increases. This is a consequence of not attributing any bending and/or shear stiffness
to the additional mass layer, which causes its reaction to be purely local (similar to the
Winkler model). Once the layer has non-zero bending and/or shear stiffness, the lower
dispersion branch does not any more tend to a flat plateau, but increases with increasing k

(e.g., [58]). The flat plateau of the lower branch leads to this system always having at least
one intersection between the kinematic invariant and the dispersion curves, meaning that
for any velocity different from zero, there is always one propagating wave.This outcome is
an artefact of this system and does not have any physical root. Nonetheless, the amplitude
of this propagating wave is generally small compared to the other waves and does not
significantly influence the response.

Fig. 3.2 presents two qualitatively different scenarios; one with a low value of the addi-
tionalmass layer (left panel), andonewith ahigh value of the samequantity (right panel).The
qualitatively different behaviour of the two scenarios lies in the amount of critical velocities
they present. The one with low additional mass has three critical velocities (velocities at
which the kinematic invariant is tangential to the dispersion curves), while the scenariowith
high additional mass presents only one.This is caused by the shape of the lower dispersion
curve and is elaborated in the next few paragraphs.

Substituting the kinematic invariant, Eq. (2.12), into the dispersion equation, a poly-
nomial of order six in k is obtained. Compared to the system in Chapter 2 (which has a
polynomial of order four, see Eq. (2.11) together with Eq. (2.12)), the systemwith an addi-
tionalmass layer has two additional solutions for thewavenumber,meaning that its solution
is composed of six waves instead of four. Similar to the classical system, the type of waves
in the system with the additional mass layer depends on the velocity of the load. Unlike the
classical system, the nature of the waves in the current system also depends on the value of
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the additional mass (as hinted from the two scenarios presented in Fig. 3.2). To determine
the types of waves, we first need to solve the system of equations consisting of the dispersion
equation and the kinematic invariant for k. The polynomial of order six can be reduced to a
polynomial of order three by making the substitution y = k2, and the resulting polynomial
reads

ay3 +by2 + c y +d = 0, (3.5)

a =−E I v2ρb, b = v4ρtρb +E I (kd,t +kd,b), (3.6)

c =−v2((ρt +ρb)kd,t +kd,bρt
)
, d = kd,tkd,b. (3.7)

The nature of the roots depends on the sign of the discriminantD of this polynomial. If the
discriminant is positive, all roots y are distinct and real-valued, meaning that the kinematic
invariant intersects the dispersion curves at three distinct locations. If the discriminant is
negative, one root is real-valued and the other two are complex conjugates, meaning that
the kinematic invariant intersects the dispersion curves at only one location.This change in
the nature of the roots marked by the change in sign of the discriminant, marks the change
from sub- to super-critical velocity regime (i.e., sub-critical regime is marked by negative
discriminant while the super-critical one is marked by positive discriminant). Although in
this system there always is one propagating wave, we do not consider this as a super-critical
regime because, then, the critical velocity would be 0. As was discussed above, this is an
anomaly of this system.

The boundary between the two regimes lies atD = 0. Fig. 3.3 presents the position of this
boundary in the v and ρb space. In the limit of ρb → 0, the system is equivalent to a beam
onWinkler foundation with the equivalent stiffness of kd,t and kd,b assembled in series.The
critical velocity in this limit case is given by Eq. (2.13) with the appropriate parameter values
and is represented in Fig. 3.3 by ccr,0. In the limit of ρb →∞, the system is equivalent to
a beam onWinkler foundation with stiffness kd,t because it would require infinite energy
to mobilize the infinite inertia of the mass layer. Also in this limit case, the critical velocity
ccr,∞ is given by Eq. (2.13). It is obvious that ccr,∞ ≥ ccr,0 because the equivalent stiffness of
two springs in series is always smaller than or equal to the stiffness of one of them. Fig. 3.3
also shows that, like in Fig. 3.2, depending on the value of ρb, there is one scenario in which
three critical velocities are observed, and one in which there is only one critical velocity.
The transition between these two distinct scenarios occurs at ρb = ρb,cr, situation in which
there are two critical velocities. It can be seen that above ρb,cr, the addition of themass layer
leads to a slight increase in the critical velocity of the system compared to that of the beam
onWinkler foundation (i.e., ccr,∞), a finding which is counter-intuitive. Since the purpose
of the additional mass in this chapter is to lower the critical velocity, we focus on the values
of ρb < ρb,cr.

Once the wavenumbers ke
n and the corresponding eigenvectors qe

n (where n = 1, . . . ,6)
are determined from the dispersion equation

(
Eq. (3.4)

)
with the kinematic invariant substi-
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Figure 3.3:The curves where the discriminant of the dispersion equation (with the kinematic invariant substituted)
is zero.

tuted, the 12 unknown amplitudes need to be determined from the interface and boundary
conditions.

Since we limit our investigation to sub-critical velocities and to ρb < ρb,cr, it means
that there are four complex-valued wavenumbers and two real-valued ones in each of the
domains in front and behind the moving load. Eq. (2.9) eliminates two waves out of the
four corresponding to the complex-valued wavenumbers in each domain. However, when it
comes to the waves corresponding to the two real-valued wavenumbers, the choice is not
straightforward. The two propagating waves have a very small group velocity (the group
velocity is given by the tangent to the dispersion curve at the location of the intersection
with the kinematic invariant) because the intersection between the kinematic invariant and
lower dispersion branch occurs at locations where the dispersion curve is quite flat. Also,
one wave propagates in positive x-direction while the other in negative x-direction. When
it comes to the domain in front of the load, the wave propagating in negative x-direction is
eliminated because nothing can propagate from −∞, while also the wave propagating in
positive x-direction is eliminated because its group velocity is smaller than the load velocity,
thus it cannot exist in front of the load.The domain behind the load allows for both waves
to exist.Therefore, the domain behind the load has four waves (two propagating and two
evanescent), while the domain in front of the load has two evanescent waves.The solutions
read

we(x, t ) =
{

A2e−ike
2 (x−v t ) + A3e−ike

3 (x−v t ) + A5e−ike
5 (x−v t ) + A6e−ike

6 (x−v t ), x < v t ,

A1e−ike
1 (x−v t ) + A4e−ike

4 (x−v t ), x ≥ v t ,
(3.8)

ue(x, t ) =
{

B2e−ike
2 (x−v t ) +B3e−ike

3 (x−v t ) +B5e−ike
5 (x−v t ) +B6e−ike

6 (x−v t ), x < v t ,

B1e−ike
1 (x−v t ) +B4e−ike

4 (x−v t ), x ≥ v t .
(3.9)

Itmust be noted that the amplitudes A andB are related through the eigenvectors as follows:
Bn = An qe

n,2, where n = 1, . . . ,6 and qe
n,2 represents the second entry in the corresponding
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nth eigenvector.This means that there are, in fact, six remaining unknown amplitudes that
are determined from the interface conditions.

The interface conditions imposed to the beam, namely Eqs. (2.7) and (2.8), need to be
supplemented with additional ones for the distributed mass layer, which express the con-
tinuity in displacement and slope at x = xtc. These continuity conditions are a consequence
of the spatially continuous distribution of the external load by the beam, which together
with the homogeneity of the spring layers leads to a spatially continuous force acting on the
mass layer; such a force must lead to a continuous displacement and slope of the mass layer.
The additional conditions read

ub(x = v t , t ) = uf(x = v t , t ), u′
b(x = v t , t ) = u′

f(x = v t , t ), (3.10)

The six unknown amplitudes can be determined from these interface conditions.The ex-
pressions are not given here for brevity, but can be obtained straightforwardly by using a
symbolic mathematical software (e.g., Maple or Mathematica). It must also be mentioned
that the responses in Eqs. (3.8) and (3.9) are real-valued.

3.3. Transient response
To obtain the response of the inhomogeneous system, the same approach as in Section
2.3 is used here. After applying the Fourier transform to Eqs. (3.1) and (3.2) and some
mathematical manipulations, the following result is obtained:

w̃ ′′′′−k4(x)w̃ =− F0

E I v
e−iω x

v , (3.11)

ũ = kd,t(x)

−ρbω2 +kd,t(x)+kd,b(x)
w̃ , (3.12)

k(x) =


kl = 4

√√√√−ρω2 +kd,t,l −
k2

d,t,l

E I
(−ρbω2 +kd,t,l +kd,b,l

) , x ≤ xtc,

kr = 4

√√√√−ρω2 +kd,t,r −
k2

d,t,r

E I
(−ρbω2 +kd,t,r +kd,b,r

) , x ≥ xtc.

(3.13)

As can be seen from Eqs. (3.11) and (3.12), the equation of motion of the mass layer has
become an algebraic equation in the Fourier domain, and the expression of ũ as a function
of w̃ has been replaced in the equation of motion of the beam, thus reducing it to the same
shape as in Section 2.3 with just the expression of the wavenumber being different (compare
Eq. (3.13) to Eq. (2.21)). This means that the same expressions from Section 2.3 are valid
here with the the wavenumbers from Eq. (3.13). The solution in the Fourier domain (after
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applying the boundary conditions at infinity), thus, reads

w̃(x,ω) =
{

Ble
iklx +Cle

klx + w̃p,l(x,ω), x ≤ xtc,

Are−ikrx +Dre−krx + w̃p,r(x,ω), x ≥ xtc.
(3.14)

The unknown amplitudes are obtained from the interface conditions
(
Eqs. (2.2) and (2.3)

)
.

The response of the mass layer is obtained from Eq. (3.12), and the solutions in the time
domain are obtained by numerically evaluating the inverse Fourier transforms.

One could be confused by the expectation that, as derived in the previous section, the
addition of the mass layer should lead to two additional waves to be present in the system
(a total of six waves) while in Eq. (3.14) there are only four waves present. The apparent
discrepancy comes from the fact that the two additional waves appear only in the eigenfield
while the four waves in Eq. (3.14) are free waves. In true fact, Eq. (3.14) contains 10 waves:
the six waves in the eigenfield present in the particular solutions w̃p,h and the four free
waves. It can also be seen that six wavenumbers are obtained from the dispersion equation
only after the kinematic invariant is substituted, leading to wavenumbers corresponding to
waves in the eigenfield; if one does not substitute the kinematic invariant in the dispersion
equation, with largest power ofω being four, four frequency-dependent wavenumbers are
obtained representing the four free waves in Eq. (3.14).

Both steady-state and transient solutions are now determined. In the next section, the
three approaches discussed in the introduction of this chapter are compared.

3.4. Model comparison
In this section, we compare the two options to incorporate the mass of the supporting
structure into the 1-D model formulated in Chapter 2. As explained in the chapter intro-
duction, the two options investigated here are (i) to incorporate the additional mass by
artificially increasing the mass of the beam (EBW+Mmodel) and (ii) to add a separate layer
of distributed mass (TL model, where TL stands for two layers), model that is formulated in
the previous section (see also Fig. 3.1).These two options are compared also to the model
formulated in Chapter 2 (EBWmodel) without accounting for the additional mass of the
supporting structure to investigate if the additional mass has a significant influence on the
response and if simply considering a realistic relative velocity v/ccr is sufficient when it
comes to modelling transition radiation.The comparison is made in terms of the transition
radiation and, more specifically, in terms of the response amplification at the transition
zone.

The parameters of the model with the additional mass layer are chosen such that the
beam accounts for the mass of the rail and distributed mass of the sleepers while the ad-
ditional mass layer accounts for the mass of the ballast. Furthermore, the the top layer of
springs corresponds to the rail-pads while the lower layer of springs represents the equival-
ent stiffness of the ballast and soil. An alternative is to represent the stiffness of the rail-pads
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and the ballast through the top layer of springs, while considering the stiffness of the soil in
the lower layer of springs. Both these scenarios lead to similar qualitative behaviour because
in both cases the stiffness of the top layer of springs is significantly larger than the one of
the bottom layer.The results presented in this section adopt the first option.

To draw fair conclusions from this investigation, the parameters of the EBW+M system
are tuned to the TLmodel. More specifically, the stiffness of theWinkler layer is chosen to
match the static stiffness in the TLmodel. Furthermore, the artificially increasedmass of the
beam is chosen such that the critical velocities in the twomodels match. For a meaningful
comparison, the load velocity relative to the critical one is kept constant betweenmodels.
Thismeans that the load velocity in the TL and EBW+Mmodels is the same, while it is higher
in the EBWmodel. The parameters used to compute the results in this section are given in
Table 3.1.

Table 3.1: Parameter values for the three systems: two-layer (TL) model, and Euler-Bernoulli beamwith/without
artificially increased mass onWinkler foundation (EBW+M/EBW, respectively).

Model Parameter Symbol Value Unit

TL Bending stiffness E I 6.4·106 Nm2

Mass per unit length of beam ρt 268.3 kg/m
Mass per unit length of layer ρt 810 kg/m
Stiffness of top layer kd,l,t 208 ·106 N/m2

Stiffness of bottom layer kd,l,b 7.6·106 N/m2

Dead weight F0 80 ·103 N
EBW+M Mass per unit length ρ 1062 kg/m

Winkler stiffness kd,l 7.3·106 N/m2

EB Mass per unit length ρ 268.3 kg/m
Winkler stiffness kd,l 7.3·106 N/m2

3.4.1. Dispersion curves and frequency spectra
Fig. 3.4 presents the dispersion curves (only for positive frequencies) of the three models.
It can be seen that the cut-off frequencies of the TL and EBW+M systems are the same
while the cut-off frequency of the EBW presents is higher.This is expected since the static
stiffness in all three models is the same while the mass in the third model is lower than in
the other two.The dispersion curves of the twomodels with additional mass is very similar
for low wavenumbers and low frequencies. This indicates that free waves excited at the
transitionzone in this rangeofwavenumbers and frequencieswill,most likely, lead to similar
quantitative results. However, once the wavenumber increases, the lower dispersion branch
of the TLmodel tends to a plateau while the dispersion curve of the EBW+M continues to
increase in frequency, leading to a significant difference between the twomodels. For high
frequencies, the dispersion of the EBWmodel is more similar to the TL model because,
for high frequencies, the mass layer is barely activated. Finally, one significant qualitative
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Figure 3.4:The dispersion curves of two-layer (TL) model, and Euler-Bernoulli beam with/without artificially
increased mass onWinkler foundation (EBW+M/EBW, respectively).

difference between the TL model and the one-layer models is that the former has a range of
frequencies between the plateau of the lower branch and the cut-off frequency of the upper
branch in which wave propagation is not possible; this zone is called a stop band.

The left panel in Fig. 3.5 presents the dispersion curves and kinematic invariants cor-
responding to the three models (remember that the load velocity is different in the three
models in order tomaintain the same relative velocity). It can be clearly seen that the critical
velocity has decreased in the systems with additional mass. The middle panel of Fig. 3.5
presents the displacement spectra evaluated at a position to the left of xtc while the right
panel presents the free-field spectra evaluated at x = 0. It can be seen that the twomodels
with additional mass predict a very similar behaviour while the model without additional
mass has the energy content at higher frequencies.This makes sense because even if the
wavenumber content is the same in the three models (which is the case in the quasi-static
regime due to the tuning of themodels), the energy content in the systemwithout additional
mass needs to be at higher frequencies simply because the velocity of the load is higher.
Therefore, even if one tunes the time-domain response fields to be quantitatively similar,
the frequency spectrum in the systemwithout additional mass will have energy content at
higher frequencies.

3.4.2. Time-domain response
Fig. 3.6 presents the time-domain displacement field computed with the three models in
the scenario with a transition zone. For the model without additional mass, the velocity
of the load is chosen such that the ratio v/ccr,l is the same for all models, resulting in an
increased v. Consequently, the timemoments at which the displacement field snap-shots
are presented in Fig. 3.6 is adjusted such that the load is at the same location in all three
models.
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Figure 3.5:The dispersion curves (solid lines) and kinematic invariants (dashed lines) (left panel), the frequency
spectra of the transient displacement (middle panel), and free-field displacement (right panel), corresponding to
the three models.

From the top left panel can be seen that the eigenfields of all three models match very
well. The very good match between the results of all three models is unchanged throughout
the transition process. It can be observed, especially in the bottom two panels, that also the
wave radiation predicted by all three models is, from a practical point of view, the same.The
same good match is observed at other velocities (e.g., quasi-static or even v ≈ 0.95ccr,l), but
the results are not presented here for brevity.

3.4.3. Energy analysis
The top panel in Fig. 3.7 presents the power input by the horizontal force in all three models
(see Section 2.4 for a detailed discussion about power input). While the twomodels with
additional mass show a very good agreement, the power input exhibited in the EBWmodel
is twice as big. Looking at Eq. (2.32), it becomes clear why this is the case; while the response
(velocity) under the moving load matches very well in all three models (can be deduced from
the good response agreement observed in Fig. 3.6), the load velocity in the EBW system
is about twice as big as the one in the models with additional mass to ensure the same
ratio v/ccr. This leads to the difference in power input, and when this is normalized by the
load velocity, the agreement between all three models is very good, as can be seen in the
bottom panel of Fig. 3.7. This shows that while all three models predict the same qualitative
behaviour, quantitatively there are differences when it comes to the power input by the
moving load.
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Figure 3.6: Snapshots of the transient displacement field at different time moments for the three models; the
vertical dashed line indicates the location of the jump in stiffness. v ≈ 0.9ccr,l.
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Figure 3.8:The power spectral density of the radiation to the left (top panel) and to the right (bottom panel). The
vertical dashed lines indicate the cut-off frequency corresponding to each model. Note that the power input in the
EBWmodel has beenmultiplied by a factor of 500.

Fig. 3.8 presents the power spectral density of transition radiation. The two models
with additional mass show a good agreement, although there is a small difference in the
distribution of the energy radiated to the left and right.The power spectral density in the
TLmodel exhibits an infinite peak.This peak corresponds to the propagating wave in the
eigenfield present only in the TL model, leading to infinite amount of energy radiated from
the load at that frequency. As discussed in the previous section, this is an artefact of the TL
model and does not have a physical relevance. Furthermore, similar to the displacement in
the frequency domain (see Fig. 3.5), the power spectrum in the model without additional
mass is located at higher frequencies. More importantly, the results presented in Fig. 3.8 for
the EBWmodel are multiplied by a factor 500.This shows that the quantitative predictions
of the EBW system significantly underestimate the quantity of energy radiated. Moreover,
the results are also qualitatively different because the distribution of the energy to the
radiation left and right is different compared to the other twomodels.

3.5. Conclusions
This chapter compared three modelling approaches to ensure a realistic ratio v/ccr, which
is of paramount importance when studying the response amplification at transition zones.
The three approaches are (i) to formulate a two-layer model where the additional structure
mass is included in the bottom layer (see Fig. 3.1), (ii) artificially increase the beam’s mass
in the 1-D model formulated in Chapter 2, and (iii) artificially increase the load velocity.
The comparison of the models was done in view of the transition radiation process and the
associated response amplification at transition zones.
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Theformulated two-layer systemshowedanumberof characteristics different to thoseof
the classical beam onWinkler foundation (formulated in Chapter 2).More specifically, it has
four dispersion curves instead of two, causing the system to have one, two, or three critical
velocitiesdependingon themassof the additional layer.The twoadditional dispersion curves
also lead to the formation of an additional stop-band inwhichwaves cannot propagate in the
system. Furthermore, it was shown that above a specific value of the additional mass layer,
an increase in this quantity leads to an increase in the critical velocity, which is counter-
intuitive. Finally, due to the lack of bending or shear stiffness of the additional layer, there is
at least one intersection between the kinematic invariant and the lower dispersion branch
for any non-zero load velocity. This means that the steady-state response always presents at
least one propagating wave, which is an artefact of the model.

Results show that the twomodels with additional mass have a very good agreement for
all quantities investigated.This shows that the additional mass layer is not necessary to be
included, at least not for studying transition radiation.Themodel without the additional
mass, but with artificially increased velocity showed a very good agreement, both qualitat-
ively and quantitatively, in the time-domain response, but less so in the response spectra.
In the latter, the larger load velocity leads to the response having higher frequencies than
the other twomodels, but with a similar qualitative behaviour. When it comes to the power
spectral density, the neglect of the additional mass leads to a gross underestimation of this
quantity as well as to a different distribution of the energy radiated left and the one radiated
to the right.

To conclude, the investigation in this chapter showed that all three approaches lead, in
general, to the same qualitative, and sometimes, quantitative behaviour. For investigating
the time-domain response, all three approaches can be used, while for the energy analysis,
the predictions of the model without additional mass should be trusted only quantitatively.
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Influence of vehicle-structure

interaction on transition radiation

It is through science that we prove, but through intuition that we discover.

Henri Poincaré

I
In order to improve the design of transition zones and develop successful mitigation meas-
ures, the underlying mechanisms leading to soil and ballast differential settlement need to
be better understood. To this end, a significant amount of studies focus onmodelling ballast
[e.g., 24, 59–63] and its settlement [e.g., 26]. Most of these ballast settlement models relate
the amount of settlement to the magnitude of the force applied on the ballast. As showed
in Chapter 2, the response is amplified at transition zones, thus indicating indirectly an
increase in ballast settlement. However, the vehicle-track interaction, which was neglected
in Chapter 2, could influence the response amplification at the transition zone.This chapter
investigates the influence of the vehicle-structure interaction on transition radiation and
the corresponding response amplification.*

In its purest form, transition radiation is addressed in structures acted uponby amoving
constant load, as presented in Chapter 2. However, modelling the vehicle as a moving
constant load has obvious limitations, such as neglecting the vehicle inertia, the absence
of the corresponding interaction between the vehicle and the supporting structure, and
the impossibility of unstable motions of the vehicle. For that reason, researchers included

*This chapter is based on one of the author’s publications [64] and it presents slight modifications to the original
publication.
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the interaction between the vehicle with its own degrees of freedom and the supporting
structure in studies on transition radiation. Lei andMao [13] found that the contact force is
not greatly influenced by the magnitude of the stiffness jump (i.e., stiffness dissimilarity),
but that it ismostly influenced by the angle of the rail elevation after differential settlements
have occurred. Also Banimahd et al. [65] concluded that the so-called faults in the track (i.e.,
differential settlements) influence the contact force muchmore than the stiffness variation
does. Moreover, the findings of Ang and Dai [35] are in agreement with the conclusions of
Lei andMao [13] and of Banimahd et al. [65]. However, Germonpré et al. [31] found that at
large velocities, the contact force in the case of an abrupt transition significantly increases
compared to the smooth transition. Transition radiation was also studied using complex
multiple-degrees-of-freedom vehicles interacting with inhomogeneous 1-D supporting
structures [10, 25, 66], andwith inhomogeneous 2-D and 3-D supporting structures [e.g., 27,
28, 67], confirming that the inertia of the vehicle can play an important role in the transition
radiation phenomenon and in the track-geometry degradation.

To study the transition radiation phenomenon, detailed models of finite and inhomo-
geneous systems that interact with complex vehicle models are available in the literature, as
explained above. However, more fundamental studies using simplifiedmodels of transition
zones in infinite systems interacting with amoving oscillator, similar to system stability
studies [e.g., 68–75], are scarce.This motivates the aim of the current chapter, which is to
formulate a 1-Dmodel of an infinite Euler-Bernoulli beam on a smoothly inhomogeneous
Kelvin foundation, interacting with amoving oscillator, in order to study the effect of ac-
counting for the vehicle’s internal degree of freedom on transition radiation.The solution
can be obtained by means of the Green’s-function method [76] because the supporting
structure is assumed to behave linearly. To this end, the response of the beam to themoving
vehicle, which is modelled as a loaded oscillator, is expressed through a convolution integ-
ral in terms of the unknown contact force and the known time-domain Green’s function
of the beam-foundation sub-system. Then, the contact relation (i.e., integral equation)
is solved iteratively for the contact force. Moreover, the finite difference method is used
for the spatial discretization to accommodate the smoothly inhomogeneous foundation.
The infinite extent of the system is accounted for through a set of non-reflective boundary
conditions, and through the initial conditions based on the steady-state response of a beam
with homogeneous foundation subject to amoving load (the steady state is assumed to have
developed prior to reaching the transition).

The novelty of the current chapter lies in studying the influence of the degree of free-
dom of the vehicle on the transition radiation in an infinite and smoothly inhomogeneous
structure by comparing it to the situation in which the vehicle action is approximated by its
dead weight. Furthermore, two possible indicators of the transition-zone performance are
identified.The current chapter has some similarities to the works of Lei andMao [13] and of
Ang and Dai [35], but is distinct in the following ways. Firstly, the vehicle models in both
studies aremore complex than the one used in the current chapter,making the observations
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difficult to relate/compare to the case of a singlemoving constant load. Secondly, bothworks
are limited to piecewise-homogeneous foundations, while the current chapter addresses a
smooth stiffness and damping variation of the supporting structure.Thirdly, the infinite
extent of the system is properly accounted for in the present work. Finally, the extent of the
parametric study presented in both previous works is considerably enlarged in the current
study, and thus, more general observations of the system’s behaviour can be made, relevant
for engineering practice.

Modelling the railway track as a 1-D system (with frequency-independent parameters)
has its shortcomings. For example, the wave propagation in the vertical direction as well
as surface waves are not captured by this model, aspects which can influence the dynamic
response. However, the qualitative observations and the mechanisms identified with this
simplifiedmodel will be present in amore comprehensivemodel.Therefore, for the purpose
of studying the influence of the vehicle’s own degree-of-freedom on the transition radiation
phenomenon, the 1-Dmodel is sufficient. It must be emphasized that this chapter focuses
on transition radiation as the process of energy emission, which is characterized by the
energy flux through a boundary that encompasses the emitter, with no emphasis on the
type of waves that are generated (propagating and/or evanescent).

4.1. Model formulation
In this section, a 1-Dmodel is formulated, consisting of an infinite Euler-Bernoulli beam
resting on a smoothly inhomogeneous Kelvin foundation, interacting with a moving one-
mass loaded oscillator (Fig. 4.1). Apart from the different vehicle model and the addition of
foundation damping, compared to the system inChapter 2, the system in this chapter allows
the transition in stiffness to be smooth (actually, it allows for any arbitrary shape), not only
abrupt. Consequently, the infinite system is divided into three domains: the computational
domain

(
x ∈ [0,L] as can be seen in Fig. 4.1

)
that contains the entire inhomogeneity of the

supporting structure and its vicinity, and two homogeneous semi-infinite domains, one at
each boundary of the computational domain.The initial position (at t = 0) of the moving
oscillator is at x = 0 and its oscillations are restricted to the computational domain, such
that the vehicle can be approximated by a moving load in the two semi-infinite domains.
The equation of motion for the three domains reads

E I
∂̃4w

∂̃x4
+ρ ∂̃

2w

∂̃t 2
+ cd(x)

∂̃w

∂̃t
+kd(x) w =−F (t )δ(x − v t ), ∀x,∀t ,

(4.1)

w(x, t ) =


wl(x, t ), x ≤ 0,

wc(x, t ), 0 ≤ x ≤ L,

wr(x, t ), x ≥ L,

F (t ) =


F0, t ≤ 0,

Fc(t ), 0 ≤ t ≤ L
v ,

F0, t ≥ L
v ,
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kd(x)
cd(x)

ρ, EI

x = 0

wc(x,t)

x → -∞
x

x = L x → ∞

wr(x,t)wl(x,t)

F0

M
v

Ch

z(t)

kd(x), cd(x)

Figure 4.1: Schematization of the model: infinite Euler-Bernoulli beam continuously supported by a smoothly
inhomogeneous Kelvin foundation, interacting with a moving loaded oscillator.

kd(x) =


kd,l, x ≤ 0,

kd,c(x), 0 ≤ x ≤ L,

kd,r, x ≥ L,

cd(x) =


cd,l, x ≤ 0,

cd,c(x), 0 ≤ x ≤ L,

cd,r, x ≥ L,

where cd,l and cd,r are the (homogeneous) foundation damping of the left and right semi-
infinite domain, respectively; kd,c(x) and cd,c(x) are the foundation stiffness and foundation
damping of the computational domain, respectively. Fc(t ) is the time-dependent contact
force in the computational domain. Finally, wc is the unknown displacement of the com-
putational domain. Moreover, by adopting≤ and≥ signs in the definition of w(x, t ), F (t ),
kd(x), and cd(x) for all domains it is emphasized that there is continuity in these quantities
at the interfaces between the three domains.

In this formulation, the vehicle is modelled as a loaded one-mass oscillator (i.e., loaded
mass-spring system), where the constant dead load F0 (which includes the dead weight
of the wheel) corresponds to the vehicle weight on the wheel, the mass M represents the
wheel of the vehicle and the spring represents the contact elasticity between the wheel and
the rail. The car body and the bogies could be modelled by additional suspended masses.
However, the frequencies atwhich these suspendedmasses oscillate aremuch lower than the
oscillation frequency of the wheel in the interaction with the rail. Therefore, the degrees of
freedomof the suspendedmasses of the car body and bogies are neglected. In the remainder
of the chapter, the term oscillator is used to denote the loaded one-mass oscillator. The
equation of motion for the oscillator reads

Mü = F (t )−F0, (4.2)

where u is the displacement of the mass. The interaction between the oscillator and the
beam-foundation sub-system is described by theHertzian contact law, where the possibility
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of contact loss is incorporated as presented in the following equation:

(
F (t )

CH

) 2
3

= (
u(t )−w(v t , t )

)
H

(
u(t )−w(v t , t )

)
, (4.3)

whereCH is Hertz’s constant and H(. . . ) denotes the Heaviside function. It must be noted
that for large transition lengths, the inertia of the suspended masses may have a non-
negligible effect on the behaviour due to the low frequencies of the interaction [67].

From Eq. (4.1) it can be deduced that the shear force is continuous everywhere except
under the moving load where the force is discontinuous.This discontinuity is accounted
for in the equation of motion (Eq. (4.1)), for all time moments, due to the presence of
the generalized derivatives. Consequently, as interface conditions between the domains,
continuity in displacement and slope, as well as in shear force and bending moment is
imposed.The set of boundary conditions is completed by imposing that, due to the presence
of damping, the displacements of the left and right domains are zero at infinite distance
from the moving oscillator:

wl(0, t ) = wc(0, t ), wc(L, t ) = wr(L, t ), (4.4)

w ′
l (0, t ) = w ′

c(0, t ), w ′
c(L, t ) = w ′

r(L, t ), (4.5)

w ′′
l (0, t ) = w ′′

c (0, t ), w ′′
c (L, t ) = w ′′

r (L, t ), (4.6)

w ′′′
l (0, t ) = w ′′′

c (0, t ), w ′′′
c (L, t ) = w ′′′

r (L, t ), (4.7)

lim
|x−v t |→∞

wl(x, t ) = 0, lim
|x−v t |→∞

wr(x, t ) = 0. (4.8)

The computational domain could bemade very large such that the influence of the initial
conditions on the response dies out before the oscillator reaches the transition zone. How-
ever, for computational efficiency, x = 0 should be as close as possible to the inhomogeneity
(i.e., the computational domain should be as small as possible), meaning that the choice
of initial conditions affects the response in the transition zone. Prior to reaching a trans-
ition zone, the response caused by a train can generally be considered to be in the steady
state. Consequently, the initial conditions must be chosen such that the system reaches
the steady-state regime instantaneously at the start of the simulation, and are thus based
on the eigenfield of the approaching load. For the considered problem, in the steady state,
the moving oscillator is equivalent to a moving constant load where the magnitude of the
force is equal to F0, and the eigenfield we for such a system is given by Eq. (2.19) (with the
addition of the damping termwhich appears in the expression of the wavenumbers).

The initial conditions based on the eigenfield are correct only if the initial fields (i.e.,
displacement and velocity fields) are not disturbed by the inhomogeneity because the eigen-
field relates to a homogeneous Kelvin foundation. Consequently, x = 0 should be positioned
such that the initial fields based on the eigenfield are negligibly small at the inhomogeneity
(they cannot be precisely zero due to the eigenfield’s exponential decay in space).The ini-
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tial conditions of the left domain are imposed as the eigenfield part behind the oscillator,
the ones of the computational domain are imposed as the eigenfield part in front of the
oscillator, and the initial conditions of the right domain are trivial:

wl(x, t = 0) = we(x, t = 0), ẇl(x, t = 0) = ẇe(x, t = 0), −∞<x < 0, (4.9)

wc(x, t = 0) = we(x, t = 0), ẇc(x, t = 0) = ẇe(x, t = 0), 0 ≤x ≤ L, (4.10)

wr(x, t = 0) ≈ 0, ẇr(x, t = 0) ≈ 0, L <x <∞. (4.11)

The initial conditions of the oscillator should be chosen such that it also reaches the
steady state instantaneously at the start of the simulation. Considering that the contact
force is constant and equal to F0 in the steady state, the initial conditions for the oscillator
are given as follows:

u(t = 0) =
(

F0

CH

) 2
3

+we(0,0), u̇(t = 0) = 0. (4.12)

Eqs. (4.1) to (4.12) constitute a complete description of the problem. Next, the solution
method is presented.

4.2. Solution method
The system described in Section 4.1 is nonlinear due to the nonlinear contact relation

(
Eq.

(4.3)
)
. However, the beam-foundation sub-system behaves linearly.This allows to obtain

the solution using the time-domain Green’s-functionmethod [76] which is explained next.

4.2.1. General procedure
The goal of the Green’s-function method is to express the displacement of the beam at the
contact point in terms of the unknown contact force F (t ). The obtained displacement can
be substituted in the contact relation

(
Eq. (4.3)

)
. Then, the displacement of the mass can be

expressed in terms of the contact force, and the resulting expression can be substituted in
the equation of motion of the mass.The resulting integro-differential equation can then be
solved for the unknown contact force numerically.This approach is suited for any type of
vehicle model. However, taking advantage of the linearity of the vehicle model used in this
chapter (except for the contact spring), the displacement of the vehicle is expressed in terms
of the unknown contact force through the Green’s-function method too.Then, the contact
relation reduces to an integral equation for the contact force, and is solved iteratively.

To express the displacement of the beam in terms of the contact force, the forward
Laplace transform is applied over time to the equation of motion of the computational
domain, resulting in the following expression:

E I ŵ ′′′′
c + [

ρ s2 + cd,c(x) s +kd,c(x)
]

ŵ = f̂ ML
c + f̂ IC

c , (4.13)
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where ŵc represents the unknown Laplace-domain displacement of the computational
domain, and s = σ+ iω is the Laplace variable, with σ a small and positive real number
andω the angular frequency. Furthermore, f̂ ML

c represents the Laplace-domainmoving-
load forcing of the computational domain, and f̂ IC

c represents the Laplace-domain initial-
conditions forcing of the computational domain, which are given by

f̂ ML
c (x, s) =− 1

v F̂c

(
x
v

)
e−s x

v , (4.14)

f̂ IC
c (x, s) = (

ρs + cd,c(x)
)

wc(x, t = 0)+ρ ẇc(x, t = 0), (4.15)

where F̂c represents the Laplace-domain contact force in the computational domain. It
must be noted that the contact force F̂c is yet unknown, while the initial-conditions forcing
is completely determined

(
Eq. (4.10)

)
. It is therefore chosen to determine the response

caused by the moving load and the response generated by the initial conditions separately,
using different approaches.The displacement ŵ IC

c generated by the initial conditions can
be determined in the Laplace domain and the procedure is elaborated in Section 4.2.2.The
displacement caused by the unknown contact force can be obtained in the time domain
by means of the Green’s-functionmethod. To this end, the Laplace-domain displacement
ŵML

c caused by the unknown contact force is expressed in terms of the Green’s function as
follows:

ŵML
c (x, s) =

∫ L

0
ĝ (x,ξ, s) f̂ ML

c (ξ, s)dξ, (4.16)

where ξ represents the spatial variable of integration and ĝ (x,ξ, s) represents the Laplace-
domainGreen’s function of the inhomogeneous and infinite beam-foundation systemwhich
is determined in Section 4.2.2. To obtain the time-domain displacement wML

c , Eq. (4.16) is
expressed in the time domain using a convolution integral:

wML
c (x, t ) =

∫ L

0

∫ t

0
g (x,ξ, t −τ)Fc(τ)δ(ξ− vτ)dτdξ

=
∫ t

0
g (x, vτ, t −τ)Fc(τ) H(L− vτ)dτ, t ≥ 0,

(4.17)

where g represents the time-domainGreen’s function and is obtainedby applying the inverse
Laplace transform to ĝ , as shown in Section 4.2.2.

The total displacement of the beam in the time domain is a superposition of the displace-
ment caused by the moving load and the displacement generated by the initial conditions:

wc(x, t ) =
∫ t

0
g (x, vτ, t −τ)Fc(τ) H(L− vτ)dτ+w IC

c (x, t )+wL
c (x, t ), (4.18)

wherewL
c represents the displacement of the computational domain caused by the oscillator

continuing its movement in the right domain, and wL
c ∼ H(v t −L) meaning that wL

c is
non-zero only after the oscillator has entered the right domain. Because the oscillator is
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assumed to be in the steady state when it enters the right domain, wL
c depends on the

steady-state contact force F0 and not on the unknown contact force Fc(t ). Therefore, wL
c

is obtained using the same procedure employed for obtaining w IC
c , which is elaborated in

Section 4.2.2.
The displacement of the beam has now been expressed in terms of the unknown contact

force, as seen in Eq. (4.18). Taking advantage of the linearity of the vehicle model (except for
the contact spring), the same procedure is applied for obtaining the displacement of the
mass as a function of the unknown contact force.The Laplace-domain displacement of the
mass û reads

û(s) =− F0

M s3 + F̂c

M s2 + u(t = 0)

s
+ u̇(t = 0)

s2 . (4.19)

The time-domain displacement u of the mass is obtained by evaluating the inverse Laplace
transform of Eq. (4.19) analytically, and its expression reads

u(t ) =− F0

2M
t 2 + 1

M

∫ t

0
(t −τ)Fc(τ)dτ+u(t = 0)+ u̇(t = 0)t , t ≥ 0. (4.20)

Both thedisplacement of themass and that of the beamarenowexpressed in termsof the
unknown contact force.The contact force Fc(t ) is solved for iteratively at each timemoment
such that the contact relation is satisfied.The procedure for obtaining the contact force is
thoroughly explained in [72], and is briefly summarized here. Outside the computational
domain, the contact force is assumed to be constant and equal to F0. Therefore, the contact
force needs to be determined only in the time interval when the oscillator is inside the
computational domain. Upon evaluating the displacement of the beam at x = v t , both
displacements

(
Eqs. (4.18) and (4.20)

)
are substituted in the contact relation

(
Eq. (4.3)

)
,

resulting in the following integral equation:

(
Fc(t )

CH

) 2
3

= R(t ) H
(
R(t )

)
, 0 ≤ t ≤ L

v
, (4.21)

where H
(
R(t )

)
denotes the Heaviside function with argument R(t ), which reads

R(t ) =− F0

2M
t 2 + 1

M

∫ t

0
(t −τ)Fc(τ)dτ+u(t = 0)+ u̇(t = 0)t

−
∫ t

0
g (v t , vτ, t −τ)Fc(τ)dτ+w IC

c (v t , t ).

(4.22)

Considering the time discretization t0, t1,. . . , tn, with t0 = 0, tn = t (the present time
moment) and ∆t = ti − ti−1 where i = {1, . . . ,n}, Eq. (4.21) becomes

(
Fc(tn)

CH

) 2
3

= Rn H(Rn), 0 ≤ tn ≤ L

v
, (4.23)
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Rn =− F0

2M
t 2

n +
n∑

i=1

1

M

∫ ti

ti−1

(tn −τ)Fc(τ)dτ+u(t = 0)+ u̇(t = 0)tn

−
n∑

i=1

∫ ti

ti−1

g (v tn − vτ, tn −τ)Fc(τ)dτ+w IC
c (v tn , tn).

It must be emphasized that although Eqs. (4.21) and (4.23) are valid only for 0 ≤ tn ≤ L
v , the

simulation is not limited to this time interval provided that the oscillations of themass have
stopped before the oscillator reaches the right boundary x = L.

Assuming that both the Green’s function of the beam-foundation system and the contact
force have a linear variation during the time interval τ ∈ [ti−1, ti ], the integrals in Eq. (4.23)
are evaluated analytically, resulting in a nonlinear algebraic equation which can be solved
iteratively for the unknown contact force at present time tn. Once the time history of the
contact force has been obtained, the response of the mass and that of the beam can be
computed by substituting the determined contact force in Eqs. (4.18) and (4.20).

At thispoint, theGreen’s functions g of the inhomogeneousand infinitebeam-foundation
sub-system, the displacementw IC

c caused by the initial conditions, and the displacementwL
c

generated by the oscillator continuing itsmovement in the right domain are not determined.
This is done in the next sub-section.

4.2.2. The beam-foundation Green’s functions, the response to initial condi-
tions and the response caused by the oscillator continuing its movement
in the right domain

Due to the spatial variation of the foundation stiffness and damping
(
as seen in Eq. (4.13)

)
,

the Green’s functions ĝ of the beam-foundation sub-system, the displacement ŵ IC
c caused

by the initial conditions, and the displacement ŵL
c generated by the oscillator continuing its

movement in the right domain cannot be solved analytically for all stiffness and damping
profiles.Therefore, the finite difference method

(
central difference scheme ofO

(
∆x2

))
is

used to spatially discretize Eq. (4.13). Upon discretization of the computational domain, the
Laplace-domain equation of motion describing the beam-foundation sub-system subjected
to initial conditions reads[

K̂i j + (ρ s2 + cd,c,i s +kd,c,i )Ii j

]
ŵ IC

c, j = f̂ IC
c,i + f̂ B

c,i , (4.24)

where K̂i j represents the bending-stiffness matrix of the beam, f̂ B
c,i represents a force

exerted by the semi-infinite domains at the boundaries and is derived in Section 4.2.3, and
Ii j is the identity matrix. The time-domain displacement is obtained by left multiplying
Eq. (4.24) with the inverse of the dynamic stiffness matrix (i.e., the expression in the square
brackets) andby evaluating the inverse Laplace transformnumerically.However, the Laplace-
domain spectrumof ŵ IC

c, j exhibits a poor decay due to the applied non-zero initial conditions.
Consequently, the numerical integrationmust in principle be performed up to very high
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frequencies leading to a significant computational effort. A method of incorporating the
high frequencies without increasing the computational effort is presented in [77] and is also
applied here to accurately obtain w IC

c, j .
The same procedure used for obtaining w IC

c is used to obtain wL
c . For this case, the

Laplace-domain equation of motion reads[
K̂i j + (ρ s2 + cd,c,i s +kd,c,i )Ii j

]
ŵL

c, j = f̂ L
c,i , (4.25)

where f̂ L
c,i represents a boundary-forcing vector exerted at the right boundary by the oscil-

lator as it continues its movement in the right domain, and is derived in Section 4.2.3.
To obtain the Laplace-domain Green’s functions ĝ needed in Eq. (4.16), the right-hand

side of Eq. (4.13) is replaced by a Dirac delta function in space δ(x −ξ). Upon spatial dis-
cretization, the Laplace-domain equation of motion that describes the impulse response
reads [

K̂i j + (ρ s2 + cd,c,i s +kd,c,i )Ii j

]
ĝ j = f̂ δc,i . (4.26)

The discretised Dirac delta function is a vector with a single non-zero entry at x = ξ, and its
expression is given as follows:

f̂

δ =
[

0,0, . . . ,
1

∆x
, . . . ,0,0

]T
. (4.27)

It must be noted that Eq. (4.26) has to be solved individually for each position of the impulse
ξ ∈ [0,L]. Consequently, theGreen’s functions are stored in amatrix ĝi j where i indicates the
discretized excitation variable ξi and j the discretized observation variable x j . In addition,
the length of the discrete element at the boundaries is ∆x/2, which has to be accounted for
in Eq. (4.27) when ξi = 0 or ξi = L.

Special attention should be given to the numerical evaluation of the inverse Laplace
transform of the Green’s functions. Firstly, in order to evaluate the Green’s functions at x j =
v t j and ξi = vτi

(
required in Eq. (4.21)

)
, the sampling requirements ∆x = v∆t and ∆ξ=

v∆τ need to be satisfied. Furthermore, depending on the required maximum frequency of
integrationωmax, the time step can become very small leading to an unrealistically small
spatial step. To fulfill the above-mentioned requirements, a spatial interpolation scheme is
used for ĝi j . Secondly, for the total response wc to instantaneously reach the steady state at
t = 0, the Green’s functions must satisfy trivial initial conditions at t = τ, especially close to
t = 0. To this end, the causal character of the response is employed and the imaginary-part
approach is selected since it automatically satisfies the trivial initial conditions even if the
inverse Laplace integral is truncated. Consequently, the time-domain Green’s functions are
computed as

gi j =−2eσ(t j −τi )

π

∫ ωmax

0
Im(ĝi j ) sin

(
ω(t j −τi )

)
dω, i = 1, . . . , j ; j = 1, . . . ,n. (4.28)
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At this point, the only unknowns are the boundary conditions of the computational
domain. Upon application of the finite difference scheme, the boundary conditions are
incorporated in the stiffnessmatrix of the beam K̂i j and in the boundary-forcing vectors f̂ B

c,i

and f̂ L
c,i . The non-reflective boundary conditions are determined in the next sub-section.

4.2.3. Non-reflective boundary conditions
The procedure in this sub-section is based on the formulation described thoroughly in [77],
and is summarized in the following. As boundary conditions for the computational domain,
the reaction forces of the semi-infinite domains at the interfaces with the computational
domain are imposed.The goal is to express the interface reaction forces (bending moment
and shear force) of the left and right domains as functions of the unknowndisplacement and
slope of the computational domain at the corresponding interfaces. To this end, the forward
Laplace transform is applied over time to the equations of motion of the two semi-infinite
domains,

(
Eq. (4.1) for x ∈ (−∞,0] and x ∈ [L,∞)

)
, leading to

ŵ ′′′′
l −k4

l ŵl = 1
E I f̂ IC

l , ŵ ′′′′
r −k4

r ŵr = 1
E I f̂ ML

r , (4.29)

where ŵl and ŵr represent the unknown Laplace-domain displacements of the left and
right domains, respectively; kl and kr represent the wavenumbers of the two semi-infinite
domains and read

kh = 4
√
−ρs2 − cd,h s −kd,h , h = {l, r}, (4.30)

where the overline denotes that the quantity has been scaled by E I . The branches of the
complex-valuedwavenumbers are chosen such that Im(kh) < 0andRe(kh) > 0. Furthermore,
f̂ IC

l and f̂ ML
r represent the Laplace-domain initial-conditions forcing of the left domain and

the Laplace-domainmoving-load forcing acting on the right domain, respectively, and their
expressions are the same as Eqs. (4.14) and (4.15), but with F0 instead of Fc

(
x
v

)
and with

the initial conditions of the left domain
(
Eq. (4.9)

)
instead of those of the computational

domain. As for the boundary conditions, the zero-displacements condition
(
the Laplace-

domain counterpart of Eq. (4.8)
)
is imposed at infinity, while the unknown Laplace-domain

displacement and slope of the computational domain
(
the Laplace-domain counterparts of

Eqs. (4.4) and (4.5)
)
are prescribed at the interfaces.

