

Delft University of Technology

Photoelectrocatalytic N_2 fixation and C-H oxyfunctionalization driven by H_2O oxidation

Kim, Chang Hyun; Kim, Jinhyun; Hollmann, Frank; Park, Chan Beum

DOI 10.1016/j.apcatb.2023.122925

Publication date 2023 **Document Version** Final published version

Published in Applied Catalysis B: Environmental

Citation (APA)

Kim, C. H., Kim, J., Hollmann, F., & Park, C. B. (2023). Photoelectrocatalytic N₂ fixation and C-H oxyfunctionalization driven by H₂O oxidation. *Applied Catalysis B: Environmental, 336*, Article 122925. https://doi.org/10.1016/j.apcatb.2023.122925

Important note

To cite this publication, please use the final published version (if applicable). Please check the document version above.

Copyright Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.

Contents lists available at ScienceDirect

Applied Catalysis B: Environmental

journal homepage: www.elsevier.com/locate/apcatb

Photoelectrocatalytic N_2 fixation and C-H oxyfunctionalization driven by H_2O oxidation

Chang Hyun Kim^{a,1}, Jinhyun Kim^{a,b,1}, Frank Hollmann^c, Chan Beum Park^{a,*}

^a Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon 305–701, Republic of

Korea ^b Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA

^c Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 Hz Delft, The Netherlands

ARTICLE INFO

Keywords: Biocatalysis Nitrogen fixation Oxygenation Photoelectrocatalysis Solar fuel

ABSTRACT

Solar-driven N₂ fixation offers a green alternative to the highly energy-intensive Haber-Bosch process that releases more than 300 million metric tons of CO₂ annually to form NH₃. However, N₂-reducing photoelectrochemical (PEC) studies have not elucidated how an oxidation reaction affects the N₂ reduction reaction (NRR). Here, we report a bias-free PEC platform for N₂ reduction to NH₃ and H₂O oxidation to O₂ and H₂O₂. Under solar light, the molybdenum-doped bismuth vanadate-based photoanodes extract electrons from H₂O and transfer them to the silicon photovoltaic-wired hematite photocathode. The light-absorbing cathode receives the electrons to drive the NRR, which is influenced by the H₂O oxidation reaction's conditions. Furthermore, the integration of PEC NRR with H₂O₂-dependent biocatalytic oxyfunctionalization achieves simultaneous synthesis of valuable chemicals on both electrodes. This work presents the first example of a PEC NRR platform coupled with H₂O oxidation and H₂O₂-dependent oxygenation for unbiased chemical synthesis using N₂, H₂O, and sunlight.

1. Introduction

Ammonia (NH₃) serves as a fertilizer and an alternative carrier of hydrogen energy [1]. Currently, industrial production of NH₃ relies on the conventional Haber-Bosch process that entails the reaction between N₂ and H₂ using iron-based catalysts [1]. However, the process suffers from consuming over 1% of the global energy production because it operates at high temperature (300–500C) and pressure (200–300 atm) to dissociate the inert N \equiv N bond [2,3]. In addition, the reductant H₂ is produced through steam reforming of natural gas, which emits over 300 million metric tons of CO₂ per year, accounting for approximately 1.4% of global CO₂ emissions [1,3].

As an alternative to the energy-intensive and environmentally unfriend process, aqueous redox chemistry for N₂ reduction to NH₃ has garnered high interest because of (i) better energy efficiency than the Haber-Bosch process by about 20% [4], (ii) no requirement of fossil fuels (and the consequent eradication of CO₂ emission) [5], and (iii) ambient reaction conditions [6]. The N₂ reduction reaction (NRR) requires electrons that are provided by external power source (e.g., potentiostat)

* Corresponding author.

https://doi.org/10.1016/j.apcatb.2023.122925

Received 5 March 2023; Received in revised form 25 May 2023; Accepted 28 May 2023 Available online 2 June 2023 0926-3373/ $\$ 2023 Elsevier B.V. All rights reserved.

[1,3] or sacrificial electron donor (e.g., methanol [7] or ascorbate [8]). For example, recently reported N₂-reductive photoelectrochemical (PEC) systems [9,10] use electrical energy [e.g., -0.1 to -0.2 V vs. the reversible hydrogen electrode (RHE)] in a three-electrode configuration. We envision that the need for electrical energy and artificial electron donors can be eliminated by solar-driven extraction of electrons from H₂O, which functions as an abundant electron donor and a biocompatible solvent [11–13].

Here, we report the first example of unbiased N₂ reduction to NH₃ fueled by H₂O (2N₂ + 6H₂O + sunlight \rightarrow 4NH₃ + 3O₂) in a twoelectrode configuration. As illustrated in Fig. 1, the N₂-reductive PEC system consists of two components: (i) a ferric oxyhydroxide-coated, molybdenum-doped bismuth vanadate (FeOOH/Mo:BiVO₄) photoanode that extracts electrons from H₂O and (ii) a Si photovoltaic (Si PV)wired hematite (Si/ α -Fe₂O₃) photocathode that supplies a large photovoltage (V_{ph}) for bias-free redox reactions, receives the electrons from the photoanode, and achieves the six-electron reduction of N₂ to NH₃ at the surface of α -Fe₂O₃ nanorods. Furthermore, we designed a bias-free combination of NRR with H₂O₂ production driven by two-electron

E-mail address: parkcb@kaist.ac.kr (C.B. Park).

¹ These authors contributed equally to this work.

WOR (N₂ + 6H₂O + sunlight \rightarrow 2NH₃ + 3H₂O₂) (Fig. 1). The in situ generated H₂O₂ activates H₂O₂-dependent peroxygenases for enantioselective oxyfunctionalization of inert C-H bonds. This peroxygenasecatalyzed hydroxylation converts simple organic compounds into value-added building blocks used in the synthesis of fine chemicals and pharmaceutical intermediates [14,15].

2. Experimental section

2.1. Materials

Iron nitrate nonahydrate, sodium sulfate, ammonium chloride, ammonium-¹⁵N chloride, salicylic acid, sodium citrate tribasic dihydrate, sodium hypochlorite, sodium nitroferricyanide, hydrazine hydrate, 4-(dimethylamino)benzaldehyde, sodium chloride, potassium chloride, bismuth nitrate pentahydrate, potassium iodide, vanadyl acetylacetonate, dimethyl sulfoxide, *p*-benzoquinone, bis(acetylacetonato) dioxomolybdenum, iron sulfate heptahydrate, horseradish peroxidase, and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) were purchased from Sigma Aldrich (St. Louis, MO, USA). All chemicals were used without further purification. We used type 1 ultrapure water (18 M Ω cm) from a Direct-Q® 5 UV ultrapure water purification system (Millipore Corp., USA). We prepared a recombinant, evolved peroxygenase from *Agrocybe aegerita* (*rAae*UPO) according to the literature [12].

2.2. Synthesis of photocathodes

We slightly modified a reported synthetic method [16] to prepare a hematite electrode via hydrothermal method and high-temperature annealing. A commercial carbon cloth was purchased and washed with acetone, ethanol, and deionized water. For deposition of a β -FeOOH film on the carbon cloth, we first prepared an aqueous solution containing 0.06 M Fe(NO₃)₃·9H₂O and 0.06 M Na₂SO₄. Then, we sealed the carbon cloth and the clear solution in a Teflon-lined stainless steel autoclave, which was heated in a furnace (Fisher Scientific Co., USA) at 120 °C for 6 h. To transform β -FeOOH into α -Fe₂O₃, we annealed the β -FeOOH electrode under N₂ flow at 400 °C for 4 h with a heating rate of 1.5 °C min⁻¹. To prepare a Si/ α -Fe₂O₃ photocathode, we wired the

as-synthesized α -Fe₂O₃ cathode to a commercial Si photovoltaic (Si PV). The electron-collecting contact area of the Si PV was wired to the α -Fe₂O₃ electrode. The Si PV's hole-collecting contact area was wired to the F:SnO₂ (FTO) side of the photoanode using Cu tape.

2.3. Photoelectrochemical N₂ reduction and ammonia quantification

We performed PEC NRR in a three-electrode configuration consisting of a working electrode, a reference electrode (Ag/AgCl, 3 M NaCl), and a counter electrode (carbon cloth). We purged 0.1 M Na₂SO₄ electrolyte with the high-purity N₂ gas (purity: 99.999%) before and during PEC reactions. All potentials were quoted versus the reversible hydrogen electrode (RHE) according to Eq. 1:

$$E_{\rm RHE} (V) = E_{\rm Ag/AgCl} (V) + 0.209 + 0.059 \times \rm pH$$
(1)

We quantified ammonia using the indophenol blue method with some modifications [1]. We collected 1 mL of a reaction solution, which was mixed with NaOH solution (1 mL, 1 M) containing salicylic acid (5 wt%) and sodium citrate (5 wt%), NaClO solution (0.5 mL, 0.05 M), and sodium nitroferricyanide solution (0.1 mL, 1 wt%). After stirring for 2 h in dark, we used an ultraviolet-visible (UV-Vis) spectrophotometer (JASCO Inc., Japan) to obtain the absorption spectrum of the mixture solution at 655 nm. The NH₃ production rate and Faradaic efficiency were calculated using Eqs. 2 and 3:

Production rate(
$$\mu$$
g h⁻¹ cm⁻²) = $\frac{c_{\text{NH3}} \times V}{t \times A}$ (2)

Faradaic efficiency(%) =
$$\frac{3 \times F \times c_{\text{NH3}} \times V}{17 \times Q} \times 100$$
 (3)

where c_{NH3} is the NH₃ concentration (µg mL⁻¹), *V* is the volume of the electrolyte (mL), *t* is the reaction time (h), *A* is the geometrical surface area of the electrode (cm²), *F* is the Faraday constant (96,485 C mol⁻¹), and *Q* is the total charge consumed during photoelectrocatalysis. The solar-to-ammonia (STA) conversion efficiency was estimated in a two-electrode configuration according to the Eq. 4:

$$STA (\%) = \frac{r \times \Delta G}{I \times A} \times 100$$
(4)

Fig. 1. Schematic illustration of unbiased paring of N₂ reduction with H₂O oxidation and enantioselective enzymatic synthesis. A Si-wired hematite (Si/ α -Fe₂O₃) photocathode reduces N₂ to NH₃ while a water-oxidizing Mo: BiVO₄-based photoanode extracts electrons from H₂O as an electron donor. The Si/ α -Fe₂O₃ is electrically connected with a Mo:BiVO₄ for producing NH₃ and H₂O₂ at cathodic and anodic sites, respectively. The in situ generated H₂O₂ activates r*Aae*UPO for enantioselective oxyfunctionalization reactions. where *r* is the NH₃ production rate (mmol s⁻¹), ΔG is the Gibbs free energy of overall NRR (330 kJ mol⁻¹), and *I* is the light density (100 mW cm⁻²). For H₂ quantification, we used a micro gas chromatograph (Micro GC fusion, INFICON Inc., USA) that was equipped with a micro thermal conductivity detector and a Molsieve 5 A column.

2.4. Hydrazine quantification

We quantified N₂H₄ using Watt and Chrisp method [1]. We prepared a coloring solution by dissolving 0.6 g of p-C₉H₁₁NO in a mixture solution of 30 mL absolute ethanol and 3 mL concentrated HCl. Typically, 0.5 mL of a reaction solution was mixed with 0.5 mL of the coloring solution. After stirring for 10 min in dark, the UV-Vis spectra of the mixture solution were acquired at 455 nm.

2.5. Nuclear magnetic resonance spectroscopic analysis

We recorded ¹H nuclear magnetic resonance (¹H NMR) spectra using a Bruker AVANCE NEO 500 MHz to detect NH₃. After PEC reduction of ¹⁴N₂, a reaction solution was collected and acidified with 0.5 M H₂SO₄. Subsequently, we mixed the acidified reaction solution with [D₆]dimethylsulfoxide ([D₆]DMSO) and a maleic acid as a solvent and an internal standard, respectively. We used zgesfpgp as the NMR pulse sequence with 128 and 2048 scans for qualitative and quantitative analyses, respectively. When we isotope labeling experiment, we used ¹⁵N₂ gas (Sigma-Aldrich, 98 atom % ¹⁵N) as a feeding gas and set the NMR scan number to 1024.

2.6. Preparation of photoanodes

We rinsed a commercial FTO glass with KOH solution, deionized water, and ethanol. We prepared a precursor solution by dissolving Bi (NO₃)₃·5H₂O (0.04 M), HNO₃ (2 µL mL⁻¹), and KI (0.4 M) in deionized water (25 mL) and then adding 10 mL of absolute ethanol containing pbenzoquinone (0.23 M). The FTO substrate was immersed in the precursor solution, and the cathodic bias of -0.1 V (vs. Ag/AgCl) was applied for 3 min using a potentiostat/galvanostat (WMPG 1000, WonATech Co., Korea). For transformation of BiOI into Mo:BiVO4, we uniformly dropped a DMSO solution-containing VO(acac)₂ (0.2 M) and MoO₂(acac)₂ (2 mM)—on the BiOI electrode and heated in a Lindberg/Blue M muffle furnace (Fisher Scientific Corp., USA) at 450 °C for 2 h with a heating rate of $1 \degree C \min^{-1}$. After the thermal treatment, we immersed the sample in a 1 M NaOH solution with gentle stirring to eliminate unwanted V2O5 crusts. For photo-assisted electrodeposition of FeOOH adlayer on the Mo:BiVO4 electrode, we dissolved 0.1 M FeS-O4.7H2O in N2-enriched deionized water and immersed the Mo:BiVO4 in the solution. Then, we applied 0.25 V (vs. Ag/AgCl) to a Mo:BiVO4 electrode under irradiation (2 mW cm^{-2}) for 20 min.