The Laplace-domain displacements ŵl and ŵr can be obtained analytically by solving Eq.
(4.29) with the above-discussed boundary conditions.The interface reaction forces of the
two semi-infinite domains are then expressed as functions of the prescribed displacements
and slopes, and they read(

ŵ ′′′
l (0, s)

ŵ ′′
l (0, s)

)
=

(
k̂l,Vυ k̂l,Vϕ

k̂l,Mυ k̂l,Mϕ

)(
ŵ(0, s)

ŵ ′(0, s)

)
− b̂IC

l , (4.31)(
ŵ ′′′

r (L, s)

ŵ ′′
r (L, s)

)
=

(
k̂r,Vυ k̂r,Vϕ

k̂r,Mυ k̂r,Mϕ

)(
ŵ(L, s)

ŵ ′(L, s)

)
− b̂ML

r , (4.32)
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where the entries of the matrices represent the dynamic stiffness coefficients associated
with boundary forces proportional to the unknown displacement and slope at the interfaces;
subscript V stands for shear force, M for bending moment, υ for translation, and ϕ for
rotation.The dynamic stiffness coefficients read

k̂h,Vυ = (−1+ i)k3
h , k̂h,Vϕ = ik2

h , (4.33)

k̂h,Mϕ = (1+ i)kh , k̂h,Mυ = ik2
h , h = {l, r}. (4.34)

In addition, vector b̂
IC
l incorporates the influence of the initial conditions on the reaction

forces, giving rise to boundary forces independent of the unknown displacement and slope
of the computational domain, which are accounted for in Eq. (4.24) through f̂ B

c,i . Due to the
fact that in Section 4.2.1 the response ŵ IC

c caused by the initial conditions
(
Eq. (4.24)

)
and

the response ŵML
c caused by the moving oscillator are treated separately, vector b̂

IC
l is only

incorporated in the boundary condition for the determination of the response caused by
the initial conditions.The vector is given by the following expression:

b̂

IC
l =

(
ŵ ′′′

l,p(0, s)

ŵ ′′
l,p(0, s)

)
+

(
k̂l,Vυ k̂l,Vϕ

k̂l,Mυ k̂l,Mϕ

)(
ŵl,p(0, s)

ŵ ′
l,p(0, s)

)
, (4.35)

where ŵl,p(0, s) is theparticular solution that accounts for f̂ IC
l inEq. (4.29). It canbeobtained

as follows:
ŵl,p(0, s) =

∫ 0

−∞
ĝ l(x −ξ, s)

∣∣∣
x=0

f̂ IC
l (ξ, s)dξ, (4.36)

where ĝ l is the Laplace-domain Green’s function of a homogeneous and infinite beam-
foundation system with the properties of the left domain, and its expression is given by
Eq. (6.38). The integral in Eq. (4.36) can be computed analytically, but the solution is not
presented here for brevity.

Similar to b̂
IC
l , vector b̂

ML
r contains the contribution of the moving load to the reaction

forces at the right boundary, and reads

b̂

ML
r =

(
V̂ L(s)

M̂ L(s)

)
, (4.37)

where V̂ L and M̂ L are the shear force and bending moment, respectively, exerted by the
moving oscillator on the right boundary after it has entered the right semi-infinite domain,
and their expressions read

V̂ L(s) = iF0
(
s + (1+ i)krv

)
(krv + s)(krv − is)

e−s L
v , M̂ L(s) = −iF0v

(krv + s)(krv − is)
e−s L

v . (4.38)
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It must be noted that Eq. (4.38) is correct only if the oscillations of the vehicle have stopped
before reaching x = L (as assumed in Section 4.1 and explained in Section 4.2.1), such that
the contact force is again constant and equal to F0; this represents the criterion for choosing
L. Also, Eq. (4.38) is used in the boundary conditions only for determining the displacement
ŵL

c generated by the oscillator continuing its movement in the right domain, and not for
determining ŵ IC

c , nor for determining ĝ . It must also be mentioned that for the results
presented in Section 4.3, Eq. (4.38) is not used because the simulations are performed
only until the moving oscillator reaches the right boundary. However, according to the
problem statement in Section 4.1, if a certain analysis is concerned with the response of
the computational domain after the moving oscillator has entered the right domain (i.e.,
free vibration), Eq. (4.38) must be incorporated. Moreover, the presented solution method
can handle unstable vibrations of the oscillator onset by the inhomogeneity (e.g., breaking
the wave-velocity barrier when going from the stiff domain to the soft one). However, for
such a scenario, the maximum time of the simulation is limited to the moment the load
reaches the right boundary of the computational domain because Eq. (4.38) is only valid for
a constant contact force.

Eqs. (4.31) and (4.32) represent the non-reflective boundary conditions which are pre-
scribed to the computational domain through the Laplace-domain image of Eqs. (4.6) and
(4.7). The term b̂

IC
l is accounted for through the boundary-forcing vector f̂ B

c,i while V̂ L and
M̂ L are accounted for through the boundary-forcing vector f̂ L

c,i , because they are not pro-
portional to the unknown displacement and are thus considered as external forces. The
remaining parts of Eqs. (4.31) and (4.32) are accounted for in the beam’s stiffness matrix
K̂i j . The application of these boundary conditions ensures that the behaviour of the finite
computational domain is not influenced by artificial boundaries and that the infinite extent
of the model is respected in an exact manner.

4.3. Results and discussion
In this section, the proposed solution is firstly validated by considering two limit cases and
comparing the obtained results to a benchmark solution.Then, the time-domain response
of the wheel and of the rail under the wheel are presented for two specific cases, and the
influence of the oscillator on the response at the contact point is highlighted. Subsequently,
the influence of the oscillator on the power input into the beam-foundation system is
discussed. From these results, two indicators of potential damage caused to the supporting
structure are identified, namely the maximum contact force and the energy/power input.
Finally, the influence of the transition length, oscillator velocity, and stiffness ratio on the
two indicators is assessed through a parametric study.

To investigate the influence of the transition length lt on themaximum contact force
and the energy/power input, the spatial profile of the foundation stiffness is chosen based
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Figure 4.2:The spatial profile of the foundation stiffness given by Eq. (4.39) for different transition lengths lt; the
centre of the transition xtc = 5m and the stiffness ratio p = 5.

on a sine squared (depicted in Fig. 4.2) as follows:

kd,c(x) =


kd,l, 0 ≤ x < xtc − lt

2 ,

kd,l

(
1+ sin

[(
x−xtc

lt
+ 1

2

)
π
2

]2
(p −1)

)
, xtc − lt

2 ≤ x ≤ xtc + lt
2 ,

kd,r, xtc + lt
2 < x ≤ L,

(4.39)

where xtc represents the location of the centre of the transition and p is the stiffness
ratio between the stiff and soft domains. The location of the transition zone inside the
computational domain is dictated by the spatial extent of the initial conditions, as discussed
in Section 4.1, while the value of L is chosen such that the oscillations of the moving mass
have stopped before it reaches the position x = L, as discussed in Section 4.2.3. In addition,
the spatial variation of the foundation damping is chosen such that the damping ratio ζ,
defined similarly to that of a single-degree-of-freedomsystem, is kept constant.The relation
between the damping coefficient and damping ratio is given in Eq. (2.27).

4.3.1. Parameter values
The choice of two parameters, namely the stiffness ratio p and the velocity v of the oscillator,
requires special attention. In this work, the stiffness ratio p = kd,stiff

kd,soft
is the stiffness ratio

between the stiff and soft domains of the supporting structure (i.e., not including the beam’s
stiffness).This is different from the ratio q of the vertical stiffness of the track (including
the beam’s stiffness), which is the difference in stiffness experienced by the vehicle. The two
are related (in static or quasi-static conditions) through the following expression [78]:

q ≈ p
3
4 . (4.40)

Several researchers havemeasured the vertical track stiffness in areaswith soft soils andhave
reported differences in the vertical track stiffness at transition zones between q ≈ 1.5–3 [4,
15, 79, 80], which corresponds to p ≈ 1.5–4.5. Formost of the results in the remainder of the
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chapter, p = 5 is chosen. Although the chosen value is on the high end, it is not unrealistically
high.The value was chosen to accentuate the transition radiationmechanisms such that
they are easier to identify. In Section 4.3.3, p = 10 (i.e., q = 5.6) is chosen to illustrate
the wheel-rail separation. Moreover, in Section 4.3.5, p = 1–20 (i.e., q = 1–9.5); although
above p = 5 the values are less realistic (or even not at all realistic close to p = 20), they are
presented in order to observe the overall trend.

The maximum design velocity of trains in areas with soft soils is around 60–70% of
the minimum critical velocity in the track. However, in extreme cases, trains have even
exceeded the critical velocity (e.g., the Swedish X-2000 high-speed train which runs along
the West Coast Line between Gothenburg and Malmö [33]). In this chapter, for Sections
4.3.3 and 4.3.4, the oscillator velocity is chosen as 90–95% of ccr; although these velocities
are high for regular train operation, they are chosen to once more accentuate the transition
radiation mechanisms such that they are easier to identify. It must be emphasized that
the identifiedmechanisms are present also for lower velocities, but they are just harder to
observe. For Section 4.3.5, the oscillator velocity is varied between 13–110% of ccr. Again,
although super-critical velocities are rarely observed in practice, the wide range of velocities
is given to analyse the overall trend in behaviour.

The parameters which are kept constant throughout the presented results are given
in Table 4.1. The bending stiffness corresponds to the UIC 60 rail and the mass per unit
length includes the rail mass per meter and the contribution of the (concrete) sleepers
uniformly distributed along the rail [53], such that the model captures the track response at
low frequencies (including its first natural frequency).

Table 4.1:Values of the system parameters.

Parameter Symbol Value Unit

Bending stiffness E I 6.42·106 Nm2

Mass per unit length ρ 268.33 kg/m
Dead weight F0 80 ·103 N
Foundation stiffness kd,l 83.33·106 N/m2

Foundation damping ratio ζ 0.25
Wheel mass M 750 kg
Hertz’s constant CH 1.1864·1011 N/m3/2

4.3.2. Verification and convergence
To verify the solution derived in Section 4.1, two limit cases are considered and are compared
to a benchmark solution. Firstly, to validate the Green’s functions of the beam-foundation
structure and the suppression of initial transients through the applied initial conditions,
the limit case of a moving constant load is considered, where the magnitude of the load is
equal to F0. In this limit case, the degree of freedom of the mass and the contact equation
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Figure 4.3:Error under the moving load for different maximum frequencies (panel (a)) and for different values of
the wheel’s mass (right panel); the abrupt transition is at xtc = 10m, v = 0.95ccr,l, and p = 5; fmax = 8 kHz (panel
(b)).

vanish, while the time-domain displacement of the beam
(
Eq. (4.18)

)
simplifies to

wA
lim(v t , t ) = F0

∫ t

0
g (v t , vτ, t −τ)dτ+w IC

c (v t , t ). (4.41)

Secondly, to incorporate the iterative scheme of solving the contact equation in the verific-
ation, the same limit case is considered (moving constant load) by taking the limit of the
wheel’s mass going to zero. However, the wheel’s mass cannot be set to zero because it leads
to a singularity in the expression of the wheel’s displacement, as can be seen in Eq. (4.20).
Therefore, the wheel’s mass is gradually decreased to study the convergence of the second
limit-case solutionwB

lim as themass goes to zero.The foundation is considered as piecewise
homogeneous for both cases (i.e., lt = ∆x). Both limit-case responses wA

lim and wB
lim are

compared to the semi-analytical transient solution derived in Section 2.3.
The errors eA and eB presented in Fig. 4.3, corresponding to the first and second limit

cases, respectively, are defined as follows:

eh(x = v t ) = |wbench(x = v t , t )−wh
lim(x = v t , t )|

|wbench(x = v t , t )| , h = {A,B}, (4.42)

wherewbench is the benchmark solution given by the inverse Fourier transform of Eq. (2.26).
To study the convergence of the presented solution, the truncation frequency for the inverse
Laplace transform in the first limit case is varied, while a constant truncation frequency of
fmax = 16 kHz is used for the benchmark solution. Note that by changing the maximum
frequency in the limit case, according to the Nyquist sampling rule, the time stepping also
changes.

Panel (a) of Fig. 4.3 shows that the first limit-case solution converges to the semi-
analytical one as the maximum frequency is increased. The error in the soft domain is
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Figure 4.4:The displacement field for the moving constant load obtained in the limit case A (black-continuous line)
and with the semi-analytical approach (grey-dashed line) for different timemoments: (a) t = 0 s, (b) t = 0.0187 s,
(c) t = 0.0246 s, (d) t = 0.0299 s, (e) t = 0.0368 s, (f) t = 0.0618 s; the abrupt transition is at xtc = 10m, v = 0.95ccr,l,
and p = 5; fmax = 8 kHz.

smaller than the one in the stiff domain because the higher foundation stiffness leads to
smaller displacements and, thus, to a higher relative error. The error eA is mainly caused by
two factors, namely the truncation (in frequency) of the inverse Laplace integral

(
Eq. (4.28)

)
and the spatial discretization introduced by the finite difference method. Also, to satisfy
∆x = v∆t (discussed in Section 4.2.2), the spatial step size ∆x can become unrealistically
small depending on the time step∆t . To this end, a spatial step size which leads to accurate
results is chosen (∆x = 0.05m), and to satisfy ∆x = v∆t an interpolation scheme is used.
However, the error caused by the interpolation scheme is negligible. It can be observed in
Fig. 4.3 that for truncation frequency fmax = 8 kHz, the error is less than 0.5%, which is
more than satisfactory. A higher maximum frequency leads to smaller error; however, the
computational effort increases significantly. For all other results presented in this section,
the maximum frequency was therefore chosen as 8 kHz. anything about the error in the
cases studied further, where the inertia of the wheel is significant.

In panel (b) of Fig. 4.3, the second limit-case solution wB
lim is observed to converge to

the benchmark solution for the wheel’s mass tending to zero. Moreover, the errors in the
steady-state regimes are the same for all mass values and are equal to the errors in the first
limit case eA.This suggests that the error introduced by iterative solver is negligible. It must
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Figure 4.5:The normalized maximum contact force obtained with the loaded one-mass oscillator (asterisks)
compared to the results obtained by Ang and Dai [35] with the three-mass oscillator (circles) for v = 90m/s (panel
(a)) and v = 70m/s (panel(b)); the parameters used are the ones from Ang and Dai [35].

be noted that error eB in the area of the transition zone is mainly due to the incapability of
considering the true limit case (M = 0), and does not imply

To verify the response throughout the domain and not just at the contact point, the
full displacement field in the limit case A (i.e., Eq. (4.41), but not limited to x = v t ) is
presented for different timemoments in Fig. 4.4, and is compared to the benchmark solution
wbench(x, t ). It can be seen from Fig. 4.4 that the results agree very well from the fact that
the two lines are indistinguishable. In panel (a) it can be seen that the initial transients have
been successfully suppressed through the implementation of the correct initial conditions
(i.e., the response is in the steady-state regime); here it can also be clearly observed why the
initial conditions based on the eigenfield must decay before reaching the inhomogeneity
(xtc = 10m in this case). Moreover, in panel (e), the fact that the two solutions agree very
well demonstrates that all waves generated inside the computational domain propagate
away from the transition with no reflection at the boundaries. Also, in panel (f) it can be
seen that the eigenfield passes to the right domain without any disturbance.Therefore, it
can be concluded that the solution derived in Section 4.1 is correct.

Finally, a validation of the vehicle model employed in this chapter is presented in Fig 4.5.
More specifically, the suitability of the loaded one-mass oscillator for studying the wheel-
rail interaction is investigated.The normalized maximum contact force obtained with the
loaded one-mass oscillator is compared to the one obtained with a more comprehensive
vehicle model, namely the three-mass oscillator used by Ang and Dai [35]. For the higher
velocity (panel (a)), the results agree very well, while for the lower velocity (panel (b)), the
results present some differences, but not major ones.This can be explained by the fact that
the lower the velocity, the lower the frequencies of interaction, which leads to the sprung
masses having amore significant influence. Overall, the results agree well rendering the
loaded one-mass oscillator suitable for studying wheel-rail interaction at transition zones.
Nonetheless, itmust benoted that a vehiclemodelwithmultiple contact points can influence
the results more significantly. Also, for large transition lengths, the inertia of the suspended
masses may have a more pronounced influence due to the low frequencies of interaction.
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4.3.3. Time-domain responses
To study the interaction between the moving oscillator and the beam-foundation structure,
the displacement of themass and that of the beam at the contact point, as well as the contact
force are presented in Fig. 4.6. Two specific cases are considered: the oscillator moving
from the soft domain to the stiff one and that moving from the stiff domain to the soft one.
For both scenarios, the velocity is chosen as 90% of the critical velocity in the soft domain
(ccr,l for the soft-to-stiff case and ccr,r for the stiff-to-soft case), and the transition length lt

is chosen as 0.1 m, which is close to the piecewise-homogeneous case. To ensure that the
initial displacement and velocity fields do not interact with the inhomogeneity, the centre
of the transition zone xtc is positioned at x = 19m for the soft-to-stiff case and at x = 11

m for the stiff-to-soft case. It is clear from Fig. 4.6 that the response reaches the steady
state instantaneously as the oscillator enters the computational domain and thus, that the
initial transients have been suppressed. Note that this initial plateau is only depicted in Fig.
4.6 to demonstrate that the initial transients have been suppressed, and is omitted in the
following figures since it does not provide any information about the interaction.

In the soft-to-stiff case (left panels in Fig. 4.6), the displacement of both the mass and
the beam (at the contact point) exhibit significant oscillations (panel (a) in Fig. 4.6). The
oscillations are caused by the interaction of the moving oscillator with the inhomogeneous
elastic structure, where three mechanisms play a role:

1. Bending waves are excited as the load approaches and passes the transition due to
the eigenfield interacting with the inhomogeneity (i.e., transition radiation phe-
nomenon).

2. A vibration of the mass (i.e., variation of the vertical momentum) induced by bending
waves that kinematically excite the moving oscillator at the contact point.

3. A vibration of the mass induced by a parametric variation of the system properties as
experienced by the moving oscillator (i.e., varying foundation stiffness).

The three mechanisms described above are coupled as follows.The first and secondmech-
anisms are completely interdependent; stronger wave radiation introduces stronger os-
cillations at the contact point, leading to a stronger vibration of the mass, which in turn
influences the wave radiation. In addition, although stronger vibration of the mass leads
to stronger wave radiation, implying that the third mechanism influences the first one,
stronger wave radiation does not lead to stronger parametric variation, meaning that the
first mechanism does not influence the third one. Furthermore, the first mechanism is
considered to be the primary one, as it also takes place in the case of a moving constant load
(as observed in Chapter 2), while the second and third mechanism are characteristic of the
moving oscillator.

The stronger radiation caused by the oscillation of the mass has a clear influence on the
variation of the contact force (panel (c) in Fig. 4.6). In the considered case, the maximum
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Figure 4.6:Displacement of the mass (dashed line) and of the beam at the contact point (solid line) (panels (a)
and (b)), and the normalized contact force (panels (c) and (d)); lt = 0.1 m, xtc = 19 m and v = 0.90ccr,l for the
soft-to-stiff case (left panels); lt = 0.1m, xtc = 11m and v = 0.90ccr,r for the stiff-to-soft case (right panels); p = 5.

contact force is almost three times larger than in the steady state. Moreover, the maximum
peak in the contact force is followed by a decrease in contact force which in this case reaches
the value of zero for a short time interval. This means that the wheel loses contact with
the rail. The loss of contact between the wheel and the rail is discussed more thoroughly in
Section 4.3.3.The large variation in the contact force could be one of the factors leading to
degradation of the foundation in the vicinity of transition zones.Therefore, the maximum
contact force is selected in Section 4.3.5 as an indicator of the damage in the supporting
structure and thus of the performance of the transition zone.

In the stiff-to-soft case (right panels in Fig. 4.6), the displacement of both the mass and
the beam (at the contact point) exhibit smaller oscillations compared to the soft-to-stiff case,
which is in agreement with other findings in the literature [35, 77].This can be explained
based on the mechanism described previously:

a The smaller in amplitude and less broad eigenfield turns out to yieldweaker bending-wave
excitation at the inhomogeneity and the excited large-amplitude waves propagate into
the soft domain (related to the first mechanism).

b Smaller oscillations at the contact point lead to smaller vibrations of the mass (related to
the secondmechanism), which in turn introduce weaker additional waves in the beam
(related to the first mechanism).

c As the oscillator passes the transition, the displacement at the contact point increases
due to lower foundation stiffness; however, the inertia of the mass keeps it (initially) at
the same level. Consequently, in the stiff-to-soft case, the inertia force points upwards
while the dead load points downwards, partially cancelling each other (related to the third
mechanism).

The effect of items b) and c) are clearly visible in the lower variation of the contact force in
the stiff-to-soft case (panel (d) in Fig. 4.6).
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Figure 4.7: Beam displacement under the moving constant load (dashed line) and under the moving oscillator
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It is important to note that the stiff-to-soft case analyzed in this chapter assumes that
the system initially is in the steady state. In reality, the system reaches the steady state in
the stiff domain (e.g., a bridge) only if it is long enough. For a short stiff domain embedded
in a soft domain (e.g., a culvert [25]), the response might not reach the steady state, leading
to different behaviour in the stiff-to-soft transition.

To highlight the influence of the moving oscillator on the vibrations at the contact point,
the displacement of the beam at the contact point is compared to the displacement of the
beam under a moving constant load in Fig. 4.7.The steady-state responses are the same in
both cases (oscillator vs. constant load) because the vertical acceleration of mass is zero in
this regime.The differences arise once the eigenfields start to interact with the inhomogen-
eity. In the soft-to-stiff case (panel (a) of Fig. 4.7), due to the decrease in contact force (panel
(c) in Fig. 4.6), a smaller response amplification is observed at the contact point before the
transition (x ≈ 18m).The contact force is lower because the free field destructively inter-
feres with the eigenfield, thus unloading the contact between the wheel and the rail. In this
case, accounting for the vehicle-structure interaction can have a beneficial influence on the
response amplification at transition zones. However, once the moving vehicle has entered
the stiff domain, significant vibrations are observed in the oscillator case. Moreover, the
larger oscillations could lead to more significant rearrangements of the ballast particles, po-
tentially leading to differential settlements. In the stiff-to-soft case, the difference between
the moving oscillator and the moving constant load is significantly smaller. This could have
been anticipated from the smaller variation in the contact force presented in panel (d) of
Fig. 4.6.

Loss of contact between the wheel and the rail
For certain values of the oscillator velocity, stiffness ratio and transition length, the wheel
can loose contact with the rail. This has been identified in studies of transition radiation
[e.g., 35], of oscillators interacting with bridges [e.g., 81], and in studies of stability of
moving vehicles [e.g., 74]. The loss of contact has been observed in the previous section
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Figure 4.8:Displacement of the mass (dashed line) and of the beam at the contact point (solid line) (panels (a) and
(b)), the normalized contact force (panels (c) and (d)), and the velocity of the mass (dashed line) and of the beam at
the contact point (solid line) (panels (e) and (f)); lt = 0.1m, xtc = 26m and v = 0.90ccr,l for the soft-to-stiff case
(left panels); lt = 0.1m, xtc = 15m and v = 0.90ccr,r for the stiff-to-soft case (right panels); p=10.

(soft-to-stiff transition in Fig. 4.6), but for a very short duration. To highlight it, the stiffness
ratio is increased to p = 10 for the results presented in this section.

The left panels in Fig. 4.8 clearly present the loss of contact between the wheel and the
rail, which occurs when the contact force (panel (c) in Fig. 4.8) is zero. In the considered case,
there are even two loss-of-contact events.This can also be observed in the displacements
(panel (a) in Fig. 4.8) and velocities (panel (e) in Fig. 4.8).When the displacement and velocity
of the beam at the contact point have similar patterns as the displacement and velocity of the
mass, respectively, there is contact between the two. Once the contact is lost, the behaviour
of the beam and the mass become considerably different.This is due to the different forces
acting on the two sub-systems when there is loss of contact; the beam is subject to the
restoring forces of the foundation and of the bending resistance of the beam, while the
mass is acted upon by the dead load F0. The loss-of-contact and the impact after it lead
to strong oscillations in the response and large variation in the contact force, potentially
causing damage in the supporting structure and/or in the rail.

The right panels in Fig. 4.8 show that the loss of contact between the wheel and the rail
does not occur in the stiff-to-soft case. This fact can be explained by the same reasoning
as employed in the previous section. Although not all parameter combinations have been
investigated, for the ones that have been, loss of contact was not observed in the stiff-to-soft
scenario, showing that this is less likely to occur than in the soft-to-stiff scenario.
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4.3.4. Energy considerations
In this section, the vehicle-structure interaction is studied from the energy point of view,
which offers additional insight into the influence of the oscillator on the transition radiation
and thus into the potential damage of the supporting structure. The energy emitted by
the vehicle into the track that is dissipated in the ballast layer can be directly related to
the damage in the supporting structure [23]. The higher the energy emitted (i.e., energy
input) into the track, the stronger the degradation. Consequently, reducing the energy
input represents an important aim for damage reduction in the supporting structure.The
current model cannot be used to identify the amount of energy dissipated in the ballast
layer. However, the proposed model can provide the energy input into the track, which
can be an estimate of the energy dissipated in the ballast layer, and thus an indicator of
potential damage in the supporting structure. To highlight the influence of the oscillator on
the energy input, the oscillator is compared to the moving constant load.

The energy input per unit time (i.e., power input) provided by the moving oscillator P in
osc

and by the moving constant load P in
const are given by the following expressions (equivalent to

Eq. (2.31)):

P in
osc(t ) = F (t )

∂w

∂t

∣∣∣
x=v t

, P in
const(t ) = F0

∂w0

∂t

∣∣∣
x=v t

, (4.43)

wherew0 is the displacement of the beam in themoving constant load case.The total energy
spent by the moving oscillator and the moving constant load can be obtained by integrating
the power inputs in Eq. (4.43) over the whole time domain. However, these integrals are not
convergent due to the damping in the foundation, which requires continuous power input
to maintain the constant velocity. For that reason, the differential power input between the
moving oscillator and the moving constant load can be integrated instead (done below and
in Section 4.3.5), to offer information about the difference in energy input.

In addition, one can look at the spectrum of the differential-power input, which gives
insight into the frequency content of the additional energy exchange between the oscillator
and the supporting structure.The spectrum ∆P̃ in can be computed by taking the forward
Fourier transform of the differential-power input, as given in the following expression:

∆P̃ in =
∫ ∞

−∞
(
P in

osc −P in
const

)
e−iωt dt . (4.44)

Note that∆P̃ in is different to the power spectral density of the radiation presented in Section
2.4.

Fig. 4.9 presents the power input for the two vehiclemodels and the amplitude spectra of
the differential-power input. Since the inertia of themass is not activated in the steady-state
regime, the power input is initially the same for the two vehiclemodels.When the eigenfields
interact with the inhomogeneity, the power inputs fluctuate significantly before reaching
the steady-state regime in the right domain. Overall, the power input in the soft-to-stiff
case appears to be significantly amplified by the presence of the oscillator, thus showing that
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Figure 4.9: Power input (top panels) and amplitude spectrum of the differential-power input (bottom panels);
the dashed line in the bottom panels represents the amplitude spectrum of the eigenfield’s power flux in the left
domain; the vertical lines in the bottom panels indicate the cut-off frequency of the soft domain (dotted line) and
of the stiff domain (dash-dotted line); lt = 0.1m, xtc = 19m and v = 0.90ccr,l for the soft-to-stiff case (left panels);
lt = 0.1m, xtc = 11m and v = 0.90ccr,r for the stiff-to-soft case (right panels); p = 5.

the presence of the oscillator can lead to stronger transition radiation. For the stiff-to-soft
scenario, the influence of the oscillator is less drastic.

As can be seen from the amplitude spectra of the differential-power input (bottompanels
of Fig. 4.9), a significant part of the additional energy exchange in the soft-to-stiff case is
at frequencies larger than both cut-off frequencies (of the soft and stiff domains). For the
stiff-to-soft scenario, the additional energy exchange lies in similar amounts below and
above the cut-off frequency of the soft domain. To give a reference, the amplitude spectrum
of the eigenfield’s power flux in the left domain is included in the bottom panels of Fig.
4.9. It can be seen that for the soft-to-stiff case, the additional power exchange between
the oscillator and the supporting structure is significantly larger than the spectrum of the
eigenfield’s power flux while for the stiff-to-soft case they are of similar magnitude.

4.3.5. Parametric study
In Sections 4.3.3 and 4.3.4, two indicators of potential damage caused to the supporting
structure have been identified, namely the maximum contact force and the difference
in energy input. In this section, these two indicators are addressed as functions of the
oscillator velocity, the transition length and the stiffness ratio through a parametric study.
The three parameters chosen to be varied are the most influential ones for the transition
radiation phenomenon. Furthermore, these parameters can be adjusted in the design stage
tominimize damage in the supporting structure. Itmust be noted that, while themaximum
contact force offers insight into the magnitude of the transition radiation (as a whole),
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Figure 4.10:Maximum contact force normalized by the dead load versus transition length for different oscillator
velocities; soft-to-stiff case (panel (a)) and stiff-to-soft case (panel (b)); in the legend, ccr represents ccr,l for the
soft-to-stiff case and ccr,r for the stiff-to-soft case; p = 5.

the difference in energy input provides information only into the additional effect of the
vehicle-structure interaction on the transition radiation.

Variation of the transition length
Here, the transition length lt is varied and the response for different oscillator velocities is
investigated in terms of the maximum contact force Fmax and in terms of the difference in
energy input. It must be emphasized that in the present study the transition length refers
to the zone over which the stiffness (and damping) of the supporting structure varies, and
that the rail is considered completely straight (i.e., no differential settlements) when it is at
rest, while in some other studies (e.g., Lei andMao [13]) the transition length/angle refers
to the zone where the rail exhibits some slope due to differential settlements.

Figure 4.10 presents the maximum contact force versus transition length for different
oscillator velocities. In the soft-to-stiff case (panel (a) in Fig. 4.10) the maximum contact
force decreases nonlinearly with increasing transition length for all velocities considered.
The decrease is most significant for the velocities close to the critical velocity. However, even
for operational speeds of conventional trains (e.g., v = 0.5ccr), the maximum contact force
can be significantly minimized by choosing a transition length of 4–6 m. Increasing the
transition length evenmore does not lead to a considerable improvement of the transition
zone performance. In the stiff-to-soft case (panel (b) in Fig. 4.10), the maximum contact
force decreases as well with increasing transition length, but much less pronounced than
in the stiff-to-soft case. Nonetheless, for small transition lengths, the maximum contact
force can be 20–25% larger than the steady-state one for relatively high velocities, and the
maximum contact force can be reduced by 10–15% when increasing the transition length to
6–10 m.

Fig. 4.11 presents the difference in energy input between the moving oscillator and the
moving constant load versus transition length for different velocities. A similar behaviour
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Figure 4.11:Difference in energy input versus transition length for different oscillator velocities; the soft-to-stiff
case (panel (a)) and the stiff-to-soft case (panel (b)); in the legend, ccr represents ccr,l for the soft-to-stiff case and
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as for the maximum contact force is observed in the soft-to-stiff case (panel (a) in Fig. 4.11).
The difference in the energy input decreases nonlinearly with increasing transition length
and the decrease is drastic for relatively high velocities, about a factor 2–5 in going from
lt = 0.1 m to lt = 10 m. For velocities up to v = 0.75ccr, the behaviour in the stiff-to-soft
case (panel (b) in Fig. 4.11) is similar to the soft-to-stiff case. However, for larger velocities
(e.g., v = 0.95ccr and v = 1.10ccr), the difference in the energy input exhibits a behaviour
totally different from the soft-to-stiff case and from the maximum contact force. A peak in
the difference of energy input is identified between lt = 2m and lt = 6m.This means that
in this range, althoughmost can be gained in terms of the maximum contact force decrease
(see panel (b) of Fig. 4.10), the energy input increases compared to the constant load case.
This could be one of the reasons why similar amount of damage is observed in front and
behind a transition zone consisting of a soft-to-stiff transition directly followed by a stiff-
to-soft one (for one-way tracks), where mitigationmeasures to create a gradual transition
are employed (e.g., approach slabs). In the case of an approach slab of 2–4 m, there is a
substantial decrease in the difference of energy input before the transition (compared to the
abrupt case), while there is a substantial increase in the difference of energy input after the
transition.This finding is not obvious from studying solely the observables such as contact
force, displacements and velocities.

Variation of the velocity
In this section, themaximum contact force and the difference in energy input are presented
as functions of the velocity of the moving oscillator.Three transition lengths are considered:
lt = 0.1 m, lt = 5 m and lt = 10 m. Fig. 4.12 presents the maximum contact force results.
In the soft-to-stiff case (panel (a) in Fig. 4.12), the maximum contact force increases non-
linearly with the increasing velocity up to a value close to the critical velocity ccr,l, and it
decreases beyond that. For an abrupt transition, the increase of the maximum contact force
is significant, but it reduces with increasing transition length.This is in accordance with
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the location of the maximum for each curve; p = 5.

the findings in Section 4.3.5 (Fig. 4.10). Furthermore, the critical velocity for the maximum
contact force (marked with rectangles in Fig. 4.12) is observed to decrease with increasing
transition length. For lt = 0.1 m the critical velocity is close to ccr,l, while in the case of
lt = 10 m the critical velocity has decreased to 0.9ccr,l. A different behaviour is observed
for the stiff-to-soft cases (panel (b) in Fig. 4.12). A local peak in the maximum contact force
is observed at relatively low velocities, after which an almost linear increase is observed
with increasing load velocity.The location of the local peak shifts to higher velocities for in-
creasing transition length. Also, compared to the soft-to-stiff case, the change inmaximum
contact force with increasing load velocity is much smaller.

The difference in energy input for the soft-to-stiff case (panel (a) of Fig. 4.13) exhibits
a similar behaviour to the one observed for the maximum contact force (panel (a) in Fig.
4.12). However, the critical velocity for the difference of energy input shifts much less with
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the variation of the transition length. Moreover, the difference in energy input becomes
negative at certain supercritical velocities, meaning that the moving oscillator inputs less
energy into the beam-foundation system than the moving constant load. In the stiff-to-soft
case (panel (b) of Fig. 4.13), the difference in energy input exhibits a behaviour different from
the one observed for the maximum contact force (panel (b) in Fig. 4.12).The difference in
energy input increases with increasing transition length, with a peak around ccr,r, beyond
which it decreases.The critical velocity exhibits some peculiar shifts with the variation of
transition length. Moreover, the transition length increase does not seem to have such a
considerable impact on the reduction of the difference in energy input compared to the
soft-to-stiff case.

Variation of the stiffness ratio
In this section, themaximum contact force and the difference in energy input are presented
as functions of the stiffness ratio p. Lei andMao [13] found that the influence of the stiffness
ratio on the maximum contact force is minimal. In their study, the supporting structure
was modelled as two Kelvin-foundation layers in series (similar to the model formulated in
Chapter 3); the bottom layer represents the sub-soil and is piecewise homogeneouswhile the
top layer represents the ballast and is homogeneous. Although the stiffness jump prescribed
in the bottom layer is significant (n = 10 and n = 100, where n = kstiff

lower/ksoft
lower), the equival-

ent single-layer Kelvin foundation has a small stiffness ratio and a limited variation range
(p ≈ 1.6 for n = 10 and p ≈ 1.8 for n = 100, while p = 5 can be observed in areas with soft
soils [4, 79, 80]). Moreover, Ang and Dai [35] found that for a smooth surface of the rail the
increase in themaximumcontact forcewith increasing stiffness ratio is negligible. However,
the load velocities considered in their study are much lower than the critical velocity in the
soft domain, namely around 13% and 18%. Here, the velocity and the stiffness-ratio ranges
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are extended such that more general observations can bemade about the influence of the
stiffness ratio on the maximum contact force.

Fig. 4.14 presents the maximum contact force versus stiffness ratio p for different
oscillator velocities. In both cases (soft-to-stiff and stiff-to-soft), the maximum contact
force increases with increasing stiffness ratio, tending to a specific value which is obtained
in the limit case of kd,stiff →∞. Although the qualitative behaviour in the two cases is similar,
the increase of themaximum contact force is muchmore significant in the soft-to-stiff case.
In the soft-to-stiff case, the lines of v = 0.95ccr and of v = 1.10ccr intersect, implying that
the critical velocity for the maximum contact force is also dependent on the stiffness ratio
(next to transition length, discussed in Section 4.3.5). In the stiff-to-soft case, the line of
v = 0.50ccr lies above the lines of v = 0.75ccr and of v = 0.95ccr, which is in agreement with
the results presented in panel (b) of Fig. 4.12. Furthermore, Fig. 4.15 presents the difference
in energy input versus stiffness ratio p for different velocities.The behaviour exhibited by
the difference in energy input is very similar to the one observed for the maximum contact
force (Fig. 4.14).

As can be seen in the left panel of Fig. 4.14, for small oscillator velocities (e.g, v = 0.13ccr),
the increase in maximum contact force with increasing stiffness ratio is negligible, a result
which is in agreement with the findings of Ang and Dai. (It must be mentioned that there is
a difference between this agreement in findings and the one presented in Section 4.3.2; in
Fig. 4.5, the results are obtained using the same parameters as in Ang and Dai to validate
the choice of the vehicle model, while here, the findings agree also for the parameter val-
ues adopted in the current paper.) Also, for stiffness ratio between 1.6–1.8, the change in
maximum contact force is insignificant (less than 1% for small oscillator velocities and up
to 4% for oscillator velocities close to the critical velocity), results which are in agreement
with the conclusions of Lei andMao. However, for larger velocities and wider stiffness-ratio
range, the maximum contact force increases drastically, reaching a dynamic amplification
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factor greater than 5 for velocities close the the critical velocity. Moreover, even for oscillator
speeds of 25–50% of the critical velocity, which represent operational speeds of conventional
trains, the dynamic amplification factor can reach values of 1.4–2.5 (for very large stiffness
dissimilarities). Therefore, even if the rail is completely straight (i.e., no differential settle-
ments have occurred), which is assumed in this paper, the stiffness variation alone can lead
to a significant increase in the maximum contact force for large enough oscillator velocities
and considerable stiffness-ratio values. This increase in the maximum contact force can
lead to the onset of degradation in the form of differential settlements, which generally
cause additional increase in the maximum contact force as has been found by Ang and Dai
and Lei andMao, aggravating the degradation. To conclude, these findings confirm that
uneven stiffness, next to initial imperfection (as studied by others [e.g., 13, 35]), is one of
the main causes for the onset of degradation.

4.4. Conclusions
In this chapter, the influence of accounting for the interaction between the vehicle and the
supporting structure on the transition radiation phenomenon has been studied. To this end,
a one-dimensional model has been formulated, consisting of an infinite Euler-Bernoulli
beam resting on a locally inhomogeneous Kelvin foundation, interacting with a moving
loaded oscillator that has a nonlinearHertzian spring.The linear behaviour of the individual
sub-systems, namely the movingmass and the supporting structure, allows to obtain the
solution bymeans of the Green’s-functionmethod.The finite difference method has been
used for the spatial discretization of the finite computational domain to accommodate the
smoothly inhomogeneous foundation. Furthermore, the infinite extent of the system has
been accounted for through a set of non-reflective boundary conditions derived by replacing
the semi-infinite domains adjacent to the computational domain with their response at the
interfaces, and through appropriate initial conditions.The solution has been validated by
comparing the obtained results to a benchmark solution for two limit cases in which the
problem simplifies to a moving constant load, and by comparing the obtained results with
findings in the literature.

Accounting for the interaction between the moving oscillator and the supporting struc-
ture generally leads to stronger transition radiation, caused by the variation of the vertical
momentum of the moving mass. Results show that the interaction causes a variation of the
contact force and themaximumcontact force exhibits a significant increase compared to the
moving constant load case.However, themaximumcontact force decreases nonlinearlywith
increasing transition length. Furthermore, for oscillator velocities close to the minimum
phase velocity, the maximum contact force increases significantly with increasing stiffness
ratio, implying that the stiffness ratio is an important factor in minimizing the maximum
contact force.This finding supplements the existing literature where limited velocity and
stiffness-ratio ranges have been considered, while the present work provides a more com-
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plete picture about the influence of the velocity and stiffness ratio on the maximum contact
force.

The influence of the oscillator on the transition radiation has also been investigated
from an energy point of view. Results show that the power input by the oscillator into the
supporting structure can be significantly larger than that of the moving constant load.
Meanwhile, the difference in energy input between the moving oscillator and themoving
constant load shows a significant decrease with increasing transition length for the soft-to-
stiff transition. For the stiff-to-soft transition, the maximum difference in energy input
does not necessarily occur for the minimum transition length, which is a peculiarity of this
problem. Furthermore, the difference in energy input increases with increasing stiffness
ratio following a similar trend to the one exhibited by the contact force.

Finally, inmost scenarios investigated in this chapter, accounting for the vehicle-structure
interaction led to a reduced amplification at transition zones. More specifically, at the loca-
tions which have been identified in Chapter 2 to have the maximum response amplification,
accounting for the vehicle-structure interaction led to a reduction of the maximum ampli-
fication compared to the moving constant load model. This finding suggests that modelling
the vehicle as a moving constant load can be conservative when it comes to settlement at
transition zones.
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Influence of systemperiodicity on

transition radiation

Nothing in life is to be feared, it is only to be understood.
Now is the time to understand more, so that we may fear less.

Marie Curie

P
Periodic systemsunder the actionofmoving loadshave attracted the attentionof researchers
in the past century. These problems pose academic challenges and are of high practical
relevance due to their application in railway, road, and bridge engineering, among others.
Despite the numerous studies on periodic systems, few investigations are dedicated to the
influence of transition zone on the dynamic response of such systems.This chapter is based
on Ref. [82] and aims at investigating if the combination of (i) a transition zone and (ii)
the periodic nature of the structure can lead to undesired response amplification that is
otherwise not observed in systems that neglect either (i) or (ii).

The study of periodic structures goes back to Newton who investigated the velocity of
sound in air by using a lattice of point masses; for an interesting historical background of
wave propagation in periodic lumped structures, see [83]. Rayleigh studied for the first time a
continuousperiodic structure [84], consideringa stringwith aperiodic and continuousvariation
of density along its length.When it comes to a periodic and discrete variation in continuous
structures, Mead [85–87] was among the pioneers that studied free wave propagation in
such systems. Concerning moving loads on such structures, Jezequel [88] and Cai et al.
[89] were among the first to study periodically and discretely supported beams acted upon

83
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by amoving load. Vesnitskii andMetrikin [16, 70] offered an extensive investigation into
the behaviour of a periodically and discretely supported string acted upon by a moving
load. More recently, there have been numerous studies of periodic guideways acted upon
by vehicles, for example [63, 76, 90–94], and also numerous studies focusing on the vehicle
instability caused by the periodic nature of the guideway (i.e., parametric instability or
sometimes called parametric resonance), for example [95, 96].

Studies using complex models containing periodic structures and transition zones are
present in literature, for example [22, 24, 26, 31]; however, these studies concentrate on
predicting the transient response in the vicinity of the transition zone and do not treat
specifically the influence of the discrete and periodic supports on these results. Moreover,
with increased model complexity the identification and investigation of particular/isolated
phenomena becomes very difficult, if not impossible. Therefore, this chapter focuses on the
identification and investigation of a response amplification phenomenon that arises due to
the combination of periodicity and local inhomogeneity in a system acted upon by amoving
load.The local inhomogeneous region is itself periodic too, but with different parameters
than the rest of the structure.

This chapter starts by introducing the general theory of periodic continuous systems
by using a system consisting of a discretely supported string.With the same system, the
solution method is described and three mechanisms that cause response amplification are
identified (see Sections 5.1.4, 5.1.5, 5.1.6). Then, the identified mechanisms are investigated
in a system consisting of a discretely supported beamwith the properties of a railway track.
Finally, the beammodel is used to investigate the amplificationmechanisms in a Hyperloop
transportation system.

5.1. Discretely supported string – identification of amplification
mechanisms

To study the amplification phenomenon in its purest form, in this section, a 1-Dmodel is
formulated consisting of a constant moving load acting on an infinite string periodically
supported by discrete springs and dashpots, with a finite domain in which the stiffness and
damping of the supports is larger than for the rest of the infinite domain.The novelty of
this section lies in the identification and investigation of three amplification mechanisms
arising from the combination of periodicity and local inhomogeneity in a system acted upon
by amoving load; they have not been yet reported in the literature.The threemechanisms are
described indetail inSections 5.1.4, 5.1.5, and5.1.6, respectively.Although thesemechanisms
are identified in this simple model, they are intrinsic to any periodic system with a local
inhomogeneity, and, thus, can help understand the potential response amplification in
more complex systems that incorporate these two characteristics. Finally, as this model is
representative of a catenary system (overhead wires in railway tracks), the three identified
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Figure 5.1:Model schematics: infinite tensioned string discretely supported by an inhomogeneous foundation,
subjected to a moving constant load.The positive displacement of the string is considered upwards.

mechanisms can help understand the fatigue and wear of the catenary systems close to
transition zones as well as wear in the energy collector system.*

5.1.1. Model description
The system studied in this section consists of an infinite string with distributedmass per
unit length ρ that is under tension T ; the string is discretely supported by springs with
stiffness ks(x) and dashpots with damping coefficient cs(x); the generic cell is defined at
x ∈ [nd , (n+1)d ]where n is the cell number and d is the cell width, and the spring-dashpot
element is located in the middle of the cell at x = n̄d with n̄ = n + 1

2 ; this system is acted
upon by a moving constant load of amplitude F0 and velocity v. The stiffness and damping
of the supports varies in space in such a way that there is a zone of length l in which the
stiffness and damping of the supports is p times larger than for the rest of the infinite
domain; the region in the close vicinity to the stiff zone is called the transition zone. Fig. 5.1
presents a visual schematic of the systemwhile its equation of motion reads

ρ
∂̃2w

∂̃t 2
−T

∂̃2w

∂̃x2
+

∞∑
n=−∞

(
ks(x)+ cs(x) ∂∂t

)
wδ(x − n̄d) =−F0δ(x − v t ), (5.1)

The supports stiffness is a piecewise function in space and is defined as follows:

ks(x) =


ks, x < xa,

p ks, xa ≤ x ≤ xb,

ks, x > xb.

(5.2)

*This section of the chapter is based on one of the author’s publications [82] and it presents few alterations to the
original publication.
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For simplicity, the spatial distribution of the damping is assumed to be the same as that of
the stiffness.The values for the parameters are taken fromMetrikine [97]; they represent
the parameters for a realistic catenary system.

In the remainder of the chapter, homogeneous system is used to refer to the system
without transition zone while inhomogeneous system is used for the system with a transition
zone, even though both systems are inherently inhomogeneous due to the discrete supports.
Important to note, transition zone does not refer only to the stiff region, but to the stiff region
and its vicinity, as can be seen in Fig. 5.1.

5.1.2. Homogeneous system
In this section we present the characteristics of the periodic systemwithout the transition
zone.The goal here is to introduce the solutionmethod used throughout this chapter, to
highlight important characteristics of the periodic and continuous system, and to present
the steady-state response to amoving constant load. Note that the systemwithout damping
is considered here for clarity in the derivation. To this end, we aim at writing an expression
linking the states (displacement and slope) at the two boundaries of a generic cell. Firstly,
we apply the forward Fourier transform over time to the equation of motion (Eq. (5.1)), thus
obtaining the following expression:

w̃ ′′+
(ω2

c2 −
∞∑

n=−∞
ks

T
δ(x − n̄d)

)
w̃ = F0

T v
e−iω x

v , (5.3)

where the tilde is used to denote the quantity in the Fourier domain and c =
√

T
ρ is the

wave velocity in the unsupported string. We can limit our investigation to a generic cell
x ∈ [nd , (n +1)d ] and split this cell into two domains, with w̃1 to the left of the support and
w̃2 to the right of it. This allows us to write the solutions in the two domains as follows:

w̃1(x,ω) =C1e−iγx +C2eiγx + w̃p(x,ω), nd ≤x ≤ (
n + 1

2

)
d , (5.4)

w̃2(x,ω) = D1e−iγx +D2eiγx + w̃p(x,ω),
(
n + 1

2

)
d ≤x ≤ (n +1)d , (5.5)

w̃p(x,ω) = F0

T

v

γ2v2 −ω2 e−iω x
v , (5.6)

where γ= ω
c is the wavenumber in the unsupported string. Note that w̃p is the steady-state

solution of an unsupported string acted upon by a moving constant load. The interface
conditions between the two domains at x = n̄d represent displacement continuity and
vertical force equilibrium, and read

w̃1 = w̃2,

w̃ ′
2 − w̃ ′

1 =
ks

T
w̃1.

(5.7)
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Figure 5.2:Dispersion curves of the periodic system in three Brillouin zones (black and blue lines) and the disper-
sion curve of the unsupported string (green line); the different Brillouin zones are indicated through different
background colour.The primary dispersion curve is displayed with the thick blue lines while the secondary ones
with thin black lines.

Using the two interface conditions,D1 andD2 can be expressed in terms ofC1 andC2. Also,
we expressC1 andC2 in terms of the state at x = nd (i.e., displacement w̃n and slope w̃ ′

n ).
The resulting state inside the generic cell reads(

w̃(x,ω)

w̃ ′(x,ω)

)
=

(
f1,1(x −nd) f1,2(x −nd)

f2,1(x −nd) f2,2(x −nd)

)(
w̃n

w̃ ′
n

)
+

(
w̃ML(x,ω)

w̃ML′(x,ω)

)
, nd ≤ x ≤ (n+1)d , (5.8)

where f1,1, f1,2, f2,1, and f2,2 are piecewise defined functions that relate the state inside the
cell to the state at the left boundary (x = nd ) while w̃ML and w̃ML′ are piecewise defined
functions that include the influence of the particular solution on the state inside the cell;
their expressions are not given for brevity, but they can easily be obtained using a symbolic
mathematical software (e.g., Maple). To express the state at x = (n +1)d in terms of the
state at x = nd , one has to evaluate Eq. (5.8) at x = (n +1)d . The resulting relation is

w̃n+1 = Fw̃n + w̃ML
n+1, (5.9)

where matrix F is called the Floquet (or monodromy) matrix. Relation (5.9) is a discrete
function that relates the information at the interfaces of an arbitrary cell.

To investigate the propagation characteristics of the system, wemomentarily focus on
the systemwithout themoving load, and itwould become clear that the following expression
links the state at x = nd to the one at x = 0:

w̃n = Fn
w̃0. (5.10)
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To reveal specific characteristics of the periodic system, we perform an eigenvalue (α) and
eigenvector (u) analysis of F. One can express the solution using the so-called Floquet
wavenumbers kF = i ln(α)

d and it, thus, reads

w̃n = a1e−ikF
1 nd

u1 +a2e−ikF
2 nd

u2, (5.11)

where a1 and a2 are unknown amplitudes that can be obtained from the two boundary
conditions that need to be imposed to the system. To determine the Floquet wavenumbers
kF, the dispersion equation (obtained from the eigenvalue analysis of F; it is presented in
Ref. [16] and amathematical derivation is given in Appendix A) needs to be solved for kF;
the dispersion equation reads

cos(kFd) = ksc

2Tω
sin

(ωd

c

)
+cos

(ωd

c

)
. (5.12)

As can be seen fromEq. (5.12), the dispersion relation for the discretely supported string is a
transcendental equation.This means that there are infinitely many wavenumbers kF linked
to one specific frequencyω and the distance between subsequent wavenumbers is 2π

d .These
repeating zones are called Brillouin zones [83]. For discrete systems, all dispersion informa-
tion is contained in the first Brillouin zone

([− π
d , πd

])
because waves of wavenumber larger

than π
d cannot propagate. As the Floquet wavenumbers are derived from a discrete function

(Eq. (5.10)), they are limited to the first Brillouin zone
(
i.e., kF ∈ [− π

d , πd
])
. However, the

system considered here is a continuous one and waves with all wavenumbers can propagate.
Consequently, the response w̃(x,ω)will contain wavenumbers from all Brillouin zones and
the continuous wavenumber reads k = kF +m 2π

d withm =±1,±2, . . . . A repetition occurs
also with increasingω; however here, the repetition is not exact due to the presence ofω in
the denominator of the sine term.This causes the dispersion curve of the periodic system
to tend to the one of the unsupported string asω tends to infinity.

The dispersion curve is presented in Figure 5.2.Three Brillouin zones are presented and
it may seem that the repetition from one zone to the next is exact. However, the branches
closest to the dispersion curve of the unsupported string give rise towaveswithmore energy
compared to all the other branches; these branches form the primary dispersion curve. From
a physical perspective, the energy propagated from cell to cell is governed by the Floquet
wavenumbers kF and no distinction can bemade between different Brillouin zones; however,
the propagation inside the cells is governed by the string andwavenumbers fromall Brillouin
zones can be present dictated by the dispersion equation of the free string.Therefore, the
propagation in the continuous and periodic system is a combination of the two, dictating
that the waves with wavenumber k closest to γ receives most amount of energy. This is
demonstrated mathematically in Appendix C. Also, we can observe that the discrete system
exhibits multiple (actually infinitely many [83]) frequency ranges where no propagation is
possible; these frequency ranges are called stop bands, while the frequency ranges in which
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propagation is possible are called pass bands. For comparison, in a continuously supported
system the only frequency range in which wave propagation is not possible is below the
cut-off frequency. Strictly speaking, stop bands (as well as pass bands) only exist if the
system does not have dissipation; however, for small values of dissipation, the stop bands
strongly attenuate wave propagation in these frequency ranges.

Returning to the problemwith the moving load, we still need to impose two boundary
conditions to have a fully determined solution. Because we are searching for the steady-
state response, we canmake use of the so-called periodicity condition [16]. For the considered
system (the load does not have an inherent frequency), the response inside each cell is exactly
the same as in the previous one but shifted in time by d

v . The two boundary conditions,
therefore, read

w̃1(x = nd)e−iω d
v = w̃2(x = (n +1)d),

w̃ ′
1(x = nd)e−iω d

v = w̃ ′
2(x = (n +1)d).

(5.13)

Using Eqs. (5.13), we can determine the remaining two unknown amplitudes C1 and C2

(their expressions can be found in [16]). The steady-state solution in the Fourier domain
is now determined. To obtain the time-domain solution, the inverse Fourier transform
is performed numerically (for which to work efficiently, a small amount of damping is
introduced.)

For a continuously supported string, the steady-state response does not exhibit anywave
propagation away from the load (we only consider sub-critical velocities). For the discretely
supported string, however, waves are excited from the load every time it passes a support. In
the case of a single support, the load generates a continuous wave spectrumwhen it passes
it; this is transition radiation as described in Chapter 2. In the periodic system, the waves
generated at each support interfere (constructively for some frequencies and destructively
for others) leading to a discrete frequency spectrumof the radiatedwaves; this phenomenon
is sometimes called resonance transition radiation [37] because the constructive interference
of the radiated waves leads to resonance for some system parameters. More specifically,
resonance occurs when the group velocity of one generated wave is equal to the load velocity.
From Fig. 5.10, we can identify the velocities at which resonance occurs (consider only the
black line). As it can be seen, the system has many velocities at which resonance occurs,
but some velocities lead to stronger resonance than others. Strong resonance occurs at low
frequencies of the generated harmonic and at high velocities of the load [16].

To determine the frequency/wavenumbers of the waves generated by the moving load,
next to the dispersion curve we need another equation that expresses a relation between
the frequency, wavenumber, and the load velocity, namely the kinematic invariant. For
this system, the kinematic invariant can be determined from the following equation [16] (a
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Figure 5.3:The dispersion curve (black solid lines) and the kinematic invariants (blue solid lines) (top left panel;
v ≈ 0.25c), the frequency spectrum of the steady-state displacement (top right panel), and the wavenumber spectra
of the steady-state displacement (bottom panels) evaluated atΩ= 19 andΩ= 51 rad/s (indicated by the horizontal
dashed lines).

mathematical derivation of the kinematic invariants is given in Appendix A):

cos(kd) = cos
(ωd

v

)
. (5.14)

Eq. (5.14) shows that there are infinitelymanykinematic invariants.The0th-order kinematic
invariant is given byω= kv that relates to a constant moving load while the higher order
kinematic invariants are given by ω= kv +m 2πv

d with m =±1,±2, . . . , and are related to
moving harmonic loads of frequencym 2πv

d .
Figure 5.3 presents the dispersion curve together with the kinematic invariants of the

current problem.The dispersion curve is slightly different compared to the one in Fig. 5.2
due to the presence of damping. It can be seen that there is no intersection point between
the 0th order kinematic invariant (thick blue line) and primary dispersion curve (thick black
line) because the considered load velocity is subcritical; nonetheless, there are intersection
points between higher order components.The intersections between one of the kinematic
invariants and the dispersion curve represent propagating waves emitted by the moving
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Figure 5.4:Snapshot of the time-domain displacement field for the discretely and continuously supported systems.

load in the steady state. Moreover, it is important to observe in Fig. 5.3 that the emitted
waves form a discrete frequency spectrum, as expected, and that all generated waves have
frequencies in the pass bands of the system.

Moreover, it is clear from thewavenumber spectrum that thewave packwith frequencyω
(e.g.,ω= 19 orω= 51 rad/s depicted in Fig. 5.3 through the dashed green lines) is composed
of infinitely many discrete harmonic waves.The reason is that the harmonic wave is not an
eigen-solution of the equation of motion; consequently, the eigenfunction is represented as
a superposition of infinitely many harmonic waves. Some of these harmonic waves have a
negative phase velocity while others have a positive one. Nonetheless, the wave pack (ω= 19

orω= 51 rad/s) has a negative group velocity meaning that it travels in negative x direction.
Also, the main contribution to the wave pack can be seen to come from the intersection of
one of the kinematic invariants with the primary dispersion curve, as explained previously.

Figure 5.4 presents a time-domain snapshot of the steady-state displacement field. It
can be observed that in front of the load, the wave is mainly governed by one frequency-
wavenumber pair while behind more pairs seem to be influential; also, the amplitude of the
wave behind the load is larger than the one in front.The wave in front of the load is mainly
governed by the second peak in the frequency spectrumwhich is associated with a positive
group velocity larger than the load speed (so it travels in front of the load; see top plots in
Fig. 5.3) while the one behind the load is governed by the first and third peaks which are
associated with negative group velocities; this explains the difference in amplitude as well
as the frequency-wavenumber content of the waves.

5.1.3. Inhomogeneous system
In this section, the periodic system with a transition zone (as depicted in Fig. 5.1) is con-
sidered.The solution is obtained using a Green’s function approach (in some ways similar
to the one in Chapter 4); the moving load is first assumed to act inside only one cell and the
response of this system is determined. To obtain the response of the system to the moving
load acting on all cells, the individual solutions are superimposed. The drawback of this
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approach is that the load cannot act from t →−∞ since this would imply obtaining and
adding infinitely many solutions. Nonetheless, if the load enters far away to the left of the
transition zone and if the system has damping, the response in the transition zone should
be in the steady state. (This shortcoming could be avoided by imposing the steady state as
initial conditions of the system, as done in Chapter 4; this is not done here because the
computational cost of the above-mentioned procedure is very low.)

The solution procedure starts, as previously, by applying the Fourier transform over
time to Eq. (5.1). Then, the loading obtained is only considered for one cell; the solution
procedure is demonstrated for the situation in which the load is applied to the left of the
stiff zone, but the same procedure needs to be followed when it acts inside the stiff zone
or to the right of it. The obtained equation of motion is divided in 5 domains: (1) left of the
loaded cell, (2) the loaded cell, (3) right of the loaded cell and left of the stiff zone, (4) inside
the stiff zone, and (5) to the right of the stiff zone.Their solutions can be written as done in
the previous section and read

w̃1,n,nξ = a2e−ikF
2 nd

u2, n < nξ, (5.15)

w̃2,n,nξ = b1e−ikF
1 nd

u1 +b2e−ikF
2 nd

u2 + w̃ML
n , n = nξ, (5.16)

w̃3,n,nξ = c1e−ikF
1 nd

u1 + c2e−ikF
2 nd

u2, nξ <n < na, (5.17)

w̃4,n,nξ = d1e−ik
F
1 nd

u1 +d2e−ik
F
2 nd

u2, na ≤n < nb, (5.18)

w̃5,n,nξ = e1e−ikF
1 nd

u1, n ≥ nb. (5.19)

where n is the left interface of the observation cell, nξ is the left interface of the loaded cell
(i.e., the excitation cell), and the overbar indicates that the quantity is associated to the stiff
zone; na and nb −1 are the left interfaces of the first and last cells, respectively, in the stiff
zone.The boundary conditions at infinity have already been accounted for in these solutions.
Also, the signs of the wavenumbers have been chosen as Im(kF

1 ) < 0 and Im(kF
2 ) > 0. To

determine the unknown amplitudes, interface conditions are imposed between the domains
in the form of continuity in displacements and forces. The total solution (for the moving
load acting on all considered cells) becomes

w̃n =
Nright∑

nξ=Nleft

w̃n,nξ , (5.20)

where w̃n,nξ = [w̃1,n,nξ ,w̃2,n,nξ ,w̃3,n,nξ ,w̃4,n,nξ ,w̃5,n,nξ ] is the solution for all the cells when
the load is applied at nξ, Nleft is the first cell on which the load acts (at t = 0) and Nright

represents the last cell. Nleft needs to be chosen sufficiently to the left of the transition zone
such that the response is in the steady state in the transition zone.Nright can be chosen based
on the maximum time of the simulation and it does not introduce any unwanted transients
in the response. Itmust bementioned that the domain forwhich the response is determined
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can be and, for computational efficiency, should be smaller than the domain over which
the load is applied. In other words, if Nleft is chosen far to the left of the transition zone,
there is no need to determine the response there; we can restrict our domain of interest
(i.e., observation) in the transition zone.

The solution is nowdetermined at the interfaces between cells. To determine the solution
inside the cells, one simply needs to use Eq. (5.8). In the following, three mechanisms are
described and investigated that occur due to the combination of periodicity with the local
inhomogeneity and lead to response amplification.

5.1.4. Wave interference mechanism
Fig. 5.3 shows that, in the case of a homogeneous system, the frequencies of all emitted
waves lie inside the pass bands.However, once there is a change in stiffness of the supporting
structure (i.e., a transitionzone), the locationsof the stopbandsaredifferent for thedifferent
parts of the infinite domain. Consequently, the frequencies of waves excited by the load in
the soft regions can be in the stop band of the stiff zone.This causes the waves to be reflected
almost completely by the stiff zone and to interfere with the wave field travelling with the
load. This wave interference can lead to amplifications of the response in the transition
zone.

For this mechanism to be pronounced, the amplitude of the waves that are in the stop
band of the stiff zone should be significant.This criterion is met when the velocity is close
to a resonance velocity. In Fig. 5.10, the strongest resonance in the soft region occurs at a
velocity v ≈ 26m/s; consequently, for this investigation a velocity slightly higher than this
one is chosen (i.e., v = 28m/s).This is done because the excited wave needs to propagate
faster than the load such that it has time to reflect from the stiff region. (At resonance, the
group velocity of the generated wave equals the load velocity; for a load velocity slightly
larger than resonance velocity, the generated wave of interest travels slightly faster than the
load.)

There are two situations which lead to amplification of the response in the transition
zone. Firstly, the forward propagating wave is reflected at the stiff region and propagates
backwards interfering with the wave field close to the load.This amplification should be
observable at the left of the stiff region. Secondly, when the load has passed the stiff region,
the backward propagating wave is reflected at the stiff zone and propagates forward inter-
fering with wave field close to load.This amplification should be observable to the right of
the stiff zone.

Firstly, we investigate the region to the left of the stiff zone.The response is evaluated at
approximately 5 m to the left of xa (see Figure 5.1); the frequency and wavenumber spectra
of the transient response are compared to the steady-state ones in Fig. 5.5. On the one hand,
the second peak in the frequency spectrum, corresponding to the forward propagating
wave, is amplified in the transient response; because the frequency of this wave is in the
stop band of the stiff zone, the wave is reflected almost in its entirety (not completely due
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Figure 5.5:The primary dispersion curves for the soft (black solid line) and stiff (black dashed line) regions and
the kinematic invariants (blue lines) (top left panel; v = 28m/s), the frequency spectra of the displacements at a
position xl = xa −5m to the left of and near the stiff zone (top right panel), and the wavenumber spectra of the
displacements (bottom left panel) evaluated atΩ= 20.2 rad/s (indicated by the horizontal green dashed line); the
bottom right panel is a zoom in of the top right panel.

to damping and transmission to the right of the stiff region). Moreover, unlike the steady-
state response, the wavenumber spectrum of the transient response exhibits an additional
wave with wavenumber equal in magnitude but opposite in sign (i.e., opposite direction of
propagation) to that of the forward propagating wave, confirming the wave reflection. On
the other hand, we can see that the first peak in the frequency spectrum, corresponding to
backward propagating wave, is almost completely eliminated; the fact that the response is
evaluated very close to the stiff zone (to its left) implies that less time is available to generate
this wave (in the stiff zone, this wave is no longer generated), which explains the lower
amplitude.

When looking to the right of the stiff zone, the opposite is occurring. Figure 5.6 shows
that the first peak in the frequency spectrum is amplified while the second peak is almost
completely eliminated in the transient response. A similar reasoning as above can be used to
explain these observations. A general picture is obtained when looking at the time-domain
response under the moving load, presented in Fig. 5.7.The transient response is amplified
significantly to the left and right of the stiff region.

The response for the equivalent continuously supported systemwith a transition zone is
also presented to show, that in that case, there is no visible amplification (due to the relatively
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Figure 5.6:The primary dispersion curves for the soft (black solid line) and stiff (black dashed line) regions and
the kinematic invariants (blue lines) (top left panel; v = 28 m/s), the frequency spectra of the displacements at
position xr = xb +15m to the right of and near the stiff zone (top right panel), and the wavenumber spectra of
displacements (bottom left panel) evaluated atΩ= 17.2 rad/s (indicated by the horizontal green dashed line); the
bottom right panel is a zoom in of the top right panel.

low velocity). It is now clear that this significant amplification is caused by the periodicity of
the system together with the transition zone; if any of these two characteristics are removed,
the amplification vanishes.

The question arises how this mechanism is affected by the length of the stiff zone. If the
stiff zone has a very short length, the tunnelling effect (similar to the quantum tunnelling
[98]) can occur leading to energy being tunnelled to the soft domain to the right of the
stiff zone. As a short investigation, we consider the same system, but an incident wave
coming from the left is used instead of the moving load.The solution to that problem (cf.
Eqs. (5.15)–(5.19)) reads

w̃1,n = Aie
−ikF

1 (n−na)d
u1 + Are−ikF

2 (n−na)d
u2, n < na, (5.21)

w̃2,n = A1e−ik
F
1 (n−na)d

u1 + A2e−ik
F
2 (n−na)d

u2, na ≤n < nb, (5.22)

w̃3,n = Ate
−ikF

1 (n−nb)d
u1, n ≥ nb. (5.23)

where Ai, Ar, and At are the amplitudes of the incident, reflected and transmitted waves, re-
spectively; A1 and A2 are the amplitudes of thewaves inside the stiff zone. Eq. (5.23) together
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Figure 5.7:The displacement evaluated under the moving load for the wave-interference mechanism; the location
of the stiff zone is indicated by the grey background.

with the continuity conditions at the interfaces of the three domains can be used to express
the amplitudes of all waves in terms of the amplitude of the incident wave Ai. This allows us
to study the reflected and transmitted waves depending on the frequency/wavenumber of
the incoming wave and on the length of the stiff zone.

Fig. 5.8 presents the coefficients |Ar,t|2 of the reflected and transmitted waves, respect-
ively, for three lengths of the stiff zone, where the length of the stiff zone is defined as
l = r d (i.e., an integer number of cells). (The coefficients |Ar,t|2 are presented and not the
amplitudes themselves because |Ar|2 +|At|2 = |Ai|2 in the absence of damping [98].) Both
coefficients are very small for frequencies below the cut-off frequency of the soft zone; in
this frequency range, the incoming wave is evanescent, leading to no energy input. For
frequencies in the pass band of both domains, the coefficient of the transmitted wave is
dominant while that of the reflected one is low. In the frequency range between the cut-off
frequencies of the two domains, the outcome depends highly on the length of the stiff zone.
For a large r , the coefficient of the transmitted wave is zero while the reflected one is almost
1 (it is not exactly 1 due to the presence of damping). For a smaller r , energy is tunnelled
to the right side and the transmission increases while the reflection decreases.The energy
tunnelling to the right domain can be observed in the top panel of Fig. 5.9.

Returning to the problemwith the moving load, the frequencies of the two dominant
waves excited by the moving load (in the scenario studied previously; see Fig. 5.5) are both
in between the cut-off frequencies of the two domains. For a large r , both waves experience
almost full reflection, and thus, the significant amplification observed previously. For r = 1,
the forwardpropagatingwavewill not anymore fully reflect, as canbe inferred fromthe right
panel of Fig. 5.8 (the forward propagating wave is indicated through the top green dashed
line), while the backward propagating wave is still almost fully reflected (the backward
propagating wave is indicated through the bottom green dashed line). This scenario should
lead to a smaller amplification to the left of the stiff zone and the same amplification to
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Figure 5.8:The primary dispersion curves for the soft (black solid line) and stiff (black dashed line) regions and the
kinematic invariants (blue lines) (left panel; v = 28m/s), and the coefficients of the reflected and transmitted waves
(the 3 panels on the right) for 3 lengths of the stiff region; the frequency range between the cut-off frequencies of
the two domains is indicated by the grey background.

the right of the stiff zone. This is confirmed in the bottom panel of Fig. 5.9, where the
amplification to the left of the stiff zone is slightly smaller for r = 1 than for r = 10, while
the amplification to the right of the stiff zone is almost the same (there is a shift in time and
space due to the different lengths of the stiff zone, so one needs to compare peaks at 115 m
(orange) and 205 m (green)). Nonetheless, the amplification to the left of the stiff zone can
be clearly seen even for r = 1.

It is important to mention that the wave interference mechanism is not sensitive to the
stiffness difference between the stiff and soft domain, provided that the generatedwaves are
in the pass band of the stiff zone. Simulations have been performed also for p = 5 instead
of p = 2 and the amplification turned out to be very similar in magnitude. Also, it must be
mentioned that thewave-interferencemechanismoccurs also in the continuously supported
system subject to amoving constant load, leading to amplification of the response as shown
for abeam in [77]; however, for a continuously supported systemsubject to amoving constant
load, this mechanism is influential only for velocities close to the critical velocity while here
it can lead to a significant response amplification for much lower velocities of the load.

5.1.5. Passing from non-resonance velocity to a resonance velocity
Asdiscussed in Section 5.1.2, there are several load velocities that can lead to resonance in the
periodic system.When designing the catenary system, its properties should be chosen such
that these resonance velocities are far away from operational velocities of trains. However,
even if the operational velocity is far from resonance velocities outside transition zones, it
can be close to a resonance velocity inside the stiff region of the transition zone if this is
not designed having this criterion in mind. In this section, the situation is investigated in
which the load passes from non-resonance velocity in the soft region to a resonance velocity
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Figure 5.9: Snapshot of the displacement fields (top panel) and the displacements under the moving load (bottom
panel) for a short stiff zone (r = 1; the position of the stiff zone is indicated through the grey background) and a
long one (r = 10; the position of the stiff zone is indicated through the yellow background).

inside the stiff region. Note that the velocity of the load is kept constant and just the velocity
at which resonance occurs changes due to a change of the support stiffness.

Fig. 5.10 presents the resonance velocities for the soft and stiff regions (here the stiff-
ness ratio is p = 2). For a load velocity of v = 33.5m/s, the response is non-resonant in the
soft region while in the stiff region it is expected to get amplified due to the occurrence of
resonance.The fact that this velocity causes resonance in the stiff region can also be seen in
the dispersion curve presented in Fig. 5.11; one kinematic invariant (the first-order one) is
tangential to the dispersion curve of the stiff regionmeaning that the group velocity of the
generated wave is equal to the load velocity, which leads to resonance.The amplification of
the response in the stiff zone can be observed in both the frequency spectrum andwavenum-
ber spectrum.Moreover, the frequency and wavenumber spectra exhibit additional large
peaks at the frequency and wavenumber, respectively, corresponding to the wave generated
inside the stiff zone.

Fig. 5.12 presents the displacement under themoving load.The amplification in the stiff
zone is observed clearly with a drastic increase compared to the response in the soft region.
The increase in response requires a few cell lengths to develop, characteristic to resonance;
for short stiff zones, resonance might not have time to develop, but for longer ones strong
response amplification can develop. It is important to mention that the mechanism of
passing to resonance velocity has an equivalent in the continuously supported systemsubject
to a moving constant load, but there are important distinctions. Firstly, in the continuous
system, resonance can only occur at the critical velocity (the boundary between sub-critical
and super-critical velocities) that usually is much larger than the operational train velocities.
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For example, the continuous system equivalent to the periodic one considered in this section
has a critical velocity of around 115 m/s while the velocity that leads to the considered
resonance in the stiff region is 33.5 m/s. Secondly, to go from sub-critical to critical velocity,
the stiffness of the supporting structure needs to decrease (if all other parameters are kept
constant); this is much less common in practice because transition zones are usually regions
with stiffer structures.

5.1.6. Wave trapping inside the stiff zone
The stiff zone has a finite length l , and consequently the incoming waves generated by
the moving load in the soft region could get trapped inside. Wave trapping could lead to
response amplification inside the stiff zone even when themoving load is relatively far away.
Tomathematically derive the conditions for wave trapping, a systemwithout damping is
used, while in the graphical results a small amount of damping is present; however, the
change in the wave-trapping conditions caused by a small amount of damping is negligible.
The amount of damping imposed in this subsection is one quarter of that used in the rest of
the chapter to be able to present this mechanism in its purest form; for larger amounts of
damping, although the mechanism can still be seen, it is less pronounced.

An approximate condition for wave trapping is that q half-wavelengths of the wave
inside the stiff zone is an integer fraction of l . Mathematically this can be written as

q
1

2
λ= l = r d , q ∈N, r ∈N, (5.24)

where λ is the wavelength.This would only be exact if the stiff zone was simply supported
at both ends, which is not the case for the considered system. An exact condition for the
considered systemcanbederivedbyusing thephase-closure principle (see [99]) to determine
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the modes of vibration of the stiff zone. However, this exceeds the purpose of the chapter
and the approximate condition is sufficient to observe the mechanism.

From relation (5.24) the wavenumber ktr for the wave to be trapped is determined and it
reads

ktr = qπ

r d
. (5.25)

In order to find the corresponding frequency, the wavenumber in the first Brillouin zone
is chosen because the waves with most energy generated by the moving load are located
in the first pass band (the higher harmonics have significantly less energy) and the first
Brillouin zone.The frequencyωtr corresponding to ktr can be found by numerically solving
the dispersion equation forωtr

cos
( qπ

r

)
= (pks)c

2Tωtr
sin

(ωtr d

c

)
+cos

(ωtr d

c

)
. (5.26)

A wave with wavenumber ktr given by Eq. (5.25) and frequencyωtr would be trapped inside
the stiff zone.The wavenumber ktr,2 of the generated wave in the soft region (the frequency
remains the sameωtr) reads

ktr,2 = 1

d
arccos

( 1

p
cos

( qπ

r

)
+ p −1

p
cos

(ωtr d

c

))
. (5.27)

Clearly, the wave with wavenumber ktr,2 and frequencyωtr generated in the soft region will
give rise to a wave in the stiff region that is trapped. One can easily check this by considering
the system with a harmonic load (acting at a location in the open track) instead of a moving
one, in which case the wave trapping can be clearly observed (this result is not presented
here for conciseness). To observe the same behaviour for the moving load, one first needs
to determine the velocity of the load at which this wave (wavenumber ktr,2 and frequency
ωtr) is generated. To this end, we substitute k = ktr,2 andω=ωtr in the kinematic invariant,
Eq. (5.14). Because subcritical velocities are considered, the 0th-order kinematic invariant
cannot intersect the primary dispersion curve; therefore, we look at the 1st-order kinematic
invariant, and the velocity of the load corresponding to this situation reads

vtr = ωtrd

ktr,2 d +2π
. (5.28)

The frequency and wavenumber spectra evaluated at a position inside the stiff zone are
presented in Fig. 5.13. The frequency spectrum of the transient response exhibits a large
peak atωtr corresponding to the trapped wave. Moreover, the wavenumber spectrum shows
that the wave in the soft region with wavenumber ktr,2 (represented by the black line) is
transformed in the stiff region into two peaks at ktr and −ktr that represent the trapped
(standing) wave inside the stiff zone.The two peaks are not equal in magnitude as would be
the case for a true standing wave. One reason is that, as the source is on the left of the stiff
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Figure 5.15:Displacement time history evaluated inside the stiff zone for slightly different load velocities.

region, thewave travelling in negative x direction (which is a reflection of thewave travelling
in positive x direction) is dampedmore; another reason is that energy is transmitted to the
right of the stiff domain. Fig. 5.14 presents a snapshot of the displacement field where the
trapped wave can be clearly observed.The amplification is not drastic, but it is clear. In Fig.
5.14 can also be seen that energy is transmitted to the right domain,meaning that even in the
absence of damping, the amplification in the stiff domain will not be infinite. Moreover, it is
important to realize that only the wave corresponding to the second peak (in the frequency
domain) is trapped; all other waves can pass through. Finally, the amplification disappears
for slightly different velocities, as can be seen in Fig. 5.15, or different lengths of the stiff
zone (provided that it is not another multiple of the wavelength).

5.1.7. Relation to the continuously supported system with a harmonic moving
load

An easier problem to solve that could also capture the threemechanismsdiscussed in Section
5.1.3 is the continuously supported string subject to amoving harmonic load.The solution of
this problem can be obtained by applying the Fourier transform over time to the governing
equations and solving the resulting ordinary differential equation in the Fourier-space
domain. This has been done in, for example, [49, 77] for a moving constant load and can
easily be extended to a moving harmonic load.

The frequency of the harmonic load can be chosen such that the first two peaks in the
frequency spectrum (e.g., Fig. 5.3) are accurately represented; by choosing Ω = 2πv

d , the
kinematic invariant in the continuously supported system coincides with the 1st-order kin-
ematic invariant from the periodic system. Moreover, for the responses of the two systems
to match, the moving load must have two components: a constant one (zero frequency) and
a harmonic one; this way, the response is not symmetric with respect to the zero displace-
ment line, but is shifted downwards as seen in Fig. 5.7. Thus, the expression for the moving
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harmonic load reads−F0
(
p1+p2 cos(Ωt )

)
δ(x−v t ), where p1 and p2 need to be tuned such

that the overall steady-state displacement field matches the one of the periodic system.
Fig. 5.16 presents the comparison of the periodic and continuous systems. It can be seen

that the frequency spectra of the two systems agree well for the first two peaks, and the
continuous system does not exhibit more peaks than these two. One can introduce more
peaks in the response of the continuous systemby imposingmultiple harmonic components
to the moving load (i.e., p3 cos(2Ωt ), etc.). The bottom panel in Fig. 5.16 shows that the
time-domain displacement fields also agree well. For this set of parameters, p1 = 1 and
p2 = 0.1 lead to the best fit overall; it must be emphasized that these tuning parameters
change with system properties (e.g., load velocity, support spacing, support stiffness, etc.)
and they cannot be determined without the response of the periodic system.

Firstly, when it comes to the wave-interference mechanism, Fig. 5.17 shows that the
transient response of the continuous system exhibits qualitatively the same behaviour as
the periodic one. However, the response in the stiff region differs considerably between the
two systems because parameters p1 and p2 have been chosen such that the responsesmatch
in the soft region, not in the stiff one.This is one drawback of the equivalent model if one is
interested in the response inside the stiff region. Also, the wave-interference mechanism
can be reproduced in the continuous system only if the waves (in the periodic system) with
most energy are located in the first stop band of the stiff region; if these waves were in
the second stop band, then they would be able to propagate through the stiff zone of the
continuous system because, unlike the periodic one, it only has one stop band. When it
comes to the tunnelling effect, this can also occur in the continuously supported system
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background.
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Figure 5.18:Snapshot of the time-domain displacements for the situationwhen thewave is trapped in the transition
zone; the position of the stiff region is indicated by the grey background.

and will lead to a decrease in the response amplification caused by the wave-interference
mechanism.

Secondly, for the wave-trappingmechanism, Fig. 5.18 shows that the continuous system
exhibits a similar behaviour as the periodic one, and the agreement between the two is very
good. If one wants to investigate this mechanism in detail, the continuous system can be
an option. The fit between the transient responses can be further improved by changing
the scaling factors p1 and p2, but this would require to have the transient response of the
periodic system in advance, defeating the purpose of using the continuous system.

Finally, for passing from non-resonance velocity to resonance velocity, the continuous
system cannot be used at all. The continuous system has one resonance velocity, the critical
velocity; the value of that critical velocity is much higher than the one leading to resonance
in Section 5.1.5. Consequently, this mechanism can only be investigated in the periodic
system.
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Figure 5.19:Model schematics: infinite Euler-Bernoulli beam discretely supported by an inhomogeneous founda-
tion, subjected to a moving constant load.The positive displacement of the beam is considered upwards.

5.2. System representative of a railway track
Here we investigate the mechanisms identified in Section 5.1 for a system representative
of a railway track. To this end, the 1-D model formulated in this section differs from the
one in Section 5.1 in the following ways: (i) the tensioned string is replaced by an Euler-
Bernoulli beam (under zero tension), (ii) the beam has a small amount of internal damping
(incorporated through the damping factor ξEI), and (iii) point massesms are added at the
supports to represent the sleepers and part of the mass of the ballast. Fig. 5.19 visually
describes the system, while its equation of motion reads

E I
(
1+ξEI

∂̃
∂̃t

) ∂̃4w

∂̃x4
+ρ ∂̃

2w

∂̃t 2
+

∞∑
n=−∞

(
ms

∂̃2

∂̃t 2 + cs(x) ∂̃
∂̃t

+ks(x)
)
wδ(x − n̄d) =−F0δ(x − v t ).

(5.29)
The stiffness ks(x) and damping cs(x) have the same spatial distribution as in Section 5.1.
The damping in the soft regions is defined similarly to Eq. (2.27) and reads

cs = 2ζs

√
ksms, (5.30)

where ζs is the damping ratio.
The parameters chosen for this system are similar to the ones in Chapter 4, but with

some differences. Since the sleepers are accounted through the pointmassesms, their mass
is no longer distributed along the beam; consequently, the mass of the beam accounts for
just the mass of the rail in this model. Also, since the beam is discretely supported, the
support stiffness is no longer distributed along the beam. The parameters used for this
section are given in Table 5.1.

The method to determine the solution to the system without the transition zone is
the same as in Section 5.1.2. The only difference is that the state vector w̃ contains two
more components, namely the bending moment and the shear force. Consequently, the
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Table 5.1: Parameter values for the system representative of a railway track.

Parameter Symbol Value Unit

Bending stiffness E I 6.42·106 Nm2

Mass per unit length ρ 60 kg/m
Dead weight F0 80 ·103 N
Support mass ms 125 kg
Support stiffness ks 50 ·106 N/m
Support damping ratio ζs 0.05
Material damping factor ξEI 5 ·10-6 s
Support spacing d 0.6 m

interface conditions at the location of the support x = n̄d contain besides the continuity in
displacement and slope also equilibrium of the moments and forces. In the Fourier domain
they read

w̃ ′′
1 = w̃ ′′

2 ,

E I
(
w̃ ′′′

2 − w̃ ′′′
1

)= (−ksω
2 + icsω+ks)w̃1.

(5.31)

Furthermore, the Floquet matrix F is a 4x4 matrix. After performing the eigenvalue de-
composition of F, the solution to the systemwithout the transition zone is obtained and
reads

w̃n = a1e−ikF
1 nd

u1 +a2e−ikF
2 nd

u2 +a3e−ikF
3 nd

u3 +a4e−ikF
4 nd

u4 + w̃ML
n , (5.32)

where now there are four waves with unknown amplitudes a1−4 and Floquet wavenumbers
kF

1−4. For the systemwith a transition zone, the procedure is the same as in Section 5.1.3,
with the difference that Eqs. (5.15) and (5.19) have two waves each while Eqs. (5.16)–(5.18)
have 4 waves each.

The dispersion characteristics of the systemwithout the transition zone are presented
in Fig. 5.20.The shape of the dispersion curves is different compared to the one of the string
(see Fig. 5.3) because the dispersion equation of the beammodel is quartic while the one of
the string model is quadratic. Also, the significant amount of damping present in the beam
model (the railway trackhas larger damping than the overheadwires)makes thedelimitation
between stop and pass bands unclear (the indication of stop/pass bands in Fig. 5.20 is
approximate).Most importantly, it can be seen that, for the parameter values representative
of a railway track, both the dispersion curves and the steady-state response spectrum are
very similar to the ones of the equivalent continuously supported system; the only noticeable
differences occur at large frequencies, and even these ones are not considerable.This is an
indication that the periodic nature of the railway track does not influence its response in a
significant way.The justification for this is that the periodic variation in properties of the
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(left panel), and the frequency spectrum of the steady-state displacement (right panel); the grey/yellow background
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equivalent continuously supported system.

supporting structure as felt by the moving load is not considerable due to the large bending
stiffness of the rail.

The three mechanisms that lead to amplifications of the response in the transition zone
identified in Section 5.1 have been investigated in the system representative of a railway
track. However, the amplification observed in any of the three mechanisms is negligible.
For brevity, the results are not presented here. For the wave-interference (see Section 5.1.4)
and wave-trappingmechanisms (see Section 5.1.6), the fact that the amplitude of the free
waves (e.g., the small peak at high frequencies in Fig. 5.20) generated by the moving load is
negligible in comparison to the amplitude of the response in the vicinity of the moving load
(the large peak at low frequencies in Fig. 5.20), leads to the response amplification in the
transition zone to be insignificant. When it comes to passing to a resonance velocity (see
Section 5.1.5), the amplification of the response at one of these resonance velocities (except
for the one separating the sub- and super-critical regimes, which is very large) is negligible
too.

Finally, we also investigated a worst-case scenario in which the ballasted track is replaced
by a slab-track (i.e., increased support stiffness) combined with an axial compressive force
in the beam (to simulate compressive forces in the rail that appear when its temperature
increasesdue tohear) that causes effectively a loweringof thebeam’s bending stiffness.These
twomodifications causean increase in theperiodic variationof the support stiffness as felt by
themoving load.However, also in this scenario, none of the three amplificationmechanisms
are influential. Therefore, we can conclude that in the system representative of a railway
track (both ballasted- and slab-track), the amplification mechanisms studied in Section
5.1 can be neglected because they do not lead to significant amplification of the response.
Furthermore, for investigations focused on transition zones and response amplification
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at low frequencies (e.g., not valid when studying noise emission), the periodicity of the
railway track can be successfully approximated by the equivalent continuously supported
one without neglecting influential amplification mechanisms.

5.3. System representative of a Hyperloop transportation system
Hyperloop is a new emerging transportation system that is in the development stage. Its
designminimises the air resistance by having the vehicle travel inside a de-pressurised tube
(near vacuum) supported by columns.This designmay lead to a strong periodic variation
of the stiffness experienced by the vehicle. Moreover, along its route, it will cross bodies of
water or come across junctions/switches, all of which are transition zones.

The current section investigates the potential response amplification in a Hyperloop
system that results from the combination of (i) a transition zone and (ii) the structure having
a periodic nature. More specifically, the three mechanisms identified in Section 5.1 are in-
vestigated using a model representative for a Hyperloop transportation system. Accounting
for these mechanisms in the design can help prevent degradation of the Hyperloop tube
close to transition zones as well as fatigue and wear of the transportation pod.†

5.3.1. Parameter values for the Hyperloop system
The system adopted in this section is exactly the same as the one in Section 5.2, but with
different values for the parameters which are given in the following.

There are multiple designs of the Hyperloop transportation system; here, a typical Hy-
perloop design is considered.The steel tube has a thickness of 19 mm and an inner diameter
of 2.5 m, leading to ρ = 1331 kg/m (a 10% increase was considered to account for additional
equipment) and E I = 2.5×1010 Nm2. The support stiffness is tuned using a FEM analysis
of the 3D structure (excluding the soil) such that the displacement at the location of the
supports match when a static load is applied in the middle of the span. Note that the dis-
placement is at the rail level which is located at the top of the tube (the vehicle is suspended
from the top in this design); therefore, the stiffness of the support (in our phenomenolo-
gical model) accounts not only for the stiffness of the column, but also for the flexibility
of the connection between the tube and the rail and, most importantly, for the flexibility
introduced by the ovalization of the tube.The concrete columns supporting the tube have
a spacing of d = 16m and are assumed to be of 1.5 m diameter and 5 m height; the point
mass in the model represents the mass of the columns that is activated by the vehicle and
is chosen here as 10% of the overall mass of the columnms = 2332 kg (such a small value is
chosen because most flexibility at the supports comes from the ovalization of the tube and
thus, the columns are not deformedmuch). When it comes to the damping, a very small
amount is assumed to be conservative, namely ξEI = 5×10−6 s and cs = 10 kNs/m. Although
the damping seems small, it originates mostly from the tube itself and not from the soil
†This section of the chapter is based on one of the author’s publications [100] and it presents few alterations to the
original publication.
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Figure 5.21:The dispersion curves in three Brillouin zones (black lines) and the kinematic invariants (blue lines)
(left panel), and the frequency spectrum of the steady-state displacement (right panel); the grey/yellow background
represents a stop/pass band.

(since the columns are not deformedmuch) and the metal tube is not expected to have high
damping.The parameters used for this section are given in Table 5.2.

Table 5.2: Parameter values for the system representative of a Hyperloop.

Parameter Symbol Value Unit

Bending stiffness E I 2.5·1010 Nm2

Mass per unit length ρ 1330 kg/m
Dead weight F0 30 ·103 N
Support mass ms 2330 kg
Support stiffness ks 44 ·107 N/m
Support damping cs 10 ·103 Ns/m
Material damping factor ξEI 5 ·10-6 s
Support spacing d 16 m

The solutionmethod is exactly the same as in Section 5.2; consequently, it is not repeated
here.The dispersion characteristics of the systemwithout the transition zone are presented
in Fig. 5.21. It can be seen that the first pass band is very narrow (i.e., the second stop band is
very close to the first one).This indicates that the discretely supported system is significantly
different to the continuously supported one, unlike for the system representative of a railway
track (see Section 5.2).

Next, the three mechanisms that lead to amplifications of the response in the transition
zone are investigated in the Hyperloop scenario.
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Figure 5.22:The dispersion curves for the soft (black solid line) and stiff (black dashed line) regions and the
kinematic invariants (blue lines) (top left panel), the displacements frequency spectra to the left of the stiff zone
(top right panel; X = xa −5m), and the wavenumber spectra of the displacements (bottom left panel) evaluated at
Ω= 140 rad/s (indicated by the horizontal green dashed line); the bottom right panel is a zoom in of the top right
panel; the grey background indicates the overlapping region of the pass-band of the soft zone and the stop-band of
the stiff one; p = 1.3 and v = 269m/s.

5.3.2. Results
Wave interference mechanism
The frequency-domain response in Fig. 5.22 shows that there are two harmonics of large
amplitude generated in the steady state, which are in one of the stop-bands of the stiff
zone. These waves are, as can be seen, amplified in the transient response (at the left of
the stiff zone) due to the wave interference between the incoming and reflected waves.
The reflection of one of the two harmonics (the one at ω = 140 rad/s) can be seen in the
wavenumber-domain response through the presence of an additional peak (compared to
the steady state) at wavenumber equal in magnitude but opposite in sign (i.e., opposite
direction of propagation) to that of the forward propagating wave.

To quantify the amplification, the time-domain response under the moving load is
presented in Fig. 5.23.The response is evaluated under the moving load because it is gov-
erning. A considerable amplification can be observed at the left of the stiff zone that, at
its maximum, is of about 20%.The response of the equivalent continuously supported sys-
tem with a transition zone is also presented to show that, in that case, there is no visible
amplification. Clearly, this significant amplification is caused by the periodicity of the sys-
tem together with the transition zone; if any of these two characteristics are removed, the
amplification vanishes.
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Figure 5.23:The displacement evaluated under the moving load for the wave-interference mechanism; the location
of the stiff zone is indicated by the grey background.

It is important to note that a larger difference in stiffness p does not cause a significant
increase in the amplification; the important factor for this mechanism is that p is such
that the generated harmonics are in one of the stop bands of the stiff zone. Also, even
though the velocity is in the operational range for Hyperloop, it is chosen specifically for
this mechanism to occur (see Section 5.1.4 for the choice of velocity); for other velocities,
the generated waves are either of low amplitude or inside the pass-bands of the stiff zone,
making this mechanism not to occur. Finally, the larger the damping (especially the tube’s
internal damping), the smaller the amplification observed because the generated waves
cannot propagate sufficiently far before being attenuated.

Passing from non-resonance velocity to a resonance velocity
Theproperties of theHyperloop systemshouldbe chosen such that these resonance velocities
are far away from operational speeds. However, even if the operational velocity is far from
resonance velocities outside transition zones, it can be close to a resonance velocity inside
it. In this section, we investigate the situation in which the load passes from non-resonance
velocity in the soft region to a resonance velocity inside the stiff region.

The top panel in Fig. 5.24 presents the resonance velocities for the soft and stiff regions.
For v ≈ 288m/s, the stiff zone resonates while the soft one does not.The bottompanel in Fig.
5.24 presents the displacement under the moving load for v = 288m/s.The amplification in
the stiff zone is clearly observed with a drastic increase compared to the steady state. At its
maximum, the amplificationof thedisplacement is ofmore than20%while the amplification
of the bending moment (not presented here for brevity) is more than 25%. The increase
in response requires many cell lengths to develop, characteristic to resonance; for short
stiff zones, resonance might not have time to develop, but for longer ones strong response
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Figure 5.24: Response under the load vs velocity in the soft and stiff regions (top panel) and the displacements
evaluated under the moving load for resonance in the stiff zone (bottom panel); the stiff zone is marked by the grey
background; p = 1.3.

amplification can develop. It must be mentioned that increasing the damping diminishes
the amplification, as expected for resonance.

Wave trapping inside the stiff zone
Wave trapping could lead to response amplification inside the stiff zone even when the
moving load is relatively far away.The conditions for a wave to get trapped in the stiff zone
are described in detail in Section 5.1.6 and are summarized in the following. An approximate
condition for wave trapping is that q half-wavelengths of the wave inside the stiff zone is
equal to or an integer fraction of l . From this conditions, the wavenumber ktr of the wave
trapped in the stiff zone can be determined, and from the dispersion curves (Fig. 5.21 with
the properties of the stiff zone), the corresponding frequencyωtr can be obtained.The in-
comingwave from the soft zone needs to have the same frequencyωtr and the corresponding
wavenumber ktr,2 can be determined from the dispersion curves with the properties of the
soft zone. So, the incoming wave from the soft zone with wavenumber ktr,2 and frequency
ωtr will lead to a wave of wavenumber ktr and frequency ωtr in the stiff zone that will get
trapped.The load velocity that excites a wave of wavenumber ktr,2 and frequencyωtr can be
obtained from the kinematic invariant expression.