2.7. Photoelectrochemical analysis of photoanodes

We adopted a three-electrode configuration consisting of Ag/AgCl (3 M NaCl) as a reference electrode and Pt wire as a counter electrode. We used phosphate-buffered saline (PBS) (10 mM, pH 7.0) as an anolyte solution. We conducted linear sweep voltammetric and chronoamperometric analyses using a potentiostat/galvanostat (WMPG 1000, WonATech Co., Korea). We used an impedance analyzer (ZIVE SP1, WonATech Co., Korea) to acquire Nyquist plots at a frequency of 100 kHz to 0.1 Hz and an AC potential amplitude of 25 mV. We used a xenon lamp as a light source.

2.8. Material characterization

The morphologies of electrodes were investigated using an SU8230 field emission scanning microscope (SEM; Hitachi Co., Japan) and a transmission electron microscope (TEM; Talos F200X, FEI Company,

USA). X-ray photoelectron spectroscopy (XPS; Thermo VG Scientific, UK) was used to confirm the elemental components of electrodes. The crystal structures of electrodes were examined using X-ray diffractometer (XRD; RIGAKU Co. Japan) with a Cu K α radiation wavelength of 1.5418 Å. UV-Vis absorption and transmittance spectra of photoelectrodes were obtained using UV-Vis spectrophotometer (Perkin Elmer, USA). Photoluminescence spectra were recorded by a spectro-fluorometer (RF-6000, SHIMADZU Co., Inc., Japan).

2.9. H_2O_2 quantification

We used 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assay to quantify H_2O_2 . After driving Mo:BiVO₄-driven photoanodic reactions, we collected a reaction solution and mixed it with a colorimetric reagent [potassium phosphate solution (100 mM, pH 5.0) containing 2.5 U horseradish peroxidase and 2 mM ABTS]. After incubated at room temperature for 10 min, the absorbance of the mixture was monitored using the UV-Vis spectrophotometer at 420 nm.

2.10. Bias-free photoelectrocatalytic N_2 reduction coupled with H_2O oxidation and biocatalytic oxyfunctionalization reactions

We coupled NRR with H₂O oxidation reaction in a two-compartment configuration, which was connected by a salt bridge. The light source was a 450 W xenon-arc lamp (Newport Co., USA). We immersed a α -Fe₂O₃ cathode in 0.1 M Na₂SO₄ electrolyte (pH 7.0) and a FeOOH/Mo: BiVO₄ photoanode in a PBS solution (10 mM, pH 7.0). The Si PV was placed in front of a cathodic cell, and connected to the α-Fe₂O₃ cathode. The geometrical surface areas of FeOOH/Mo:BiVO₄, α-Fe₂O₃, and Si PV were 1, 1, and 6 cm², respectively. For coupling of PEC NRR with photobiocatalytic reaction, we substituted FeOOH/Mo:BiVO4 with Mo: BiVO₄. We prepared an anodic chamber with the PBS solution (10 mM, pH 7) containing 20 nM rAaeUPO and a substrate. After the photoenzymatic reactions, we quantified enzymatic products by a 7890 A gas chromatograph (Agilent Technologies Inc., USA) equipped with a CP-Chirasil-Dex CB column (25 m, 0.32 mm, 0.25 µm) [12]. We extracted an enzymatic product from a reaction sample using ethyl acetate (containing 5 mM 1-octanol as the internal standard), and dried it over MgSO₄. The detailed oven-temperature programs were tabulated in Table S1. The enantiomeric excess (e.e.), total turnover number (TTN), and turnover frequency (TOF) of rAaeUPO were calculated according to the Eqs. 3, 4, and 5 as follows:

$$e.e.(\%) = \frac{|\text{Mole of an enantiomer} - \text{Mole of the other enantiomer}|}{\text{Total moles of products}} \times 100$$

$$TTN_{rAaeUPO} = \frac{Maximum concentration of product}{Concentration of rAaeUPO}$$
(4)

$$\text{TOF}_{rAaeUPO}(h^{-1}) = \frac{\text{Turnover number of } rAaeUPO}{\text{Time}}$$
(5)

3. Results

3.1. Si/ α -Fe₂O₃ photocathode for N₂ fixation

We synthesized a Si/ α -Fe₂O₃ photocathode by (i) the formation of β -FeOOH layer on a carbon cloth, (ii) the thermal phase transformation from β -FeOOH to α -Fe₂O₃ under N₂-rich conditions (purity: 99.999 %), and (iii) electrical wiring α -Fe₂O₃ with a Si PV in a series. As shown in the plan-view scanning electron microscopic image (Fig. 2a), the assynthesized α -Fe₂O₃ exhibited a three-dimensional nanostructure consisting of nanorods (diameter: ~50 nm). We verified that the nanostructured ferric oxide exhibited the α -Fe₂O₃ phase using X-ray diffraction analysis (Fig. 2b). Next, we performed X-ray photoelectron spectroscopy (XPS) on the α -Fe₂O₃ electrocatalyst, and verified that it

Fig. 2. Photoelectrochemical N₂-to-NH₃ conversion using Si/α-Fe₂O₃ photocathode. (a) Plan-view SEM image of α-Fe₂O₃. Scale bar: 500 nm. (b) XRD patterns of carbon cloth and α-Fe₂O₃. The diffraction file number of α-Fe₂O₃ is #01–076–4579, which is provided by the joint committee on powder diffraction standardsinternational center for diffraction data. Asterisks denote the XRD peaks of carbon cloth. (c) Chopped linear sweep voltammograms of Si/α-Fe₂O₃ under Ar- or N₂-enriched environments. Scan rate: 20 mV s⁻¹. Electrolyte: 0.1 M Na₂SO₄ aqueous solution. (d) NH₃ production rates of the Si/α-Fe₂O₃ photocathode at different applied potentials. (e) A series of control experiments for PEC NRR by Si/α-Fe₂O₃. Potential: 0.7 V (vs. RHE). (f) ¹H NMR spectra of PEC NRR experiments. Feed gas: ¹⁵N₂ or ¹⁴N₂. Geometrical surface area of the photocathode in (c-f): 1 cm². Reaction time in (d-f): 2 h. Light intensity in (c-f): 1 sun (air mass 1.5 global, 100 mW cm⁻²). Electrolyte volume in (c-f): 30 mL. Error bars correspond to the standard deviation (*n* = 3). ND: not detected.

contained Fe and O atoms in the Fe³⁺ and O²⁻ states, respectively (Fig. S1). Under 1-sun irradiation (air mass 1.5 global, 100 mW cm⁻²), the *J*-*V* plot of Si/ α -Fe₂O₃ was anodically shifted by 1.25 V than that of α -Fe₂O₃ (Fig. S2), which we attribute to the Si PV's *V*_{ph}. It indicates that Si/ α -Fe₂O₃ photocathode requires a less cathodic bias than α -Fe₂O₃ cathode under solar light.