The top panel in Fig. 5.25 presents a snapshot of the displacement fieldwhere the trapped
wave can be clearly observed even though the load is relatively far away.The bottom panel
in Fig. 5.25 presents the displacement time-history at a point inside the stiff zone. The
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Figure 5.25: Snapshot of the time-domain displacements (top panel) and the displacements time-history at the
point marked by the green circle (bottom panel) for the situation when the wave is trapped in the stiff zone; the
stiff zone is indicated by the grey background; p = 1.2 and v = 270m/s.

amplitude inside the stiff zone is more than double the one of the steady state when the
load is relatively far away from the transition zone; under the moving load, at its maximum,
the amplification is around 17%. For slightly different velocities or different lengths of the
stiff zone (except for integer fractions of half the wavelength), the amplification vanishes.

5.4. Conclusions
This chapter investigated three mechanisms that can lead to response amplification in a
continuous and periodic system with a transition zone described by an increase in support
stiffness.These mechanisms were investigated using an infinite string/beam periodically
supported by discrete springs and dashpots, acted upon by a moving constant load; the two
models are representative of a catenary system in railway tracks (string) and of a railway
track or aHyperloop transportation system (beam).Nonetheless, themechanisms described
in this chapter can occur also in other continuous and periodic systems.The amplification
is the product of a system with periodic nature and with a local inhomogeneity, and if one
of these characteristics is omitted, the amplification will not occur.

The first mechanism is the wave interference that can lead to response amplification to
the left and to the right of the stiff region.The waves generated by the moving load outside
the transition zone are reflected almost entirely by the stiff region if one of the frequencies of
the waves are located in a stop band of the stiff region.This almost complete reflection leads
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to wave interference close to themoving load, which in turn leads to response amplification.
Results show that this mechanism is of importance when the velocity of the load is slightly
higher than one of the resonance velocities in the soft regions. Furthermore, for small
lengths of the stiff zone energy can be tunnelled to the soft domain causing a reduction in
the reflection coefficient which in turn leads to a reduced amplification.

The secondmechanism is the passing from non-resonance velocity in the soft region to
a resonance velocity in the stiff region.This causes resonance to occur inside the stiff region
leading to a drastic amplification of the response mainly inside the stiff region. Results
show that this mechanism leads to the biggest response amplification between the three
mechanisms (both in the catenary and Hyperloop systems), but requires the stiff zone to be
sufficiently long such that resonance can build up.

The third mechanism is the wave trapping inside the stiff region. For specific values
of the wavenumber and frequency of the waves generated in the soft region, waves can
get trapped inside the stiff zone potentially leading to response amplification around and
inside the stiff zone. Results show that thismechanism leads to amplification inside the stiff
region even when themoving load is relatively far away from it. However, for reasonable
values of damping, this mechanism is not as pronounced as the other two.

The possibility of capturing these mechanisms using a simpler model, a continuously
supported string acted upon by a moving harmonic load, was also studied. The wave-
interference and wave-trappingmechanisms observed in the periodic system can be seen
in the continuous system too, while the resonance mechanism cannot be replicated using
the continuous model. To obtain similar results for the continuous system, the moving load
needs to be altered by including harmonic components next to the static one.The static and
harmonic force components need to be tuned to the steady-state response of the periodic
system. Once this tuning is satisfactory, the transient responses match quite well and the
twomechanisms are qualitatively well captured. However, the tuning parameters, in prin-
ciple, are not known before-hand and need to be updated for each change of the system
properties, which makes it difficult to use the continuous system in practical situations.

These three mechanisms have been found to be influential for the catenary and Hyper-
loop systems, but do not influence the response of the model representative of the railway
track.The reason is that in the system representative of the railway track, the variation in
support stiffness as felt by themoving load is not as strong as it is in the other two scenarios.
Consequently, for investigations focused on transition zones and response amplification
at low frequencies (e.g., not valid when studying noise emission), the periodicity of the
railway track can be successfully approximated by the equivalent continuously supported
one without neglecting amplificationmechanisms.Thus, for the remainder of the thesis,
the continuously supported system is considered.

Finally, the amplification of stresses and displacements in the transition zones can
lead to numerous fatigue and wear problems in the catenary system and in the energy
collector of the train. Moreover, accounting for the low (mean) contact force between wires
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and carbon strip, the dynamic response of the system can also lead to force fluctuations
that are large enough to cause arching (occurs when the contact force is too low) or loss of
contact. For the Hyperloop, over time, the amplification can lead to increased degradation
of the structure as well as discomfort for passengers. Generally, the influence of all three
mechanisms diminisheswith increased damping; therefore, if the designed systemdoes not
have sufficient inherent damping, additional passive or active dampingmeasures may be
needed.The three investigated mechanisms can be considered as additional constraints for
the design parameters at transition zones such that amplifications are avoided, especially
because all threemechanisms occur in the range of operational train speeds (for the catenary
system) and at envisioned operational velocities of the Hyperloop vehicles.



6
Investigating the permanent

deformation caused by the response

amplification at transition zones

I learned very early the difference between knowing the name of something
and knowing something.

Richard P. Feynman

Amultitude of studies investigating the dynamic response of railway tracks consider the
behaviour of the supporting structure to be linear, assumption that is adopted in all models
formulated in the previous chapters of this thesis.This approximation is sufficient for many
applications and it allows for greater complexity in other modelling aspects (e.g., accurate
geometry of the problem). Nonetheless, the influence of the foundation’s nonlinearity on
the response of a railway track was experimentally shown to be significant by Dahlberg
[101], concluding that it should not be overlooked. Furthermore, the fact that settlement is
observed in railway tracks is a clear indication that the behaviour of the supporting struc-
ture is actually nonlinear. By investigating the settlement of open railway tracks (i.e., not
at transition zones), researchers [e.g., 10] observed a rapid settlement in the first cycles,
which is governed by the settlement of ballast [102]; after a number of cycles, the ballast
reaches its maximum compaction for a given load amplitude [102]. Subsequently, the set-
tlement is governed by the layers beneath the ballast, but the rate of this settlement is low
and increases almost linearly with increasing number of cycles, as represented in track

117
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settlement models [10, 103, 104]. Since this thesis focuses on the initiation phase of the
degradation, as discussed in the Introduction, the investigation in this chapter is restricted
to the settlement originating from the ballast compaction.

The amount of studies that include the nonlinear behaviour of the supporting structure
in moving-load problems is low, especially compared to the number of studies of railway-
related topics.This indicates, to some degree, the difficulty of accounting for the nonlinear
behaviour of the supporting structure. When it comes to systems without transition zones,
Metrikin [105, 106] was among the first to introduce springs with cubic nonlinearity to
represent the nonlinear behaviour of the supporting structure. To also account for the
flexural rigidity, the steady-state response of a beam on a homogeneous and nonlinear
elastic foundation subjected to a moving load has been analysed, considering finite [107–
109] and infinite [110–112] systems. In addition, Hoang et al. [93] studied the steady-state
response of an infinite beamwith periodic nonlinear elastic supports.

When it comes to transition radiation, it has also been addressed in systems with non-
linear supporting structure. Castro Jorge et al. [19] used a nonlinear elastic foundation
to analyse the effect of the nonlinearity on the maximum displacements in a finite and
piecewise-homogeneous system. In addition, Varandas et al. [30, 113] considered nonlinear
elastic behaviour of the supporting structure in a 3-D finite-element model of a transition
zone. However, to study the degradation in a transition zone, the employedmodel should
incorporate plastic behaviour of the foundation. To this end, Varandas et al. [10] developed
a finite 1-Dmodel describing the accumulated permanent deformation in a transition zone
using a phenomenological model for the cyclic degradation of the supports. Moreover, Gal-
lego Giner et al. [114] used a elastic-perfectly plastic model (i.e., Drucker–Prager) for the
supporting structure in his study of a transition zone using a 3-D finite-element model.
More recently, de Oliveira Barbosa et al. [26] incorporated a nonlinear lattice model that
can capture the ballast settlement caused by moving loads at transition zones.

Detailed 3-Dmodels of finite and inhomogeneous systems that incorporate nonlinear
behaviour of the foundation are available in the literature, as shown previously. However,
simplified models of transition zones in infinite systems with nonlinear elasto-plastic
foundation behaviour are not available in the literature. This motivates the aim of the
current chapter, which is to formulate a 1-Dmodel of an infinite Euler-Bernoulli beam on a
smoothly inhomogeneous and nonlinear elasto-plastic Winkler foundation, subjected to a
moving load, and study the effect of the nonlinear behaviour on the transition radiation
and the degradation in the transition zone.

The novelty of the current chapter is twofold. Firstly, a computationally efficient solution
method for an infinite system which locally exhibits nonlinear behaviour is presented.
Secondly, the influence of the foundation’s nonlinear behaviour on the generated waves
(i.e., transition radiation), and the resulting plastic deformation is studied. The model
presented here can be used for preliminary designs of transition zones in railway tracks by
assessing the potential damage (i.e., plastic deformation) occurring in the transition zone as
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Figure 6.1: Piecewise-linear approximation (solid line) of the cubic constitutive model (dashed line); fk =−kl w −
knl w3 for the cubic model with klin = 35.03 ·106(N/m2) and knl = 1.74 ·1013(N/m4) [110, 111]

a function of the smoothness of the transition (i.e., length of the transition), of the moving
load velocity, of the system’s damping and of the stiffness dissimilarity. Furthermore, the
results presented here offer insight into the physical mechanisms leading to degradation in
the supporting structure.*

6.1. Nonlinear constitutive model of the supporting structure
A variety of models have been used to represent the supporting structure in 1-D systems for
railway applications (e.g., linear elastic, bilinear elastic, cubic elastic, etc.); a good overview
of models for the foundations in 1-D systems can be found in [115]. One of the most used
nonlinear elastic models is the cubic one [e.g., 19, 105, 106, 109–112]. It assumes that the
foundation springs exert a reaction force (visualized in Fig. 6.1) proportional to the dis-
placement, through a linear stiffness term klin, and one proportional to the displacement
cubed, through a nonlinear stiffness term knl. In this chapter, the constitutive relation of
theWinkler foundation is based on the cubic model, but also incorporates the possibility
of plastic deformation by imposing a different unloading path than that of the loading, as
seen in Fig. 6.2.

The loading path of the chosen constitutive relation approximates the cubic model
through a piecewise-linear profile (Fig. 6.1) to accommodate the solution method presented
in Section 6.2.2. Firstly, kA

d is assumed to be equal to the stiffness of the equivalent linear
model [116].This assumption is based on the ballast being relatively well compacted at the
start of the simulation, represented in Fig. 6.1 through the nonzero displacement at zero
force in the piecewise-linear approximation.This implies that the initial soft response of
the foundation, as sometimes encountered, is excluded. Furthermore, assuming that the
compaction is uniform along the track, the compacted configuration is taken as reference
(zerodisplacement for zero force inFig. 6.2). Secondly, the steady-state eigenfield is assumed

*This chapter is based on one of the author’s publications [77] and it presents few alterations to the original
publication.
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Figure 6.2: Piecewise-linear constitutive law of the foundation. Path (1) represents the loading/unloading path for
the linear parts of the computational domain while path (2) represents the first loading/unloading cycle for the
nonlinear parts of the computational domain.

to be in the linear regime.This assumption is based on the fact that in the homogeneous
parts of the railway track, the steady-state displacement field induced by a train does not
lead to significant degradation of the supporting structure.Thirdly, the elastic displacement
limit wel is chosen relative to the eigenfield’s maximum displacement we

max in the soft
part of the computational domain, where the ratio wel/we

max is larger than 1. If wel is not
exceeded during the simulation, the system remains in the linear regime (branch (1) in Fig.
6.2). At locations where wel is exceeded, the corresponding part of the foundation enters
the second loading branch kB

d . The value of kB
d is chosen such that it approximates the cubic

model (Fig. 6.1).
The parameters of the cubic model which is approximated are chosen as similar to the

ones used in other publications [i.e., 110, 111]. However, the parameters for the unloading
path, kC

d and kD
d , are not well known. For the moment, the parameters are chosen such

that the overall constitutive relation resembles the results of cyclic loading experiments on
granular material [i.e., 117], but specific additional experiments or 3-Dmodelling might
be needed in order to choose these parameters realistically. Although this thesis focuses
on the initiation phase in the ballast compaction, the model developed in this chapter can
incorporate cyclic behaviour and the parameters of the constitutive relation can bemodified
for each cycle to accommodate the behaviour as observed in literature: changing stiffness
with increasing cycle number, as well as a changing area (energy dissipation) [26]. However,
the computational time required for the simulation of thousands of trains passages can
make this approach unfeasible.

The constitutivemodel incorporates the possibility of separation between the rail and the
supporting structure (Fig. 6.2).When the displacement of the beam is larger than the plastic
deformationwpl (w > wpl; note thatwpl has a negative value), the beam looses contact with
the foundation.This results in a zero foundation force fk as depicted in Fig. 6.2. However,
this is only allowed at the location where the plastic deformation has been activated; in the
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parts of the computational domain with no plastic deformation, the beam is in permanent
contactwith the supporting structure. In case of separation, besides the foundation stiffness,
also the foundation damping is modified. Consequently, the foundation damping reads

cd(x, w) =
{

cd(x), w ≤ wpl or wpl = 0,

0, w > wpl and wpl ̸= 0.
(6.1)

The parameters of the constitutive relation presented in Fig. 6.2 are not only functions
of the displacement, but also functions of space, due to the transition zone. To study the
influence of the transition smoothness on the plastic deformation in the transition zone and
on the radiated wave field, the spatial profile of the foundation stiffness is chosen as the one
in Chapter 4, namely Eq. (4.39) and can be visualized in Fig. 4.2.The damping is expressed
through the ratio ζwhich is defined similar to that of a single-degree-of-freedom system,
as given in Eq. (2.27). Therefore, by maintaining a constant damping ratio ζ throughout the
system, the spatial variation of the foundation damping is proportional to the square root
of that of the stiffness (branch A), except for the parts of the beamwhich have lost contact
with the foundation.

6.2. Model and solution
6.2.1. Problem statement
In this section, a 1-Dmodel is formulated, consisting of an infinite Euler-Bernoulli beam
resting on a smoothly inhomogeneous and nonlinear Kelvin foundation, subjected to a
constantmoving load (Fig. 6.3). In view of practical relevance (degradation is encountered at
the transition zone), the nonlinear behaviour of the supporting structure is restricted to the
transition zone and its vicinity; this domain is referred to as the computational domain. The
computational domain is connected at the boundaries to two linear and homogeneous semi-
infinite domains to accommodate the infinite extent of the railway track.The equations of
motion for the three domains read

E I
∂̃4w

∂̃x4
+ρ ∂̃

2w

∂̃t 2
+ cd(x)

∂̃w

∂̃t
+ fk(x, w) =−F0δ(x −xe − v t ), ∀x,∀t , (6.2)

w(x, t ) =


wl(x, t ), x ≤ 0,

wc(x, t ), 0 ≤ x ≤ L,

wr(x, t ), x ≥ L,

cd(x) =


cd,l, x ≤ 0,

cd,c(x), 0 ≤ x ≤ L,

cd,r, x ≥ L,

fk(x, w) =


kd,lwl, x ≤ 0,

fk,c(x, w), 0 ≤ x ≤ L,

kd,rwr, x ≥ L,
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Figure 6.3:Model schematics: infinite Euler-Bernoulli beam supported by an inhomogeneous and nonlinear Kelvin
foundation, subjected to a moving constant load.

where fk(x, w) is the force exertedby the foundation (only thepart related to stiffness andnot
to damping), which is described in detail in Section 6.1, and xe is the location of the moving
load at t = 0 (in all previous chapters this was assumed to be zero); all other parameters and
variables are introduced in Section 4.1.

As interface conditions between the domains, continuity in displacement and slope, as
well as in shear force and bendingmoment is imposed.The set of boundary conditions is
completed by imposing that, due to the presence of damping, the displacements of the left
and right domains are zero as x tends to negative and positive infinity, respectively. The
interface and boundary conditions are given in Eqs. (4.4)–(4.8).

For computational efficiency, the simulation is performed for the time interval when
themoving load is close to and inside the transition zone.Therefore, the choice of initial
conditions is crucial for ensuring that the infinite extent of the model is respected. As-
suming that the system is initially in the linear regime (w(x, t = 0) < wel), the input initial
conditions are based on the eigenfield of the approaching load, as done in Chapter 4. In this
section, these initial conditions are referred to as the input initial conditionsw in and ẇ in, to
differentiate them from other initial conditions that will become clear in the next sections.
The input initial conditions are given in Eqs. (4.9)–(4.11).With these input initial conditions,
the system reaches the steady-state regime instantly at the start of the computation.

In the next section, the solution method is presented.

6.2.2. Locally inhomogeneous and nonlinear system–solution method
Several time-domainmethods are available for obtaining the solution to a system represent-
ing a railway track with nonlinear behaviour of the foundation [e.g., 25, 30, 107, 114]. These
methods are suitable for systems that exhibit nonlinear behaviour continuously throughout
the simulation. An alternativemethod is using the Laplace transform sequentially, as shown
by Hoving andMetrikine [118].Themain condition for this method to be applicable is that
the system’s behaviour is piecewise linear, implying that the systembehaves linearly between
the moments at which its parameters, being functions of the field variables (displacements,
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velocities, etc.), change abruptly (i.e., nonlinear events).This method has the potential of
being computationally efficient for systems that have a limited number of nonlinear events.

In this section, the foundation’s constitutive law is assumed to be bilinear elastic to allow
for a clear and simple derivation. Nonetheless, for the results presented in this chapter
(Section 6.3), the constitutive relation discussed in Section 6.1 is adopted. According to the
bilinear elastic relation, the force provided by the springs in the Kelvin foundation is given
by

fk,c(x, w) =
{

kA
d,c(x) wc, wc ≤ wel,

kB
d,c(x) wc −∆kd,c(x) wel, wc > wel,

(6.3)

where kA
d,c(x) and kB

d,c(x) represent the foundation stiffness related to the first and second
branches of the bilinear constitutive law (see Fig. 6.2, considering just branches A and B for
both loading and unloading), ∆kd,c(x) = kB

d,c(x)−kA
d,c(x) is the stiffness difference between

the two branches, and wel represents the elastic displacement limit at which the stiffness
changes from branch A to branch B. Note that, due to the inhomogeneity, both stiffness
parameters kA

d,c(x) and kB
d,c(x) are functions of space; however, the elastic displacement

limit wel is independent of the spatial coordinate.
Assuming that the system is in the linear regime at the start of the simulation and

applying the Laplace transform over time to Eq. (6.2), the Laplace-domain equation of
motion valid in the computational domain reads

E I ŵ ′′′′
c,1 +

(
ρ s2 + cd,c(x) s +kA

d,c(x)
)

ŵc,1 = f̂ IC
1 + f̂ ML

1 , (6.4)

where ŵc,1 represents the unknown displacement of the computational domain in the
Laplace domain; s = σ+ iω is the Laplace variable, where σ is a small and positive real
number andω represents the angular frequency. Subscript 1 represents that the analysis is
performed for the system before the elastic displacement limit wel is exceeded for the first
time. Furthermore, f̂ ML

1 represents the Laplace-domain force exerted by the moving load
and f̂ IC

1 represents the forcing induced by the input initial conditions, and read

f̂ ML
1 =−F0

v
e−s x−xe

v , (6.5)

f̂ IC
1 = ρ

(
s w in

c + ẇ in
c

)
+ cd,c(x) w in

c . (6.6)

Because of the spatial variation of the foundation stiffness and damping, Eq. (6.4) can-
not be solved analytically for all stiffness and damping profiles.Therefore, the fourth-order
spatial derivative is approximated using the Finite Difference Method. A central difference
scheme of orderO

(
∆x6

)
is used inside the domain, and a hybrid between a central and a

forward/backward scheme is used at the boundaries.The coefficients used for the Finite
Difference discretization are given in Appendix D. As boundary conditions for the compu-
tational domain, the reaction forces delivered by the semi-infinite domains, namely the
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bendingmoment
(
Eq. (4.6)

)
and the shear force

(
Eq. (4.7)

)
, are employed.These reaction

forces are derived in Section 6.2.3 by imposing the displacement
(
Eq. (4.4)

)
and slope

(
Eq.

(4.5)
)
of the computational domain as boundary conditions for the semi-infinite domains.

Note that for the non-reflective boundaries derived in Section 6.2.3 to be correct, the com-
putational domain must behave linearly at the boundaries. Therefore, the length of the
computational domainmust be chosen such that the expected nonlinear behaviour is loc-
ated between its boundaries. After applying the Finite Difference Method to discretise the
computational domain, the Laplace-domain equation of motion reads[

Ki j + (ρ s2 + cd,c,i s +kd,c,1,i )Ii j
]

ŵc,1, j = f̂ IC
1,i + f̂ ML

1,i + f̂ B
1,i , (6.7)

where Ki j represents the bending-stiffness matrix of the beam incorporating the contri-
bution of the boundary conditions which is proportional to the unknown displacement,
while f̂ B

1,i represents the contribution of the boundary conditions independent of the un-
known displacement, which is regarded as an external forcing (see Section 6.2.3); Ii j is the
identity matrix.The Laplace-domain displacement ŵc,1, j is obtained by left-multiplying Eq.
(6.7) by the inverse of the dynamic stiffness matrix (i.e., the term in the square brackets).
Then, the inverse Laplace transform is numerically evaluated to obtain the solution in the
time domain. Making use of the symmetry properties of the imaginary and real parts of
the Laplace-domain spectrum, only positive frequencies are considered. For the results
presented in this thesis, the trapezoidal rule is used to evaluate the integral numerically.

The obtained time-domain solution is correct until the first nonlinear event, defined as
the moment in time at which the solution exceeds the elastic limit wel at a certain location
inside the computational domain. To obtain the correct solution after the first nonlinear
event (i.e., timemoment τ1), the equation ofmotion of the computational domain, Eq. (6.2),
is changed as follows:

• The foundation stiffness profile is modified by assigning the adequate stiffness to the
nodes where the elastic limit has been exceeded.

• A new time variable is introduced, namely t2 = t −τ1 for t ≥ τ1. Note that time t

represents the global time. Furthermore, for clarity, the timemoment of a nonlinear
event in the global time axis t is represented with an overbar (τn ), while in the local
time axes tn, this moment is indicated without the overbar (τn ). Fig. 6.4 offers a
graphical representation of the different time axes and nonlinear events.

• To ensure continuity, the displacement and velocity of the previous system at τ1 are
prescribed as initial conditions for the new system:

wc,2(x, t2 = 0) = wc,1(x, t = τ1), (6.8)

ẇc,2(x, t2 = 0) = ẇc,1(x, t = τ1). (6.9)
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Figure 6.4:Definition of the time intervals and the local and global (overbar) nonlinear events.

Note that these initial conditions differ from the input initial conditions defined in
Section 6.2.1.

• The boundary conditions are updated, as shown in Section 6.2.3.

• The position of the moving load is updated accordingly.

The updated system behaves again linearly until the next nonlinear event.Therefore, the
forward Laplace transform is applied with respect to the new time variable t2. The Laplace-
domain equation of motion of the new system reads[

Ki j + (ρ s2
2 + cd,c,2,i s2 +kd,c,2,i )Ii j

]
ŵc,2, j = f̂ IC

2,i + f̂ ML
2,i + f̂ NL

2,i + f̂ B
2,i , (6.10)

where s2 represents the Laplace variable associated with the new time variable t2, ŵc,2 is
the unknown Laplace-domain displacement of the new system and subscript 2 represents
that the analysis is performed for the system in the second time interval. The term f̂ ML

2,i
is associated with the moving load acting on the new system, while the initial conditions
for the new time interval are accounted through f̂ IC

2,i ; their expressions are given in the
following:

f̂ ML
2,i =−F0

v
e−s2

(
xi −xe

v −τ1

)
H

( xi −xe

v
−τ1

)
, (6.11)

f̂ IC
2,i = ρ

(
s2 wc,1,i (τ1)+ ẇc,1,i (τ1)

)+ cd,c,iwc,1,i (τ1). (6.12)

The Laplace-domain force exerted by the foundation is split into its contribution propor-
tional to the unknown displacement, kd,c,2,i ŵ2, and the one independent of the unknown
displacement, which is accounted for through the external force f̂ NL

2 , with superscript NL
standing for nonlinear:

kd,c,2,i ŵc,2,i =
{

kA
d,c,i ŵc,2,i , wc,2,i (t2 = 0) ≤ wel,

kB
d,c,i ŵc,2,i , wc,2,i (t2 = 0) > wel,

(6.13)
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f̂ NL
2,i =

{
0, wc,2,i (t2 = 0) ≤ wel,
∆kd,c,i wel

s2
, wc,2,i (t2 = 0) > wel.

(6.14)

The solution of the new system is obtained in the samemanner as for the previous one.
Moreover, the procedure of searching for the next nonlinear event, modifying the system
and then solving it using the Laplace transform, is repeated. To this end, the procedure is
generalized.The Laplace-domain equation of motion for the n-th time interval reads[

Ki j + (ρ s2
n + cd,c,i sn +kd,c,n,i )Ii j

]
ŵc,n, j = f̂ IC

n,i + f̂ ML
n,i + f̂ NL

n,i + f̂ B
n,i , (6.15)

where the generalized moving-load and initial-conditions forces are given as

f̂ ML
n,i =−F0

v
e−sn

(
xi −xe

v −τn−1

)
H

( xi −xe

v
−τn−1

)
, (6.16)

f̂ IC
n,i = ρ

(
sn wc,n−1,i (τn−1)+ ẇc,n−1,i (τn−1)

)+ cd,c,i wc,n−1,i (τn−1). (6.17)

The described procedure is repeated until the whole solution is obtained in the time
domain.The discretised displacement of the computational domain thus becomes

wc, j (t ) = [
wc,1, j (0, ...,τ1 −∆t ), wc,2, j (0, ...,τ2 −∆t ), . . . , wc,N , j (0, ..., tmax −τN−1)

]
, (6.18)

where ∆t is the time spacing, N is the index of the last time interval and tmax is the final
moment in time of the simulation.

To obtain correct results, the continuity of displacements and velocities at the nonlinear
events is of crucial importance. However, the Laplace-domain spectra of the two quantities
exhibit a poor decay due to the applied initial conditions. Consequently, the numerical integ-
rationmust be performed up to very high frequencies leading to a significant computational
effort. In the following section, a method of incorporating the high frequencies without
increasing the computational effort is presented.

Improvement of the frequency-spectra decay
The high-frequency regime of the Laplace-domain displacement, obtained from Eq. (6.15),
is dominated by the initial conditions as follows:

ŵc,n, j ∼
wc,n−1, j (τn−1)

σ+ iωn
+ ẇc,n−1, j (τn−1)

(σ+ iωn)2 , ωn −→∞. (6.19)

Similarly, the Laplace-domain velocity v̂c,n, j in the high-frequency regime reads

v̂c,n, j ∼
ẇc,n−1, j (τn−1)

σ+ iωn
+ ẅc,n−1, j (τn−1)

(σ+ iωn)2 , ωn −→∞. (6.20)
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The initial displacement, velocity and acceleration in the numerators of Eqs. (6.19) and (6.20)
are clearly independent of frequency.Therefore, the Laplace-domain spectra are dominated
by the expressions in the denominator, exhibiting the slow decay proportional to 1/ωn.

To incorporate the high frequencies without the need to integrate numerically up to very
high frequencies, thehigh-frequencyapproximations, Eqs. (6.19) and (6.20), couldbe subtracted
from ŵc,n, j and v̂c,n, j , respectively. However, in doing so, a high peak is introduced in
the remaining frequency spectra close to ωn = 0, which would require a very small step
in frequency for obtaining accurate results. To overcome this issue, the high-frequency
approximations are only subtracted over part of the frequency axisωn ≥ωA.Theonly criteria
for choosing ωA is that it is sufficiently distant from the origin ωn = 0 to ensure that the
resulting spectrum does not exhibit a high peak.The Laplace-domain displacement and
velocity can now be expressed as

ŵc,n, j = ŵ imp
c,n, j +

wc,n−1, j (τn−1)

σ+ iωn
H(ωn −ωA)+ ẇc,n−1, j (τn−1)

(σ+ iωn)2 H(ωn −ωA), (6.21)

v̂c,n, j = v̂ imp
c,n, j +

ẇc,n−1, j (τn−1)

σ+ iωn
H(ωn −ωA)+ ẅc,n−1, j (τn−1)

(σ+ iωn)2 H(ωn −ωA), (6.22)

where ŵ imp
c,n, j and v̂ imp

c,n, j represent the improved (i.e., with strong decay) Laplace-domain
domain expressions of the displacement and velocity, respectively. To obtain the time-
domain response, the inverse Laplace transform is evaluated numerically for the improved
expressions, and analytically for the high-frequency approximations, as follows:

wc,n, j = 1

π

∫ ωmax

0
Re

(
ŵ imp

c,n, j esn tn
)
dωn +wc,n−1, j (τn−1) Ia(tn)+ ẇc,n−1, j (τn−1) Ib(tn),

(6.23)

ẇc,n, j = 1

π

∫ ωmax

0
Re

(
v̂ imp

c,n, j esn tn
)
dωn + ẇc,n−1, j (τn−1) Ia(tn)+ ẅc,n−1, j (τn−1) Ib(tn),

(6.24)

where ωmax represents the maximum frequency of integration, while Ia(tn) and Ib(tn)

represent the time-domain images of the high-frequency approximations divided by the
corresponding initial-condition terms.Their expressions are not presented here for brevity;
however, they can be easily computed using a symbolic mathematics tool (e.g., Maple).

By evaluating the inverse Laplace transform analytically for the high-frequency approx-
imations, frequencies up to infinity are actually included,which represents an improvement
not just in computational time, but also in accuracy (although the results are still approx-
imations since ŵ imp

c,n, j and v̂ imp
c,n, j are not completely zero atωmax). Using the improvement

presented in this section, the solution obeys the continuity conditions (i.e., displacement
and velocity) imposed at nonlinear events.The input initial conditions and the non-reflective
boundary conditions are derived in the next section.
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6.2.3. Non-reflective boundary conditions
In Section 6.2.2, the boundary conditions for the computational domain, imposed bending
moment

(
Eq. (4.6)

)
and shear force

(
Eq. (4.7)

)
, are kept general. In this section, the reaction

forces of the semi-infinite domains at the interfaces with the computational domain are
derived. When these forces are prescribed as boundary conditions of the computational
domain, the finite system will behave exactly as the infinite one.Therefore, these interface
reaction forces constitute non-reflective boundary conditions for the computational domain.
The goal is to express the interface reaction forces (bending moment and shear force) of
the left and right domains as functions of the unknown displacement and slope of the
computational domain at the corresponding interfaces. The procedure is similar to the
one in Section 4.2.3, but the application of the Laplace transform sequentially causes some
differences in the approach, which is explained in the following.

The forward Laplace transform is applied over time tn to the equation of motion of the
left and right semi-infinite domains

(
Eq. (6.2)

)
:

ŵ ′′′′
h,n −k4

h ŵh,n = 1
E I

(
f̂ IC

h,n + f̂ ML
h,n

)
, h = {l, r}, (6.25)

where ŵl,n and ŵr,n represent the unknown Laplace-domain displacements of the left and
right semi-infinite domains, respectively, for the n-th time interval, and f̂ ML

h,n represents the
Laplace-domainmoving load given by Eq. (6.16), but with a continuous spatial coordinate x.
Note that f̂ ML

h,n is non-zero only if themoving load is acting on the corresponding domain. kl

and kr represent the wavenumbers of the two semi-infinite domains and their expressions
are given in Eq. (4.30). Furthermore, f̂ IC

h,n represents the Laplace-domain initial-conditions
forces given by

f̂ IC
h,n(x, sn) = (ρsn + cd,h) wh(x,τn−1)+ρ ẇh(x,τn−1), h = {l, r}. (6.26)

At infinity, the condition of zero displacements
(
Eq. (4.8)

)
is imposed, while at the interfaces

the unknown Laplace-domain displacement and slope of the computational domain are
prescribed:

ŵl,n(0, sn) = ŵn(0, sn), ŵr,n(L, sn) = ŵ(L, sn), (6.27)

ŵ ′
l,n(0, sn) = ŵ ′

n(0, sn), ŵ ′
r,n(L, sn) = ŵ ′

n(L, sn). (6.28)

The Laplace-domain displacement of the two semi-infinite domains can be obtained
by solving Eq. (6.25) with the above discussed boundary conditions. By taking the second-
and third-order derivatives with respect to space and evaluating them at the interfaces,
the reaction forces of the two semi-infinite domains are expressed as functions of the
displacement and slope of the computational domain prescribed at the corresponding
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interfaces: (
ŵ ′′′

l,n(0, sn)

ŵ ′′
l,n(0, sn)

)
=

(
k̂l,Vυ k̂l,Vϕ

k̂l,Mυ k̂l,Mϕ

)(
ŵn(0, sn)

ŵ ′
n(0, sn)

)
− b̂IC

l,n − b̂ML
l,n , (6.29)(

ŵ ′′′
r,n(L, sn)

ŵ ′′
r,n(L, sn)

)
=

(
k̂r,Vυ k̂r,Vϕ

k̂r,Mυ k̂r,Mϕ

)(
ŵn(L, sn)

ŵ ′
n(L, sn)

)
− b̂IC

r,n − b̂ML
r,n , (6.30)

where the entries of the matrices represent the dynamic stiffness coefficients giving rise to
the boundary forces proportional to the unknown displacement and slope at the boundary;
subscript V stands for shear force, M for bending moment, υ for translation and ϕ for
rotation.The coefficients are given by Eqs. (4.33) and (4.34).

In addition, b̂
IC
l,n and b̂

IC
r,n are vectors containing the influence of the initial conditions

(
Eq.

(6.26)
)
on the reaction forces, giving rise to boundary forces independent of the unknown

displacement and slope of the computational domain. The two vectors are given by the
following expressions:

b̂

IC
l,n =

(
ŵ ′′′

l,n,p(0, sn)

ŵ ′′
l,n,p(0, sn)

)
+

(
k̂l,Vυ k̂l,Vϕ

k̂l,Mυ k̂l,Mϕ

)(
ŵl,n,p(0, sn)

ŵ ′
l,n,p(0, sn)

)
, (6.31)

b̂

IC
r,n =

(
ŵ ′′′

r,n,p(L, sn)

ŵ ′′
r,n,p(L, sn)

)
+

(
k̂r,Vυ k̂r,Vϕ

k̂r,Mυ k̂r,Mϕ

)(
ŵr,n,p(L, sn)

ŵ ′
r,n,p(L, sn)

)
, τn−1 ≤ L−xe

v
, (6.32)

where ŵl,n,p(0, sn) and ŵr,n,p(L, sn) are the particular solutions that account for the initial-
conditions forcing in Eq. (6.25).

Similar to b̂
IC
l,n and b̂

IC
r,n, vectors b̂

ML
l,n and b̂

ML
r,n contain the contribution of the moving

load to the reaction forces (they are non-zero only when the moving load is present in the
corresponding domain), and they read

b̂

ML
l,n =

(
V̂ 0(s)

M̂ 0(s)

)
, b̂

ML
r,n =

(
V̂ L(s)

M̂ L(s)

)
, (6.33)

V̂ L
n (sn) = iF0

(
sn + (1+ i)krv

)
E I (krv + sn)(krv − isn)

e−sn

(
L−xe

v −τn−1

)
, τn−1 ≤ L−xe

v
, (6.34)

M̂ L
n(sn) = −iF0v

E I (krv + sn)(krv − isn)
e−sn

(
L−xe

v −τn−1

)
, τn−1 ≤ L−xe

v
, (6.35)

where V̂ L
n and M̂ L

n are the shear force and bending moment, respectively, exerted by the
moving load on the right boundary after it has entered the right semi-infinite domain. Note
that b̂

IC
r,n , V̂ L

n and M̂ L
n as given in Eqs. (6.32) to (6.35), respectively, are valid for τn−1 ≤ L−xe

v ,
meaning that the nonlinear events occur while the moving load is inside the computational
domain (they still correctly describe the dynamics when the load is in the right domain, up
to the moment a nonlinear event occurs). When nonlinear events occur while the moving
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load is in the right domain, this is divided into two domains, one behind the load and one
in front, rendering the expressions for b̂

IC
r,n , V̂ L

n and M̂ L
n lengthy for τn−1 > L−xe

v . Therefore,
these expressions are given in Appendix E. In all scenarios considered in this chapter xe = 0,
implying that V̂ 0 = 0 and M̂ 0 = 0. In other situations, they can be obtained following the
same procedure explained in Appendix E for V̂ L and M̂ L.

To obtain the particular solutions in Eqs. (6.31) and (6.32), theGreen’s-function approach
is used as follows:

ŵl,n,p(x, sn) =
∫ 0

−∞
ĝ l(x −ξ, sn) f̂ IC

l,n (ξ, sn)dξ, (6.36)

ŵr,n,p(x, sn) =
∫ ∞

L
ĝr(x −ξ, sn) f̂ IC

r,n(ξ, sn)dξ, (6.37)

where ĝ l(x−ξ, sn) and ĝr(x−ξ, sn) are the Laplace-domain Green’s functions of two infinite
domains having the same properties as the corresponding semi-infinite ones.The particular
solutions are needed only at the interfaces, as seen in Eqs. (6.31) and (6.32). Therefore,
excitation variable ξ is smaller than or equal to the observation point x = 0 for the left
domain and ξ is larger than or equal to x = L for the right domain. Consequently, the
Green’s functions are given by [50]

ĝ l(x −ξ, sn) =− 1

k3
l

(
ie−ikl(x−ξ) +e−kl(x−ξ)

)
, (6.38)

ĝr(x −ξ, sn) =− 1

k3
r

(
ie−ikr(ξ−x) +e−kr(ξ−x)

)
. (6.39)

Now, the only unknowns left for deriving the non-reflective boundary conditions are the
initial conditions of the two semi-infinite domains in Eq. (6.26).The state (i.e., displacement
field and velocity field) of the two domains at timemoment τn−1 consists of a superposition
of the eigenfield and the waves generated inside the computational domain which have
propagated to the two semi-infinite domains, referred to as the free field w f. The eigenfield’s
contribution can be evaluated analytically by equating global time t to τn−1 in Eq. (2.19)
and in its time derivative, and inserting the relevant medium parameters.The state of the
two domains as induced by the free field can be obtained by solving two boundary-value
problems for the two domains with the time history of the free-field displacement and slope
of the computational domain observed at the boundaries prescribed as boundary conditions
(Fig. 6.5). The free-field displacement at the boundaries is obtained by subtracting the
eigenfield from the displacement of the computational domain

(
Eq. (6.18)

)
, which is known

until timemoment τn−1:

w f
c(0; t = 0, ...,τn−1) =wc(0; t = 0, ...,τn−1)−we(0; t = 0, ...,τn−1), (6.40)

w f
c(L; t = 0, ...,τn−1) =wc(L; t = 0, ...,τn−1)−we(L; t = 0, ...,τn−1). (6.41)



6.2. Model and solution

6

131

x  = L x → ∞

wl(x,t)

wr(x,t)
x = 0x → -∞

wf
c'(L,t) wf

c(L,t)

wf
c'(0,t)wf

c(0,t)

Figure 6.5: Time-domain boundary value problems to be solved for obtaining the initial states of the left and right
domains due to the free-field at timemoment t = τn−1.

After computing the free-field slopes numerically, the boundary-value problems needed
to determine the state of the left and right domains (Fig. 6.5) are solved using the Laplace
transformover global time t . Note thatw f

c(0, t > τn−1) andw f
c(L, t > τn−1) are still unknown

and by default equal to zero. Consequently, the discontinuity in the free-field displacements
and slopes at τn−1 introduces high-frequency content in its Laplace-domain counterparts.
To avoid this, an artificial smooth continuation is imposed on the free-field displacements
and slopes for t > τn−1, which does not affect the response for t ≤ τn−1. Then, the Laplace-
domain free-field displacements are given as follows:

ŵ f
l (x, s) =Cl eiklx +D l eklx , (6.42)

ŵ f
r(x, s) =Cr e−ikrx +Dr e−krx , (6.43)

whereCl,D l,Cr andDr represent complex-valued amplitudes which read

Cl =
1+ i

2kl
[kl ŵ f

c(0, s)− ŵ f′
c (0, s)], D l =

1− i

2kl
[kl ŵ f

c(0, s)+ iŵ f′
c (0, s)], (6.44)

Cr = 1+ i

2kr
[kr ŵ f

c(L, s)− ŵ f′
c (L, s)]eikrL , Dr = 1− i

2kr
[kr ŵ f

c(L, s)− iŵ f′
c (L, s)]ekrL . (6.45)

Note that the forward Laplace transform is applied with respect to the time variable t

because the displacement and slope imposed as boundary conditions act from the time
moment t = 0 until t = τn−1. Therefore, ŵ f

c(0, s) and ŵ f
c(L, s) represent Laplace-domain

history contributions for the new system and need to be computed for each nonlinear event.
To obtain the time-domain displacement and velocity of the two semi-infinite domains

needed in Eq. (6.26) and thus for the derivation of the non-reflective boundary conditions,
the inverseLaplace transform is applied toEqs. (6.42), (6.43) and the correspondingvelocities,
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and is evaluated at τn−1:

wl(x,τn−1) = 1

2πi

∫ σ+i∞

σ−i∞
ŵ f

l (x, s)esτn−1 ds +we(x,τn−1), (6.46)

ẇl(x,τn−1) = 1

2πi

∫ σ+i∞

σ−i∞
s ŵ f

l (x, s)esτn−1 ds + ẇe(x,τn−1), (6.47)

wr(x,τn−1) = 1

2πi

∫ σ+i∞

σ−i∞
ŵ f

r(x, s)esτn−1 ds +we(x,τn−1), (6.48)

ẇr(x,τn−1) = 1

2πi

∫ σ+i∞

σ−i∞
s ŵ f

r(x, s)esτn−1 ds + ẇe(x,τn−1). (6.49)

The particular solutions are now obtained by substituting Eqs. (6.46) to (6.49) in Eq.
(6.26), and Eq. (6.26) in Eqs. (6.36) and (6.37), and then changing the order of integration:

ŵl,n,p(x, sn) = 1

2πi

∫ σ+i∞

σ−i∞
(ρsn + cd,l +ρs)esτn−1 ·

∫ 0

−∞
ĝ l(x −ξ, sn)ŵ f

l (ξ, s)dξds

+ ŵe
l,n,p(x, sn), (6.50)

ŵr,n,p(x, sn) = 1

2πi

∫ σ+i∞

σ−i∞
(ρsn + cd,r +ρs)esτn−1 ·

∫ ∞

L
ĝr(x −ξ, sn)ŵ f

r(ξ, s)dξds

+ ŵe
r,n,p(x, sn), (6.51)

where ŵe
l,n,p(x, sn) and ŵe

r,n,p(x, sn) represent the particular solutions accounting for the
parts of the eigenfield in the left and right domains, respectively, at τn−1. The integration
over ξ can be performed analytically, while the inverse Laplace transform evaluated at τn−1

should be performed numerically. Moreover, the spatial derivatives needed in Eqs. (6.31)
and (6.32) can be evaluated analytically.

The non-reflective boundary conditions for the computational domain, Eqs. (6.29) and
(6.30) are now fully determined. The contribution of the boundary conditions which is
proportional to the yet unknown displacement and slope is incorporated into the beam’s
bending stiffness matrix Ki j

(
see Eq. (6.15)

)
, while the contribution which is independent

of the unknown displacement and slope is accounted for through the boundary-forcing
vector f̃ B

n,i . As can be seen, the beam’s bending stiffness matrix does not change from one
system to the other; however, the boundary-forcing vector needs to be updated at each
system change.

Although the obtained non-reflective boundary conditions have been derived for the
moving-load problem, the same procedure can be applied for any arbitrary loading. Next,
theWinkler foundation model used for the results presented in this chapter is described.

6.3. Results and discussion
Here, the proposed model is first verified by considering a limit case and comparing the
obtained results to a semi-analytical solution.Then, the time-domain displacement field
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Table 6.1:Values of the system parameters used to compute results in Chapter 6.

Parameter Symbol Value Unit

Bending stiffness E I 6.42·106 Nm2

Mass per unit length ρ 268.33 kg/m
Moving-loadmagnitude F0 80 ·103 N
Loading stiffness kA

d,l 83.33·106 N/m2

Loading stiffness kB
d,l 158.33 ·106 N/m2

Unloading stiffness kC
d,l 233.33 ·106 N/m2

Unloading stiffness kD
d,l 83.33·106 N/m2

Stiff-soft stiffness ratio p 5
Elastic displacement limit ratio wel/we

max 1.1
Moving load at t = 0 xe 0 m
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2

3
·10−2
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)
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Figure 6.6: Error versus space for the linear limit case with imposed artificial nonlinear events (left panel) and
without (right panel); xtc = 25m, v = 0.95ccr,l, ζ= 0.05.

is presented for two specific cases and the influence of the nonlinear foundation on the
transition radiation is highlighted. Afterwards, the influence of the transition length, load
velocity and stiffness ratio on the plastic deformation is assessed through a parametric
study. Finally, the influence of the nonlinear foundation on the radiated energy and on
the energy input is discussed. The parameters which are kept constant throughout the
presented results are given in Table 6.1, while the ones which are varied are mentioned for
each case individually.

6.3.1. Verification and convergence
To validate the solution derived in Section 6.2, a limit case is considered, in which the
foundation is piecewise homogeneous and behaves linearly, but for which artificial nonlinear
events are introduced in the solution. To this end, a soft-to-stiff case is considered where
the foundation-stiffness coefficients kB

d,l, kC
d,l, kD

d,l (described in Section 6.1) are set equal to
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kA
d,l. The same is done for the stiff domain, the stiffness coefficients being equal to kA

d,r. To
validate the solution, 100 artificial nonlinear events are introduced in the solution, which
is comparable to the total number of nonlinear events in the most intensive computations
encountered.

The limit-case solution is compared to the semi-analytical transient solution derived
in Section 2.3. The error e(x) presented in Fig. 6.6 is defined as the summed-over-time
absolute value of the difference between the limit-case solution wlin and the benchmark
solution wbench, divided by the summation of the absolute value of the benchmark solution
over time:

e(x) =
∑tmax

t=0 |wbench(x, t )−wlin(x, t )|∑tmax
t=0 |wbench(x, t )| . (6.52)

This error is caused by twomain factors, namely the sequential application of the Laplace
transformand the FiniteDifference discretization (the left panel of Fig. 6.6 presents the total
error). To isolate the error caused by the Finite Difference discretization, the case with no
artificial nonlinear events is presented in the right panel of Fig. 6.6. To test the convergence
of the derived solution, themaximum frequency has been varied (also done in the numerical
integration for the benchmark solution). Note that by changing the maximum frequency,
according to the Nyquist sampling rule, the time stepping also changes.

Fig. 6.6 shows that the solution derived in Section 6.2 converges to the correct one
as the maximum frequency increases. The higher relative error in the stiffer part of the
computational domain can be explained by the smaller displacements. A higher maximum
frequency leads to smaller error; however, the computational effort increases significantly.
For the rest of the results presented in this section, the maximum frequency was chosen as
1 kHz.

6.3.2. Displacement field in the time domain
To study the effect of thenonlinear foundationon thewavefield excitedduring the transition-
radiation process, a relatively severe case is presented.The load velocity is chosen as 95% of
the critical velocity in the soft part of the computational domain (ccr,l), and the transition
length lt is chosen as 0.1 m, which is close to the piecewise-homogeneous case. To ensure
that the initial displacement and velocity fields do not interact with the inhomogeneity, the
centre of the transition zone xtc is positioned at 35m. The influence of the nonlinearity is
highlighted by comparing the response to the linear case, as seen in Fig. 6.7.