We demonstrated the capability of Si/a-Fe₂O₃ photocathode to convert N2 into NH3 in a three-electrode configuration under 1-sun illumination. According to our chopped linear sweep voltammograms (Fig. 2c), the Si/ α -Fe₂O₃ produced an anodic current density in N₂enriched 0.1 M Na₂SO₄ solution under dark conditions, indicating imperceptible NRR reactions. In stark contrast, the photocathode generated much higher photocathodic current density under N2-rich conditions than Ar-rich conditions (Fig. 2c), signifying the transfer of photoexcited electrons to N2 molecules. Controlled potential photoelectrolysis (CPPE) demonstrated NH₃ production from 0.5 to 0.9 V (vs. the reversible hydrogen electrode, RHE) (Fig. 2d). We quantified NH₃ using the indophenol blue method and UV-Vis spectroscopy because UV-Vis and quantitative ¹H nuclear magnetic resonance (NMR) tools provide no significantly different concentrations of NH₃ in statistics (see Fig. S3 for details). The highest average NH₃ production rate and Faradaic efficiency were 2.55 $\mu g \; h^{-1}$ at 0.7 V (vs. RHE) and 10.3% at 0.8 V (vs. RHE), respectively (Figs. 2d and S4). The application of more negative potentials than 0.7 V (vs. RHE) decreased NH₃ production rates. We attribute the result to the competing hydrogen evolution reaction (HER) (Fig. S5) from the proton adsorption on the α -Fe₂O₃ surface [17,18]. Control experiments in the absence of light, electrical bias, N₂, or α-Fe₂O₃ did not produce NH₃ (Fig. 2e), and N₂ feed gas itself did not contain NH₃ (Fig. S6a). In addition, hydrazine (N₂H₄) was not formed as a side product at 0.7 V (vs. RHE) (Figs. S7 and S8), which highlights the Si/ α -Fe₂O₃'s excellent selectivity toward NRR. Furthermore, we confirmed the robust stability of Si/ α -Fe₂O₃-driven NRR. As shown in Fig. S9, Si/ α -Fe₂O₃ exhibited (i) steady NH₃ production rates along with photocathodic currents and (ii) no change in morphology and crystal-lographic structure during a five-iteration experiment.

We performed isotope labeling experiments to identify the chemical source of NH₃. According to our ¹H NMR spectroscopy, Si/ α -Fe₂O₃ formed ¹⁴NH₄⁺ in a ¹⁴N₂-enriched solution after CPPE (1 sun, 0.7 V vs. RHE, 2 h) (Fig. 2f), and ¹⁴N₂ feed gas did not contain ¹⁴NH₃ (Fig. S6b). The substitution of ¹⁴N₂ with ¹⁵N₂ resulted in the generation of ¹⁵NH₄⁺ (Fig. 2f), which indicates that NH₃ production originated from the PEC NRR, not NO₃⁻ reduction or NH₃ pollution. We also detected ¹⁴N triplet NMR peaks in the isotope experiment, which we attribute to the dissolution of atmospheric ¹⁴N₂ into the ¹⁵N₂-containing electrolyte solution. The control experiment using Ar gas did not show NH₄⁺'s NMR peaks (Fig. 2f), reaffirming the Si/ α -Fe₂O₃-driven NRR to NH₃.

The oxygen vacancy (O_V) of a metal oxide (e.g., WO₃ [19], TiO₂ [20, 21], LaFeO₃ [22]) has been reported to function as an active site that accelerates catalytic reactions by, for example, absorbing N₂ molecules, facilitating hydrogenation steps, and/or decreasing the free energy change at a potential-determining step (Table S2). Thus, we investigated the effect of α -Fe₂O₃'s O_V in N₂ fixation to NH₃. We synthesized α -Fe₂O₃ that was annealed in air (namely, α -Fe₂O₃_air) during thermal phase transformation. According to our O 1s XPS analysis (Fig. S10), the substitution of N₂ with air resulted in a lower abundance of O_V by 7%p, which we attribute to the role of O₂ molecules [23] to suppress the

formation of O_V during thermal treatment of metal oxides. We found that NH_3 production rate of the Si/ α -Fe₂O₃ was 1.37 times higher than that of the Si/ α -Fe₂O₃_air photocathode. We speculate that an increase in the concentration of α -Fe₂O₃'s O_V may boost N₂ adsorption and/or N \equiv N activation based on literature on density functional theory calculations that elucidate the important role of metal oxides' O_V in accelerating NRR.

3.2. FeOOH/Mo:BiVO₄ photoanode for H₂O oxidation

To extract electrons from H₂O and supply them to the Si/ α -Fe₂O₃ photocathode, we used Mo:BiVO₄ because of its high stability under aqueous environments and excellent WOR kinetics [24,25]. We synthesized a Mo:BiVO4 electrode through (i) electrodepositing bismuth oxyiodide (BiOI) film on a fluorine-doped tin oxide and (ii) converting BiOI to Mo:BiVO₄ via thermal and chemical treatments. We further photoelectrochemically deposited FeOOH cocatalyst on the Mo:BiVO4 photoanode because the adlayer is a highly active catalyst for H₂O oxidation at moderate potentials by suppressing surface charge recombination and minimizing the kinetic barrier [25–28]. We confirmed the formation of amorphous FeOOH layer (thickness: ~5 nm) on the crystalline Mo:BiVO₄ using XPS, TEM, and energy-dispersive X-ray spectroscopic elemental mapping (Figs. S11a, S11b, S11c, and S12). The FeOOH deposition did not change the Mo:BiVO4's nanostructured morphology (Fig. S11d), monoclinic scheelite phase (Fig. S11e), light absorption property, and direct bandgap (2.5 eV) (Fig. S11f).

We verified the capability of FeOOH cocatalyst to accelerate Mo: BiVO₄'s WOR. As shown in Fig. 3a and S13a, FeOOH/Mo:BiVO₄ exhibited a cathodic shift of the onset potential for H₂O oxidation (~230 mV), an enhanced photoanodic current from 0.4 to 1.4 V (vs. RHE), and a lower Tafel slope in a phosphate-buffered saline (10 mM, pH 7.0) solution. We attribute the improved WOR performance to (i) a decreased charge-transfer resistance (Figs. S13b and S13c), (ii) increased efficiency of charge transfer at the electrode|electrolyte interface (Fig. S13d), (iii) reduced charge recombination behavior (Figs. S14a and S14b), and (iv) longer decay time of charge carriers (Figs. S14c and S14d), which we obtained using electrochemical impedance spectroscopy [29], (transient) voltammetric analysis, and photoluminescence spectroscopy [30]. Detailed analytical explanations are shown in the caption of Figs. S13 and S14.

3.3. Solar-driven unbiased N_2 reduction coupled with H_2O oxidation

Having substantiated the NRR and WOR driven by Si/ α -Fe₂O₃ and FeOOH/Mo:BiVO₄, respectively, we constructed a full PEC structure (i. e., FeOOH/Mo:BiVO₄|Si/ α -Fe₂O₃) to drive NRR fueled by H₂O as an electron donor. We expected bias-free coupling of NRR and WOR according to the intersection of the overlaying |J| - V plots of FeOOH/Mo:BiVO₄ and Si/ α -Fe₂O₃ (Fig. 3a). The exposure of the PEC system to solar light triggered NH₃ production with an average rate of 1.476 µg h⁻¹ (Fig. 3b) and a solar-to-ammonia conversion efficiency of 0.0080%. In the absence of light, Si PV, or N₂ molecules, NH₃ formation was imperceptible (Fig. 3b), which highlights the unbiased NRR to NH₃. When we substituted α -Fe₂O₃ with α -Fe₂O₃_air, the NH₃ formation rate decreased by 1.36 times. In addition, the omission of FeOOH on Mo: BiVO₄ decreased the production rate significantly from 1.476 to 0.328 µg h⁻¹ (Fig. 3b), indicating that WOR is responsible for supplying electrons for NRR.

Based on the importance of WOR in NRR, we investigated the role of H_2O as an electron donor for unbiased NRR by FeOOH/Mo:BiVO₄|Si/ α -Fe₂O₃ system. To control H_2O concentration in a cathodic electrolyte solution, we used an anhydrous dimethyl sulfoxide (DMSO) that is miscible with the aqueous electrolyte. Our chronoamperometric analysis shows that current density increased with increasing volume ratio of $H_2O/DMSO$ under 1-sun illumination, and the current density was negligible under dark conditions (Figs. 3c and S15). In accordance with the result, we obtained a saturation curve that shows the relationship between the rate of NH_3 production and the $H_2O/DMSO$ volume ratio

Fig. 3. Unbiased reduction of N₂ to NH₃ by the FeOOH/Mo:BiVO4|Si/α-Fe2O3 photoelectrocatalytic system. (a) Overlap of |J| - V profiles of a Si/ α -Fe₂O₃ photocathode (black) and Mo:BiVO4based photoanodes (red and blue). (b) Control experiments for bias-free PEC NRR driven by FeOOH/Mo:BiVO4|Si/ α -Fe₂O₃. (c) Chronoamperometric curves with various H2O/DMSO volume ratios in an anodic compartment. (d) Effect of H₂O/DMSO volume ratios on the rate of NH3 formation. Light condition in (a-d): 1 sun. Geometrical surface areas of photocathodes and photoanodes in (a-d): 1 cm². Reaction time in (b, d): 2 h. Electrolyte volume in the cathodic compartment: 15 mL. Electrolyte volume in the anodic compartment: 10 mL. Error bars correspond to the standard deviation (n = 3). ND: not detected.

(Fig. 3d). We observed that unbiased NH₃ formation kinetics decreased with decreasing volume ratio of H₂O/DMSO, and became imperceptible when the electrolyte solution consisted of DMSO only. The result highlights the transfer of photoexcited electrons from H₂O electron donor to N₂ reactant. In addition, the NH₃ production kinetics linearly increased up to 57% of its maximal production rate until the volume ratio of H₂O/DMSO reached 20%. We ascribe it to the saturation of FeOOH/Mo: BiVO₄'s active sites for WOR.

Furthermore, we explored the effect of photoexcited electrons and holes on the NRR. We added sodium sulfite (Na₂SO₃) and sodium persulfate (Na₂S₂O₈) as a hole and electron scavenger, respectively. As shown in Fig. S16a, the addition of Na₂SO₃ to an anolyte decreased the NH₃ production rate. Although Na₂SO₃ increased the operating current of FeOOH/Mo:BiVO₄|Si/ α -Fe₂O₃ (Fig. S16b), it shifted Si/ α -Fe₂O₃'s potential anodically in FeOOH/Mo:BiVO₄|Si/ α -Fe₂O₃ architecture (Fig. S16c), and consequently decreased NH₃ production on Si/ α -Fe₂O₃ (Fig. 2d). In contrast, supplementing Na₂S₂O₈ to a catholyte resulted in no production of NH₃ (Fig. S16a). It highlights that Si/ α -Fe₂O₃'s photoexcited electrons participate in NRR. Consistent with this result, Si/ α -Fe₂O₃ did not generate NH₃ when we added Na₂SO₃ and Na₂S₂O₈ into the anolyte and catholyte, respectively, at the same time (Fig. S16a).

3.4. Photobiocatalytic oxyfunctionalization coupled with N_2 reduction

Oxidoreductases catalyze various synthetically useful reactions with exceptional selectivity and environmental benignity [31–40], which solid-state catalytic electrodes cannot achieve. In this study, we

attempted to pair NRR with oxidoreductase-driven oxygenation of inert C-H bonds (Fig. 1). As a model biocatalyst, we employed the recombinant, evolved unspecific peroxygenase from *Agrocybe aegerita* (r*Aae*UPO) [12,13,41–43]. Considering that r*Aae*UPO requires H₂O₂ as a sole oxidant [41,44,45], we did not deposit FeOOH adlayer on the Mo: BiVO₄ photoanode. This is because FeOOH's Fermi level is more negative [46] than the redox potential [12] of two-electron WOR (2H₂O + 2h⁺ \rightarrow H₂O₂ + 2H⁺) (Fig. S17a). We confirmed that photoelectroactivated Mo:BiVO₄ gradually formed H₂O₂, whereas FeOOH/Mo:BiVO₄ formed a negligible amount of H₂O₂ (Fig. S17b).

Although Mo:BiVO₄ generates more H₂O₂ than FeOOH/Mo:BiVO₄, the target redox reaction [N₂ (g) + 6H₂O (l) \rightarrow 2NH₃ (aq) + 3H₂O₂ (aq)] is rather sluggish in the Mo:BiVO₄|Si/ α -Fe₂O₃ system. We ascribe this to Mo:BiVO₄'s slow electron extraction from H₂O, which results in a lower photocurrent density (Fig. 3a). To accelerate the redox reaction, we applied external electrical bias and found that ~0.5 V bias is required to optimize NH₃ production rate (Fig. S18). Based on this result, we replaced the original Si PV ($V_{ph} = 1.25$ V) with another Si PV having a higher V_{ph} of 1.80 V to realize bias-free coupling of NH₃ and H₂O₂ production. The theoretical and actual operation currents of Mo:BiVO₄|Si(1.80 V)/ α -Fe₂O₃ were approximately 2.3 times higher than those of Mo:BiVO₄|Si(1.25 V)/ α -Fe₂O₃ (Fig. S19).

Building on the results, we explored unbiased pairing of NH₃ production with enantioselective oxyfunctionalization using Mo:BiVO₄|Si (1.80 V)/ α -Fe₂O₃ (Fig. 1). We analyzed the product using gas chromatography-mass spectrometry (GC-MS) and GC (Figs. S20a and S21a). As shown in Fig. 4a, ethylbenzene was hydroxylated to enantiopure (*R*)-1-phenylethanol [> 99% enantiomeric excess (e.e.)] with a

Fig. 4. Enantioselective photobiocatalytic oxyfunctionalization coupled with N₂ reduction. (a) Control experiments of bias-free biocatalytic hydroxylation paired with N₂ reduction. (b) Other *rAae*UPO-driven oxygenation reactions driven by Mo:BiVO₄|Si/ α -Fe₂O₃. (c) Plausible mechanism of unbiased combination of N₂ reduction and UPO biocatalysis. OC: ohmic contact. CB: conduction band. VB: valence band. $E_{f,n}$: quasi-Fermi level of electrons. $E_{f,h}$: quasi-Fermi level of holes. Catholyte in (a, b): Na₂SO₄ solution (0.1 M, 15 mL). Anolyte in (a, b): phosphate-buffered saline (10 mM, pH 7.0, 10 mL) containing *rAae*UPO and substrate. Geometrical surface areas of photocathodes and photoanodes in (a, b): 1 cm². Reaction time in (b): 6 h. Light intensity in (a, b): 1 sun. Error bars correspond to the standard deviation (*n* = 3). ND: not detected.