The plastic deformation close to the transition zone is a result of constructive inter-
ference of the approaching eigenfield and the waves generated in the transition zone, the
samemechanism that causes response amplification. As in the linear case, the eigenfield
interacts with the transition zone, generating waves which mostly propagate towards the
softer medium. By constructively interfering, the displacement under the load exceeds the
elastic displacement limit (indicated by the grey line in Fig. 6.7) giving rise to permanent
deformation in the foundation to the left of the transition zone.
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Figure 6.7: Time-domain displacement field for the nonlinear system (solid line), for the linear system (dashed
line), the plastic deformation (dash-dot line) and the elastic displacement limit (light grey; given in Table 6.1) for
the soft-to-stiff case; lt = 0.1m, xtc = 35m, v = 0.95ccr,l, ζ = 0.05; the arrow indicates the position of the load.
Note that panels g) and h) have a different vertical-axis scale for clarity.

In the nonlinear system, the free field has both larger amplitude and is sustained for a
much longer period of time compared to the linear one.This can clearly be seen in Fig. 6.7.
Both the larger amplitude and longer duration are consequences of the beam’s separation
from the foundation. In case the separation is not included in the constitutive model (e.g.,
if the settlement is small), then the difference between the transient responses of the linear
and nonlinear models is small (result is not presented here for brevity). The loss of contact
leads to larger upward displacementwhich in turn affects thewave field in areaswithout loss
of contact.The loss of contact also causes the loss of external damping which results in the
longer duration of the vibration. Moreover, the shape of the radiated waves is also changed.
In the nonlinear case, the contact loss leads to a slight increase in the wavelength of the free
field (Fig. 6.7 panels d), e) and f)). This is in accordance with the findings in Section 6.3.4.

In the stiff-to-soft scenario, the displacement field does not exceed the elastic displace-
ment limit (at all), meaning that plastic deformation does not develop, as seen in Fig. 6.8. As
shown in Chapter 2 (Fig. 2.7), in the stiff-to-soft scenario both the free field and eigenfield
move in the same direction causing the response amplification to occur further away from
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Figure 6.8:Time-domain displacement field for the nonlinear system (solid line), the plastic deformation (dash-dot
line) and the elastic displacement limit (light grey; given in Table 6.1) for the stiff-to-soft case; lt = 0.1m, xtc = 10m,
v = 0.95ccr,r, ζ= 0.05; the arrow indicates the position of the load.

the transition. However, due to the presence in this chapter of a reasonable amount of
damping, the free field decays before a significant amplification can occur. Consequently,
in the remainder of this chapter, only the soft-to-stiff case is presented. Nonetheless, if the
load travelled super-critically (in the soft medium or in bothmedia) for the stiff-to-soft case,
it would move faster than the critical velocity of the free waves, probably leading to more
pronounced constructive interference, which could induce plastic deformation to the right
of the transition zone. However, this scenario is outside the scope of the analysis done in
this chapter.

6.3.3. Parametric study
In this section, the damage occurring in the supporting structure is addressed as a function
of the load velocity, the transition length and the stiffness ratio p through a parametric
study.The area of the plastic deformation, Apl =

∫
wpl(x)dx, is chosen as the quantifier for

the damage in the supporting structure.The three parameters chosen to be varied influence
the transition radiation phenomenonmost. Furthermore, these parameters can be adjusted
in the design stage of railway tracks to minimize damage in the supporting structure.

The plastic deformation area versus varying transition length is presented in Fig. 6.9
for different load velocities and damping ratios. The plastic deformation area decreases
as the transition length increases, as could be expected, and the decreasing trend is quasi-
monotonic for all load velocities and damping ratios. For the damping ratio ζ= 0.05 (left
panel in Fig. 6.9), the transition-length range in which plastic deformation occurs increases
with increasing velocity until the critical velocity, beyond which it decreases. However, for
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Figure 6.9: Plastic deformation area versus transition length for different load velocities; ζ = 0.05 (left panel),
ζ= 0.20 (right panel) and p = 5.

the super-critical case (v = 1.05ccr,l) and small transition lengths (lt = 0, ...,3m), the plastic
deformation is still larger than for the critical case (v = 1.00ccr,l), whichmakes the two lines
intersect.This larger plastic deformation is caused by the fact that parts of the foundation
experience additional plastic deformation produced in the second loading-unloading cycle.
This is not the case for larger transition lengths (lt = 4, ...,6m), and because the displacement
of the eigenfield under the load is smaller in the super-critical case than in the critical case,
a smaller plastic deformation area results, which explains the intersection of the two lines.
Furthermore, for ζ = 0.20 (right panel in Fig. 6.9), additional plastic deformation is not
produced in the second loading-unloading cycle for any of the transition lengths due to the
higher damping ratio, and the range as well as the plastic deformation area just decrease as
the velocity increases beyond the critical velocity.

Furthermore, the analysis shows that it is not just the duration of passage tp = lt
v that

governs the resulting plastic deformation (which could be intuited), but also the absolute
values of the transition length lt and load velocity v separately. It can clearly be seen in Fig.
6.9 that for the same duration of passage, significantly different plastic-deformation values
are observed for different load velocities.

In Fig. 6.10, the plastic deformation area is presented as a function of the velocity of the
moving load for different transition lengths and damping ratios.The plastic deformation
area increases with increasing velocity until close to the critical velocity, beyond which it
decreases. For ζ = 0.05 (left panel in Fig. 6.10), the critical velocity appears to be around
1.05 ccr,l for lt = 0.1m, and its value decreases with increasing transition length reaching
1.00 ccr,l for lt = 4m.This shows that the critical velocity for the plastic deformation area is
dependent on the transition length. Moreover, the increasing trend (sub-critical velocities)
and the decreasing trend (super-critical velocities) have different slopes, which is explained
by the fact that in the super-critical cases parts of the foundation experience additional
plastic deformation caused in the second loading-unloading cycle. For ζ= 0.20 (right panel
in Fig. 6.10), a similar behaviour to the case of ζ= 0.05 is observed. However, themagnitude
of the plastic deformation area is smaller and the slopes of the increasing and decreasing
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Figure 6.10: Plastic deformation area versus velocity of the moving load for different transition lengths; ζ= 0.05
(left panel), ζ= 0.20 (right panel) and p = 5.

trends (left and right of the critical velocity) are almost identical because the foundation
does not experience additional plastic deformation caused in the second loading-unloading
cycle.

The plastic deformation area as a function of the stiffness ratio p is presented in Fig. 6.11
for different load velocities and transition lengths.The plastic deformation area increases
with increasing stiffness ratio for all velocities and transition lengths presented, as could be
expected.The increasing trends tend to constant values, which could be obtained in the limit
case of the stiff domain being infinitely stiff. It is clear from the trends that the maximum
sensitivity of the plastic deformation area occurs at small stiffness ratios. Therefore, the
maximum gain in decreasing the damage of the supporting structure can be obtained at
small stiffness ratios. For small stiffness ratio, the maximum plastic deformation area is
observed for a load velocity v = 1.00ccr,l, but for larger stiffness ratio the maximum plastic
deformation area is obtained for a load velocity v = 1.05ccr,l. This shows that the critical
velocity, when it comes to the plastic deformation area, is dependent also on the stiffness
ratio (next to transition length).

To conclude, studying the influence of the transition length, load velocity and stiffness
ratio on the plastic deformation area provides valuable information about the value ranges of
these parameterswhere the initial design of transition zones should aimat so as tominimize
the damage in the supporting structure. Next, the transition radiation phenomenon is
studied from an energy point of view.

6.3.4. Energy radiation
In this section, the influence of the nonlinearity on the transition radiation is studied from
an energy perspective, which gives additional insight into the properties of the radiated
field. To investigate the energy radiation solely due to the transition radiation phenomenon,
the study is restricted to sub-critical load velocities. Based on the solution derived in Section
6.2.2, the energyflux throughcross-sections of thebeamto the left and right of the transition
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Figure 6.11: Plastic deformation area versus stiffness ratio for different velocities and transition lengths; ζ= 0.05.

zone can be computed as shown in Chapter 2
(
Eqs. (2.35) and (2.36)

)
. Also, to visualize the

spectral energy density corresponding to the radiation, Eq. (2.39) is used.
In the expressions of the energy radiation and spectral energy density from Chapter

2, the response quantities are evaluated at x →±∞; this is not possible for the response
quantities in this chapter because the response is obtainedonly in the computational domain
(x ∈ [0,L]) and the foundationhasdampingcausing the responseat infinitedistance fromthe
moving load to be zero. Consequently, the quantities at the boundaries of the computational
domainareused todetermine the energy radiationand the corresponding spectra.Moreover,
to focus on the radiation solely and eliminate the energy flux corresponding to the eigenfield
entering and exiting the computational domain, only the free field part of the response
is considered. It must be emphasized that the computed energy does not represent the
total free-field energy because part of it is absorbed by the foundation before reaching the
considered cross-sections left and right of the transition. Furthermore, due to the spatial
variation of the foundation damping, the energy propagating in the stiff domain is damped
more than that propagating in the soft domain. To avoid the last issue, for the computations
performed in this section, the spatial damping profile is maintained constant throughout
the computational domain (where ζ is defined with respect to the soft domain), except for
the parts where the beam-foundation separation occurs

(
Eq. (6.1)

)
.

The influence of the transition length on the free-field energy is now addressed through
a parametric study. The energy associated with the leftward-propagating free field E rad

l ,
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presented in the left panels of Fig. 6.12, decreases with increasing transition length, as could
be intuited. However, for small transition lengths, E rad

l in the lightly-damped case (panel a
in Fig. 6.12) is smaller in the nonlinear system as compared to that in the linear one.This
can be explained by the fact that part of the energy is consumed to plastically deform the
foundation, but also by stronger radiation in the rightward direction (panel b in Fig. 6.12).
Furthermore, although E rad

l decreases with increasing transition length, the decrease rate
is smaller in the nonlinear case as compared to that in the linear one. Consequently, for
some values of the transition length (lt ≈ 3, ...,7m in panel a of Fig. 6.12), E rad

l is larger in
the nonlinear case. However, the behaviour described above is not general. The bottom-left
panel in Fig. 6.12 shows that in the system with higher damping ratio (ζ = 0.20), E rad

l is
higher in the nonlinear system than in the linear one for all transition lengths. Finally, it is
important to emphasize that the observed differences between the energies in the linear
and nonlinear systemsmainly stems from the separation between the beam and foundation;
if the separation is not allowed, the differences are negligible (the results are not presented
here for brevity). This final conclusion is also supported by the findings in Section 6.3.5
where the difference in energy input is negligible because the energy input is not strongly
affected by the beam-foundation separation.

Furthermore, the energy associated with the rightward propagating free field E rad
r

(presented in the right panels of Fig. 6.12) is significantly higher in the nonlinear case as
compared to that in the linear one. Moreover, E rad

r is not largest for the shortest transition
length, but for a transition length lt ≈ 0.5, ...,2.5m (depends on the load velocity). This is
specific to the nonlinear case since for all the linear cases considered, the free-field energy
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Figure 6.13: Power spectral density leftward P̃ rad
l (left panel) and rightward P̃ rad

r (right panel) for the nonlinear
system (solid line) and linear system (dashed line); the cross-sections were chosen 10 m left and right of the
transition centre; v = 0.95ccr,l, lt = 0.1m and ζ= 0.05.

decreases with increasing transition length. In addition, for the considered cases, E rad
r is

clearly smaller thanE rad
l , implying that the free field radiated into the soft part of the system

carries most energy, although this is not a necessity as shown in [20].
Thepower spectral density P̃ rad for the same systemas in Fig. 6.7 (lt = 0.1m, v = 0.95ccr,l

and ζ= 0.05) is presented in Fig. 6.13.The leftward-propagatingpower P̃ rad
l for the nonlinear

system exhibits a small shift towards the lower frequencies as well as a decrease in energy
in the nonlinear case, when compared to the linear system.The lower frequencies of the
radiated waves in the nonlinear system can also be observed in the time-domain response
(Fig. 6.7, panels d), e) and f)) through the larger wavelengths of the left-propagating waves.
Furthermore, the energy propagating rightward P̃ rad

r in the nonlinear system has, next to a
highermagnitude (as already observed in the right panel of Fig. 6.13), also higher-frequency
content as compared to the linear system.

6.3.5. Energy input
Besides the influence of the nonlinear foundation on the energy radiation, presented in the
previous sub-section, its influence on the energy input from the moving load could also
offer valuable insight. While the energy radiation refers to the far field, the energy input
offers information about the near field, as it relates to the contact point between themoving
load and the beam.More energy input leads to more energy radiated and/or more energy
dissipated into the foundation, the latter leading to damage.Therefore, the energy input
or the maximum power input could represent a good indicator of the potential damage
occurring in the foundation, as identified in Chapter 4. To investigate the energy input
solely due to the transition radiation phenomenon, the study is restricted to sub-critical
load velocities.

The energy input is defined as the power input integrated over time. Due to the damping
present in the structure, the power input P in is non-zero over the whole time axis (i.e., even
when the load is not in the vicinity of the transition zone), and therefore the energy input
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is infinite. Consequently, the difference in energy input between the linear and nonlinear
cases is presented instead. The difference in energy input ∆E in is given by the following
expression:

∆E in =
∫ ∞

−∞
(
P in(t )−P in

lin(t )
)
dt = F0

∫ ∞

−∞

(
ẇc

∣∣∣
x=v t

− ẇlin

∣∣∣
x=v t

)
dt , (6.53)

where P in
lin and ẇlin represent the power input and velocity at the contact point, respectively,

of the linear case.
Fig. 6.14 presents the difference in energy input ∆E in as a function of the transition

length for different velocities and damping ratios. It can be observed that the maximum
difference in energy input does not occur at the smallest transition zone, reinforcing the
findings in the energy radiation study (right panels in Fig. 6.12). Furthermore, the difference
in energy input increases with increasing velocity, but the difference is smaller in the higher-
damping case (right panel in Fig. 6.14).

The normalizedmaximum power input P in
max is presented in Fig. 6.15 as a function of

the transition length for different velocities and damping ratios.Themaximumpower input
is normalized by the steady-state power input in the soft domain P in

soft. It can be observed
that the maximum power input decreases with increasing transition length and decreasing
velocity of the moving load. Moreover, the maximum power input in the transition zone
can be a factor 1.8 larger than the one in the steady state.

To investigate howmuch of this additional power input causes damage in the supporting
structure, the difference between the linear and the nonlinear cases (for the first passage of
the moving load) is presented in Fig. 6.15. It can be seen that the difference is small and can
barely be seen, even though the difference in total energy input can be significant (Fig. 6.14).
However, the increase is muchmore drastic for the second passage of the moving load (i.e.,
of the system that has already been deformed plastically) as can be seen in Fig. 6.16. Both
the maximum power input (left panel in Fig. 6.16) and the difference in energy input (right
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panel in Fig. 6.16) exhibit a considerable increase compared to the first load passage.The
maximum power input and the energy input have the potential to be good indicators of the
damage occurring in the foundation of the railway track. However, more extensive research
into these two indicators needs to be performed in order to justify this.

6.4. Conclusions
In this chapter, the influence of the foundation’s nonlinear behaviour on thewaves generated
by amoving load crossing an inhomogeneity in the foundation, aswell as the resultingplastic
deformation has been studied. To this end, a 1-Dmodel has been formulated, consisting of
an infinite Euler-Bernoulli beam resting on a locally inhomogeneous and nonlinearWinkler
foundation, subjected to a moving load.The reaction of theWinkler foundation has been
characterized by a piecewise-linear (in displacements) constitutive relation which accounts
for permanent deformations.The foundation’s piecewise-linear behaviour allows to obtain
the solution by sequentially applying the Laplace transform over time, while the Finite
DifferenceMethod has been used for the spatial discretization.The infinite extent of the
system has been accounted for through a set of non-reflective boundary conditions, derived
by replacing the semi-infinite domains by their response at the interfaces, and through the
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input initial conditions based on the steady-state response of a beamwith homogeneous
foundation subject to the moving load.The solution has been validated for the limit case
of a linear and piecewise-homogeneous foundation against a semi-analytical benchmark
solution.

Results show that the plastic deformation originates from the response amplification
that is typically observed at transition zones (caused by constructive interference between
the waves excited at the transition and the response to the load’s deadweight). Furthermore,
through a parametric study conducted for the soft-to-stiff transition, it has been found that
the plastic deformation decreases quasi-monotonically with increasing transition length,
and that the decrease rate depends on the velocity of the load and on the magnitude of the
foundation damping. Moreover, for super-critical velocities, additional plastic deformation
is generated in the second loading-unloading cycle of the foundation for small transition
lengths and/or large stiffness dissimilarities. The critical velocity related to the plastic
deformation area, which was chosen to quantify the damage in the supporting structure,
was observed to be dependent on the transition length and on the stiffness ratio. In addition,
the resulting plastic deformation area has been observed to be influenced not only by the
time of passage of the transition zone, defined as the transition-zone length divided by
the load’s velocity, but also by these quantities individually. Finally, the influence of the
nonlinear foundation on the transient response mainly stems from the beam-foundation
separation; if this is prohibited (e.g., small settlement), then the nonlinearity has a negligible
influence on the transient response.

The influence of the foundation’s nonlinear behaviour on the radiated field has also been
studied from the energy point of view, by considering the energy flux associated with the
free field through cross-sections left and right of the transition zone. Results have shown
that in the nonlinear system, the maximum rightward-propagating energy flux does not
occur at the smallest transition length, but at a larger one, a finding which is reinforced by
the difference in energy input between the linear and nonlinear case.This feature is specific
to the nonlinear system since in the linear case, the energy flux has been observed to always
decrease with increasing transition length. Furthermore, the spectral energy densities have
not only shown that the nonlinearity redistributes the energy between frequencies, but have
also highlighted the redistribution between the soft and stiff media. Moreover, it has been
observed that the maximum power input and the difference in energy input between the
linear and nonlinear case drastically increases for the second passage of the moving load
(i.e., of the system that has already been deformed plastically).This suggests the use of these
energy quantities as possible indicators of the damage in the supporting structure.

Although 1-D models are not able to model all phenomena, they are useful for initial
assessments.Themodel presented here can be used for preliminary designs of transition
zones in railway tracks. Given the stiffness ratio and/or the magnitude of the initial plastic
deformation, the optimum length of the transition zone and the maximum velocity of the
train can be obtained such that the damage in the railway track is minimized.
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The saddest aspect of life right now is that
science gathers knowledge faster than society gathers wisdom.

Isaac Asimov

T
To better understand the behaviour of transition zones in railway tracks and propose suc-
cessful mitigation measures, engineers and researchers have developed a multitude of
models to describe and predict the response of the track at these locations. As discussed in
the previous chapter, a small amount of these models include the nonlinear behaviour of
the supporting structures. One of the main reasons for not accounting for the nonlinear
behaviour is the high computational costs that suchmodels require, especially the ones that
include multiple dimensions (i.e., 2-D and 3-D). To overcome the high computational costs,
generally 1-Dmodels are used, as done in the previous chapter. However, 1-Dmodels have
considerable limitations compared to multi-dimensional models (limitations which are
discussed in detail in Chapter 8). Consequently, if one wants to overcome the limitations
posed by 1-Dmodels, it seems difficult to avoid high computational costs. To this end, this
chapter aims to investigate several solution methods for obtaining the response of such
systems to ensure that the computational costs are as low as possible.

In their studies of transition radiation, Vesnitskii andMetrikin [16, 38] used themethod
of images solely or in combination with the Fourier transform over space to determine the
response. Later on, the problem of a beam resting on a piecewise-homogeneousWinkler
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foundation and subjected to amoving loadwas solvedusingmodal expansion techniques [18,
40]. To study wave propagation in the ground caused by transition radiation, 2-Dmodels of
a piecewise-homogeneous continuumwere analysed using the Fourier transform [42], and
the Fourier transform combined with mode matching [20, 21]. Lately, a combination of the
Fourier transform over time and the Fourier expansion over space was used to study trans-
ition radiation in a discretely supported Timoshenko beam [23]. Also, transition radiation
was studied in a piecewise-linear 1-D system using a sequential Laplace transformmethod
combined with a finite difference discretisation of the spatial dimension [77] (described
in Chapter 6). Furthermore, the interaction between amoving oscillator and an inhomo-
geneous and infinite structure was analysed by means of the Green’s function method [64]
(described in Chapter 4), which can be considered as a hybrid between an integral-transform
method and a time-domain method.

Although at the beginning researchers have mainly used integral-transformmethods
to study the dynamics of elastic structures subjected to moving loads, the development
of computers has lead to a shift towards numerical methods such as the finite element
method combined with time-integration methods (e.g., the Newmark method [13, 41, 119]).
One advantage of these time-domain methods is that the geometry of the transition zone
can be modelled accurately [27, 28, 31, 34, 67, 120]. Another advantage is that the nonlin-
ear behaviour of the foundation or the nonlinear interaction between the vehicle and the
structure can easily be handled by time-domain methods [19, 25, 30, 113, 114]. One of the
disadvantages of the standard time-domain methods is that the systemmust be finite to be
solved numerically, while the railway track is practically infinite, potentially causing artifi-
cial reflections at the boundaries of the finite domain. To overcome this problem, absorbing
boundaries (e.g., perfectly-matched layers) have been used in numerous studies [e.g., 121].
Another challenge caused by the structure being finite is that the vehicle’s action on the
structure is of finite duration causing an unrealistic transient behaviour at the entrance
and exit of the vehicle. This has been elegantly solved by analysing the system in the moving
reference frame, approach which is sometimes called themoving element method [e.g., 35,
122].

As it can be seen, a multitude of methods have been applied by researchers and engin-
eers to investigate transition radiation in railway applications. Most methods fall into three
main categories, namely integral-transformmethods, time-domain methods, and hybrid
methods (i.e., a combination of integral-transform and time-domainmethods).The advant-
ages and disadvantages of these methods have partially been discussed for each method
independently, but without much direct comparison between them. This chapter aims
at comparing three solutionmethods, one corresponding to each category, for analysing
transition radiation in a 1-Dmodel consisting of an infinite Euler-Bernoulli beam resting on
an inhomogeneous and piecewise-linear Kelvin foundation subjected to a moving constant
load; the model formulation is the same as in Chapter 6.The integral-transformmethod,
namely the sequential Laplace transformmethod [77] described in Chapter 6, assumes that
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the system’s behaviour is piecewise linear and deals with the linear parts of the solution in
the Laplace domain. To accommodate the inhomogeneity, the finite difference method is
used for the spatial discretisation, and non-reflective boundary conditions are imposed
to ensure the infinite extent of the structure. The time-domain method is the more con-
ventional approach; the solution is obtained by applying the finite element method for the
spatial discretisation, combined with a set of non-reflective boundaries, and the Newmark-
β as the time-stepping method.The hybrid method, namely the pseudo-force method [123,
124], treats the nonlinearity and part of the inhomogeneity as external forces resulting
in a fictitious linear and piecewise-homogeneous base structure. Taking advantage of the
linearity, the Green’s function of the base structure is obtained (the integral-transform part
of the method), and the response is expressed through convolution integrals of the Green’s
functions and the forces that account for the nonlinearity and part of the inhomogeneity
(the time-domain part of themethod). Finally, because these forces are state dependent, the
relation for the response at each time step is implicit, and it is therefore solved iteratively.

The three solutionmethods are compared in terms of accuracy, computational efficiency,
and feasibility of application to more complex systems. In this chapter, the feasibility of
application to more complex systems refers to the feasibility of the methods to deal with
frequency-dependent properties of the structure, to deal with a smooth nonlinearity (as
opposed to the piecewise-linear one), and to apply the solution methods to 2-D and 3-D
models. It must be emphasized that although the 1-Dmodel described is not particularly
demanding from the computational point of view, the aim of the comparison is to establish
the most suitable method to be applied to multi-dimensional models, where the choice of
the proper solution method could lead to significant gains.

The novelty of the current chapter is threefold. Firstly, a thorough and direct comparison
between integral-transform, time-domain, and hybridmethods to describe the behaviour of
an infinite andnonlinear systemhas not been presented in the literature. Such a comparison
enables engineers and researchers to choose the most suitable solution method for solving
the specific problem they are facing. Secondly, the application of the pseudo-force method
to analyse transition radiation in a nonlinear and infinite structure is presented here for
the first time. Thirdly, the non-reflective boundary conditions formulated for the time-
domain solutionmethod, which enable the finite domain to behave exactly as the infinite
one, are derived analytically; to the best of the authors’ knowledge, it is for the first time
this analytical approach is used to solve a moving load problem containing changes in the
foundation properties (see Section 7.1 for more details).

Themodel used to investigate the solution methods is the one formulated in Chapter 6.
The problem statement is described in detail in Section 6.2.1 and is not repeated here. Fur-
thermore, the first solutionmethod, the Laplace transformmethod, is described thoroughly
in Section 6.2.1 and, consequently, is not repeated here. To keep the following derivations
concise, as done in Chapter 6, a bilinear elastic constitutive relation is chosen for the found-
ation (i.e., only branches A and B from Fig. 6.2 are considered with the unloading path
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being the same as the loading one). The extension to more than two branches does not pose
any difficulties, and thus the bilinear law suffices for the demonstration of the following
procedures.The bilinear force exerted by the foundation is given by Eq. (6.3). The remaining
two solution methods are presented in the following.*

7.1. Time-domain method
The time-domain method is one of the more conventional approaches to solve the current
problem. The spatial dimension is discretised using the finite element method and the
Newmark-β time-stepping method is used to solve the discretised system; other methods
for the spatial discretisation and the time stepping can also be used, but these are the
most common ones. The only difficulty in this approach arises when implementing the
non-reflective boundary conditions. Similar to the sequential Laplace transformmethod,
the semi-infinite domains are treated analytically. In the time domain, this is done through
convolution integrals, which implies that the relations between displacements and forces
at the boundaries are history dependent.Therefore, after spatial discretisation, a system
of integro-differential equations has to be solved.The approach followed here differs from
those in other works using absorbing boundaries [e.g., 126, 127] in the following ways: i)
instead of starting with a finite system andmitigate reflections at the artificial boundaries,
the current approach treats the truly infinite system; ii) it does not increase the number of
degrees of freedom (like in the case of absorbing layers, that model buffer domains with
the intention of attenuating waves); iii) it allows the approach and exit of the load from the
modelled domain, thus avoiding transients due to sudden entrance/exit of the load, and in
this way it limits the model to the vicinity of the region with support variations and thus
further decrease the number of degrees of freedom.The procedure is described in more
detail in the following.

The equation of motion for the computational domain after the spatial discretisation
reads

Mẍ(t )+Cẋ(t )+ (
K(x)+KEB)

x(t ) = fML
c (t )+ fBc (t )+ fNL

c (x), (7.1)

where x= [wc,1, w ′
c,1, wc,2, w ′

c,2, . . . , wc,Nx , w ′
c,Nx

]T represents the vector of generalized dis-
placements with Nx being the number of spatial nodes.ThematricesM, C, K, and KEB are
the mass matrix, Kelvin dampingmatrix, Kelvin stiffness matrix, and the Euler-Bernoulli
bending stiffness matrix, respectively. K is state-vector dependent because it contains the
nonlinear part of the supporting structure that depends on the unknown displacement. Fur-
thermore, the time-dependent vectors fML

c , fBc , and f
NL
c represent the moving-load forcing

vector, the boundary-forcing vector, and the forcing vector containing the nonlinear part
of the supporting structure reaction force that is independent of the unknown displace-
ment

(
see Eq. (6.3)

)
, respectively.Themoving-load forcing vector for a single element fML

c,i is

*This chapter is based on one of the author’s publications [125] and it presents few alterations to the original
publication.
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obtained as follows:

f
ML
c,i (t ) =−F0

∫ i∆x

(i−1)∆x
ϕ(x)δ(x −xe − v t )dx =

{
−F0ϕ(xe + v t ), (i −1)∆x ≤ xe + v t ≤ i∆x,

0, otherwise,

(7.2)

whereϕ is the shape-functions vector. The assembly of the global moving-load vector is
done in the traditional way and results in a time-dependent vector which has non-zero
entries only at the nodes related to the element where the moving load is acting. Similarly,
by assuming a constant nonlinearity force inside one element, the nonlinear-forcing vector
corresponding to the bilinear constitutive relation is obtained as follows:

f
NL
c,i (t ) =

{
∆kd,c,i

∫ i∆x
(i−1)∆x ϕ(x)dx, wc,i < wel,

0, wc,i ≥ wel.
(7.3)

As for the non-reflective boundary conditions, the expressions derived in Section 6.2.3
are valid for this method too. However, they need to be expressed in the time domain.
Moreover, the dynamic stiffness coefficients

(
k̂h,Vυ, k̂h,Vϕ, k̂h,Mϕ, and k̂h,Mυ in Eqs. (4.33)

and (4.34)
)
increase with increasing frequency, and therefore it is difficult to obtain their

counterparts in the time domain. Consequently, for the time-domain method, instead
of making use of the dynamic stiffness coefficients (i.e., imposing forces as boundary
conditions), the dynamic compliance coefficients are used (i.e., displacement and slope are
imposed as boundary conditions), which decay with increasing frequency. By expressing
the displacement and slope in terms of the bendingmoment and shear force in Eqs. (6.29)
and (6.30), the dynamic compliance coefficients in the Laplace domain are obtained, and
their expressions read

ĉh,Vυ = (−1− i)k−3
h , ĉh,Mυ =−ik−2

h , (7.4)

ĉh,Mϕ = (1− i)k−1
h , ĉh,Vϕ =−ik−2

h , h = {l, r}.

where kh with h = {l, r} are the wavenumbers of the two semi-infinite domains given in
Eq. (4.30), and the branches of the complex-valued wavenumbers are chosen such that
Im(kh) < 0 and Re(kh) > 0.

The time-domain non-reflective boundary conditions are now expressed through con-
volution integrals.Their expressions are given as follows:

wc(d , t ) = wV(d , t )+wM(d , t ),

w ′
c(d , t ) = w ′

V(d , t )+w ′
M(d , t ), d = {0,L},

(7.5)

where wV and wM represent the displacements caused by an applied shear force and dis-
placement caused by an applied bendingmoment, respectively, whilew ′

V andw ′
M represent
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the same quantities for the slope. Furthermore, their expressions read

wV(d , t ) =
∫ t

0
ch,Vυ(t −τ)w ′′′

c (d ,τ)dτ, wM(d , t ) =
∫ t

0
ch,Mυ(t −τ)w ′′

c (d ,τ)dτ, (7.6)

w ′
V(d , t ) =

∫ t

0
ch,Vϕ(t −τ)w ′′′

c (d ,τ)dτ, w ′
M(d , t ) =

∫ t

0
ch,Mϕ(t −τ)w ′′

c (d ,τ)dτ, (7.7)

whered = {0,L}andh = {l, r}, andh = l ford = 0whileh = r ford = L, andwhereτ represents
the running-time variable of integration (should not bemistakenwith the variable in Section
6.2 where it indicated the moment of the nonlinear event). The integrals in Eqs. (7.6)–(7.7)
are discretised and the forces are assumed to be constant during one time step and equal
to the average between the previous and the next time step [128]. The remainder of the
procedure is presented only forwV(0, t ) since the procedure is exactly the same for the other
terms.The expression for wV now reads

wV(0, tn) ≈
n−1∑
n̄=0

w ′′′
c (0, tn̄)+w ′′′

c (0, tn̄+1)

2

∫ tn̄+1

tn̄

cl,Vυ(tn −τ)dτ, (7.8)

where n is the index of the observation time variable while n̄ is the index for the running
(i.e., integration) time variable.The index n should not be confused with that in Section 6.2
where it specified the time moment of the nth nonlinear event. It can be shown that the
remaining integral in Eq. (7.8) is equivalent to∫ tn̄+1

tn̄

cl,Vυ(tn −τ)dτ=
∫ tn−n̄

0
cl,Vυ(tn−n̄ −τ)dτ−

∫ tn−(n̄+1)

0
cl,Vυ(tn−(n̄+1) −τ)dτ

=H l,Vυ(tn−n̄)−H l,Vυ
(
tn−(n̄+1)

)
,

(7.9)

whereH represents the response of the semi-infinite system to a unit step force applied
at t0 = 0. The responseH can be obtained with a good accuracy using the inverse Laplace
transform as follows:

H l,Vυ(tn−n̄) ≈ eσtn−n̄

π

∫ ωmax

0
Re

(
ĉl,Vυ(ω)

σ+ iω
eiωtn−n̄

)
dω. (7.10)

To obtain accurate results without integrating up to very high frequencies, the asymptotic
approximation approach described in Section 6.2.2 is used. Substituting Eqs. (7.9) and
(7.10) in Eq. (7.8), and rearranging the terms, the displacement wV becomes

wV(0, tn) ≈ 1

2
w ′′′

c (0, t1)
[
H l,Vυ(tn)−H l,Vυ(tn−1)

]
+

n−1∑
n̄=1

1

2
w ′′′

c (0, tn̄)
[
H l,Vυ(tn−n̄+1)−H l,Vυ(tn−n̄−1)

]
+ 1

2
w ′′′

c (0, tn)
[
H l,Vυ(t1)−H l,Vυ(t0)

]
.

(7.11)
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It is important to note that in Eq. (7.11) and the similar expressions for the other three
components wM, w ′

V, and w ′
M, the displacement, slope, bending moment, and shear force

at timemoment tn are unknown, while all the other components are known (i.e., history
terms).Therefore, Eq. (7.11) is divided into a yet unknown instantaneous contribution and
an already known history contribution:

wV(0, tn) ≈H inst
l,Vυ w ′′′

c (0, tn)+whist
V (0, tn), (7.12)

H inst
l,Vυ = 1

2

(
H l,Vυ(t1)−H l,Vυ(t0)

)
. (7.13)

After deriving the expressions for the other three components (i.e., wM, w ′
V, and w ′

M) and
substituting them in Eq. (7.5), the non-reflective boundary conditions become:(

wc(0, tn)

w ′
c(0, tn)

)
=Hinst

l

(
w ′′′

c (0, tn)

w ′′
c (0, tn)

)
+

(
whist

V (0, tn)+whist
M (0, tn)

whist′
V (0, tn)+whist′

M (0, tn)

)
, (7.14)(

wc(L, tn)

w ′
c(L, tn)

)
=Hinst

r

(
w ′′′

c (L, tn)

w ′′
c (L, tn)

)
+

(
whist

V (L, tn)+whist
M (L, tn)

whist′
V (L, tn)+whist′

M (L, tn)

)
. (7.15)

The force andmoment are obtained from Eqs. (7.14) and (7.15) throughmatrix inversion.
Also, to have the complete non-reflective boundary conditions, the effects on the compu-
tational domain of the moving load when it acts on the semi-infinite domains and of the
non-trivial initial conditions of the left semi-infinite domain need to be superimposed.
These contributions are obtained by numerically evaluating the inverse Laplace transform
of vectors b̂

ML
l,1 , b̂

ML
r,1 , and b̂

IC
l,1 from Section 6.2.3. The complete non-reflective boundary

conditions now read(
w ′′′

c (0, tn)

w ′′
c (0, tn)

)
= (
H

inst
l

)−1

(
wc(0, tn)

w ′
c(0, tn)

)
−bhist

l −bML
l −bIC

l , (7.16)(
w ′′′

c (L, tn)

w ′′
c (L, tn)

)
= (
H

inst
r

)−1

(
wc(L, tn)

w ′
c(L, tn)

)
−bhist

r −bML
r . (7.17)

where vectors bhist
l and bhist

r incorporate the history shear forces and bending moments,
and read

b
hist
l = (

H
inst
l

)−1

(
whist

V (0, tn)+whist
M (0, tn)

whist′
V (0, tn)+whist′

M (0, tn)

)
, (7.18)

b
hist
r = (

H
inst
r

)−1

(
whist

V (L, tn)+whist
M (L, tn)

whist′
V (L, tn)+whist′

M (L, tn)

)
. (7.19)

The forces expressed in Eqs. (7.16) and (7.17) are imposed at the boundaries of the compu-
tational domain

(
Eq. (7.1)

)
. Consequently,

(
H

inst
l

)−1 and
(
H

inst
r

)−1 are added to the Euler-
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Bernoulli stiffness matrixKEB because they are dependent on the unknown displacement
and slope.The remaining terms in Eqs. (7.16) and (7.17) are accounted for in the boundary-
forcing vector fBc because they are independent of the unknown displacement and slope, and
are thus treated as external forces. Incorporating these boundary conditions

(
Eqs. (7.16)

and (7.17)
)
ensures that the finite computational domain behaves as an infinite one.

By discretising the convolution integrals, the system of integro-differential equations is
approximated by a system of coupled ordinary differential equations with state-dependent
coefficients.This system is solved bymeans of the Newmark-βmethod [119]. To this end,
the generalized displacement vector xn+1 at timemoment tn+1 is expressed as a function of
the displacement xn , velocity ẋn , and acceleration ẍn at timemoment tn as follows:

xn+1 =Y−1
n+1z, (7.20)

Yn+1 = 1

β∆t 2M+ γ

β∆t
C+Kn+1 +KEB, (7.21)

z=
(
f

ML
c,n+1 + fBc,n+1 + fNL

c,n+1

)
+M

(
1

β∆t 2 xn + 1

β∆t
ẋn +

( 1

2β
−1

)
ẍn

)
+C

(
γ

β∆t
xn −

(
1− γ

β

)
ẋn −∆t

(
1− γ

2β

)
ẍn

)
,

(7.22)

where γ and β are two parameters that indicate howmuch of the acceleration at the end of
a time interval influences the relations for the velocity and displacement at the end of that
interval [119]. The parameters are chosen as γ= 1

2 and β= 1
4 , implying that the acceleration

is constant over a time step and is equal to the average between the previous and the next
time step.This choice is preferred in order to have consistency between the assumed force
evolution of the non-reflective boundary conditions

(
as expressed in Eq. (7.8)

)
and the

assumed force evolution in the time-stepping scheme. After obtaining xn+1, the generalized
velocity and acceleration vectors are also computed to be used for obtaining the generalized
displacement at the next timemoment.Their expressions read

ẋn+1 = γ(xn+1 −xn)

β∆t
+ ẋn

(
1− γ

β

)
+ ẍn∆t

(
1− γ

2β

)
, (7.23)

ẍn+1 = xn+1 −xn

β∆t 2 − ẋn

β∆t
− ẍn

(
1

2β
−1

)
. (7.24)

At each time step, the nodes are monitored to check in which branch of the constitutive
relation they are, and if they have changed branch, the Kelvin stiffness matrix K as well
as the nonlinear-forcing vector fNL

c are updated accordingly. It must be noted that when
the nonlinear constitutive relation discussed in the problem statement is adopted, also the
Kelvin damping matrix C becomes state-variable dependent, and thus needs to be updated
at each nonlinear event. The time-domain solution method is now fully described. Next,
the pseudo-force method is introduced.
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7.2. Pseudo-force method
In this section, the problem is solved using the framework of the pseudo-force method [123,
124].This solutionmethod isbasedon the responseof the linear andpiecewise-homogeneous
system,which in this work is expressed in terms of theGreen’s function.The steps of the pro-
cedure are as follows.The base system is assumed to be linear and piecewise-homogeneous
while the nonlinear and the remainder of the inhomogeneity components

(
the difference

between the piecewise-homogeneous profile and the one described by Eq. (4.39)
)
of the sys-

tem are accounted for bymeans of pseudo forces. Basically, the nonlinear and the remainder
of the inhomogeneity terms are moved to the right-hand side of the equation of motion
and the resulting implicit equation is solved in an iterative manner. It must be noted that
the shift-invariant homogeneous system could be chosen as the base system too; however,
by doing so, the pseudo forces that account for the inhomogeneity must act on the entire
right semi-infinite domain. For the piecewise-homogeneous system, the pseudo forces
need to be prescribed only in the transition zone and its vicinity and this is the reason why
the piecewise-homogeneous base system is preferred.The procedure on which this solution
method is based is explained in detail in [124]. Therefore, only the crucial aspects of the
approach are elaborated in the following.

After moving the terms accounting for the nonlinearity and for the remainder of the
inhomogeneity to the right-hand side, the equation of motion reads

∂̃4w

∂̃x4
+ρ ∂̃

2w

∂̃t 2
+ cPH

d (x)
∂̃w

∂̃t
+kPH

d (x) w = f ML + f u + f v, (7.25)

wherew is the displacement of the entire beam
(
i.e., x ∈ (−∞,∞)

)
, cPH

d (x) = cd,lH(xtc−x)+
cd,r H(x −xtc) and kPH

d (x) = kd,lH(xtc −x)+kd,r H(x −xtc) are the piecewise-homogeneous
damping and stiffness of the Kelvin foundation, respectively, f ML = −F0δ(x − xe − v t ),
and f u and f v are the pseudo forces; f u is proportional to the displacement while f v is
proportional to the velocity, and, in the case of the bilinear constitutive relation, they read

f u(x, w) =−
[

kA
d (x)−kPH

d (x)
]

w H(w −wel)−
[(

kB
d (x)−kPH

d (x)
)
w −∆kd(x)wel

]
H(wel −w),

f v(x, ẇ) =−
[

cd(x)− cPH
d (x)

]
ẇ . (7.26)

It must be noted that the part of the nonlinear forcing that is independent of the unknown
displacement (denotedby superscriptNL in theother twomethods), namely∆kd(x)welH(wel−
w), is incorporated here in f u because in this method both contributions (dependent on or
independent of the unknown displacement) are treated as external forces; therefore, the
distinction between them is not needed in this method. Additionally, it must be noted that
when the nonlinear constitutive relation discussed in the problem statement (Section 6.1) is
adopted, the behaviour of the foundation damping becomes piecewise linear too andmust
be accounted for in Eq. (7.26).
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Figure 7.1:The assumed spatial profile of the pseudo forces; the length of the domain should be chosen such that
the first (i = 1) and last (i = Nx) pseudo force are nearly zero.

The solution to Eq. (7.25) can be expressed as a superposition of the response wML

caused by the moving load f ML in the base system and the response to the pseudo forces.
Firstly, the response wML caused by the moving load can be obtained by using the Fourier
transform over time. In the Fourier domain, after imposing interface conditions and the
condition of zero displacements at infinity, the displacements of the two domains can be
obtained analytically [e.g., 20, 49]. To obtain the time-domain solution, the inverse Fourier
integral is evaluated numerically. Secondly, the response to the pseudo forces is expressed
as a convolution integral of the impulse response of the base system and said forces. For
conciseness, the derivation is demonstrated for f u only.The contribution wv caused by the
forcing term related to the damping inhomogeneity f v is kept general and is made specific
in the final expression

(
Eq. (7.39)

)
. The response thus reads

w(x, t ) = wML(x, t )+wv(x, t )+
∫ L

0

∫ t

0
g (x,ξ, t −τ) f u(

ξ, w(ξ,τ)
)
dξdτ, (7.27)

where g is the time-domain Green’s function of the base system.
To evaluate Eq. (7.27), the integrals are discretised. Firstly, the displacement w is as-

sumed to be piecewise constant in space and equal to the value at the centre of each discrete
element. Consequently, also the Green’s function g is determined with a box-car shaped
load in space (see Fig. 7.1), while it assumes a Dirac delta function loading in time. The
continuous-in-time and discrete-in-space expression for the displacement reads

wi (t ) = wML
i (t )+wv

i (t )+
Nx∑

ī=1

∫ t

0
gi ,ī (t −τ) f u

ī

(
w ī (τ)

)
dτ, (7.28)

where i is the index for the observation point in space while ī is the index for the running
(integration) spatial variable, and Nx is the number of integration points. Secondly, the
forces f u

ī
are assumed to be piecewise linear in time.The displacement thus becomes

wi ,n = wML
i ,n +wv

i ,n +
Nx∑

ī=1

n∑
n̄=1

∫ tn̄

tn̄−1

gi ,ī (tn −τ) (7.29)
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Figure 7.2:The loading applied within a single time step is decomposed into two parts: one proportional to f u
n−1

and the other proportional to f u
n
.

×
[

f u
ī ,n̄−1

(w ī ,n̄−1)
(
1− τ− tn̄−1

∆t

)
+ f u

ī ,n̄
(w ī ,n̄)

τ− tn̄−1

∆t

]
dτ, n ≥ 1,

where n is the index for the observation time variable while n̄ is the index for the running
(integration) time variable. Eq. (7.2) is valid only forn ≥ 1 because at t0 = 0, just the response
caused by the moving load

(
i.e., wi ,0 = wML

i ,0

)
is present, similar to the initial conditions

imposed in the other twomethods. It can be observed that Eq. (7.2) consists of two terms,
one proportional to the force at timemoment tn̄−1 and one proportional to the force at time
moment tn̄. Since the two forcing terms are not dependent on the variable of integration τ,
they can be taken out of the integral. The equation can therefore be rewritten as follows:

wi ,n = wML
i ,n +wv

i ,n +
Nx∑

ī=1

n∑
n̄=1

[
f u

ī ,n̄−1
(w ī ,n̄−1)Li ,ī ,n−n̄ + f u

ī ,n̄
(w ī ,n̄)Ri ,ī ,n−n̄

]
, (7.30)

Li ,ī ,n−n̄ =
∫ tn̄

tn̄−1

gi ,ī (tn −τ)
(
1− τ− tn̄−1

∆t

)
dτ, (7.31)

Ri ,ī ,n−n̄ =
∫ tn̄

tn̄−1

gi ,ī (tn −τ)
τ− tn̄−1

∆t
dτ, (7.32)

whereL andR represent the responses observed at tn due to triangular pulses lasting
between tn̄−1 and tn̄ (see Fig. 7.2).

The time-domain Green’s functions gi ,ī (tn −τ) need to be obtained numerically while
the integration from tn̄−1 to tn̄ needs to be performed numerically too, thus introducing
two sources of inaccuracy. To increase accuracy, the response associated with a triangular
pulse can be obtained directly from the Laplace domain, where only the inverse Laplace
transform needs to be evaluated numerically. To this end, the expressions forL andR can
be rewritten by introducing the variable change τ̄= τ− tn̄−1:

Li ,ī ,n−n̄ =
∫ tn−n̄+1

0
gi ,ī (tn−n̄+1 − τ̄)

(
1− τ̄

∆t

)
H(∆t − τ̄)dτ̄, (7.33)

Ri ,ī ,n−n̄ =
∫ tn−n̄+1

0
gi ,ī (tn−n̄+1 − τ̄)

(
τ̄

∆t

)
H(∆t − τ̄)dτ̄, (7.34)
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where tn−n̄+1 = tn − tn̄−1. These responses can now be expressed as inverse Laplace trans-
forms as follows:

Li ,ī ,n−n̄ = eσtn−n̄+1

π

∫ ∞

0
Re

(
ĝi ,ī (σ+ iω) P̂L (σ+ iω)eiωtn−n̄+1

)
dω, (7.35)

Ri ,ī ,n−n̄ = eσtn−n̄+1

π

∫ ∞

0
Re

(
ĝi ,ī (σ+ iω) P̂R(σ+ iω)eiωtn−n̄+1

)
dω, (7.36)

where ĝi ,ī is the Laplace-domain Green’s function associated with a Dirac delta load in time
and a box-car function in space, and P̂L and P̂R are given by

P̂L (s) = 1

s2∆t

(
1− s∆te−s∆t −e−s∆t

)
, (7.37)

P̂R(s) = 1

s2∆t

(
−1+ s∆t +e−s∆t

)
. (7.38)

Theinverse Laplace transformsare evaluatednumerically using aquadratic, nested, adaptive
integration scheme.