turnover frequency for rAaeUPO (TOF_{rAaeUPO}) of 8340 h^{-1} and a total turnover number of rAaeUPO (TTNrAaeUPO) of 41,700 in the anodic site, while N₂ was reduced to NH₃ at the rate of 1.38 μ g h⁻¹ in the cathodic site. Note that (R)-1-phenylethanol was not further oxidized to acetophenone (Fig. 4b), which indicates the high selectivity in enantioselective hydroxylation. The molar ratio of NH_3 to (R)-1-phenylethanol was estimated to be 1:16 (Fig. S22), which is different from the molar ratio (2:3) for coupling of NRR and rAaeUPO catalysis ($N_2 + 3R-H +$ $3H_2O \rightarrow 2NH_3 + 3R$ -OH). We attribute it to another possible oxidationreduction coupling, such as H2 evolution and enzymatic oxyfunctionalization (R-H + $H_2O \rightarrow R-OH + H_2$) (Fig. S5). Furthermore, the Mo:BiVO₄|Si(1.80 V)/α-Fe₂O₃ platform was applied to other oxyfunctionalization reactions such as enantioselective hydroxylation of tetralin (TOF_{rAaeUPO} = 9620 h^{-1}, TTN_{rAaeUPO} = 57,700, e.e. > 99%) and cyclohexane (TOF_{rAaeUPO} = 5600 h⁻¹, TTN_{rAaeUPO} = 33,600) (Figs. 4b, S20, and S21). All of the unbiased enzymatic reactions required light, Si PV, rAaeUPO, and substrate (Figs. 4a and S23).

Based on the widely accepted PEC mechanism [16,25,47–50], we propose a bias-free pathway of integrating NRR with rAaeUPO-mediated oxygenation reactions (Fig. 4c). Both photoelectrodes (i.e., Mo:BiVO₄ and Si) absorb solar light to generate photoexcited electrons and holes with the corresponding quasi-Fermi levels of electrons (E_{fn}) and holes $(E_{f,h})$, respectively. Because $E_{f,h}$ is more positive than the redox potential of two-electron H₂O oxidation, the Mo:BiVO₄ photoanode transfers its photoexcited holes to H2O and produces H2O2. Subsequently, rAaeUPO consumes H₂O₂ and generates the catalytically active oxoferryl heme that catalyzes enantioselective oxygenation [12]. The photoexcited electrons of the Mo:BiVO₄ are recombined with the Si PV's photoexcited holes, whereas Si PV's photoexcited electrons are delivered to the α -Fe₂O₃'s conduction band. The excited electrons then participate in N₂-to-NH₃ conversion at the surface of α -Fe₂O₃ because $E_{f,n}$ is more negative than the redox potential of six-electron reduction of N2. In terms of voltage, Mo:BiVO4 photoelectrode and Si PV harvests solar light to generate a V_{ph} (= $|E_{f,n} - E_{f,h}|$) of approximately 1.45 V (Fig. S24) and 1.80 V, respectively. The total $V_{\rm ph}$ (~3.25 V) is larger than the thermodynamic voltage and overpotentials for integrating N2 fixation with H₂O oxidation, enabling the unbiased target reaction.

4. Discussion

The PEC NRR system has emerged as a promising platform to convert N_2 into NH_3 , which combines the advantages of electrocatalytic and photocatalytic processes. This approach harvests clean solar energy to generate photoexcited charge carriers and applies an electrical bias to

increase the redox abilities of the charge carriers. In this sense, the majority of PEC systems [9,10,51,52] have focused on developing NRR half-reaction in a three-electrode configuration, which must need an electrical potential between a working electrode and a reference electrode. In addition, the three-electrode configuration requires a counter electrode to balance the current of the working electrode, which indicates that an anodic reaction at the counter electrode is not the concern of the previous PEC NRR studies [53].

Moving beyond the conventional approach, we established the unbiased photoelectrocatalytic pairing of NRR with WOR or biocatalytic synthesis in two-electrode configuration, which converts N2 and H2O to value-added chemicals (e.g., NH₃, enantiopure alcohols). This simultaneous NRR and enzymatic oxygenation occurs at individual halfreaction sites. The Mo:BiVO₄-based photoanodes exhibit a relatively small bandgap (2.5 eV) and a positive quasi-Fermi level of holes [46], which is advantageous for solar-driven WOR. The photoactivated Si PV makes electrons' potential more negative to facilitate NRR on the α-Fe₂O₃ catalyst. We assembled these photoelectrocatalysts to construct a full PEC system that converts solar light, N₂, and H₂O to valuable compounds without external electrical bias. The PEC system compares favorably with a state-of-the-art PEC platform [24] that anodically activates rAaeUPO (Fig. 5). The reported PEC cell drove rAaeUPO catalysis $(TTN_{rAgeUPO} = 10,000, TOF_{rAgeUPO} = 5000 h^{-1})$ at 0.8 V. The TTN_{rAaeUPO} and TOF_{rAaeUPO} of the Mo:BiVO₄|Si/α-Fe₂O₃ assembly were higher even under bias-free conditions. Follow-up studies are needed to improve NH₃ production rate through, for example, (i) elucidating the detailed mechanism of O_V using computational quantum mechanical modeling methods, (ii) controlling O_V densities to increase the active site for NRR, and (iii) constructing a hydrophobic support on the α -Fe₂O₃ to suppress HER. In addition, modification of surface morphology of Mo:BiVO₄-based photoanodes would increase hole concentrations at the photoanode electrolyte interface [54], which accelerates the photoanodic performance of electron extraction from H₂O. These studies will broaden the scope of the platform to other redox reactions (e.g., lignin valorization, alcohol oxidation, enzymatic dehydrogenation) [41,55] with enhanced productivities.

5. Conclusion

We report bias-free pairing of NRR with WOR and UPO biocatalysis in a two-electrode configuration using Si/ α -Fe₂O₃ photocathode and Mo:BiVO₄-based photoanode. The photocathodic half-reaction occurred via (i) transfer of photoexcited electrons from Si to α -Fe₂O₃ and (ii) electrocatalytic reduction of N₂ to NH₃ at the surface of α -Fe₂O₃. To

Fig. 5. Comparison of rAaeUPO-hybrid PEC systems for anodic oxyfunctionalization reactions in terms of (a) $TTN_{rAaeUPO}$ and (b) $TOF_{rAaeUPO}$ values. Assembly: Mo: BiVO₄|IO-ITO (green; ref. [24]). IO-ITO, inverse opal-structured indium tin oxide.

accelerate NH₃ production, we synthesized the α-Fe₂O₃ under O₂depleted environments, which increased (i) the number ratio of O_V by 1.33 times and (ii) the rate of NH₃ production by 1.37 times. Concurrently, the photoanodic half-reaction by Mo:BiVO₄-based energy materials led to the extraction of electrons from H₂O and the transfer of them to the photocathode. To boost the photoanodic H₂O oxidation, we deposited the FeOOH adlayer on the Mo:BiVO₄ photoanode, which gave rise to an increase in charge separation efficiencies ($\eta_{surface}$ of 22–53%), a decrease in charge-transfer resistance by up to 1.44 times, a decrease in Tafel slope by 1.3 times, and a suppression of charge recombination. In addition, NH₃ production rate increased with increasing H₂O concentration, which highlighted the role of H₂O as an electron donor for N₂ reduction. When we combined PEC NRR with rAaeUPO-catalyzed oxyfunctionalization reactions, we used Mo:BiVO₄ photoanode that (i) receives holes from NRR reaction, (ii) oxidizes H₂O to H₂O₂, and (iii) generates rAaeUPO's the catalytically active oxoferryl heme. Overall, the unbiased NRR platform produced valuable compounds at the photoanodic and photocathodic compartments through enantioselective hydroxylation as well as N2 reduction.