To express the contribution from the forces proportional to the velocity f v (Eq. (7.26)),
one needs to derive an expression for the velocity ẇi ,n. One could follow the same procedure
as for the displacementwi ,n and obtain a similar equation to Eq. (7.30).Then, the equations
for wi ,n (Eq. (7.30)) and ẇi ,n could be solved simultaneously. However, the Laplace-domain
counterparts ofL andR that relate applied force to resulting velocity have a poor decay and,
consequently, evaluating the inverse Laplace transforms is time consuming. A computation-
ally efficient alternative is to approximate the velocity ẇi ,n as a function of the displacement
at the previous timemoments by using the finite difference method.This makes the force
f v

i ,n proportional to the displacement
(
i.e., f v

i ,n(wi ,n , wi ,n−1, wi ,n−2)
)
, so that it can be added

to the force f u, together being incorporated in the force f u+v
i ,n . Note that for conciseness,

the force f u+v
i ,n is indicated in the following to be dependent on the displacementwi ,n , while

in actual fact it is also dependent on the displacement at the previous timemoments.The
complete solution now reads

wi ,n = wML
i ,n +

Nx∑
ī=1

n∑
n̄=1

[
f u+v

ī ,n̄−1

(
w ī ,n̄−1

)
Li ,ī ,n−n̄ + f u+v

ī ,n̄

(
w ī ,n̄

)
Ri ,ī ,n−n̄

]
. (7.39)

It can be observed that Eq. (7.39) is implicit for n̄ = n. Therefore, the equation is divided
in an yet unknown instantaneous contribution and an already known history contribution.
The equation becomes

wi ,n = wML
i ,n +whist

i ,n +
Nx∑

ī=1

f u+v
ī ,n

(
w ī ,n

)
Ri ,ī ,0, (7.40)
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whist
i ,n =

Nx∑
ī=1

n−1∑
n̄=1

[
f u+v

ī ,n̄−1

(
w ī ,n̄−1

)
Li ,ī ,n−n̄ + f u+v

ī ,n̄

(
w ī ,n̄

)
Ri ,ī ,n−n̄

]
+

Nx∑
ī=1

f u+v
ī ,n̄−1

(
w ī ,n̄−1

)
Li ,ī ,0.

(7.41)

In order to advance to the next time step, Eq. (7.40) is solved for wi ,n using an iterative
scheme.The scheme is defined by the following recursive relation that starts at j = 0 (where
j indicates the iteration counter):

w j+1
i ,n ≈ wML

i ,n +whist
i ,n +

Nx∑
ī=1

f u+v
ī ,n

(
w j

ī ,n

)
Ri ,ī ,0. (7.42)

The rate of convergence of this iterative scheme isRi ,ī ,0 [124]. Iterations continue until spe-
cified tolerances are met for all entries of the displacement wi ,n. No convergence problems
were encountered while computing the results for this chapter.

All three solutionmethods have been presented now. In the following section, the per-
formance of the three solution methods is compared.

7.3. Results and discussion
Here, theproposed solutionmethods,namely the sequential Laplace transform(SLT)method,
the time-domain (TD) method, and the pseudo-force (PF) method, are compared in terms
of accuracy, computational efficiency, and feasibility to apply the methods to more complex
models. The three methods are assessed for extreme situations. To this end, a relatively
high load velocity is chosen, namely 95% of the critical velocity in the soft domain. Also, a
relatively low damping ratio (ζ= 0.05) is used to make sure that errors are not damped out.
Moreover, a high stiffness ratio between the left and right domain (p = 5) is chosen which,
combined with an abrupt transition (lt = 0.01m), leads to strong transition radiation and
large plastic deformation.The location of the abrupt transition is at xtc = 5m for all simula-
tions presented in this section. Also, xe =−30m for all the results presented in the following
to ensure that the eigenfield does not interact with the inhomogeneity at the beginning of
the simulation. The parameter values used to compute the results in this section are the
same as the ones in Table 6.1, except for the ones given in Table 7.1.

7.3.1. Accuracy
The accuracy assessment of the three methods is based on two types of simulations. Firstly,
a linear limit case is considered by setting the parameters kB

d,c(x), kC
d,c(x), and kD

d,c(x) to be
equal to the initial stiffness kA

d,c(x). By doing so, fictitious nonlinear events are introduced,
but the response should be the same as the response of the linear system. In the second
type of simulation, the nonlinear systemwith the constitutive relation from Section 6.1 is
considered.
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Table 7.1:Values of the system parameters used for the numerical results.

Parameter Symbol Value Unit

Damping ratio ζ 0.05
Stiff-soft stiffness ratio p 5
Centre of the transition xtc 5 m
Transition length lt 0.01 m
Load position at t = 0 xe −30 m

The linear limit case is compared to the semi-analytical transient solution derived in
Section 2.3. This semi-analytical benchmark solution is the same as the response wML of
the base system to the moving load in the PFmethod (Section 7.2). Because the only source
of error of this semi-analytical solution is the numerical evaluation of the inverse Fourier
transform, a very highmaximum frequency (i.e., fmax = 40 kHz) and a small frequency step
(i.e., ∆ f = 0.1Hz) are adopted to obtain a very high accuracy.

The relative error e(x) used in this section is given in Eq. (6.52). This error formulation
where the summation over time is performed in both the numerator and denominator is
chosen because at certain locations and time moments, the displacement can be zero or
close to zero,which, if the summation over timewere not taken,would lead to a huge relative
error that has no physical significance. This error relation is also used for the nonlinear
case; however, for the nonlinear simulation there is no semi-analytical solution to use as a
benchmark, and thus the three methods are compared to each other.

The accuracy is studied for varying sampling parameters ∆t and ∆x. The three methods
have different sensitivities to the two sampling parameters; therefore, when varying one
samplingparameter, the other one is chosen such that the resulting error is of the sameorder
for all three methods. For the SLT and TDmethods, the frequency spacing ∆ω= 4π rad/s
has been chosen after sensitivity studies, while for the PFmethod the adaptive algorithm
(see Ref. [124]) chooses itself the frequency sampling. Note that for the TD method, the
frequency sampling is needed for evaluating the inverse Laplace transforms to obtain the
response functionsH

(
see Eq. (7.10)

)
and the boundary vectors

(
b

IC
l , b

ML
l , and bML

r

)
. As

for the maximum frequency, fmax = 2 kHz for the TD method, fmax = 1/(2∆t ) for the
SLT method, and fmax = 2log2(2π/∆t )+2 for the PF method, unless specified otherwise. It
must be mentioned that fmax for the PF method is set to such a large value (e.g., fmax ≈
40 kHz for ∆t = 100µs) because the adaptive algorithm chooses very few sampling points
if the integrand is smooth at high frequencies, therefore leading to almost no additional
computational effort.

Linear limit case
The elastic displacement limit ratio q = wel/we

max is chosen to have a value close to unity
(q = 1.01) such that fictitious nonlinear events occur in abundance. For the TDmethod, this
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Figure 7.3:Error in the linear limit case for the TDmethod (left panel; ∆t = 20µs), the SLTmethod (middle panel;
fmax = 2 kHz, ∆t = 250µs), and the PFmethod (right panel; ∆t = 100µs).

limit case is the same as a linear case (no fictitious nonlinear events) in terms of accuracy.
For the SLTmethod, this limit case tests all operations, namely solving the system in Eq.
(6.15), updating the non-reflective boundaries, and evaluating the inverse Laplace trans-
form.The PFmethod reduces to computing the response wML caused by the moving load,
which is exactly the same as the benchmark solution; therefore, such a comparison would
be superfluous. To also test the PF method, the piecewise-homogeneous base system is
prescribed to have the abrupt transition at xtc = 6mwhile the forces that account for the
inhomogeneity need to act such that the system simulates an abrupt transition at xtc = 5m.
In this way, the Green’s functions and the convolutions are assessed.

Fig. 7.3 shows that the response obtained with all three methods converges to the semi-
analytical one as ∆x decreases. However, to obtain similar magnitudes of the error, the SLT
method requires a smaller ∆x than the TD and PFmethods.This is because a certain ratio
between the maximum frequency fmax and ∆x must be satisfied in the SLTmethod. More
specifically, theLaplace-domainmoving load isharmonic in space

(
f̂ ML =−F0

v exp(−s x−xe
v )

)
;

to accurately represent f̂ ML at high frequencies, there should be at least five spatial points
per wavelength, leading to the requirement that ∆x = v/(4 fmax). For the parameters in Fig.
7.3, this minimum requirement is ∆x = 5 cm; for this reason, the error is much larger for
∆x = 10 cmwhile for the remaining values of∆x the error is of similarmagnitude.The larger
error in the right domain for the SLT and TDmethods is caused by the significantly smaller
values of the displacement encountered there.The PFmethod is not so much affected by
this because as the transients caused by the transition die out, the solution tends to the
semi-analytical baseline response.

The error also decreases with decreasing ∆t for all three methods, depicted in Fig. 7.4.
Unlike for decreasing ∆x, here the TD and PF methods require smaller ∆t than the SLT
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Figure 7.4:Error in the linear limit case for the TDmethod (left panel; ∆x = 5 cm), the SLTmethod (middle panel;
∆x = v/(4 fmax)), and the PFmethod (right panel; ∆x = 5 cm).

method to obtain a similar error magnitude. The TDmethod exhibits a significant error
reduction with decreasing∆t , which is to be expected since the Newmarkmethod is a time-
steppingmethod and the smaller the∆t , themore accurate the approximation becomes. For
the SLTmethod, fmax needs to be increased with decreasing∆t to obtain convergent results.
More specifically, to satisfy the continuity conditions (see Eqs. (6.8) and (6.9)), the inverse
Laplace transform requires a high accuracy close to tn = 0 (here, n refers to the time interval;
see Section 6.2). This can be achieved by satisfying the criterion ∆t = 1/(2 fmax) (i.e., the
time discretisation should not bemore refined than the Nyquist criterion requires).The fact
that the spatial discretisation is linked to fmax (as stated in the previous paragraph) leads to
the three sampling parameters (i.e., ∆x, ∆t , and fmax) being interdependent for the SLT
method. As presented in Section 7.3.2, this leads to significant increase in computational
effort when one of them is changed. As for the PF method, the error decreases considerably
with decreasing∆t .This is caused by the pseudo forces (acting between x = 5–6m) becoming
moreaccurate; in otherwords, the approximationof the convolution integrals

(
seeEq. (7.41)

)
is improved by decreasing ∆t .

Nonlinear case
As there is no semi-analytical solution to test against in the nonlinear case, it is chosen to
run a high-resolution simulation using the TD method (i.e., fmax = 4 kHz, ∆x = 0.5 cm,
∆t = 10µs), and perform the accuracy analysis using this result as a benchmark.Therefore,
it is important to realize that the error studies presented in this section do not represent
errors with respect to a true solution, but they are essentially differences between solution
methods. For the results presented in this section, the elastic displacement limit ratio is
chosen as q = 1.05.
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Figure 7.5:Error in the nonlinear case for the TDmethod (left panel; ∆t = 80µs), the SLTmethod (middle panel;
∆t = 250µs), and the PFmethod (right panel; ∆t = 100µs).

One can observe at a first glance of Figs. 7.5 and 7.6 that the error in general is consid-
erably larger than for the linear limit case (Section 7.3.1). The additional error is mainly
caused by two factors: the spatial and temporal discretisation of the foundation’s nonlinear
force (see Eq. (6.3) for the bilinear case), and the combination of non-smooth nonlinear-
ity and separation between the beam and supporting structure only being allowed in the
locations where plastic deformation has developed (see Fig. 6.2). To exemplify the latter,
assume the minimum displacement at a certain location x1 computed with the TDmethod
to bemin

(
w(x1, t )

)= wel +ε (where ε is a very small positive displacement); this location
is therefore in the initial stiffness branch

(
kA

d,c

)
for all time moments. Now, assume the

same quantity computed with the SLTmethod to bemin
(
w(x1, t )

)= wel −ε; this location
experiences a small plastic deformation and the separation between the beam and found-
ation is allowed (i.e., no force is exerted by the foundation for upwards displacement of
the beam). As can be seen, a very small difference in the displacement magnitude (2ε) can
lead to different behaviour, causing a larger error than in the linear limit case. Nonetheless,
the plastic deformation profile and the displacement’s time history show that despite the
substantial errors, the solutions exhibit the same trend for all three methods (see Figs. 7.7
and 7.8).

Fig. 7.5 shows that all solutions converge to the benchmark by decreasing ∆x; however,
the convergence is not monotonic for all locations, not even for the TDmethod despite the
benchmark solution being computed with the TDmethod.The non-monotonic convergence
is caused by the several sources of error that may eliminate each other, leading to appar-
ently accurate solutions for certain sampling combinations. Interestingly, the largest error
generally does not occur where the plastic deformation develops, but at a location (around
x = 3.5m) between two plasticly deformed regions (see Fig. 7.7).
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Figure 7.6:Error in the nonlinear case for the TDmethod (left panel; ∆x = 2 cm), the SLTmethod (middle panel;
∆x = v/(4 fmax) ), and the PFmethod (right panel; ∆x = 4 cm).

One can observe in Fig. 7.6 that the error decreases with decreasing ∆t for all three
methods, but the decrease is non-monotonic similarly to the error for decreasing ∆x, and
can be explained in the samemanner.The errors obtainedwith the TD and PFmethods seem
to converge to a non-zero value because with the decrease in ∆t the error introduced by the
spatial discretisation starts governing.This is not observed in the SLTmethod because ∆x

is decreased with ∆t to respect the criterion ∆x = v/(4 fmax) discussed in Section 7.3.1.
To offer a larger picture, Figs. 7.7 and 7.8 present the plastic deformation profile and the

displacement’s time history at x = 3.5m (the location in the soft domain with the largest
error), respectively. Although in some cases the errors may appear to be large (e.g., 2–20 %
in Figs. 7.5 and 7.6), all three methods performwell and the differences can hardly be seen.

To conclude, all three methods converge given the appropriate sampling parameters
∆x and ∆t , and all three can reach similar error magnitudes. Nonetheless, also the com-
putational effort required to achieve the observed accuracy needs to be investigated if one
wants to present a complete picture. In this section, the sampling parameters have been
chosen such that the error magnitude is similar for the three methods. In the next section,
the computational effort to obtain the accuracy discussed in this section is presented and
discussed.

7.3.2. Computational efficiency
In this section, themost intensive computational operations are identified for eachmethod.
These computational operations are analysed qualitatively as well as quantitatively by
presenting a comparison of the computational time required to perform the simulations
presented in Section 7.3.1.The computational effort presented in Figs. 7.7 and 7.8 represents
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Figure 7.7: Plastic deformation profile for varying ∆t for the TDmethod (left panel; ∆x = 2 cm), the SLTmethod
(middle panel; ∆x = v/(4 fmax)), and the PFmethod (right panel; ∆x = 4 cm).

wall-clock time and the simulations have been performed on a PC with Intel(R) Xeon(R)
CPU E5-1630 v3 @ 3.70 GHz processor and 32 GB of RAMmemory. It must be emphasized
that further optimization of the algorithms is always possible; however, the authors made
their best to optimize them and believe that further improvement, although possible, will
not lead to significantly different results, especially for the qualitative analysis.

For the TDmethod, the most computationally demanding processes are numerically
solving the system of Eqs. (7.20) to (7.22) and computing the non-reflective boundary con-
ditions. Firstly, determining the solution of the system requires the computation of the
matrix inverse Y−1

n+1 (the most computationally intensive operation) once at the start of the
simulation and recomputed at each nonlinear event due to the change in the properties of
the foundation (i.e., K and C). Alternatively, one can solve the linear system of equations
Yn+1xn+1 = z using a sparse Ymatrix; this operation is considerably faster than explicitly
computing Y−1. However, this operation would need to be computed for each timemoment
while thematrix inversion needs to be computed only at each nonlinear event. Consequently,
for few nonlinear events, the former option is faster while for many nonlinear events, the
latter is more efficient. Secondly, the computation of the non-reflective boundary condi-
tions involves numerically evaluating the inverse Laplace transforms to obtain the response
functionsH

(
see Eq. (7.10)

)
and the boundary vectors

(
b

IC
l , b

ML
l , and bML

r

)
, and evaluating

the convolution integrals at the boundaries
(
see Eq. (7.8)

)
.

For the SLT method, the most computationally intensive operations are solving the
linear system of equations

(
Eq. (6.15)

)
, updating of the non-reflective boundary conditions,

and numerically evaluating of the inverse Laplace transform.The linear system of equations(
Eq. (6.15)

)
needs to be solved for each frequency and at each nonlinear event.This is done by

using an algorithm to solve linear systems of equations in Matlab (i.e., themldivide routine)
where the dynamic stiffness matrix is assembled as sparse. For the results presented here,
this is the most computationally intensive part of the SLT method. Next, updating the
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Figure 7.8:Time history of the displacement at x = 3.5mfor the TDmethod (left panel;∆x = 2 cm), the SLTmethod
(middle panel; ∆x = v/(4 fmax)), and the PFmethod (right panel; ∆x = 4 cm).

boundary conditions involves computing the particular solutions of the non-trivial initial
conditions in the left and right domains; this implies a numerical evaluation of the inverse
Laplace transform for each frequency

(
see Eqs. (6.50) and (6.50)

)
. Finally, the numerical

evaluation of the inverse Laplace transform needs to be performed for each timemoment
and for each spatial point.

For the PF method, the computationally demanding operations are determining the
response functions L and R in the time domain

(
i.e., inverse Laplace transforms; see

Eqs. (7.35) and (7.36)
)
and determining the history component whist

i ,n of the response
(
see

Eq. (7.41)
)
. The associated response functions need to be determined for all the excitation

points ξī and observation points xi for all timemoments. If the response functions have a
strong decay in time, it is sufficient to determine them only for the timemoments when
the response has a significant amplitude. Determining whist

i ,n involves the evaluation of two
convolution integrals

(
Eq. (7.41)

)
, one over the number of excitation points ξī and one over

the timemoments smaller than the observation time; this operation needs to be performed
for each observation point xi and observation time tn.

Fig. 7.9 presents the computational effort C (measured in seconds) needed to reach
the accuracy shown in Fig. 7.5. The TD and SLT methods require similar computational
times while the PFmethod appears to be more computationally intensive.This is caused
by the fact that with decreasing ∆x (i.e., increasing the number Nx of excitation ξī and
observation xi points), the number of required response functions L and R increases
with N 2

x . However, once the response functions are determined, a whole parametric study
can be conducted (e.g., varying v, lt, types of nonlinearity, etc.) by only performing the
convolutions

(
Eq. (7.40)

)
. For the TD and SLTmethods, the computational effort is governed
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Figure 7.9:Computational effortC in the nonlinear case for the TDmethod (left panel;∆t = 80µs), the SLTmethod
(middle panel; ∆t = 250µs), and the PFmethod (right panel; ∆t = 100µs).

by the matrix inversion operation while updating the non-reflective boundary conditions,
as one could expect, is not affected by the change in ∆x since they need to be determined
only at the boundaries. For the SLTmethod, the inverse Laplace transform appears to be
the least computationally intensive operation.

Fig. 7.10 presents the computational effort C needed to reach the accuracy shown in
Fig. 7.6. The computational effort in the TD method is still governed by the inversion of
the matrix operation despite ∆x being constant because the number of nonlinear events
increaseswith the decreasing∆t (i.e., the number ofmatrix-inversion operations increases).
Also, the computational effort needed to update the non-reflective boundaries appears to be
slightly affected by the decrease in ∆t . Although the evaluation of the convolution integrals
increases almost quadratically, the numerical evaluation of the inverse Laplace transforms
increases linearlywith decreasing∆t ; for∆t = 80–250µs, the inverse transforms are govern-
ingCNRBC for the TDmethod, while for smaller∆t the convolution integrals start governing.
As for the SLTmethod, the matrix inversion is also still governing the computational time
when decreasing∆t because∆x and fmax are also varied for these simulations and the num-
ber of nonlinear events increases with decreasing ∆t . Respecting the convergence criteria
for the SLT method leads to a considerable increase in computational effort. For the PF
method,C appears to increase less drastically than the other twomethods with decreasing
∆t . This is becauseC in the PFmethod is mainly governed by ∆x, which is kept constant
here. Also,C for the PFmethod is not affected by the number of nonlinear events.

Finally, given the accuracy levels presented in Section 7.3.1, the TDmethod is the most
computationally efficient method. However, for certain combinations of ∆t and ∆x, the
SLTmethod is not far behind while the PFmethod shows potential for a large number of
simulations provided that the associated response functions do not change.

To conclude, it must be mentioned that the above-drawn conclusions can be somewhat
different for another choice of parameters (e.g., train velocity, transition length, elastic
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Figure 7.10:Computational effortC in the nonlinear case for the TDmethod (left panel;∆x = 2 cm), the SLTmethod
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displacement limit ratio q, damping ratio, etc.). It is impossible to cover all combinations
of parameters, but an indication of how changing these parameters may influence the
computational effort is given in the following.Themain effects of changing these parameters
on the computational effort comparison can be grouped as follows: changes leading to a
variation in the number of spatial nodes, changes leading to a variation in the number of
time samples, and changes leading to a variation in the number of nonlinear events. Firstly,
the number of spatial nodes is affected by the largest real part of the wavenumber of the
eigenfield (see Appendix D) and of the generated waves; this is in turn influenced by the
load velocity (the higher the load velocity the larger the real part of these wavenumbers).
The number of spatial nodes is also affected by the length of the transition zone because the
complete nonlinearity and inhomogeneity needs to be incorporated in the computational
domain. Secondly, the number of time samples is affected by the maximum frequency of
the generated waves (same reasoning as for the maximum wavenumber can be applied
here), by the load velocity (i.e., the lower the velocity, the more timemoments until the load
has passed the transition), and by the damping present in the system (i.e., the higher the
damping, the fewer timemoments until the waves die out in the computational domain).
Thirdly, the number of nonlinear events is affected by the load velocity (the lower the velocity,
the less plastic deformation and the fewer nonlinear events), by the length of the transition
and the stiffness ratio p (the smoother the transition the fewer nonlinear events), and by
the elastic displacement limit ratio q (the larger the ratio the fewer nonlinear events). From
the previously drawn conclusions, it can be seen that the PFmethod is most influenced by
the variation in the number of spatial nodes, the TD is most affected by the variation in the
number of time samples, and the SLTmethod is most affected by the number of nonlinear
events. (It may seem that also the SLTmethod is strongly affected by the number of time
samples, from Fig. 7.10, but it is mostly the decrease in ∆t which leads to an increase in
fmax and a decrease in ∆x that contributed to this sensitivity; an increase in number of
time samples while keeping the ∆t fixed does not follow a similar trend in computational
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effort increase.)These qualitative observations can give an indication to whichmethod is
advantageous for a different choice of parameters.

7.3.3. Feasibility of application to more complex systems
Here, the feasibility for the methods to handle frequency-dependent properties of the
structure (e.g., frequency-dependent springs and dashpots) is qualitatively assessed, as well
as to handle a smooth nonlinearity (as opposed to the piecewise-linear one), and to apply
the solutionmethods to multi-dimensional models. It must be emphasized that all three
methods can be applied in the above-mentioned situations, but one can be more efficient
than others, and this is discussed in the following.

Usually when amodel reduction is opted for (e.g., going from2-D to 1-D), the conversion
of parameters is done for a specific frequency range of interest. If more frequency ranges
are of interest or if the frequency range is broad, then the conversionmay lead to frequency-
dependent parameters of the reduced-ordermodel.The TDmethod is inefficient in this case
because additional convolution integrals are introduced that are distributed throughout
the spatial domain (opposed to the convolution integrals at the boundaries which are local),
leading to a significant increase in computational time. For the SLTmethod, the frequency-
dependent parameters can directly be incorporated in the equation of motion with no
additional effort since the system is solved in the Laplace domain; therefore, the computa-
tional effort in this case is unchanged. For the PFmethod, the response functionsL andR

are determined from the Laplace domain and can easily incorporate frequency-dependent
parameters too; however, the fact that the nonlinearity and part of the inhomogeneity is
accounted through the pseudo forces leads to additional convolution integrals throughout
the spatial domain, which increases the computational effort of the method. Therefore,
the SLTmethod appears to be most suitable to tackle a systemwith frequency-dependent
properties.

In the problem statement, the reaction of the Kelvin foundation was assumed to be
piecewise linear. Although under certain conditions (see Section 6.1) this assumption is
reasonable, other analyses might require a smoothly nonlinear constitutive law (e.g., cubic
model [111]). The TDmethod can easily incorporate such behaviour, but with an increase
in the computational time because the matrix-inversion operation

(
see Eq. (7.20)

)
must be

performed at each timemoment; however, this operation can be sped up as discussed in
Section 7.3.2.The SLTmethod is very inefficient for such behaviour; the smoothly nonlinear
behaviour implies that nonlinear events occur essentially at each time moment leading
to a considerable increase in the computational time.The PFmethod, however, can easily
handle such a behaviour. The only increase in the computational time might come from
the poorer convergence of the iterative scheme; however, this is unlikely. To present a more
quantitative comparison, fictitious nonlinear events are imposed at each time step for
one set of sampling parameters (∆x = 5cm and ∆t = 80µs for the TDmethod, ∆x = 5 cm
and ∆t = 250µ s for the SLT method, and ∆x = 5 cm and ∆t = 100µs for the PF method).
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As can be seen in Fig. 7.9, the computational effort for these sampling parameters in the
reference case is approximately 40 s for the TD method, 100 s for the SLT method, and
2,660 s for the PFmethod.When the fictitious nonlinear events are imposed at each time
moment, the computational effort is approximately 55 s for the TDmethod and 550 s for
the SLTmethod, while the one of the PF method remains approximately the same.Thus, by
implementing a smoothly nonlinear constitutive law, the TD appears to be most efficient
and the PF least efficient, while the computational effort of the SLTmethod is most affected
by such a change.

As for using the methods to analyse a 2-Dmodel, for example, all three methods have
advantages and disadvantages. If the nonlinearity and inhomogeneity of the system is
considered throughout the depth (i.e., ballast layers as well as the soil layers), then all three
methods need to discretise a considerable portion of the vertical direction, leading to a
significant increase in the computational time. For such a system, the TDmethod is likely
to bemost efficient as the SLT and PFmethods become unfeasible for very large systems.
More specifically, for the SLTmethod, the matrix inversion for systems with a very large
number of degrees-of-freedom becomes unfeasible when performed for each frequency
and each nonlinear event, while for the PFmethod, the large number of associated response
functions to be determined in the time domain renders the method unfeasible. However,
if the nonlinearity and inhomogeneity are limited to the surface layers (e.g., nonlinear
ballast layer resting on inhomogeneous soil layer supported by a linear half-space), then only
the top layers need to be discretised and the others could be included by using frequency-
dependent parameters. For such a system, the TD method requires additional spatially
distributed convolution integrals to account for the presence of the half-space. The SLT
method can exactly replace the half-space by frequency-dependent springs and dashpots,
which does not affect its efficiency. Also the PF method can incorporate the half-space with
no additional effort (it will already be incorporated inL andR, which are computed only
for the top layers). An example of such a 2-D system has been formulated in Ref. [24] (but
with a linear behaviour for all materials), where the ballast and the foundation are modelled
as lattices. This model has approximately 60,000 degrees-of-freedom (DOFs) and 40,000 of
them are for the foundation. Replacing the foundation by frequency-dependent springs
can reduce significantly the amount of DOFs; however, for the SLTmethod, the dynamic
stiffness matrix for the reduced system needs to be inverted for each frequency individually,
while for the PF method, obtaining the Green’s functions even for this reduced system
seems unfeasible. To conclude, even though the SLT appears to have the potential to bemore
efficient than the TDmethod for such a system, it difficult to draw a definite conclusion.

7.4. Conclusions
This chapter presents three solution methods to obtain the response of a 1-Dmodel consist-
ing of an infinite Euler-Bernoulli beam resting on a locally inhomogeneous and nonlinear
supporting structure subject to a moving constant load. The three methods, namely the
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sequential Laplace transform (SLT)method, the time-domain (TD)method, and the pseudo-
force (PF)methodwere chosen from the threemain categories of solutionmethods available
in the literature, namely integral-transformmethods, time-domainmethods, and hybrid
methods, respectively.The three methods were compared in terms of accuracy, computa-
tional efficiency, and feasibility of application to more complex systems.

Results show that all three methods are able to reach similar accuracy levels, both for
a linear limit case and for the nonlinear situation. For the latter case, the combination
of non-smooth nonlinearity and separation between the beam and supporting structure
only being allowed at the locations where plastic deformation has developed leads to larger
relative errors than in the former case and to non-monotonic convergence with decreasing
∆x and∆t . Given similar accuracy levels, the TDmethod is overall themost computationally
efficient method. However, for certain sampling combinations, the SLTmethod is not far
behindwhile the PFmethod shows potential for a large number of simulations provided that
the response functions do not change. As for the feasibility to apply these methods to more
complex systems, the SLTmethod appears to be most efficient in dealing with frequency-
dependent parameters while the TD and PFmethods in dealing with smooth nonlinearity.
For a 2-D system, if the nonlinearity and inhomogeneity is considered throughout the depth,
the TDmethod is likely to bemost efficient; however, if the nonlinearity and inhomogeneity
are limited to the surface layers (e.g., nonlinear ballast layer resting on inhomogeneous soil
layer supported by a linear half-space), the PF and SLT methods have the potential to be
more efficient than the TDmethod.

Based on this study, the adequate solutionmethod to solve more complex systems can
be selected depending on the specific characteristics of the model. Although the 1-Dmodel
presented in this study has mainly been used to assess the three methods, it can also be
used for preliminary designs of transition zones in railway tracks.





8
Transition radiation in a 2-D

nonlinear system and the influence

of foundation nonlocality

Life would be tragic if it weren’t funny.

Stephen Hawking

I
In all previous chapters, 1-Dmodels have been used to investigate the behaviour of railway
tracks. In these models, the supporting structure representing ballast, sub-ballast, soil, etc.
wasmodelled through continuously distributed (Chapters 2–4, 6, and 7) or discrete (Chapter
5) springs and dashpots. Although these 1-D models have been used by researchers for
many years due to their simplicity and computational efficiency, they also have drawbacks.
Firstly, theWinkler/Kelvin foundation is local by nature, while the ballast-soil foundation
is nonlocal; this modelling choice affects the way the supporting structure distributes the
load over space. Secondly, closely related to the nonlocality, the reaction of the foundation is
frequency-wavenumber dependent in the ballast-soil foundation while theWinkler/Kelvin
reaction is independent of frequency and wavenumber. Thirdly, wave propagation (both
in vertical and in horizontal directions) is not possible in theWinkler/Kelvin foundation
while it does occur in the ballast-soil foundation. Other differences can be mentioned,
but these are the most important ones at the low frequencies of interest in the transition
radiation problem that this thesis deals with. Naturally, the question arises as to what is the
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influence of these effects on the response at transition zones.This chapter aims to answer
this question.

The fundamental features of transition radiation in elastic continua (2-D) were first in-
vestigated by van Dalen andMetrikine [17] by considering two connected elastic half-spaces,
where a moving constant load crosses the interface. More recently, transition radiation
was investigated in systems slightly more representative for railway tracks [20, 21]. The
above-mentioned studies are mainly focused on investigating fundamental features of the
transition radiation phenomenon; consequently, the models used in these studies are sim-
plified ones rendering them suitable for fundamental understanding, but not sufficiently
accurate for very specific predictions.

For more practical engineering applications, researchers have developed predictivemod-
els with a wide focus range to predict the response of railway tracks in the vicinity of trans-
ition zones.They range from 2-D FEMmodels with accurate geometry of the real scenario
(e.g., [24, 26–28]), 3-D FEM models [11, 30–32, 67], and hybrid ones [43]. Furthermore,
inside each of these categories, researchers focus on a variety of aspects, such as the use of
under-sleeper pads for reduction of transition radiation [28], the influence of the foundation
nonlinearity on the prediction [26, 129, 130], the influence of accurately modelling ballast
behaviour [24, 26, 63, 131], and many more.These predictive models are very important and
some of their predictions come very close to the responses measured in practice, especially
due to their accurate representation of the geometry andmaterial behaviour. Nonetheless,
their complexity makes it difficult to investigate individual mechanisms since there are a
multitude at play simultaneously.Therefore, for the purpose of this chapter, a simplified
model is preferred.

This chapter has two goals. The first goal is to investigate the response amplification
and the corresponding settlement as done in previous chapters for 1-D systems, but now
for the 2-D one.The second goal is to investigate the effect of the foundation nonlocality on
the response of the system at transition zones in comparison to the 1-Dmodel developed
in Chapter 6, and to determine the range of applicability of the 1-Dmodel. To this end, a
model is formulated consisting of a linear and homogeneous 2-D continuum layer of finite
depth and an Euler–Bernoulli beam connected to the layer through and inhomogeneous
and nonlinear Kelvin layer; the beam is acted upon by a moving constant load.This model,
actually, consists of the model from Chapter 6 that now rests on a layer of soil. To have the
closest comparison possible to the 1-Dmodel, the soil layer is kept homogeneous. Also, the
properties of the Kelvin layer are different than in previous chapters because it does not
account for the soil anymore.The solution is obtained through a pseudo-forcemethod [123–
125] thatwas introduced in a 1-D system inChapter 7.Thenovelty of this chapter is contained
in the two set goals, with an additional novelty of the application of the pseudo-forcemethod
to obtain the response of the current problem.
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Figure 8.1:Model schematics: infinite Euler-Bernoulli beam connected to an infinite and homogeneous continuum
layer through an inhomogeneous and nonlinear layer of springs and dashpots, subjected to a moving constant
load acting on the beam.

8.1. Model description
Themodel formulated in this chapter is representative of a ballasted railway track with a
finite inhomogeneous region and it is graphically represented in Fig. 8.1.Themodel consists
of an infinite Euler-Bernoulli beamwith mass per unit length ρb and bending stiffness E I ,
and an infinite and homogeneous soil layer with mass density ρs, Lamé constantsG and
λ, and depth Z . The linear mass of the beam includes the mass ρr of one rail, the mass
ρslp of half the sleeper distributed along the beam, and the mass ρbal of half of the layer of
ballast.The beam is acted upon by amoving constant load of amplitude F0 and velocity v.
The beam and soil layer are continuously connected by a Kelvin layer of nonlinear springs
that provide a restoring force fk(x) and dashpots with damping coefficient cd(x).The Kelvin
layer effectively accounts for the vertical stiffness and damping of the rail-pads, ballast, and
embankment, but no explicit distinction is made between them.The stiffness and damping
of the Kelvin layer vary in space in such a way that there is a zone of length l in which the
stiffness is p times larger than for the rest of the infinite domain.This region is called the
stiff zone and represents the source of inhomogeneity in the longitudinal direction. The
governing equations of the described system read

E I w,xxxx +ρbẅ + cd(x,∆w)∆ẇ + fk(x,∆w) =−F0δ(x − v t ), (8.1)

ρsüx =G(ux,xx +ux,zz )+ (λ+G)(ux,xx +uz,xz ), (8.2)

ρsüz =G(uz,xx +uz,zz )+ (λ+G)(uz,zz +ux,xz ), (8.3)

∆w = w −uz,0, ∆ẇ = ẇ − u̇z,0, (8.4)

σzx = 0, σzz =−cd(x,∆w)∆ẇ − fk(x,∆w), z = 0, (8.5)

ux = 0, uz = 0, z = Z , (8.6)
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where overdots denote partial derivatives in time while subscripts , x and , z denote partial
derivatives in x- and z-directions, respectively; w is the vertical displacement of the beam
while ux and uz are the horizontal and vertical displacements of the soil layer, respectively,
and uz,0 denotes the vertical displacement of the soil layer evaluated at z = 0; σzx and σzz

are the shear and normal stresses, respectively.
As for thenonlinear behaviour of the connecting layer, the constitutive relationpresented

in Section 6.1 is adopted also here.The only difference in this section is that, due to the fact
that the bottom of the springs layer is not fixed (as it is in the 1-Dmodels), the reaction force
fk(x) is governed by the difference in displacement∆w = w −uz,0, the elastic displacement
limit ∆wel and the ratio ∆wel/∆we

max. All other characteristics of the nonlinear behaviour
of the layer of springs and dashpots of the Kelvin layer is the same as in Section 6.1.

The spatial variation of the stiffness and damping of the Kelvin layer are the same as in
Eq. (5.2), which is slightly different than the one presented in Eq. (4.39) and used inChapters
4, 6, and 7 (i.e., the stiff zone is finite and not semi-infinite). An abrupt change in stiffness
is adopted, but any other variation can be implemented without difficulty.

8.2. Solution method
In this section, we present the solutionmethod for obtaining the response of the system
described in Section 8.1. Chapter 7 investigated the efficiency of three solution methods
(one transformmethod, one time-domain method, and a hybrid between the twomethods)
in solving a nonlinear and inhomogeneous 1-D system (in fact, the equivalent problem to
the one presented here if the soil layer were infinitely stiff). One conclusion of that study
is that the hybrid method (i.e., the pseudo-force method) can be efficient in a 2-D/3-D
systemwhere the inhomogeneity and/or nonlinearity is considered along just one line in
space. Because in the current study the inhomogeneity and nonlinearity is concentrated in
the connecting layer (i.e., at one line at the surface) the pseudo-force is adopted here.The
advantages and disadvantages of this method are discussed at the end of the section.The
method is presented in the following and is based on the derivations in Chapter 7.

The core principle of the pseudo-force method [123–125] is to consider the inhomogen-
eity and nonlinearity as external or pseudo forces leading to a linear and homogeneous base
system. Basically, the nonlinear and the inhomogeneity terms are moved to the right-hand
side in the governing equations and the resulting implicit equations are solved in an iterative
manner.The solution is obtained by convolving the state-dependent forces (the nonlinearity
and inhomogeneity) with the Green’s functions of the base system. It must be emphasized
that in this section, because the length of the stiff zone is finite, the base system is homo-
geneous, unlike the one in Chapter 7 where the base system is piecewise-homogeneous.
This fact, makes the determination of the Green’s functions computationally more efficient.

After moving the terms accounting for the nonlinearity and inhomogeneity to the right-
hand side, the governing equations (the equations of motion of the soil as well as the bound-



8.2. Solution method

8

175

ary conditions at z = Z remain unchanged) read

E I w,xxxx +ρbẅ + cd,base∆ẇ +kd,base∆w = f ML + f p, (8.7)

ρsüx =G(ux,xx +ux,zz )+ (λ+G)(ux,xx +uz,xz ), (8.8)

ρsüz =G(uz,xx +uz,zz )+ (λ+G)(uz,zz +ux,xz ), (8.9)

σzx = 0, σzz =−cd,base∆ẇ −kd,base∆w − f p, z = 0, (8.10)

ux = 0, uz = 0, z = Z , (8.11)

where f p is the pseudo force and f ML is the moving load (the right-hand side of Eq. (8.1));
the pseudo force reads

f p(x,∆w,∆ẇ) =−(
cd(x,∆w)− cd,base

)
∆ẇ +kd,base∆w − fk(x,∆w), (8.12)

where cd(x,∆w) is given by Eqs. (6.1) and (2.27) and fk(x,∆w) by Eq. (5.2) and Fig. 6.2. It can
be seen that because the inhomogeneity and nonlinearity are limited to the transition zone,
the pseudo force acts only inside the transition zone. As can be seen from Eq. (8.12), the
pseudo force depends both on displacements ∆w and velocities ∆ẇ ; following a discussion
fromChapter 7, for computational efficiency, the velocities in the pseudo force are computed
from the displacements at the previous timemoments using the finite difference method.
This makes the pseudo force f p only dependent on the displacements, albeit on the time
history of the displacements. Note that for conciseness, f p is indicated in the following to
be dependent on the displacements through ∆w , while in actual fact it also depends on the
displacement at the previous timemoments.

The horizontal displacement ux , although accounted for, is not investigated further and
its derivation is omitted in the following. To simplify the notation, the following is assumed
for the remainder of the section:

u(x, z, t ) = uz (x, z, t ), (8.13)

u0(x, t ) = uz,0(x, t ). (8.14)

Also, the vertical displacement of the soil is only determined at the top layer (i.e., u0). If
necessary for certain applications, the solution at other depths can be determined with
additional computational effort.

The solutionsw andu0 can be expressed as a superposition of the steady-state responses
wML and uML

0 caused by the moving load f ML, and wp and up
0 caused by the pseudo force

f p in the base system, and read

w = wML +wp, (8.15)

u0 = uML
0 +up

0 . (8.16)
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Firstly, the steady-state responses caused by themoving load in the homogeneous and linear
base system can be obtained by using the Fourier transform over time and over space in the
x-direction, similar to the procedure used by van Dalen et al. [20]. The resulting system
of ordinary-differential equations in the frequency-wavenumber domain can be solved by
superposition of two wave modes, one travelling in positive and the other in negative z

direction.The four unknownwave amplitudes (two for the horizontal displacement and two
for the vertical one) are obtained from the boundary conditions (the frequency-wavenumber
domain counterparts of Eqs. (8.10)–(8.11), but without the pseudo force). To obtain the
time-domain solution, one of the inverse Fourier integrals is evaluated analytically by using
the properties of the Dirac-delta function while the other inverse integral is evaluated
numerically. The derivation of the steady-state response wML, described in words above, is
not presented here for brevity.

Secondly, the responses of the beam and of the soil to the pseudo force are expressed
as convolution integrals of the Green’s functions of the base system and the pseudo force.
It must be reminded that the governing equations are coupled through the ∆w term, and,
consequently, the equations need to be solved simultaneously. Nonetheless, for conciseness,
the derivation is demonstrated for wp while only the final expression of up

0 is given (the
derivation of up

0 is analogous to the one of wp). The response to the pseudo force reads

wp(x, t ) =
∫ L

0

∫ t

0
g w(x −ξ, t −τ) f p(

ξ,∆w(ξ,τ)
)
dξdτ, (8.17)

where g w is the time-domainGreen’s function of the base systemwith the impulse excitation
acting simultaneously both on the beamand on the soil surface.Thederivation of theGreen’s
function is elaborated in Section 8.2.1.

To evaluate Eq. (8.17), the integral is discretised. Firstly, the displacementwp is assumed
to be piecewise constant in space and equal to the value at the centre of each discrete element.
Consequently, also the Green’s function g w is determined with a box-car shaped load in
space (see Fig. 7.1), while it assumes a Dirac delta function loading in time.The continuous-
in-time and discrete-in-space expression for the displacement reads

wp
i (t ) =

Nx∑
ī=1

∫ t

0
g w

i ,ī
(t −τ) f p

ī

(
∆w ī (τ)

)
dτ, (8.18)

where i is the index for the observation point in space while ī is the index for the running
(integration) spatial variable, and Nx is the number of integration points. Secondly, the
forces f p

ī
are assumed to be piecewise linear in time.The displacement thus becomes

wp
i ,n =

Nx∑
ī=1

n∑
n̄=1

∫ tn̄

tn̄−1

g w
i ,ī

(tn −τ)
[

f p

ī ,n̄−1
(∆w ī ,n̄−1)

(
1− τ− tn̄−1

∆t

)
+ f p

ī ,n̄
(∆w ī ,n̄)

τ− tn̄−1

∆t

]
dτ,

n ≥ 1, (8.19)
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where n is the index for the observation time variable while n̄ is the index for the running
(integration) time variable. Eq. (8.19) is valid only for n ≥ 1 because the system is assumed
to be in the steady-state regime at t0 = 0 and then only the response caused by the moving
load is present, so wp = 0 at n = 0. It can be observed that Eq. (8.19) consists of two terms,
one proportional to the force at timemoment tn̄−1 and one proportional to the force at time
moment tn̄. Since the two forcing terms are not dependent on the variable of integration τ,
they can be taken out of the integral. The equation can therefore be rewritten as follows:

wp
i ,n =

Nx∑
ī=1

n∑
n̄=1

[
f p

ī ,n̄−1
(∆w ī ,n̄−1)L w

i ,ī ,n−n̄
+ f p

ī ,n̄
(∆w ī ,n̄)Rw

i ,ī ,n−n̄

]
, (8.20)

whereL andR represent the responses observed at tn due to triangular pulses lasting
between tn̄−1 and tn̄ (see Fig. 7.2) and are given in the following

L w
i ,ī ,n−n̄

=
∫ tn̄

tn̄−1

g w
i ,ī

(tn −τ)
(
1− τ− tn̄−1

∆t

)
dτ, (8.21)

Rw
i ,ī ,n−n̄

=
∫ tn̄

tn̄−1

g w
i ,ī

(tn −τ)
τ− tn̄−1

∆t
dτ. (8.22)

The time-domain Green’s functions g w
i ,ī

(tn −τ) need to be obtained numerically while
the integration from tn̄−1 to tn̄ needs to be performed numerically too, thus introducing
two sources of inaccuracy. To increase accuracy, the response associated with a triangular
pulse can be obtained directly from the Fourier domain, where only the inverse Fourier
transform needs to be evaluated numerically. To this end, the expressions forL andR can
be rewritten by introducing the variable change τ̄= τ− tn̄−1:

L w
i ,ī ,n−n̄

=
∫ tn−n̄+1

0
g w

i ,ī
(tn−n̄+1 − τ̄)

(
1− τ̄

∆t

)
H(∆t − τ̄)dτ̄, (8.23)

Rw
i ,ī ,n−n̄

=
∫ tn−n̄+1

0
g w

i ,ī
(tn−n̄+1 − τ̄)

( τ̄
∆t

)
H(∆t − τ̄)dτ̄, (8.24)

where tn−n̄+1 = tn − tn̄−1 and H(. . . ) represents the Heaviside function.These responses can
now be expressed directly as inverse Fourier transforms as follows:

L w
i ,ī ,n−n̄

= 1

π

∫ ∞

0
Re

(
g̃ w

i ,ī
(ω) P̃L (ω)eiωtn−n̄+1

)
dω, (8.25)

Rw
i ,ī ,n−n̄

= 1

π

∫ ∞

0
Re

(
g̃ w

i ,ī
(ω) P̃R(ω)eiωtn−n̄+1

)
dω, (8.26)

where g̃ w
i ,ī
is the Fourier-domain Green’s function associated with a Dirac-delta load in time

and a box-car function in space, and P̃L and P̃R are given by

P̃L (ω) = 1

ω2∆t

(
−1+ iω∆te−iω∆t +e−iω∆t

)
, (8.27)
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P̃R(ω) = 1

ω2∆t

(
1− iω∆t −e−iω∆t

)
. (8.28)

Theinverse Fourier transforms are evaluatednumerically using a quadratic, nested, adaptive
integration scheme [124].

It can be observed that Eq. (8.20) is implicit for n̄ = n. Therefore, it is divided in a
yet unknown instantaneous contribution and an already known history contribution.The
equation becomes

wp
i ,n = wp,hist

i ,n +
Nx∑

ī=1

f p

ī ,n
(∆w ī ,n)Rw

i ,ī ,0
, (8.29)

wp,hist
i ,n =

Nx∑
ī=1

n−1∑
n̄=1

[
f p

ī ,n̄−1
(w ī ,n̄−1)L w

i ,ī ,n−n̄
+ f p

ī ,n̄
(w ī ,n̄)Rw

i ,ī ,n−n̄

]
+

Nx∑
ī=1

f p

ī ,n̄−1
(w ī ,n̄−1)L w

i ,ī ,0
.

(8.30)

The solution for up
0 , the derivation of which is analogous to the one of wp, reads

up
0,i ,n = up,hist

0,i ,n −
Nx∑

ī=1

f p

ī ,n
(∆w ī ,n)Rv0

i ,ī ,0
, (8.31)

where up,hist
0 ,L u0,h, andRu0,h are the equivalent quantities for u0 to Eqs. (8.30), (8.25),

and (8.26), respectively. Furthermore, it is important to note that a positive f p acts upwards
for the beam and downwards for the soil; therefore, the pseudo force − f p is acting on the
soil andminus signs appear in front of the summation signs in Eq. (8.31) compared to Eq.
(8.29).

In order to advance to the next time step, the discretised version of Eqs. (8.15) and (8.16)
withwp

i ,n andup
0,i ,n given byEqs. (8.29) and (8.31), respectively, are solved simultaneously for

wi ,n and u0,i ,n using an iterative scheme.The scheme is defined by the following recursive
relations that start at j = 0 (where j indicates the iteration counter):

w j+1
i ,n ≈ wML

i ,n +wp,hist
i ,n +

Nx∑
ī=1

f p

ī ,n
(∆w j

ī ,n
)Rw

i ,ī ,0
,

u j+1
0,i ,n ≈ uML

0,i ,n +up,hist
0,i ,n −

Nx∑
ī=1

f p

ī ,n
(∆w j

ī ,n
)Ru0

i ,ī ,0
.

(8.32)

Iterations continue until specified tolerances are met for all entries of wi ,n and u0,i ,n. No
convergence problems were encountered while computing the results for this chapter.

8.2.1. Determination of the Green’s functions
Thesolution given in the previous section (Eq. (8.32)) is completely determined except for the
frequency-domain Green’s functions g̃ w and g̃ u0 . Since the base system is homogeneous,
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is sufficient to determine these Green’s functions for one excitation position only. The
governing equations for determining the Green’s functions read

E I w,xxxx +ρbẅ + cd,base∆ẇ +kd,base∆w = δ(t )
[
H(x −ξl)−H(x −ξr)

]
, (8.33)

σzx = 0, σzz =−cd,base∆ẇ −kd,base∆w, z = 0, (8.34)

where ξl and ξr represent the left and right boundaries of the box-car loading in space.The
rest of the governing equations are the same as in Eqs. (8.8)–(8.11). To obtain the response,
the Fourier transform is applied over time and space.Then, the Helmholtz decomposition is
used to decouple the frequency-wavenumber counterparts of Eqs. (8.2)–(8.3). The solution
u0 in the frequency-wavenumber domain reads

u0 = ∂φ

∂z

∣∣∣
z=0

+ ikxψ
∣∣

z=0, (8.35)

φ= A1eikz,Pz +B1e−ikz,Pz , (8.36)

ψ= A2eikz,Sz +B2e−ikz,Sz , (8.37)

where the overbar denotes the quantity in the frequency-wavenumber domain, kz,P =
i
p

(k2
x−k2

P) and kz,S = i
p

(k2
x−k2

S) are the z-components of thewavenumbers corresponding
to the compression and shear waves, respectively, kP = ω

cP
and kS = ω

cS
are their wavenum-

bers, while cP =√
(λ+2G)/ρs and cS =

√
G/ρs are their velocities. Also, kx is the wavenum-

ber in x-direction andω is the radial frequency.The solution for the displacement of the
beam reads

w = F + (iωcd,base +kd,base)u0

E I k4
x −ρbω2 + iωcd,base +kd,base

, (8.38)

F = i
(
e−ikxξl −e−ikxξr

)
kx

. (8.39)

Using the four boundary conditions at z = 0 and at z = Z , the complex-valued amplitudes
A1, B1, A2, and B2 can be determined (their expressions are omitted here for brevity), and
with that u0 is known. To obtain the responses in the frequency-space domain, the inverse
Fourier transform over x needs to be evaluated:

g̃ w = 1
2π

∫ ∞

−∞
weikx x dkx , g̃ u0 = 1

2π

∫ ∞

−∞
u0eikx x dkx . (8.40)

The integrals can be evaluated by means of contour integration as done in, for example, in
Refs. [132–134] for systems similar to the one treated in this section. In the current work,
the integrals are performed numerically using an adaptive scheme (integrate routine in
MATLAB).The contour integration is the more computationally efficient approach out of
the two, but the numerical integration is sufficient for the purpose of this work.
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8.2.2. Choosing the values of the parameters
Even though the formulated 2-Dmodel includes additional characteristics of the problem
compared to 1-Dmodels, it still is a phenomenological one mainly due to (i) the reduction
from 3-D to a 2-D plane-strain problem and (ii) the representation of all the layers between
the rail and soil through a continuous Kelvin layer (i.e., springs and dashpots).Therefore, the
system parameters do not completely correspond to their 3-D counterparts and need to be
selected/tuned such that the response resembles the one of a 3-Dmodel or field observations.
It must be emphasized that this chapter, as well as the whole thesis, focuses on qualitative
analyses for which the exact parameter values are not of crucial importance. Nonetheless,
we want to investigate the system response in a realistic parameter space and this section
explains how the parameters are chosen. Furthermore, to offer some degree of generality to
the results, a parametric study is presented in Section 8.3.3 inwhich some of the parameters
are varied around the chosen values and the change in behaviour is analysed.

For the results presented in this chapter, the parameter values are selected such that
its steady-state response resembles the one of an equivalent 3-Dmodel (see Fig. 8.2 for the
comparison and Appendix F for a brief description of the 3-Dmodel). In the following, we
first describe the tuning procedure for the soil layer and then the tuning of the Kelvin layer.

If we neglect the railway track for a moment, the reduction of a 3-D soil layer under the
action of a moving point load to an equivalent 2-D plane-strain problem assumes that the
moving load becomes a line load of infinite dimension in transverse direction. To obtain
similar response magnitudes in the two cases, two approaches can be taken: (i) the shear
stiffness of the soil layer in the 2-Dmodel is increased, or (ii) the magnitude of the moving
load is decreased. While the first approach can lead to good results, the physics of the
problem are changed by modifying the wave velocities in the soil. Therefore, we choose
to scale down the magnitude of the moving load instead while keeping the soil stiffness
the same as in the 3-D model. To obtain similar response magnitudes, a factor of 40% is
used to the load applied in the 3-Dmodel (the load in the 3-Dmodel is 45 kN).The soil and
moving load parameter values used in the 2-Dmodel can be found in Table 8.1. Additionally,
a loss factor ζs = 0.1 is chosen to represent both soil damping and radiation damping in z-
direction.The loss factor is included in the governing equations bymakingG complex-valued
in the frequency domain

(
i.e.,G(1+ iζs)

)
; keeping ν real-valued leads to λ also becoming

complex-valued in the frequency domain. It is important to mention that the chosen soil
damping is frequency independent (i.e., not of viscous type) since soil usually exhibits
hysteretic and not viscous type of damping.

If one does not have a 3-Dmodel to compare to, the two criteria to chooseG,λ, andρs are
(i) that the critical velocity of the 2-Dmodel is in the realistic regime and (ii) that the overall
displacement magnitude is in the realistic regime.The two criteria are competing with each
other because, for example, the lower theG, the lower the critical velocity (reaching realistic
values) and the higher the displacement magnitude (overestimating field observations).
Nonetheless, a balance between the two needs to be obtained.
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Table 8.1:Values of the system parameters used to compute results in Chapter 8.1.

Parameter Symbol Value Unit

Bending stiffness E I 6.42·106 Nm2

Rail mass ρr 60 kg/m
Distributed half-sleeper mass ρslp 208.33 kg/m
Half-layer of ballast mass ρbal 810 kg/m
Moving-loadmagnitude F0 18 ·103 N
Kelvin layer stiffness kd 6.7·106 N/m2

Kelvin damping ratio ζK 0.01
Soil shear modulus G 10 ·106 N/m2

Soil mass density ρs 1730 kg/m3

Poisson ratio ν 0.3
Soil damping factor ζs 0.1
Layer depth Z 3 m
Elastic displacement limit ratio ∆wel/∆we

max 1.02

TheKelvin layer, theoretically, represents the vertical stiffness and damping of the rail-
pads (kd,rp), the ballast (kd,bal), and the embankment (kd,e). However, we do not make
an explicit distinction between them and the Kelvin layer was tuned such that, using the
previously defined values for the soil and moving load, the magnitude of the responses
in the twomodels are similar (the bending stiffness of the beam is the same as in the 3-D
model). As for the damping of the Kelvin layer, a conservative ratio ζK of 1% has been chosen
since most amount of damping in this system is expected to come from the soil and not
from the ballast-embankment layer. Although not presented here for brevity, the effect of
increasing ζK on the results was investigated and it was minimal. The damping ratio is
related to the damping coefficient through Eq. (2.27). Finally, the mass of the ballast ρbal

(next to the mass of the sleepers ρslp and of the rail ρr) is included in the linear mass of the
beam (i.e., ρb = ρr +ρslp +ρbal), as done in Chapter 3.

Fig. 8.2 presents the comparison of the steady-state responses obtained with the equi-
valent 3-D FEmodel and the current 2-Dmodel.The 3-Dmodel is formulated in the software
package Abaqus®and is described in Appendix F. Although there are some discrepancies,
especially at locations where there is an upward displacement, the overall agreement is not
great.The responses at the top-soil match very well, while the responses at the rail position
show good agreement in magnitude, but the displacement field of the 2-Dmodel is wider
than the 3-D one.This can be caused by the local nature of the Kelvin layer, although this
should, in principle, lead to a narrower field, not a wider one (see Section 8.4). Alternatively,
the wider field can also be caused by the continuous supporting structure in the 2-D one
while in the 3-Dmodel, the discrete sleepers are accounted for. Nonetheless, the match is
satisfactory, at least when it comes to the steady state. As will be discussed in Section 8.4, a
good agreement of the steady-state responses is not sufficient to ensure that the transient
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Figure 8.2:Comparison of the steady-state displacement time histories at the rail (left panel) and soil surface (right
panel) between a 3-D FEmodel and the current 2-Dmodel. v ≈ 0.5ccr.

response is also well captured. Nevertheless, this tuning is valuable because it ensures that
the results obtained with the current model are in the realistic realm.

8.2.3. Verification of the solution method
The solution method described in Section 8.2 is verified by considering a limit case. More
specifically, the stiff zone is extended from x = 0 to x = L and its stiffness is chosen to be
two times larger than in the base system. After the initial transients caused by the jump in
stiffness, the solution should be the steady-state one provided that the length of the stiff
zone is sufficiently large.This steady-state solution is compared to the semi-analytical one
computed similarly towML, but with the different stiffness value. Fig. 8.3 presents the error
e(x) that is defined as the summed-over-time absolute value of the difference between the
limit-case solution wlim (obtained using the solution method presented in this chapter)
and the benchmark solution wbench, divided by the summation of the absolute value of the
benchmark solution over time; the expression of e(x) is given in Eq. (6.52).

One can see that at the start and end of the stiff zone (note that L = 40m in Fig. 8.3), the
error is significant due to the transient behaviour. Nonetheless, the error reduces signific-
antly (around and below 1%) once the response reaches a quasi steady-state regime inside
the stiff zone.This shows that the obtained Green’s functions are correct, the pseudo forces
(and the iterative scheme) work well and that the solution method is correctly implemented.
The time and space discretisations for this analysis are∆x = 0.2mand∆t = 5×10−4 s; these
parameters have been slightly varied and the error has not changed significantly showing
that the error is governed by the transients (the solution not fully reaching steady state) and
not by the discretization. It must be emphasized that the large error around x = 0 and x = L

is not caused by boundary artefacts because the infinite extent of the system is accounted
for in an exact manner through the Green’s functions; the error is caused by the transition
in stiffness and damping which occurs at x = 0 and x = L.
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Figure 8.3:The relative errors in the limit case for a load velocity v = 0.3ccr.
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Figure 8.4:The settlement profile for varying ∆x (left panel; ∆t = 0.5ms) and ∆t (right panel; ∆x = 20 cm).

The aforementioned limit case verified the correct determination and accuracy of the
Green’s functions and of the pseudo-forces related to the inhomogeneous nature of the
problem. To verify the pseudo-forces related to the nonlinear behaviour of the Kelvin layer,
in the absence of a semi-analytical benchmark solution, the convergence of the solution is
analysed.The settlement profile is presented in Fig. 8.4 for varying∆x and∆t . It can be seen
that when reducing the spatial and temporal steps, the settlement profile converges, giving
confidence that the solution to the nonlinear and inhomogeneous problemobtained through
the pseudo-force method is correct (although it does not prove that the solution is correct
since, theoretically, it could converge to an incorrect solution). The convergence analysis
also indicates that ∆x = 20 cm and ∆t = 0.5ms are sufficient for a converged solution.

8.2.4. Advantages and disadvantages of the current solution method
Since the solution method is one of the novelties of the current work, it requires at least
some qualitative comparison to the other methods available in the literature. The more
common solution method to solve the system under consideration is a FE discretization of
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the spatial domain combined with a time-stepping method for the temporal evolution (e.g.,
Newmark-β, Runge-Kutta, etc.). The advantages of the pseudo-force method are as follows:

• The infinite extent of the system is respected automatically without any additional
measures. For example, when using FEM, some type of non-reflective boundaries
need to be prescribed (either in the form of boundary elements or perfectly-matched
layers). Furthermore, to mitigate the spurious effects from the vehicle suddenly en-
tering the system, special initial conditions need to be imposed in the FEMmodels or
to make the domain large enough such that these effects die out before the vehicle
reaches the transition zone.These additional measures increase the complexity of
the problem and increase the computational cost.

• Instead of discretising the system, the pseudo-forces are discretised.Thismeans that
if one knows a-priori where to expect settlement, the discretisation of the pseudo-
forces can be refined only in that region while the response of the rest of the system
is very accurate.This also means that the computational cost does not significantly
change with increasing depth or multiple layers of the soil, since the depth is not
discretised.

• Themost expensive computational task of the pseudo-force method is to determine
the Green’s functions in the time domain. Once these are determined, parametric
studies can be performed at a low computational cost. For example, any parameters
of the load (velocity or amplitude), of the transition zone (stiffness ratio, location,
width, profile, etc.), or of the nonlinear constitutive relation (type, shape, values, etc.)
can be varied.

As for any solution method, the pseudo-force method has disadvantages as well, which
are presented below:

• The biggest drawback is that the current method is not efficient (or even not feasible)
to apply when the soil layer is inhomogeneous or nonlinear. As discussed in Chapter 7,
this method can be efficient when the nonlinearity and inhomogeneity is along a line
(which is the case in the problem statement). However, in some (or evenmost) cases
the transition zone is characterized primarily by different properties of the soil (e.g.,
going from soft soil to a bridge founded on piles). The solution to such a scenario
cannot be efficiently obtained with the current method.

• Related to the previous point, the solution to a model that accurately represents
the geometry of the transition zone cannot be directly obtained using this solution
method.The inhomogeneity is introduced in the current model through the pseudo-
forces that act along a line (interface between rail and soil). To model the geometry
of the problem accurately, the inhomogeneity (man-made structure) needs to be
distributed through the depth of the ballast, embankment, and soil layers, leading
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to the number of Green’s functions required to be unfeasible to determine. A way
to indirectly account for the accurate geometry of the man-made structure in the
current model is to determine its equivalent stiffness, damping, andmass from a FE
analysis.These equivalent quantities can then be introduced in the Kelvin layer.The
extent of validity of such an approximation needs to be investigated.

• Since the beam is not discretised, it is difficult to simulate a spatial variation of the
bending stiffness (e.g., auxiliary rails imposed only in the transition zone).

Based on the aforementioned advantages and disadvantages, it becomes clear that
the pseudo-force method is not ideal for models focused on quantitative predictions for
scenarios where the problem’s geometry is of importance. Nonetheless, the pseudo-force
method is more suitable for simplifiedmodels focused on qualitative analyses targeted at
understanding the behaviour of more simplified problems. Also, its efficiency in making
parametric studies can be useful for preliminary quantitative predictions to reduce the
parameter space to be investigated using FEmodels.

8.3. Response of the 2-D model
This section tackles the first goal of the chapter which is to investigate the response amplific-
ation and the corresponding settlement in the 2-D system. Two slightly different scenarios,
presented in Fig. 8.5, are investigated. Scenario A (left panel of Fig. 8.5) consists of the
original system formulated in Section 8.1; in this scenario, the stiff zone rests directly on
the soil layer and is qualitatively representative of a railway crossing where the concrete
slab rests directly on the soil. Scenario B (right panel of Fig. 8.5), unlike scenario A, has an
additional layer of stiff springs at the bottom of the stiff zone.This scenario is qualitatively
representative of a structure (e.g., culvert) supported by stiff and slender piles. Note that
the actual piles are not modelled, but their effect is considered through the stiffening of the
base (i.e., surface of the soil) in the stiff zone.The inhomogeneity introduced by the piles in
the soil is neglected together with potential reflections; we considered that for slender piles
(i.e., diameter much smaller than the width of the structure) this effect can be neglected.

This section is divided in three parts. Firstly, to get a fundamental understanding of
the system under consideration, its dispersion characteristics are investigated. Then, a
reference case is considered and analysed in-depth. Finally, to offer a more comprehensive
picture of the system’s behaviour, a parametric analysis is performed.

8.3.1. Dispersion characteristics
To better understand the behaviour of the 2-D system at hand, we can first investigate the
dispersion characteristics of the homogeneous and linear system (since there is no transition
zone, there is no distinction between scenarios A and B).The dispersion equation of the 2-D
system can be obtained in a number of ways; here, we use the equivalent stiffness approach
of the soil layer, as used by Dieterman andMetrikine [132]. Although they determined the
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Figure 8.5:Two configurations of the original model: scenario A (left panel) represents the stiff zone resting directly
on the soil layer while in scenario B (right panel), the stiff zone rests on stiff and slender piles.

equivalent stiffness of a 3-D half-space, the same approach can be used to determine the
equivalent stiffness χs of the 2-D soil layer.Then, the equivalent stiffness of the two layers of
springs in series (the layer connecting the beam and soil, and the equivalent stiffness of the
soil layer) can be expressed straightforwardly.The remaining system is a beam resting on a
layer of springs, the dispersion equation of which reads (for a systemwithout damping)

EbI k4
x −ρbω

2 + kd,baseχs(ω,kx )

kd,base +χs(ω,kx )
= 0. (8.41)

In an undamped 3-D half-space, three types of waves can propagate in x-direction,
namely the compressional, the shear and the Rayleigh (surface) waves. When a beam (or
plate with finite width) is added to the surface of the 3-D half-space, guided waves can
propagate along it without attenuation (i.e., stationarywaves) at phase velocities lower than
(or equal to) the velocity cR of the Rayleigh wave (see Ref. [132]). Stationary guided waves
cannot propagate at velocities larger than cR because Rayleigh waves are then radiated, thus
attenuating the guided wave travelling along the beam; such a wave is usually called a leaky
wave.

In an undamped 2-D half-space, the same waves as in the 3-D half-space are present,
where the Rayleigh wave propagates without amplitude attenuation (i.e., it is a stationary
wave) because energy spreading in y (transversal) direction is not possible due to the plane-
strain assumption.When a beam is added to the surface of the half-space, due to the two-
dimensionality (which implicitly assumes that the beamextends to infinity in the transversal
direction), Rayleigh waves can not exist because there is no free surface.Therefore, guided
waves can propagate in x-direction without attenuation even at higher phase velocities
than cR of the soil layer.This can be seen in Fig. 8.6 where the purely real-valued kx curve
(i.e., a stationary wave) is located both below and above the kR line. The upper bound for
guided stationary waves in this 2-D system is the phase velocity of the shear waves cS, and
the real-valued kx curve can be seen to approach the kS curve at high frequencies (see Fig.
8.6).This is an important difference and shortcoming of the 2-Dmodel and generatedwaves
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Figure 8.6:Dispersion curves of an undamped 2-D half-space with a beam rigidly connected to its surface. kP, kS,
and kR are the compressional, shear, and Rayleigh wavenumbers, respectively.

with a phase velocity larger than cR (but smaller than cS) should be treated with care because
theywould be leaky in a 3-D system. Furthermore, the curve characterising stationarywaves
initiates at the origin, meaning that even waves of infinite wavelength can propagate in this
system.This is because the half-space does not have static stiffness and, thus, allows for
rigid body motion.

Fig. 8.7 presents the dispersion curves of the homogeneous and finite-depth 2-D system
with properties of the soft domain. To describe the dispersion curves of the system under
consideration in a clear manner, the system complexity is gradually increased as follows.
We first consider the layer with a free surface (top row), then the beam is rigidly connected
to the top of the layer (second row), after which theWinkler layer is inserted between the
beam and the surface (third row), and finally the mass layer is added to the top of the layer
(forth row).This way, we can investigate the changes to the dispersion curves introduced by
eachmodification.The left column presents the real- and imaginary-valued wavenumbers
(i.e., stationary and evanescent waves, respectively), while the right column presents the
complex-valued ones. Since the curves are determined numerically using a complex-valued
root finder, not all roots are found (especially in the bottom panels) and, consequently, some
points are missing in the figure; nonetheless, the figure captures well the main curves and
is sufficient for the discussion here.

When a finite-depth layer is considered instead of a half-space, infinitely many addi-
tional dispersion curves appear, as can be seen in the top panels of Fig. 8.7 (only a finite
amount of them appear in the limited frequency-wavenumber range presented here).The
additional curves describe guided waves that are travelling in x-direction and standing in
z-direction; their infinite amount originates from infinitely many standing waves modes in
a finite layer continuum. One of this dispersion branches highlighted in blue (top left panel),
is evanescent up to a certain frequency after which it becomes stationary; this frequency is
the cut-off frequency.The wave described by this branch becomes a surface wave at high
frequencies (i.e., it approaches kR). The other branches have a complex behaviour that is
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Figure 8.7:Dispersion curves of an undamped 2-D layer with rigid bottom and different boundary conditions at
the surface: free surface (top row), beam rigidly connected to its surface (second row), Winkler layer connecting
the beam and its surface (third row) and with an additional mass layer (system under consideration in this chapter;
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present the complex-valuedwavenumbers.kP,kS, andkR are the compressional, shear, andRayleighwavenumbers,
respectively.
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qualitatively very well explained by Mindlin [135] (Fig. 23 and corresponding discussion),
Achenbach [136] (Fig. 6.12 and corresponding discussion), and Graff [50] (Fig. 8.10 and cor-
responding discussion); important to note is that all of them become stationary waves above
certain frequencies and that all of them have phase velocities larger than cS. Finally, unlike
the half-space, it can be seen that the finite-depth layer has non-zero cut-off frequencies
due to it having a rigid bottom and, consequently, non-zero static stiffness.

Adding a beam to the surface of the layer leads to small qualitative changes in the disper-
sion curves. As aforementioned, Rayleigh waves cannot exist in this system configuration
because there is no free surface. Consequently, the lowest real-valued curve (blue line in
the second row of Fig. 8.7) does not tend to kR at high frequencies any more. Apart from
this change, the dispersion curves are the same with the ones of the layer with free surface,
but with small quantitative changes. For a more in-depth discussion about the dispersion
curves of a system similar to this one, see the study by Metrikine and Vrouwenvelder [137].
With the addition of theWinkler layer connecting the beam and the soil layer, significant
qualitative changes occur. Namely, two different guided wave types are introduced (see
orange lines in the third row of Fig. 8.7) because, unlike in the previous configuration, the
beam has its own degrees of freedom here.These guided waves are complex-valued below
the cut-off frequency, after which one becomes stationary and the other one evanescent.
These guided waves resemble very closely the two wave types in a beam onWinkler founda-
tion. Finally, adding the mass layer introduces only quantitative changes in the dispersion
curves, lowering the lowest real-valued branch. This causes the critical velocity (i.e., the
minimum phase velocity) of the system to be considerably lower than cR of the soil layer,
which is usually taken as the critical velocity by engineers.This discrepancy and its practical
implications have been touched upon byMetrikine and Vrouwenvelder [137].

To conclude this section, it becomes clear that the transient process in the 2-D system is
muchmore complex compared to the one in the 1-D system due to the infinitely many waves
being present. Although the addition of damping will lead to some of the waves to have
a negligible contribution to the response far away from transition zones, in their vicinity,
where the settlement occurs, some of the additional waves present in the 2-D system can
have a significant contribution to the response of the system. This is discussed in more
detail in Section 8.4.

8.3.2. Reference case
In this section, the response of the two system configurations (A and B) are analysed for one
set of parameters.The values of the parameters used for the results are given in Table 8.1.The
stiffness (i.e., kd,p = 19×106 N/m2) of the additional springs under the stiff zone is chosen
such that the quasi-static stiffness ratio between the stiff and soft zones is approximately
three (see next paragraph and Fig. 8.8), as was chosen inmost of the previous chapters (note
that while the stiffness ratio of five was used in most previous chapters, this lead to a track
stiffness ratio as experienced by the moving load of approximately three; see Section 4.3.1
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Figure 8.8:The effective stiffness of the track as felt by the load in the quasi-static regime for the homogeneous
system, scenario A, and scenario B (v ≈ 0.1ccr).

for the relation between foundation stiffness and track stiffness).The stiff zone is located
between x = 7.5 m and x = 12.5 m, in which the stiffness of the Kelvin layer is ten times
higher than in the open track; the damping of the Kelvin layer follows fromEq. (2.27). In this
reference case, a load velocity v ≈ 0.75ccr is chosen to investigate the response in a realistic
regime.

The elastic displacement limit ∆wel = 1.02∆we
max is chosen throughout this chapter.

The reason for choosing a smaller ratio compared to Chapter 6 (where 1.05 was chosen) is
that, as we shall see in Section 8.4, the settlement predicted by the 2-D model is smaller
than the one obtained in the 1-D model. So, to obtain a smooth settlement profile, the
ratio has been reduced in this chapter. The exact value of the ratio, although important
for specific predictions (in which case it needs to be determined experimentally), is not so
important for comparing different scenarios and for parametric analyses provided that it is
kept unchanged and that it allows for settlement profile to be somewhat smooth (i.e., not
caused by numerical inaccuracy).

The quasi-static stiffness of the track (i.e., as experienced by a very slowly moving load)
for both scenarios is presented in Fig. 8.8. Scenario A exhibits a stiffness ratio between the
stiff and soft domains of approximately two.The perceived stiffness ratio is this low despite
the spring stiffness being ten times larger because the flexibility of the soil layer is governing
here. In actual fact, the flexibility of the soil layer, compared to the flexibility of the ballast-
embankment structure, is governing in most cases. In scenario B, the quasi-static stiffness
of the track (Fig. 8.8) exhibits a ratio between the stiff and soft domains of approximately
three (as aforementioned); this is higher than in scenario A due to the presence of the stiff
base.

Fig. 8.9 presents the transient response of the system in scenario A; the steady-state re-
sponse is also presented for comparison.The displacement fields are presented for different
time moments in the left column while ∆w is presented in the right columns to demon-
strate when the settlement occurs. Note that the displacement field of the soil surface is
shifted downwards by 1.5 mm such that the two fields do not overlap each other; in this
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system there is no actual distance between the beam and the soil surface. As explained
in previous chapters, the interference between the eigenfield approaching the stiff zone
and the free waves generated due to the inhomogeneity causes the response amplification,
which leads to settlement occurring. Note that the settlement in Fig. 8.9 is up-scaled by
a factor 50 to be clearly visible because the settlement from one wheel passage is, in fact,
very small. In this scenario for the reference case, the settlement only develops at the right
of the transition (i.e., in the stiff-to-soft transition).This is caused by the relatively small
stiffness ratio between the stiff and soft zones. As argued in Chapter 2 (Fig. 2.8), for small
stiffness ratios and high load velocities, the energy of the free-field propagating in negative
x-direction is small leading to weak wave interference at the left of the transition zone.
On the other hand, there is a significant amount of energy in the free-field propagating
in positive x-direction leading to a relatively strong wave interference at the right of the
transition zone.The stronger response amplification at the right of the transition zone is
observed for most cases investigated when the stiff zone rests directly on the soil.

Fig. 8.10 presents the transient response of the system in scenario B. Like in scenario A,
the settlement develops only at the right of the transition, but it is muchmore pronounced.
We can verify that, for a larger relative velocity, the settlement develops also at the left of
the transition and it becomes more pronounced as the velocity of the load approaches the
critical one (see the following section as well as Chapter 2, Fig. 2.8 and the corresponding
discussion). It can also be seen, especially in the third and forth rows of Fig. 8.9, that the
wave radiation is stronger compared to scenario A, mainly due to the larger stiffness ratio.
The response amplification in the stiff-to-soft transition investigated in Chapter 2 (see
Fig. 2.10 and corresponding discussion) showed that the evanescent wave was responsible
for a relatively small amplification close to the stiff zone while the propagating wave was
causing a relatively large amplification further away. Even though the transition process in
the current 2-Dmodel generates more waves compared to the 1-Dmodel in Chapter 2, the
settlement profile in scenario B resembles the aforementioned findings.

Fig. 8.11 shows the power input by the moving load in the transition zone for both scen-
arios; the power input in the steady state (non-zero due to the presence of damping) is also
presented for comparison.The peaks, both positive and negative, of the power input are
larger in scenario B than in scenario A, as could be expected due to the larger inhomogeneity.
It can also be seen that the energy exchange between the load and foundation occurs over a
larger distance at the right of the stiff zone, as also seen in Chapter 2. Interestingly, the set-
tlement does not occur at the locations of the peaks in the power input, but at the transition
from positive (energy goes from the load to the foundation) to negative (energy goes from
the foundation to the load) values. It seems that the larger the difference between positive
and negative power input and the steeper the slope, the larger the settlement. Furthermore,
it seems that the transition from negative to positive power input is not accompanied by
settlement.This insight could be used for indirect identification of settlement, although
large amounts of data are needed to prove such a relation.
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Figure 8.9:Displacement fields in scenario A of the beam (blue lines) and soil surface (orange lines) in the steady-
state (dashed lines) and transient (solid lines) regimes and the settlement (black line) at different timemoments
(left panels). The displacement difference (green lines) in the steady-state (dashed lines) and transient (solid lines)
regimes and the elastic displacement limit (∆wel) at the same time moments as the displacement fields (right
panels). The stiff zone is represented through the grey background.
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Figure 8.10:Displacement fields in scenario B of the beam (blue lines) and soil surface (orange lines) in the steady-
state (dashed lines) and transient (solid lines) regimes and the settlement (black line) at different timemoments
(left panels). The displacement difference (green lines) in the steady-state (dashed lines) and transient (solid lines)
regimes and the elastic displacement limit (∆wel) at the same time moments as the displacement fields (right
panels). The stiff zone is represented through the grey background.
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Figure8.11:Thepower input by themoving load in the reference case for both scenariosAandB.Thegreybackground
indicates the location of the stiff zone, while the blue and yellow backgrounds indicate the settlement locations in
scenario A and B, respectively.

8.3.3. Parametric analysis
The previous section analysed in depth one particular case and highlighted the important
characteristics of the response. To offer amore general picture of the response, a parametric
study is performed here. To keep the section concise, it investigates only the settlement
predicted by the model for different system parameters. More specifically, we compare the
area

(
i.e., Apl =

∫
wpl(x, tend)dx

)
under the settlement profile after one load passage. It

must be noted that the area of the settlement profile is not the only important characteristic;
to offer a larger picture, also the slope of the settlement profile should be investigated
because that is the one dictating the differential part of the settlement. However, this is not
presented here for conciseness. The parameters that are varied are the load velocity, the
stiffness Es of the soil layer, and the length of the stiff zone.The ratio between the Kelvin
stiffness in the stiff and soft zones (chosen as ten throughout the chapter) is not varied here
because the overall change in track stiffness as felt by the moving load is inherently varied
by studying both scenarios A (stiff zone resting directly on soil) and B (stiff zone resting on
piles) as well as by varying Es. Other parameters can also be varied (e.g., Poisson ratio ν,
soil layer depth Z , etc.), but the ones chosen are most representative for parameters that
vary between different types of transition zones.

Fig. 8.12 presents the settlement area versus relative velocity for both scenarios A and
B.These results show that the observationmade in the previous section, namely that the
settlement in scenario B is larger than in scenario A, holds for all load velocities. When it
comes to the settlement at the left of the stiff zone (left panel), it can be seen that it only
develops at relatively large velocities, confirming the findings in Chapter 6. At the right of
the stiff zone (right panel), settlement develops also at relatively low velocities and there
is no settlement at velocities close to the critical one. This is to be expected based on the
results from Chapter 2, Fig. 2.8. It can also be seen that the settlement area is generally
much larger in the stiff-to-soft transition; it is caused by the low frequency oscillation under
the moving load (see Fig. 2.6). When comparing the settlements at the left and right, we
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Figure 8.12:The area under the settlement profile versus relative velocity at the left (left panel) and right (right
panel) of the stiff zone. Scenario A represents the stiff zone resting on soil and scenario B is the stiff zone resting
on piles. Note that the limits of the axis is the same in both panels.
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Figure 8.13:The area under the settlement profile versus relative velocity at the left (left panel) and right (right
panel) of the stiff zone in scenario A (the stiff zone resting on soil) for different soil stiffness: Es in the reference
case is given in Table 8.1 while Es is 50% lower in the soft case and 50% higher in the stiff one.The critical velocity
in the x-axis is different for each curve.

can conclude that the settlement at velocities close to the critical one is more pronounced in
the soft-to-stiff transition while the opposite is true for the lower velocities.

Fig. 8.13 presents the settlement area for scenario A in which the soil stiffness Es is
varied. Two values are chosen for Es, namely 25% lower (soft case) and 25% higher (stiff case)
than the reference case. Note that the critical velocity changes with changing Es and Fig.
8.13 presents the results in terms of relative velocity; this means that for the same relative
velocity, the load velocity is different for the three cases (reference, soft, and stiff). It is
shown that decreasing Es leads to a significant decrease in the settlement both at the left
(left panel) and right (right panel) of the stiff zone.This is caused by two factors.The first
is that the flexibility of the system comesmainly from the soil and, consequently, there is
little variation in the differential displacement ∆w between the beam and soil. Secondly,
the stiffness ratio between the soft and stiff zones decreases with decreasing Es, leading
to a weaker free field and, consequently, to a lower response amplification. By increasing
Es, the opposite (to the soft case) is occurring and the settlement area increases; the same
aforementioned reasoning can be used to explain it.
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Figure 8.14:The area under the settlement profile versus relative velocity at the left (left panel) and right (right
panel) of the stiff zone in scenario B (stiff zone resting on piles) for different soil stiffness: Es in the reference case
is given in Table 8.1 while Es is 25% lower in the soft case and 25% higher in the stiff one.The critical velocity in the
x-axis is different for each case.

Fig. 8.14 presents the settlement area for scenario B in which Es is varied.The trend of
the settlement area with increasing relative velocity is very similar for all three cases, and
just the magnitude differs; the stiffer the soil, the larger the settlement area, as also seen in
scenario A. Unlike scenario A, the settlement in the soft case is significant, i.e., just slightly
smaller than in the reference case.This suggests that the dominant factor (out of the two
mentioned in the previous paragraph) influencing the the settlement area when varying Es

is the stiffness ratio between soft and stiff domains. Furthermore, the magnitude of the
settlement area can be seen to be considerably larger in scenario B than in scenario A (Fig.
8.13) for both soft and stiff cases, complementing the findings in Fig. 8.12.

When looking at the results in Figs. 8.9 and 8.10, the question naturally arises as to what
is the influence of the length of the stiff zone on the settlement. For a very long stiff zone,
the soft-to-stiff and stiff-to-soft transitions are completely decoupled and can be treated
separately (as done in Chapters 2, 3, 4, 6, and 7). However, as the length of the stiff zone
decreases, does the interference of the two transitions (soft-to-stiff and stiff-to-soft) lead to
an aggravation or reduction of the settlement?

Fig. 8.15 presents the settlement area in scenario A for different lengths of the stiff zone
(i.e., 2.5 m, 5 m, 7.5m, and 10 m). For the settlement at the left of the transition, the length
of the stiff zone seems to have an insignificant influence for all transition lengths (there
is a small difference for the 2.5 m long transition, but it is insignificant). This could have
been expected since the soft-to-stiff transition can hardly be affected by the stiff-to-soft one
that occurs at a later time. A very short stiff zone (compared to the width of the eigenfield)
could have an influence by allowing energy to leak to the right of the transition before the
soft-to-stiff transition ends (similar to the mechanism explained in Section 5.1.4, Fig. 5.8
and the corresponding discussion). As for the settlement at the right of the transition, the
length of the stiff zone has a considerable effect. It seems that the longer the stiff zone (i.e.,
themore decoupled the two transitions), themore pronounced is the settlement.Thismeans
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Figure 8.15:The area of the settlement versus relative velocity at the left (left panel) and right (right panel) of the
stiff zone in scenario A (stiff zone resting on soil) for the reference case with different lengths of the stiff zone.
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Figure 8.16:The area of the settlement versus relative velocity at the left (left panel) and right (right panel) of the
stiff zone in scenario B (stiff zone resting on piles) for the reference case with different lengths of the stiff zone.

that the proximity of the soft-to-stiff transition has a beneficial effect on the settlement at
the right of the transition (at least for the scenarios investigated here).

The results for scenario B, presented in Fig. 8.16, are qualitatively similar to the ones in
scenario A at the left of the transition.However, at the right of the transition, the influence of
the length is considerably less noticeable compared to scenario A.This can be caused by the
increased stiffness of the stiff zone leading to most energy at the soft-to-stiff transition to
be reflected and not transmitted (see Chapter 2, Fig. 2.16), meaning that it has less influence
on the stiff-to-soft transition.

8.4. Influence of the foundation nonlocality
The second aim of this chapter is to analyse the influence of the foundation nonlocality on
the response at transition zones. To this end, the response of the 2-D system that includes
nonlocality is compared to the 1-Dmodel formulated in Chapter 6.The simplistic geometry
of the 2-D system formulated in Section 8.1 is ideal for such a comparison since the only
difference between the two models is the addition of the soil layer. The two systems are
compared in terms of response fields, both steady state and transient, as well as through
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Table 8.2:The tuned values of the parameters of the 1-Dmodel.

Parameter Symbol Value Unit

Beammass–soft domain ρl 1320 kg/m
Kelvin stiffness–soft domain kd,l 2.4·107 N/m2

Kelvin damping–soft domain cd,l 1.6·104 Ns/m2

Beammass–stiff domain ρr 1968 kg/m
Kelvin stiffness–stiff domain kd,r 6.3·107 N/m2

Kelvin damping–stiff domain cd,r 4.6·104 Ns/m2

dispersion curves andpredicted settlement.This section concludeswith the formulation and
investigation of an enhanced 1-Dmodel that indirectly includes nonlocality in the foundation
making it more accurate than the current 1-D model while being more computationally
efficient than the 2-D one.

8.4.1. Tuning the 1-D model and comparing the steady-state responses
For a meaningful comparison, the 1-Dmodel needs to be tuned to the 2-D one. Tuning of
simplified (1-D) models to more sophisticated models or field measurements is usually per-
formed using the steady-state response in the time domain (e.g., [24, 138]). This procedure
is usually done for one velocity and results computed for the same velocity, generally leading
to good agreements.The 1-Dmodel essentially has three parameters to tune, namely the
mass of the beam and the stiffness and damping of the Kelvin foundation (the bending
stiffness of the beam is kept the same as the one in the 2-Dmodel). These three parameters
can be tuned in multiple ways depending on the desired outcome.

The system parameters can be tuned such that responses match in the quasi-static
velocity regime. However, in this thesis the dynamic velocity regime is of interest and,
therefore, the tuning is done to match the responses in dynamic velocity regime. To this
end, we impose the criterion that the critical velocity in the twomodels is the same.This
entails that given a fixed stiffness of the foundation, the mass of the beam is determined
from Eq. (2.13). Note that Eq. (2.13) is for a systemwithout damping and, consequently, the
mass needs a small correction factor such that the critical velocity of the damped systems
match.

Two parameters remain now to be tuned, namely the stiffness and damping of the Kelvin
layer. Since this chapter is focused on the settlement, and we have seen in the previous
chapters that settlement develops under the moving load, a good criterion to tune the
stiffness and damping of the foundation is to match the steady-state displacement under
themoving load.The expression of the steady-state displacement under themoving load for
the 1-Dmodel is known in a closed form (Eq. (2.19) evaluated at x = v t with thewavenumbers
corresponding to a damped system) while the response of the 2-Dmodel can be obtained
semi-analytically with very little effort. To obtain a bestmatch over awide range of velocities
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Figure 8.17:Comparison of the steady-state displacement under the moving load versus velocity of the load (top
panels) and the relative error (bottom panels) after the tuning of the 1-Dmodel to the 2-D one.The left panels are
for the soft region while the right ones are for the stiff region.

(with a focus on the dynamic velocity regime), a least-squares optimization algorithm is
used.

The values obtained are given in Table 8.2 and the results are then presented in Figs.
8.17 and 8.18.Themass of the beam is considerably higher than in the previous chapters
because here it also accounts for the mass of the ballast and part of the mass of the soil. The
stiffness of the foundation is lower than in the previous chapters because the 2-Dmodel is
more compliant. Finally, the resulting damping ratio (as defined in Eq. (2.27)) is around 5%
for both domains, which is consistent with values chosen in previous chapters.

Fig. 8.17 compares the steady-state displacement under the moving load in both models
and presents the associated relative error for the dynamic velocity regime. It can be seen
that the responses under the moving loadmatch very well with a maximum relative error of
about 3% for both the soft and stiff regions. A bettermatch could be obtained if, for example,
the bending stiffness of the beam is tuned as well, but this will not guarantee a better match
of the overall displacement profile.Therefore, we decide to keep the same bending stiffness
as in the 2-Dmodel.

Fig. 8.18 compares the steady-state displacement fields of the twomodels for a velocity
v ≈ 0.75ccr,l.Thematch in the soft domain is very goodwhile thematch in the stiff domain is
satisfactory, but with amore obvious difference.The influence of the foundation nonlocality
can already be seen, although just slightly.The foundation nonlocality tends to spread the
displacement profile over a larger distance compared to the local foundation.This can be
seen in both cases, but is more obvious in the stiff region because there most of the system
compliance comes from the soil layer (the Kelvin layer is very stiff). The stiffer the soil layer,
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Figure 8.18:Comparison of the steady-state displacement fields in the soft region (left panel) and stiff region (right
panel) after the tuning of the 1-Dmodel to the 2-D one; v ≈ 0.75ccr,l.

the less pronounced the effect of the nonlocality becomes because a very stiff soil layer
acts as a rigid bottom, practically transforming the 2-D system into a 1-D one with a local
foundation.Therefore, the softer the soil, the more important it is to model the nonlocality
of the foundation.

8.4.2. Transient response
The fact that the eigenfields of the two systems match well does not mean that the transient
responses will also do so. For this reason, the transient responses of the two systems are
compared here. The stiff zone is located between x = 10 m and x = 20 m, in which the
stiffness and damping of the Kelvin layer is ten times higher than in the open track. In this
reference case, a load velocity v ≈ 0.75ccr,l is chosen to investigate the response in a realistic
regime.

Fig. 8.19 compares the displacement profiles for different time moments. It can be seen
that while the eigenfields match well, the free fields show significant differences. More
specifically, the free field in the 1-Dmodel seems to be much stronger than in the 2-D one,
both to the left and right of the transition. This is even more clear when we look at the
frequency spectra of the transient responses presented in Fig. 8.20. It can be seen that the
magnitude of the free field is not only overestimated, but it is also located at slightly higher
frequencies in the 1-Dmodel.

The reason for the difference in the transient responses can be seen in the difference
between the dispersion curves of the two systems, as presented in Fig. 8.21.The dispersion
curves of the 2-D system are the same as in Fig. 8.6, but with damping included andwithout
the distributed mass layer (representing embankment). The dispersion curves of the 1-
D system are the same as in Chapter 2, but with damping included. The real part of the
wavenumbers is presented in the left panel while the imaginary part in the right one. In
the left panel, it can be seen that a goodmatch of the dispersion curve that characterizes
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the stationary wave is only in the frequency range of 175–250 Hz, while in the right panel
there is a poor agreement.The range in which the dispersion curves match can be adjusted;
for example, if the tuning was done for the quasi-static velocity regime, the good match
would be at slightly lower frequencies. Nonetheless, a goodmatch over a larger frequency
range is not possible due to the locality of the foundation in the 1-Dmodel. Moreover, the
1-Dmodel fails to capture the many different evanescent modes that are present in the 2-D
system.These represent two important limitations of this 1-Dmodel and shows that it is
difficult, if not impossible, to have a goodmatch of both the eigenfield and of the free field.
This conclusion leads to two consequences: (i) the nonlocality seems to be influential in the
transient process and, consequently, this 1-Dmodel is not ideal for correctly capturing the
transient response, and (ii) if onewants to tune a 1-Dmodel tomimic a 2-D/3-D one, a better
strategy is to tune the dispersion curves rather than the steady-state response.

The observed difference in the free field (Fig. 8.19) strongly affects the settlement pre-
dicted by the twomodels. Figure 8.22 presents the settlement profile obtained with both
models after one load passage. Results show that the degradation in the 1-Dmodel is signi-
ficantly larger than in the 2-Dmodel. Furthermore, the 1-Dmodel predicts that settlement
occurs both at the left and right of the transition while the 2-D model shows settlement
developed only at the right of it. At the right of the transition, the settlement in the 2-D
model starts earlier and ends later than the one in the 1-Dmodel. While this fact is caused
by the foundation nonlocality (the spread over a larger distance), the reason for the dis-
crepancies in magnitude is different. Namely, the settlement in the 1-D model is based
on the displacement of the beam, while in the 2-Dmodel it is dictated by the differential
displacement between the beam and the top surface of the soil. Since the soil is considerably
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softer than the ballast, the differential settlement between the beam and the top surface of
soil is small, leading to a reduced settlement.This shows that if the settlement magnitude
is to be correctly predicted, it is more important to account for the flexible bottom of the
Kelvin layer than to introduce the foundation nonlocality.

8.4.3. Indirectly introducing nonlocality in the 1-D model
As we have seen in the previous sections, the nonlocality of the 2-Dmodel can be influential
and the 1-Dmodel formulated in Chapter 6 fails to accurately capture both the eigenfield
and free field. Also, the fact that the bottom of the Kelvin foundation in the 1-Dmodel is
fixed causes an overestimation of the settlement compared to the 2-Dmodel. Although these
factors render the 1-Dmodel formulated in Chapter 6 inaccurate in predicting the transient
response at transition zones and the associated settlement, 1-Dmodels still pose advantages
when it comes to computational efficiency.Therefore, this section formulates and analyzes
an enhanced 1-D model that introduces (i) nonlocality indirectly and (ii) accounts for the
flexible bottom of the Kelvin layer that represents the ballast/embankment layers.

The aforementioned 1-Dmodel consists of two beam-Kelvin foundation systems placed
in series, similarly to the model introduced in Chapter 3.The top beam and Kelvin layer can
be chosen with the exact same properties as the ones in the 2-D model. As for the lower
beam and Kelvin layer, they are chosen and tuned to match the response of the 2-D system.
The bending stiffness of the lower beam could be neglected, making it a layer of distributed
mass as in Chapter 3; this would include property (ii) (i.e., flexible bottom), but it would
not incorporate nonlocality. One model that is found in literature used to represent the
behaviour of the supporting structure that includes both characteristics (i) and (ii) is the
so-called Kerr foundationmodel [139], which is a generalization of the more well-known
Pasternak foundation [140].This incorporates a shear beamas the lower beam,meaning that
it has no flexural rigidity, but it does have shear rigidity. As it has a second-order derivative
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Table 8.3:The tuned values of the parameters of the 1-Dmodel with Kerr foundation.