CRediT authorship contribution statement

Chang Hyun Kim: Conceptualization, Formal analysis, Investigation, Methodology, Visualization, Validation, Writing - original draft, Writing - review & editing. **Jinhyun Kim:** Conceptualization, Formal analysis, Investigation, Methodology, Visualization, Supervision, Validation, Writing - original draft, Writing - review & editing. **Frank Hollmann:** Resources. **Chan Beum Park:** Resources, Supervision, Funding acquisition, Project administration, Writing - original draft, Writing - review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

This work was supported by the National Research Foundation (NRF) via the Creative Research Initiative Center (grant no. NRF-2015R1A3A2066191), Republic of Korea. We thank Professor Byungha Shin and Dr. Choongman Moon at KAIST for quantifying gas molecules.

Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.apcatb.2023.122925.

References

- [1] G. Qing, R. Ghazfar, S.T. Jackowski, F. Habibzadeh, M.M. Ashtiani, C.-P. Chen, M. R. Smith, T.W. Hamann, Recent advances and challenges of electrocatalytic N₂ reduction to ammonia, Chem. Rev. 120 (2020) 5437–5516.
- [2] B.H.R. Suryanto, K. Matuszek, J. Choi, R.Y. Hodgetts, H.-L. Du, J.M. Bakker, C.S. M. Kang, P.V. Cherepanov, A.N. Simonov, D.R. MacFarlane, Nitrogen reduction to ammonia at high efficiency and rates based on a phosphonium proton shuttle, Science 372 (2021) 1187–1191.
- [3] J.G. Chen, R.M. Crooks, L.C. Seefeldt, K.L. Bren, R.M. Bullock, M.Y. Darensbourg, P.L. Holland, B. Hoffman, M.J. Janik, A.K. Jones, M.G. Kanatzidis, P. King, K. M. Lancaster, S.V. Lymar, P. Pfromm, W.F. Schneider, R.R. Schrock, Beyond fossil fuel-driven nitrogen transformations, Science 360 (2018), eaar6611.
- [4] B.H.R. Suryanto, H.-L. Du, D. Wang, J. Chen, A.N. Simonov, D.R. MacFarlane, Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia, Nat. Catal. 2 (2019) 290–296.