Parameter Symbol Value Unit

Shear beammass–soft domain ρsb,l 2020 kg/m
Shear stiffness–soft domain Gsb,l 2.68·107 N/m2

Bottom Kelvin stiffness–soft domain kb,d,l 6.86·107 N/m2

Bottom Kelvin damping–soft domain cd,l 7.8·104 Ns/m2

Shear beammass–stiff domain ρsb,r 2020 kg/m
Shear stiffness–stiff domain Gsb,r 2.88·107 N/m2

Bottom Kelvin stiffness–stiff domain kb,d,r 4.86·107 N/m2

Bottom Kelvin damping–stiff domain cd,r 7.2·104 Ns/m2

in space (instead of a fourth-order as in the bending beammodel), it potentially can better
approximate the behaviour of the soil layer which also has a second-order derivative in
space.This model is formulated further.

The equations of motion of such a model read

E I w,xxxx +ρbẅ + cd(x,∆w)∆ẇ + fk(x,∆w) =−F0δ(x − v t ), (8.42)

−Gsbu,xx +ρsbü − cd(x,∆w)∆ẇ − fk(x,∆w)+ cd,bu̇ +kd,bu = 0, (8.43)

where the first equation of motion is exactly the same as in the 2-Dmodel, while the second
one is for the shear beam.Gsb and ρsb are the shear modulus and linear mass of the shear
beamwhile cd,b and kd,b are the damping and stiffness of the bottom Kelvin foundation,
respectively. The boundary conditions as well as the inhomogeneity and nonlinearity of the
top Kelvin layer are exactly the same as for the 2-Dmodel (see Section 8.1).

It must be emphasized that the linear equivalent of two beam model formulated in
this section has been used in literature in many variations. It has also been tuned and its
response compared to the one of a 3-D model in Ref. [138], showing a good agreement.
However, the comparison was only made in the steady-state regime. As we have seen in the
previous section, this does not ensure that the transient response is accurately captured.
The novelty of this section lies mostly in the in-depth analysis of the transient response in
comparison to the 2-Dmodel, in assessing its adequacy of correctly capturing the transient
process, and in including the nonlinearity of the foundation and analyzing the accuracy of
the settlement prediction.

Tuning the Kerr model
It is chosen that the properties of the top beam and Kelvin layer are kept exactly the same as
the ones in the 2-Dmodel.These could also be allowed to vary, but to reduce the complexity of
the optimization problem, it is chosen not to. In this case, there are four tuning parameters,
the shear modulus andmass of the shear beam, and the damping and stiffness of the lower
Kelvin layer. Once again, the mass of the shear beam is chosen such that the critical velocity
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Figure 8.23:Comparison of the steady-state displacement under the moving load versus velocity of the load (top
panels) and the relative error (bottom panels) after the tuning of the enhanced 1-Dmodel to the 2-D one.The left
panels are for the soft region while the right ones are for the stiff region.

matches the one of the 2-D system.The remaining three parameters are tuned such that
the steady-state displacement under the load matches the one of the 2-D system in the
dynamic velocity regime, as done in the previous section. Since there is an additional tuning
parameter, there are additional parameter combinations that can lead to good agreement
betweenmodels.Therefore, a second criterion is imposed to select between the different
combinations that lead to good results, namely to have a good match in the shape of the
steady-state displacement field (not only under the moving load). This criterion is not
implemented in the optimization problem, but is checkedmanually.

The values obtained are given in Table 8.3 and the results are presented in Figs. 8.23
and 8.24. Although the shear beam and bottom Kelvin foundation should, in principle,
’represent’ the soil layer which is homogeneous, their parameter values are tuned separately
for the soft and stiff domains. This is because the goal is for the whole system to mimic
the 2-D system, not individual parts to exhibit similar responses. Nonetheless, the values
obtained for the soft and stiff domains are quite similar. Interestingly, the values of the
stiffness and damping of the bottom Kelvin layer are smaller in the stiff domain than in
the soft (recall that the stiffness difference in the 2-D is in the top Kelvin layer, not to be
mistaken with the bottom Kelvin layer). This could be explained that in the stiff domain,
most flexibility comes from the soil layer, requiring the bottom Kelvin layer to be slightly
more compliant in the stiff region.

Fig. 8.23 shows, at least for the soft domain, that the agreement of the response under
the moving load in the dynamic regime is slightly worse than for in the previous section.
However, as can be seen in Fig. 8.24, the eigenfields of the two systemsmatch remarkably
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well. Both the magnitude of the response as well as the shape (especially the width of the
responses) exhibit a considerable improvement compared to the results in the previous
section. Mathematically, the better match is attributed to an additional tuning parameter.
Physically, indirectly capturing nonlocality through the introduction of the shear beam-
Kelvin foundation system is the cause for the better agreement. Furthermore, Fig. 8.24
shows that also the response of the shear beam (in the 1-Dmodel) agrees very well with the
response at the soil surface (in the 2-Dmodel).

In the previous section, the twomodels showed a reasonable agreement in the steady
state responses, but a less good agreement in the transient responses. The enhanced 1-
D model formulated in this section shows a very good agreement also in the transient
responses as shown in Fig. 8.25.This shows that both the eigenfields and the free-fields are
captured correctly by the enhanced 1-Dmodel. Although there is a small phase shift in the
free-field responses, the magnitudes match remarkably well.

The reason for the good agreement in the transient response can also be seen from
the dispersion curves of the two systems. Fig. 8.26 presents the dispersion curves of the
enhanced 1-Dmodel in comparison to the ones of the classical 1-Dmodel.The top panels
compare the two dispersion curves that exist in both 1-Dmodels, while the bottom panels
present the additional dispersion curve that appears in the enhancedmodel (for comparison,
the dispersion curves of the classical 1-Dmodel are presented also in the bottom panels).
The dispersion curves of the enhancedmodel show two important alterations. Firstly, the
branch that characterizes propagating waves in the undamped system (blue line in the
top left panel) turns from convex (at lower frequencies) to concave (at higher frequencies)
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Figure 8.25:Comparison of the transient displacement profile at different timemoments.The grey background
indicates the location of the stiff zone; v ≈ 0.75ccr,l.

meaning that waves have a finite group velocity, which better resembles the 2-D system.
Secondly, an additional dispersion curve (orange lines in the bottom panels) appears in the
enhanced model that characterizes an evanescent wave at low frequencies and a stationary
one at high frequencies.

The dispersion curve comparison between the threemodels is presented in Fig. 8.27. For
clarity, each individual dispersion curve of the 1-Dmodels is compared to the 2-D ones in
separate plots.The branch that characterizes propagating waves in the undamped system
(top left panel) shows that a goodmatch occurs over a larger frequency range in the enhanced
1-Dmodel. Also the second dispersion branch (that also exists in the classical 1-Dmodel)
characterizing an evanescent wave shows an improved match, in both the real (middle left
panel) and imaginary parts (middle right panel). Furthermore, the additional dispersion
branch leads to the enhanced model capture more of the evanescent field of the 2-D system.
However, even though the free-field response seems to be well captured in the vicinity of
the transition zone (where the evanescent modes are restricted to), the enhanced 1-Dmodel
can not capture the multitude of evanescent modes present in the 2-D system.
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Figure 8.26:Dispersion curves of the classical and enhanced 1-D systems with damping included; the parameters
of the soft domain are used.

Figure 8.28 presents the settlement profile obtained with the three models after one
load passage. Results show that the settlement predicted by the enhanced 1-D model is
closer to the one predicted by the 2-Dmodel (closer than the classical 1-Dmodel). This is
caused by (i) the better agreement of both the steady-state and free fields combined with
(ii) the incorporation of the flexible bottom of the Kelvin foundation. However, although
the magnitude of the settlement agrees very well, the spatial distribution of the settlement
does not.This might be caused by the inability of the 1-Dmodel to capture the multitude of
evanescent wave modes which are influential in the transition zone. To conclude, although
the enhanced 1-Dmodel performs significantly better than the classical 1-Dmodel, it shows
the inherent limitations of the 1-Dmodels compared to the 2-D one when it comes to the
accurate prediction of the settlement profile.

8.5. Conclusions
The twomain goals of this chapter were to (i) investigate the response amplification and
the corresponding settlement of a system in which the soil is modelled as a 2-D continuum,
and (ii) to analyse the influence of the foundation nonlocality on the response at transition
zones. To this end, a 2-Dmodel was formulated consisting of a linear and homogeneous
continuum layer of finite depth and an Euler–Bernoulli beam connected to the layer through
and inhomogeneous and nonlinear layer of springs and dashpots; the beam is acted upon
by a moving constant load.The response of this system was obtained using a novel solution
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Figure 8.28:The settlement predicted by the three models after one passage of the load in the reference case
(v ≈ 0.75ccr); the stiff zone is represented through the grey background.

method, namely the pseudo-force method.The parameter values of the proposedmodel
were tuned such that its steady-state response resembles the one of a 3-D FEmodel.The
purpose of the tuning was not to have the best agreement possible, but to ensure that the
response of the proposed model is in the realistic realm. Consequently, even though the
agreement between responses was not great, it was satisfactory for the aforementioned
purpose.Themain novelty of this chapter lies in the two goals set (specified above), especially
in the investigation of the foundation nonlocality and its influence on the response of railway
tracks at transition zones.

Two configurations of the aforementioned systemwere analyzed. In scenario A, the stiff
zone rests directly on the soil layer and is qualitatively representative of a railway crossing
where the concrete slab rests directly on the soil. Scenario B, unlike scenario A, has an
additional layer of stiff springs at the bottom of the stiff zone.This scenario is qualitatively
representative of a structure (e.g., culvert) supported by stiff and slender piles. Results show
that thewave radiation is significantly stronger in scenarioB compared to scenario A,mainly
due to the larger stiffness ratio.This is the main reason for the larger settlement observed
in scenario B compared to scenario A, observation which holds for all load velocities and
different values of the soil stiffness. It was also shown that the softer the soil, the lower the
settlement predicted at the same relative velocity (load velocity relative to the system’s critical
velocity), in both scenarios. The two factors causing this are (i) the fact that the system’s
compliance comes mainly from the soil and, consequently, decreasing the soil stiffness
decreases the variation in the differential displacement∆w between the beam and soil, and
(ii) the stiffness ratio between the stiff and soft zones decreaseswith decreasing soil stiffness,
leading to a weaker free field and, consequently, to a lower response amplification. Factor
(ii) holds for all parameter values in scenario A; for scenario B, it holds for the investigated
parameter values, but can be incorrect for a very low soil stiffness. Factor (i) suggests that,
at least for the railway tracks founded on soft soils, the soil settlement should be accounted
for since the response amplification occurs mostly in the soil. When it comes to the length
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of the stiff zone, it was shown that it does not influence the soft-to-stiff transition, but it
has an influence for the stiff-to-soft one. More specifically, for scenario A, the shorter the
stiff zone the lower the settlement, while for scenario B the influence was much smaller.

The influence of the foundation nonlocality on the response was investigated by com-
paring the 2-D and 1-Dmodels. For this, the original system presented in Section 8.1 was
utilized due to its simplicity and straightforward correspondence to the 1-Dmodel. A simple
tuning procedure for the parameter values of the 1-Dmodel leads to a reasonable to good
agreement between the steady-state displacement fields of the two models. However, a
good agreement for the transient response was not observed mainly because the dispersion
curves of the two systems show a good agreement only in a limited frequency range; also,
the 1-Dmodel fails to capture the many different evanescent modes that are present in the
2-D system.Therefore, a better approach would be to tune the dispersion characteristics
of the simplifiedmodel instead of the steady-state response, as is usually done. However,
the inaccurate prediction of the transient response combined with the fact that the Kelvin
foundation in the 1-Dmodel, unlike in the 2-D one, has a rigid base, causes the settlement
prediction to be inaccurate and grossly overestimated. To reconcile the responses of the
two systems, an enhanced 1-Dmodel is formulated in which (i) the foundation nonlocality
is introduced indirectly and (ii) the compliant base of the Kelvin layer is considered. After
tuning its parameters, the response of the enhanced 1-Dmodel presented a much better
agreement to the 2-Dmodel in both the steady-state and transient responses. It must be
noted that the tuning was performed using the steady-state responses (as done for the
classical 1-D system), and that the tuning is not specific to one velocity, but rather to a
velocity regime. Moreover, the dispersion curves showed a good agreement over a broader
frequency range and one branch that characterizes evanescent waves was also captured.
When it comes to the settlement, its magnitude showed a very good agreement to the one
predicted by the 2-Dmodel, but the spatial distribution of the settlement was not accurately
predicted.This could be caused by the limitation of 1-Dmodels in capturing the multitude
of evanescent modes present in the 2-D system.

The investigation in this chapter sheds light on the influence of incorporating the found-
ation nonlocality and the situations in which this is necessary (e.g., railway tracks on soft
soils). This study can help researchers and engineers make informed decisions about mod-
elling approaches depending on the specific problem investigated.
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There are three stages in scientific discovery.
First, people deny that it is true,

then they deny that it is important;
finally, they credit the wrong person.

Bill Bryson

T
This thesis was concernedwith the differential settlements that occurmuchmore frequently
at transition zones compared to other parts of the railway track.This issue has been known
for a long time, but themitigationmeasuresdesigned to copewith this problemhavehad just
limited success. Although the failure of somemitigation measures stems from inadequate
design and poor implementation, overall, their lack of efficiency can be attributed to the
lack of understanding of the mainmechanism(s) that drive(s) the differential settlement.
This led to the first andmain objective of this thesis, which was to investigate and advance the
understanding of the mainmechanisms that lead to railway track degradation at transition zones.

The settlement mechanisms were studied in this thesis throughmodels rather than in-
situ measurements or lab experiments.Themajority of previous studies have used models
to (i) understand and (ii) predict the response of railway tracks at transition zones. Research-
ers aiming at (i) have usually used simplified phenomenological models in which system
characteristics that are not of interest are excluded. More recently, the models’ complexity
has increased tremendously by incorporating many system characteristics, making these
models ideal for (ii), but less ideal for (i) due to the many mechanisms simultaneously at
play.This led to the second objective of this thesis, which is to investigate the effect of specific
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characteristics of the railway system on the degradation at transition zones. In other words, the
second objective entailed improving the simplified models by incorporating additional
characteristics and determining which of these characteristics is of importance and which
can be neglected.

Naturally, this dissertation could only focus on a few of themany aspects involved in this
complex problem, and the twomain constraints are presented in the following. Improving
the maintenance operations themselves by employing new technologies could lead to a
reduction in the maintenance frequency. However, to develop a long-term solution, one
should aim at eliminating the root cause.Therefore, this thesis investigated the initiation
phase of the settlement, and not the accumulation phase. Furthermore, this thesis focused on
the differential settlement stemming solely from the amplification of stresses and strains
that occur at transition zones, which is significant at relatively large train velocities. Con-
sequently, this thesis has not treated other sources of differential settlements, such as
the different rates at which autonomous settlement develops in the open-track and at the
man-made structure.

9.1. Conclusions
Themain high-level conclusions are given in the following and are divided in two categories
based on the two goals of this thesis; the first number of each conclusion indicates the cor-
responding chapter in which the conclusion was reached. For detailed low-level conclusions,
the reader is referred to the conclusion section of each individual chapter.

The investigation of mechanisms leading to differential settlements
2.1 The response amplification at transition zones is caused by the interference between

the steady-state field (eigenfield) and the free field generated by the transition process.
Consequently, themore pronounced the free field compared to the eigenfield, the larger
the resulting amplification.

2.2 In the soft-to-stiff transition, the interference leading to response amplification takes
place between the rightward travelling eigenfield and the leftward travelling free field,
while in the stiff-to-soft transition, both interfering fields are travelling rightward.This
causes different amplification profiles in the two scenarios. In the soft-to-stiff case, the
amplification develops in a relatively small area close to the stiff zone, but it has a strong
spatial variation (i.e., could lead to strong differential settlements). In the stiff-to-soft
scenario, the amplification occurs over a much larger area and further away from the
stiff zone, but its profile is smoother than in the stiff-to-soft case. Furthermore, the
amplification in the soft-to-stiff case is more pronounced the closer the load velocity is
to the critical one (i.e., above 75%), while the stiff-to-soft settlement is pronounced at
low andmedium velocity ranges (e.g., 50-80%).
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2.3 Increasing the foundation viscous damping causes a reduction of the response amplific-
ation in the stiff-to-soft transition while for the soft-to-stiff one, the reduction occurs
only at velocities close to the critical one, and it even leads to an amplification increase
for low andmediumvelocity ranges.This conclusion togetherwith 2.2, strongly suggests
the need of different mitigation measure designs for the two types of transition.

2.4 In the absence of damping, results show that the total radiated energy in the transition
process is invariant between the soft-to-stiff and stiff-to-soft scenarios. In light of
Conclusions 2.2 and 2.3 which emphasized the different behaviour of the two transition
types, this finding was unexpected.

2.5 For a large loadvelocity, quantities evaluated in the farfield (e.g., energyflux) canbegood
indicators of the response amplification because the transition process leads to mostly
propagating waves. However, for lower velocities, both propagating and evanescent
waves are generated meaning that other quantities (e.g., power input by the load) that
include information about the near field should be used as response-amplification
indicators.

3.1 The inertia of the supporting structure (ballast, embankment, soil, etc.) does not seem
to have a significant qualitative influence on the response amplification at transition
zones and on the energy radiated during the transition process.

4.1 The vehicle-structure interaction introduces two additional amplification mechanisms
compared to simplified scenario of amoving constant load (i.e., the vehicle does not have
its own degrees-of-freedom). Namely, the variation of the vehicle’s vertical momentum
induced by (i) bending waves excited in the transition process, and (ii) a parametric
variation of the system properties as experienced by the moving vehicle (i.e., varying
foundation stiffness). Generally, the additionalmechanisms lead to a stronger transition
radiation.

4.2 The amplification of thewheel-rail contact force caused purely by a change in foundation
stiffness anddamping (i.e., a trackwithout initial imperfections) can be significant if the
vehicle velocity is relatively large and the change in foundation stiffness (and damping)
is considerable and not smooth. Previous literature studies concluded the opposite,
that the amplification of the contact force due to a change in foundation stiffness is
insignificant. However, these studies considered only quasi-static velocities and small
effective changes in foundations properties. The findings presented in this thesis, thus,
supplement earlier findings to offer a more complete picture.

4.3 For large enoughvehicle velocities and stiffness ratios between the stiff and soft domains,
loss of contact between the wheel and rail can occur, leading to sharp increases in the
contact forcewhen contact is re-established.While in themodelled scenarios this occurs
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on the stiff domain where settlement is not considered, the sharp increase in contact
force can lead to numerous other fatigue problems in the overall railway system.

5.1 Three response amplificationmechanisms have been identified at transition zones in
systems that have a periodic nature.The amplification is the product of a systemwith
periodic nature and with a local inhomogeneity, and if one of these characteristics is
omitted, the amplification does not occur. While these mechanisms can be influential
for the railway over-head wires and for the emerging Hyperloop transportation system,
they have a negligible influence in the conventional railway track.

6.1 The development of the initial settlement leads to a redistribution of the energy radiated
during the transition not only between between frequencies, but also between the soft
and stiff media. This redistribution is mainly attributed to the separation between
the beam and foundation at the settlement location. Consequently, if the developed
settlement is not large enough to allow for this separation, the influence of the nonlinear
foundation on transition radiation is negligible.

8.1 For ballasted tracks founded on soft soils, the vertical stiffness of the ballast layer can be
significantly larger than the one of the soil. Consequently, the response amplification at
transition zones is more pronounced in the soil layer than in the ballast layer. Results
from the 2-Dmodel show that in this situation, soil settlement should be accounted for
because the settlement in the ballast is initially minimal.

8.2 The ballast settlement in the 2-Dmodel could be predicted from the power input by the
moving load.The larger the negative slope in the power input, themore pronounced the
settlement. In other words, the more abrupt the change between energy flowing from
structure-to-load to energy flowing from load-to-structure, the stronger the settlement.
The power input is a quantity that canmore easily be measured than quantities in the
ballast/soil. However,more investigation and in-situmeasurements are needed to prove
such a relation.

The influence of accounting for specific system characteristics
3.a When investigating the response amplification at transition zones using simplified

1-Dmodels, accounting for the inertia of the supporting structure (e.g., ballast) is not
necessary for qualitative investigations provided that the vehicle velocity relative to the
critical velocity of the system is realistic. However, when investigating the transition
radiation energy and its distribution over frequencies, accounting for the inertia of the
supporting structure is important for correct quantitative results, but including it as a
separate layer is not necessary (i.e., it is sufficient to include the additional mass in the
one of the beam).
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3.b Above a specific value of the additionalmass, incorporating the inertia of the supporting
structure through a separate mass layer can lead to an increase (instead of a decrease)
of the system’s critical velocity, finding which is counter-intuitive.

3.c Incorporating the inertia of the supporting structure through a separate mass layer
and neglecting the shear/bending stiffness of this additional layer leads to the steady-
state response of the system to a moving constant load to always present at least one
propagating wave, which is an artefact.

4.a Accounting for the vehicle-structure interaction leads to a reduction of the maximum
response amplification observed at transition zones compared to modelling the vehicle
as a moving constant load.

5.a As a consequence of Conclusion 5.1, for investigations focused on transition zones
and response amplification at low frequencies, the periodicity of the railway track can
be successfully approximated by the equivalent continuously supported one without
neglecting influential amplification mechanisms.

5.b Two out of three amplification mechanisms identified in a periodic system with a trans-
ition zone could be replicated in a continuously supported systemby including harmonic
components to the moving load.The solution to the latter system is, in principle, easier
to obtain. However, the harmonic components of the moving load must be tuned, and,
in principle, are not knownbefore-hand; also, they need to be updated for each change of
the system properties, whichmakes it difficult to use the continuous system in practical
situations.

6.a Modelling explicitly the foundation settlement caused by the response amplification at
transition zones has a significant effect on the overall response only if the separation
between the beam and supporting structure is allowed (i.e., the settlement is large
enough for the separation to occur).

7.a Forobtaining the response to thenonlinear and inhomogeneous 1-Dsystem (seeChapters
6 and 7), the commonly used time-domain method is overall more computationally ef-
ficient than the frequency-domain and hybrid methods. However, when it comes to
a 2-D system with the nonlinearity and inhomogeneity limited to the surface layers
(e.g., nonlinear and inhomogeneous ballast layer), the frequency-domain and hybrid
methods have the potential to be more efficient than the time domain method.

8.a Thenonlocality of the soil layer has an increasingly pronounced effect on the steady-state
response with its decreasing shear stiffness. Consequently, modelling the nonlocality of
the supporting structure can be important for railway tracks founded on soft soils.

8.b The guided waves generated during the transition process in the 2-D system that have a
phase velocity between the Rayleigh and shear-wave velocities should be treated with
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care because they are stationary in the 2-D model while they would be leaky in a 3-D
model.

8.c Comparison of the the responses of the 1-D and 2-D models revealed that while the
steady-state responses can show a good agreement, the transient response as well as
the predicted settlement are poorly captured with the 1-Dmodel.This fact highlights
the importance of the foundation nonlocality on these quantities. Moreover, it was
concluded that instead of tuning the 1-Dmodel based on the steady-state displacement
fields, an improved strategy would be to aim at matching the dispersion characteristics
of the twomodels.

8.d An enhanced 1-Dmodel, which includes indirectly the foundation nonlocality, shows
a good agreement to the 2-D in the steady-state as well as the transient responses.
Furthermore, the magnitude of the predicted settlement is well captured, but its spatial
distribution is not. Most likely, this cannot be captured irrespective of the tuning and
points towards an inherent limitation of 1-Dmodels in accurately capturing behaviour
of 2-D or 3-D systems.

9.2. Recommendations
My recommendations for future research related to transition zones in railway tracks are
divided into (i) academically oriented and (ii) practically oriented. The academically ori-
ented ones are aimed at expanding the more fundamental knowledge (from an engineering
perspective) of transition zone behaviour and do not have a clear practical application. Non-
etheless, each of the academically oriented recommendations states its potential long-term
implications on transition zone improvement.The practically oriented ones are research
directions that can lead to the improvement of transition zone design in the very near future.

Academically oriented recommendations
(1) Chapter 6 introduced in the supporting structure a nonlinear constitutive relation that

is representative of ballast and its settlement, and studied its influence on transition ra-
diation. However, the type of nonlinearity introduced is very specific for this application
and, consequently, general conclusions cannot be drawn. An academically relevant and
challenging research path is to investigate the influence of a general type of nonlinear
constitutive law (e.g., cubic stiffening/softening, hyperbolic softening, etc.) on trans-
ition radiation.The conclusions of such a study can be relevant for researchers that aim
to understand what the influence of complex nonlinear behaviour is on the behaviour of
transition zones.

(2) A significant number of mitigationmeasures at transition zones are trying to reduce
the vertical static stiffness difference between the soft and stiff domains (e.g., by im-
plementing tuned under-sleeper or rail pads). While this can have a beneficial effect,
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the transition zone exhibits, in general, a variation in all properties (i.e., damping,
mass, bending/shear stiffness, etc.). Consequently, for the mitigation measure to be
efficient, the difference in vertical dynamic stiffness should be reduced instead. This
could be achieved by placing tuned resonators at the sleeper level. An academically relev-
ant investigation with potentially practical relevance is to study the feasibility of tuned
resonators in reducing the dynamic stiffness inhomogeneity at transition zones.

(3) To exclude part of the complexity, this thesis restricted its study to only one wheel
travelling on the railway track. An important follow-up research is to investigate the
response amplification at transition zones caused by multiple moving loads/oscillators.
Although complex models of the whole train have been considered in many previous
studies, most of them focused only on predicting the overall response. An in-depth
investigation into the wave interference between the steady-state field of the last wheels
and the free-field generated by the front wheels—that could lead to a larger response
amplification than for only one wheel—was not previously studied, and could improve
quantitatively the results obtained in this thesis.

(4) Among others, Chapter 8 found that when tracks are founded on soft soil, the response
amplification at transition zones occurs predominantly in the soil layers rather than in
the ballast. Therefore, including a settlement mechanism in the soil layers and studying
its influence on the transition zone behaviour represents a valuable research direction.
The practical outcome of this investigation would be to indicate which component of
the supporting structure is most prone to settlement.

(5) Chapter 8 stipulated that tuning a simplified 1-D model to a more complex 2-D/3-D
one based on the system dispersion properties could lead to a better representation
of the transient response than the current standard procedure which is to base the
tuning on the steady-state displacement field. A worthwhile research project would be
to investigate this type of tuning procedure. If it leads to improved results, then the 1-D
model can be used to investigate aspects which are currently impossible in a 2-D/3-D
finite element model due to their computational cost (e.g., settlement at transition
zones due to thousands of load passages). In case the results are not satisfactory, then
such a study can highlight the importance of problem’s multi-dimensionality and an
inherent incapability of 1-Dmodels to capture this.

(6) From amathematical view-point, evaluating some of the inverse transform integrals
(e.g., when deriving the time-domain Green’s function of a beam on elastic founda-
tion) (semi-)analytically instead of numerically can lead to a significant computational
gain and to a broader insight into the solution. Despite the recent increase in computa-
tional power, this research direction can generate valuable knowledge for the research
community and still prove beneficial to those without access to powerful computers.
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Practically oriented recommendations
(a) The amount of available field data at railway transition zones is insufficient to exclude

site-specific peculiarities, thus disallowing the generalization of the gained knowledge.
To overcome this, field measurements should be performed enmasse to generate stat-
istically significant data across multiple transition zones. Such a rich data set combined
with computational models that are (to some extent) already available would allow to
shed light on the main settlement mechanisms at transition zones.

(b) Related to the previous recommendation, for example, it is not currently clear which
of the layers in the railway track experience the most amount of settlement. Many
researchers implicitly assume that it is the ballast layer, but there is no statistically
significant data to support this because the settlement of the lower layers is largely
unknown. As a consequence, it is not clear what a mitigation measure should focus on
to increase its efficiency.Therefore, a practically relevant research would be to gather
field/laboratory data about the settlement of different railway track layers at transition
zones.
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A
Dispersion equation and kinematic

invariants for a discretely

supported string

Here we present a detailed derivation of the dispersion equation (Eq. (5.12)) and of the
kinematic invariant (Eq. (5.14)). For simplicity, a systemwithout damping is considered.

Firstly, the dispersion curve is derived. The eigenvalues α1,2 are obtained from an ei-
genvalue analysis of the Floquet matrix.The Floquet matrix F is obtained by evaluating the
right-hand side of Eq. (5.8) (excluding the particular solutions) at x = (n +1)d , and reads

F=
( ks sin(γd)

2Tγ +cos(γd) sin(γd)
γ − cos(γd)ks

2Tγ2 + ks
2Tγ2

−sin(γd)γ+ cos(γd)ks
2T + ks

2T
ks sin(γd)

2Tγ +cos(γd)

)
. (A.1)

The determinant of F is 1, and, thus, its eigenvalues read

α1,2 = B ±
√

B 2 −1, B = ks sin(γd)

2Tγ
+cos(γd), (A.2)

where B is half the trace of F. The relation between the Floquet wavenumber kF and the
eigenvalue α (we restrict the following derivation to one eigenvalue) is given as follows:

α= eikFd . (A.3)

Depending on the frequency (B is frequency dependent), there are three possible scenarios.
The first scenario, B 2 > 1, results in real-valued and positive α. From Eq. (A.3), this leads to

241



A

242 A. Dispersion equation and kinematic invariants for a discretely supported string

purely imaginary kF; the corresponding frequency ranges represent the stop-bands in the
dispersion curve.The second scenario, B 2 = 1, results in repeated eigenvalues, correspond-
ing to the transition points between the stop and pass bands. The third scenario, B 2 < 1,
results in complex-valued α and real-valued kF corresponding to the pass-bands in the
dispersion curve, in which waves are propagating without attenuation. Consequently, Eq.
(A.3) can be rewritten as

α= cos(kFd)+ isin(kFd). (A.4)

This leads to the following set of conditions for the Floquet wavenumbercos(kFd) = B ,

sin(kFd) =
√

B 2 −1.
(A.5)

If one condition in Eq. (A.5) is satisfied, then the other one is also satisfied. Either condition
can be selected as the dispersion equation (we chose the first one for its concise form).

Secondly, the kinematic invariants are derived.The kinematic invariants ensure phase
equality of the emitted harmonic waves and the load at the contact point [16].The phase of a
harmonic wave with frequencyω and wavenumber k is

φ=ωt −kx. (A.6)

The phase of a harmonic wave is constant for an observer moving together with the wave,
resulting in the following relationbetween frequency andwavenumber:ω= k dx

dt .Thechange
of position with time (i.e., dx

dt ) of the moving load is v, and since the kinematic invariant
ensures phase equality of the emitted harmonic waves and the load, we have

ω= kv. (A.7)

This is the kinematic invariant for a homogeneous system subject to amoving constant load.
For the discretely supported systems considered in Chapter 5, a harmonic wave (with phase
given by Eq. (A.6)) is not a solution of the equation ofmotion; the solution is a superposition
of harmonic waves that have the following expression for the phase:

φ=ωt − (k +m 2π
d )x, (A.8)

wherem =±1,±2, . . . . In this case, infinitely many kinematic invariants are necessary to
ensure phase equality between themoving load and the infinitely many generated waves.
The expression of the kinematic invariants reads

ω= kv +m 2πv
d . (A.9)

This expression is analogous to Eq. (5.14).



B
Eigenfieldwavenumbers andwave

amplitudes

T
This appendix presents the expressions of the wavenumbers and amplitudes of the waves
composing the eigenfield (see Sections 2.2, 4.1). The systemwith and without damping is
considered, consisting of an infinite Euler-Bernoulli beam resting on homogeneous Kelvin
or Winkler foundations, respectively, subject to a moving constant load (the system in
Section 4.1 has a moving oscillator, but this reduces to a moving constant load in the steady
state). The eigenfield for both the systems reads

we(x, t ) =
{

Bbe−ike
2 (x−v t ) +Cbe−ike

3 (x−v t ), x < v t ,

Afe
−ike

1 (x−v t ) +Dfe
−ike

4 (x−v t ), x ≥ v t ,
(B.1)

where ke
1, ke

2, ke
3 and ke

4 are the eigenfield’s wavenumbers, and Bb,Cb, Af, andDf are the
amplitudes of the waves.

The amplitudes of the waves for both systems (Winkler and Kelvin foundations) read

Bb = iF0

(ke
2 −ke

1)(ke
2 −ke

3)(ke
2 −ke

4)
, Cb = iF0

(ke
3 −ke

1)(ke
3 −ke

2)(ke
3 −ke

4)
, (B.2)

Af =
iF0

(ke
1 −ke

2)(ke
1 −ke

3)(ke
1 −ke

4)
, Df =

iF0

(ke
4 −ke

1)(ke
4 −ke

2)(ke
4 −ke

3)
. (B.3)

For the system without damping, the wavenumbers are determined from the following
dispersion equation (in which the kinematic invariant has been substituted):

E I k4 −ρk2v2 +kd = 0. (B.4)
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Thewavenumbers, thus, read [49]

ke
1 = (p2 + ip1), ke

2 = (p2 − ip1), (B.5)

ke
3 =−ke

1 , ke
4 =−ke

2 , (B.6)

where

p1 =
√

(β2 −γ2v2), p2 =
√

(β2 +γ2v2), (B.7)

β= 4

√
kd

4E I
, γ=

√
ρ

4E I
. (B.8)

As for the system with damping, the wavenumbers are determined from the following
dispersion equation (in which the kinematic invariant has been substituted):

E I k4 −ρk2v2 + ikvcd +kd = 0. (B.9)

Defining the coefficients of the quartic equation as c = −ρv2, d = ivcd,l and e = kd,l, the
complex wavenumbers are expressed as follows:

ke
1 =+S + 1

2

√
−4S2 −2c − d

S
, ke

2 =+S − 1

2

√
−4S2 −2c − d

S
, (B.10)

ke
3 =−S + 1

2

√
−4S2 −2c + d

S
, ke

4 =−S − 1

2

√
−4S2 −2c + d

S
, (B.11)

whereS = (2
p

3)−1
√

−2c +U +∆0 U−1,U = 2−
1
3

3

√
∆1 +

√
∆2

1 −4∆3
0,∆0 = c2+12e, and∆1 =

2c3 +27d −72ce.
It must be emphasized that the sign of the wavenumbers in both systems (Winkler and

Kelvin foundations) is as follows:

Re(ke
1) > 0, Im(ke

1) ≤ 0, (B.12)

Re(ke
2) > 0, Im(ke

2) ≥ 0, (B.13)

Re(ke
3) < 0, Im(ke

3) ≥ 0, (B.14)

Re(ke
4) < 0, Im(ke

4) ≤ 0. (B.15)

It must be noted that the expressions presented in this appendix are not valid when Eq.
(B.9) leads to repeated roots.This situation occurs when there is no viscous damping and
v = ccr, or for very high viscous damping.These scenarios are not treated in this thesis.



C
Primary and secondary dispersion

curves of a periodically supported

string

Here we show why the branch of the dispersion curve of the periodic system closest to
the dispersion curve of the unsupported string leads to more energetic waves than the
other branches. Onemight think that all information is just repeated from one Brillouin
zone to the next (like for discrete periodic systems), but that is not completely correct for a
continuous system. Let us consider a wave field propagating in positive x direction (i.e., the
second term in Eq. (5.11) is zero).The normalized state at interface nd would then read

w̃n

a1
= e−ikF

1 nd
u1. (C.1)

The displacement inside the generic cell can be calculated using Eq. (5.8) without the partic-
ular solution, as follows:

w̃(x,ω)

a1
=

(
u1,1 f1,1(x −nd)+u1,2 f1,2(x −nd)

)
e−ikF

1 nd , nd ≤ x ≤ (n +1)d , (C.2)

where f1,1(x) and f1,2(x) are the functions fromEq. (5.8). Furthermore, u1,1 and u1,2 repres-
ent the first and second entries in the eigenvector u1, respectively. To see which wavenum-
bers are present in w̃(x,ω), we can take the Fourier transform over space (note that k ∈
(−∞,∞) is theFourier variable), and the scaled response ŵ(k,ω) in the frequency-wavenumber
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domain reads

ŵ(k,ω) =
∞∑

n=−∞

∫ (n+1)d

nd

w̃(x,ω)

a1
e−ikx dx. (C.3)

Provided that the sign of the imaginary part of kF
1 is chosen properly (to represent a forward

propagating wave), both the integral and the summation in Eq. (C.3) can be performed
analytically.The result reads

ŵ(k,ω) = A(γ,k)
1

γ2 −k
2

eid(k+kF
1,r)

eid(k+kF
1,r) −edkF

1,i

, (C.4)

where kF
1,r and kF

1,i are the real and imaginary parts of kF
1 , respectively. Function A(γ,k)

contains terms proportional to (k ±γ); these terms increase linearly with increasing k while
the second factor in Eq. (C.4) is inversely proportional to k

2
for large enough values of k;

this is the reason why the second factor was singled out while the other terms are contained
in A(γ,k). The last factor in Eq. (C.4) gives the influence of the Floquet wavenumber (the
periodic part of the system) on the response while the second factor gives the influence of
the wavenumber of the unsupported string (the continuous part of the system); actually,
the denominator of the second factor yields the dispersion curve of the unsupported string
(whenequated to zero).The last factor exhibits peaks of equalmagnitude (infinitemagnitude
in the case of no damping) at k = −kF

1,r ±m 2π
d ; therefore, this factor associated with the

Floquet wavenumbers does not make any distinction between Brillouin zones.The second
factor, has a parabolic function in the denominator and decreases as k moves away from γ.
Therefore, the peaks of ŵ(k,ω) at k =−kF

1,r ±m 2π
d decrease in amplitude as k moves away

from γ. This is the mathematical reason why the branches closest to the dispersion curve
of the unsupported string lead to most energetic waves. From a physical perspective, the
energy propagated from cell to cell is governed by the Floquet wavenumbers; however, the
propagation inside the cells is governed by the string, which imposes what branches of the
dispersion curve lead to more or less energetic waves.



D
Finite difference coefficients

Here, the Finite Difference coefficients used to discretise the beam in Section 6.2.2 are
provided.The Finite Difference scheme with 9 nodes is used.The fourth-order derivative
reads

ŵ ′′′′
m ≈ 1

∆x4

( 7

240
ŵm−4 − 2

5
ŵm−3 + 169

60
ŵm−2 − 122

15
ŵm−1 + 91

8
ŵm − 122

15
ŵm+1

+169

60
ŵm+2 − 2

5
ŵm+3 + 7

240
ŵm+4

)
, m = 3..M −2,

(D.1)

where M represents the number of nodes of the computational domain. As can be seen
from EquationD.1, this approximation is applied only from node 3 to node M −2. This is
because there are only two boundary conditions at each boundary, and thus, only two ghost
nodes can be used.The fourth-order derivative approximations for nodes 1, 2, M −1 and
M are obtained by using a hybrid between the central scheme and the forward scheme (for
nodes 1 and 2) or the backward scheme (for nodes M −1 and M ). The expressions are given
in the following:

ŵ ′′′′
1 ≈ 1

∆x4

(127

240
ŵ−1 − 11

15
ŵ0 − 77

20
ŵ1 + 193

15
ŵ2 − 407

24
ŵ3

+61

5
ŵ4 − 311

60
ŵ5 + 19

15
ŵ6 − 11

80
ŵ7

)
,

(D.2)

ŵ ′′′′
2 ≈ 1

∆x4

(
−11

80
ŵ−1 + 53

30
ŵ0 − 341

60
ŵ1 + 77

10
ŵ2 − 107

24
ŵ3

+11

30
ŵ4 + 13

20
ŵ5 − 7

30
ŵ6 + 7

240
ŵ7

)
,

(D.3)
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ŵ ′′′′
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ŵM + 53

30
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240
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where the nodes−1, 0, M +1 and M +2 represent the so-called ghost nodes.These nodes
are not part of the computational domain; therefore, the displacements of these nodes
(ŵ−1, ŵ0, ŵM+1, ŵM+2) are expressed in terms of the displacements of the nodes inside the
computational domain by using the four non-reflective boundary conditions.The resulting
equations are included in Equation (6.15).



E
Additional expressions for the

non-reflective boundary conditions

In Section 6.2.3, the expressions for the non-reflective boundary conditions have been
derived for the situation in which the nonlinear events occur while themoving load is inside
the computational domain. Due to the rail losing and regaining contact with the supporting
structure, nonlinear events can still occur while the moving load is in the right domain. In
this section, the expressions for the non-reflective boundary conditions at the right are
derived for that situation.The aim is to express the reaction forces of the right domain, at
the interface with the computational domain, as functions of the displacement and slope
of the computational domain at the right boundary. The procedure is similar to the one
explained in Section 6.2.3. It must be noted that the non-reflective boundary conditions at
the left, derived in Section 6.2.3, remain valid through the simulation.

If a nonlinear event occurs when τn−1 > L−xe
v , the right semi-infinite domain must

be divided in two sub-domains, one sub-domain behind the load (sub-domain A) and the
second one in front of it (sub-domain B).The forward Laplace transform is applied to the
governing equations, and the solution of the sub-domain behind the moving load ŵA

r and
that in front ŵB

r , already accounting for the condition of vanishing displacement at infinity,
are obtained as follows:

ŵA
r,n(x, sn) =C A

1 e−ikrx +C A
2 e+ikrx +C A

3 e+krx +C A
4 e−krx + ŵA

r,n,p, L < x < xP, (E.1)

ŵB
r,n(x, sn) =C B

1 e−ikrx +C B
4 e−krx + ŵML

n,p + ŵB
r,n,p, x > xP, (E.2)

where xP = xe + v τn−1 is the position of the load at the moment of the nonlinear event,
C A

1 ,C A
2 ,C A

3 ,C A
4 ,C B

1 and C B
4 represent yet unknown complex amplitudes, ŵA

r,n,p and ŵB
r,n,p
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represent the particular solutions accounting for the initial state of the two sub-domains,
and ŵML

n,p represents the particular solution accounting for the moving load which reads:

ŵML
n,p =− F0 v3

s4
n −k4

r v4
e−sn

x−xP
v . (E.3)

The six unknown complex amplitudes are obtained by employing the two boundary condi-
tions at x = L given by Equations (6.27) and (6.28), and four interface conditions at x = xP,
namely the continuity of displacement and slope, and the equilibrium of bending moment
and shear force. To find the reaction forces of the right domain at the interface with the
computational domain, the second and third derivatives of ŵA

r,n with respect to space are
taken, and are evaluated at x = L:(

ŵA′′′
r,n (L, sn)

ŵA′′
r,n(L, sn)

)
=

(
kr,Vυ kr,Vϕ

kr,Mυ kr,Mϕ

)(
ŵn(L, sn)

ŵ ′
n(L, sn)

)
−Dr,n −

(
V̂ L

n (sn)

M̂ L
n(sn)

)
. (E.4)

VectorDr,n now reads

Dr,n =
(

ŵA′′′
r,n,p(L, sn)

ŵA′′
r,n,p(L, sn)

)
+

(
kr,Vυ kr,Vϕ

kr,Mυ kr,Mϕ

)(
ŵA

r,n,p(L, sn)

ŵA′
r,n,p(L, sn)

)

+
(

aV bV cV dV

aM bM cM dM

)
∆ŵr,n,p(xP, sn)

∆ŵ ′
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∆ŵ ′′
r,n,p(xP, sn)

∆ŵ ′′′
r,n,p(xP, sn)

 , τn−1 > L−xe

v
,

(E.5)

where∆ŵr,n,p(xP, sn) = ŵB
r,n,p(xP, sn)− ŵA

r,n,p(xP, sn) represents the difference of the partic-
ular solutions of the two sub-domains evaluated at x = xP; aV, bV, cV, dV, aM, bM, cM and
dM represent complex coefficients which read

aV = −1+ i

2
k3

r

(
eikr(L−xP) +ekr(L−xP)), bV = 1+ i

2
k2

r

(
eikr(L−xP) + iekr(L−xP)),

cV = −1+ i

2
kr

(−eikr(L−xP) +ekr(L−xP)), dV = 1+ i

2

(−eikr(L−xP) + iekr(L−xP)),

aM = −1− i

2
k2

r

(
ieikr(L−xP) +ekr(L−xP)), bM = −1− i

2
kr

(
eikr(L−xP) +ekr(L−xP)),

cM = −1− i

2

(− ieikr(L−xP) +ekr(L−xP)), dM = −1− i

2kr

(−eikr(L−xP) +ekr(L−xP)).

(E.6)
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The particular solutions ŵA
r,n,p(L, sn), ŵA

r,n,p(xP, sn) and ŵB
r,n,p(xP, sn) that account for

the non-trivial initial state are obtained as explained in Section 6.2.3 and read

ŵA
r,n,p(L, sn) = 1

2πi

∫ σ+i∞

σ−i∞
(ρsn+cd,r+ρs)esτn−1

∫ xP

L
ĝr(x−ξ, sn)ŵ f

r(ξ, s)dξds+ŵe
r,n,p(L, sn),

(E.7)

ŵA
r,n,p(xP, sn) = 1

2πi

∫ σ+i∞

σ−i∞
(ρsn+cd,r+ρs)esτn−1

∫ xP

L
ĝ l(x−ξ, sn)ŵ f

r(ξ, s)dξds+ŵe
r,n,p(xP, sn),

(E.8)

ŵB
r,n,p(xP, sn) = 1

2πi

∫ σ+i∞

σ−i∞
(ρsn+cd,r+ρs)esτn−1

∫ ∞

xP

ĝr(x−ξ, sn)ŵ f
r(ξ, s)dξds+ŵe

r,n,p(xP, sn).

(E.9)
The integration over ξ in Equations (E.7) to (E.9) can be performed analytically, while the
integration over s needs to be performed numerically. Furthermore, the contribution from
the moving load in the right domain on the reaction forces at x = L, namely V̂ L

n (sn) and
M̂ L

n(sn), also change compared to Equations (6.34) and (6.35) and are given by the following
expressions:

V̂ L
n (sn) = (1− i)F0

2

(
e−ikr(xP−L)

krv − isn
+ e−kr(xP−L)

krv + sn

)
, τn−1 > L−xe

v
, (E.10)

M̂ L
n(sn) = (1− i)F0

2kr

(−e−ikr(xP−L)

krv − isn
+ i

e−kr(xP−L)

krv + sn

)
, τn−1 > L−xe

v
. (E.11)

Together with the expressions in Section 6.2.3, Equations (6.32), (6.34) and (6.35), the
non-reflective boundary conditions at the right boundary are now complete.





F
Description of the 3-Dfinite

elementmodel

This appendix briefly describes the 3-D finite element model developed* in Abaqus FEA
software and used to tune the 2-Dmodel formulated in Chapter 8.The developed model
consists of a ballasted railway track with a length of 60 m. The ballasted track consists
of a rail connected to sleepers resting on a three layered foundation composed of ballast,
embankment, and subgrade.The ballast layer has a 0.3 m depth, while the other two layers
have a 1m depth each. Onemoving axle is considered and represented by amoving constant
load with magnitude of 90 kN. The mechanical properties of the materials can be found
in Table F.1 where α and β represent the Rayleigh damping coefficients, and ν the Poisson
ratio.

*Thismodel was developed by my colleague Avni Jain to which I am thankful.

Table F.1:Values of the 3-Dmodel parameters.

Material E (N/m2) ρ (kg/m3) ν α β

Steel (rail) 21 ·1010 7850 0.3 0 0
Concrete (sleepers) 3.5·1010 2400 0.15 0 0
Ballast 1.5·108 1560 0.2 0.0439 0.0091
Sand (embankment) 8 ·107 1810 0.3 8.52 0.0004
Clay (subgrade) 2.55·107 1730 0.45 8.52 0.0029
Under sleeper pad 1 ·106 500 0.1 0 0
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