Applied Catalysis B: Environmental 336 (2023) 122925

- [5] Y. Pang, C. Su, G. Jia, L. Xu, Z. Shao, Emerging two-dimensional nanomaterials for electrochemical nitrogen reduction, Chem. Soc. Rev. 50 (2021) 12744–12787.
- [6] Y. Liu, J. Lu, Q. Zhang, Y. Bai, X. Pang, S. Wang, H. Bai, W. Fan, Charge-transfer dynamics at a Ag/Ni-MOF/Cu₂O heterostructure in photoelectrochemical NH₃ production, Chem. Commun. 57 (2021) 8031–8034.
- [7] S. Shang, W. Xiong, C. Yang, B. Johannessen, R. Liu, H.-Y. Hsu, Q. Gu, M.K. H. Leung, J. Shang, Atomically dispersed iron metal site in a porphyrin-based metal-organic framework for photocatalytic nitrogen fixation, ACS Nano 15 (2021) 9670–9678.
- [8] A. Banerjee, B.D. Yuhas, E.A. Margulies, Y. Zhang, Y. Shim, M.R. Wasielewski, M. G. Kanatzidis, Photochemical nitrogen conversion to ammonia in ambient conditions with FeMoS-chalcogels, J. Am. Chem. Soc. 137 (2015) 2030–2034.
- [9] Y. Bai, H. Bai, Z. Fang, X. Li, W. Fan, W. Shi, Understanding the Z-scheme heterojunction of BiVO₄/PANI for photoelectrochemical nitrogen reduction, Chem. Commun. 57 (2021) 10568–10571.
- [10] M. Li, Q. Lu, M. Liu, P. Yin, C. Wu, H. Li, Y. Zhang, S. Yao, Photoinduced charge separation via the double-electron transfer mechanism in nitrogen vacancies g-C₃N₅/BiOBr for the photoelectrochemical nitrogen reduction, ACS Appl. Mater. Interfaces 12 (2020) 38266–38274.
- [11] J. Kim, S.H. Lee, F. Tieves, C.E. Paul, F. Hollmann, C.B. Park, Nicotinamide adenine dinucleotide as a photocatalyst, Sci. Adv. 5 (2019), eaax0501.
- [12] J. Kim, T.V.T. Nguyen, Y.H. Kim, F. Hollmann, C.B. Park, Lignin as a multifunctional photocatalyst for solar-powered biocatalytic oxyfunctionalization of C-H bonds, Nat. Synth. 1 (2022) 217–226.
- [13] J. Kim, J. Jang, T. Hilberath, F. Hollmann, C.B. Park, Photoelectrocatalytic biosynthesis fuelled by microplastics, Nat. Synth. 1 (2022) 776–786.
- [14] J. Yoon, H. Jang, M.-W. Oh, T. Hilberath, F. Hollmann, Y.S. Jung, C.B. Park, Heatfueled enzymatic cascade for selective oxyfunctionalization of hydrocarbons, Nat. Commun. 13 (2022) 3741.
- [15] J. Yoon, J. Kim, F. Tieves, W. Zhang, M. Alcalde, F. Hollmann, C.B. Park, Piezobiocatalysis: ultrasound-driven enzymatic oxyfunctionalization of C–H bonds, ACS Catal. 10 (2020) 5236–5242.
- [16] J. Kim, Y. Um, S. Han, T. Hilberath, Y.H. Kim, F. Hollmann, C.B. Park, Unbiased photoelectrode interfaces for solar coupling of lignin oxidation with biocatalytic C=C bond hydrogenation, ACS Appl. Mater. Interfaces 14 (2022) 11465–11473.
- [17] S. Liu, T. Qian, M. Wang, H. Ji, X. Shen, C. Wang, C. Yan, Proton-filtering covalent organic frameworks with superior nitrogen penetration flux promote ambient ammonia synthesis, Nat. Catal. 4 (2021) 322–331.
- [18] M.I. Ahmed, C. Liu, Y. Zhao, W. Ren, X. Chen, S. Chen, C. Zhao, Metal-sulfur linkages achieved by organic tethering of ruthenium nanocrystals for enhanced electrochemical nitrogen reduction, Angew. Chem. Int. Ed. 59 (2020) 21465–21469.
- [19] Z. Sun, R. Huo, C. Choi, S. Hong, T.-S. Wu, J. Qiu, C. Yan, Z. Han, Y. Liu, Y.-L. Soo, Y. Jung, Oxygen vacancy enables electrochemical N₂ fixation over WO₃ with tailored structure, Nano Energy 62 (2019) 869–875.
- [20] Z. Han, C. Choi, S. Hong, T.-S. Wu, Y.-L. Soo, Y. Jung, J. Qiu, Z. Sun, Activated TiO₂ with tuned vacancy for efficient electrochemical nitrogen reduction, Appl. Catal. B Environ. 257 (2019), 117896.
- [21] Y. Zhao, Y. Zhao, R. Shi, B. Wang, G.I.N. Waterhouse, L.-Z. Wu, C.-H. Tung, T. Zhang, Tuning oxygen vacancies in ultrathin TiO₂ nanosheets to boost photocatalytic nitrogen fixation up to 700 nm, Adv. Mater. 31 (2019), 1806482.
- [22] K. Chu, F. Liu, J. Zhu, H. Fu, H. Zhu, Y. Zhu, Y. Zhang, F. Lai, T. Liu, A general strategy to boost electrocatalytic nitrogen reduction on perovskite oxides via the oxygen vacancies derived from A-site deficiency, Adv. Energy Mater. 11 (2021), 2003799.
- [23] Z. Wang, X. Mao, P. Chen, M. Xiao, S.A. Monny, S. Wang, M. Konarova, A. Du, L. Wang, Understanding the roles of oxygen vacancies in hematite-based photoelectrochemical processes, Angew. Chem. Int. Ed. 58 (2019) 1030–1034.
- [24] D.S. Choi, J. Kim, F. Hollmann, C.B. Park, Solar-assisted ebiorefinery: photoelectrochemical pairing of oxyfunctionalization and hydrogenation reactions, Angew. Chem. Int. Ed. 59 (2020) 15886–15890.
- [25] J. Kim, Y.W. Lee, E.-G. Choi, P. Boonmongkolras, B.W. Jeon, H. Lee, S.T. Kim, S. K. Kuk, Y.H. Kim, B. Shin, C.B. Park, Robust FeOOH/BiVO₄/Cu(In, Ga)Se₂ tandem structure for solar-powered biocatalytic CO₂ reduction, J. Mater. Chem. A 8 (2020) 8496–8502.
- [26] K. Kim, C.B. Park, Femtomolar sensing of Alzheimer's tau proteins by water oxidation-coupled photoelectrochemical platform, Biosens. Bioelectron. 154 (2020), 112075.
- [27] K.J. McDonald, K.-S. Choi, A new electrochemical synthesis route for a BiOI electrode and its conversion to a highly efficient porous BiVO₄ photoanode for solar water oxidation, Energy Environ. Sci. 5 (2012) 8553–8557.
- [28] B. Zhang, L. Wang, Y. Zhang, Y. Ding, Y. Bi, Ultrathin FeOOH nanolayers with abundant oxygen vacancies on BiVO₄ photoanodes for efficient water oxidation, Angew. Chem. Int. Ed. 57 (2018) 2248–2252.
- [29] X. Li, W. Fan, Y. Bai, Y. Liu, F. Wang, H. Bai, W. Shi, Photoelectrochemical reduction of nitrate to ammonia over CuPc/CeO₂ heterostructure: understanding the synergistic effect between oxygen vacancies and Ce sites, Chem. Eng. J. 433 (2022), 133225.
- [30] F. Wang, Q. Ding, J. Ding, Y. Bai, H. Bai, W. Fan, Frustrated Lewis pairs boosting photoelectrochemical nitrate reduction over ZnIn₂S₄/BiVO₄ heterostructure, Chem. Eng. J. 450 (2022), 138260.
- [31] J. Kim, S.H. Lee, F. Tieves, D.S. Choi, F. Hollmann, C.E. Paul, C.B. Park, Biocatalytic C=C bond reduction through carbon nanodot-sensitized regeneration of NADH analogues, Angew. Chem. Int. Ed. 57 (2018) 13825–13828.
- [32] D. Wang, S.H. Lee, S. Han, J. Kim, N.V.T. Trang, K. Kim, E.-G. Choi, P. Boonmongkolras, Y.W. Lee, B. Shin, Y.H. Kim, C.B. Park, Lignin-fueled

C.H. Kim et al.

photoelectrochemical platform for light-driven redox biotransformation, Green Chem. 22 (2020) 5151–5160.

- [33] G. Son, J. Kim, C.B. Park, Interference of solvatochromic twist in amyloid nanostructure for light-driven biocatalysis, ACS Appl. Energy Mater. 3 (2020) 1215–1221.
- [34] T.-K. Le, J. Kim, N.A. Nguyen, T.H.H. Nguyen, E.-G. Sun, S.-M. Yee, H.-S. Kang, S.-J. Yeom, C.B. Park, C.-H. Yun, Solar-powered whole-cell P450 catalytic platform for C-hydroxylation reactions, ChemSusChem 14 (2021) 3054–3058.
- [35] D. Wang, J. Kim, C.B. Park, Lignin-induced CaCO₃ vaterite structure for biocatalytic artificial photosynthesis, ACS Appl. Mater. Interfaces 13 (2021) 58522–58531.
- [36] M. Hobisch, M.M.C.H. van Schie, J. Kim, K. Røjkjær Andersen, M. Alcalde, R. Kourist, C.B. Park, F. Hollmann, S. Kara, Solvent-free photobiocatalytic hydroxylation of cyclohexane, ChemCatChem 12 (2020) 4009–4013.
- [37] Y.W. Lee, P. Boonmongkolras, E.J. Son, J. Kim, S.H. Lee, S.K. Kuk, J.W. Ko, B. Shin, C.B. Park, Unbiased biocatalytic solar-to-chemical conversion by FeOOH/BiVO₄/ perovskite tandem structure, Nat. Commun. 9 (2018) 4208.
- [38] Y. Zhang, Z. Xiong, Y. Li, M. Wilson, K.E. Christensen, E. Jaques, P. Hernández-Lladó, J. Robertson, L.L. Wong, Enantioselective oxidation of unactivated C–H bonds in cyclic amines by iterative docking-guided mutagenesis of P450BM3 (CYP102A1), Nat. Synth. 1 (2022) 936–945.
- [39] D.C. Miller, S.V. Athavale, F.H. Arnold, Combining chemistry and protein engineering for new-to-nature biocatalysis, Nat. Synth. 1 (2022) 18–23.
- [40] M.A. Herrera, D.J. Campopiano, Buy one, get one free, Nat. Synth. 1 (2022) 420–421.
- [41] C.-H. Yun, J. Kim, F. Hollmann, C.B. Park, Light-driven biocatalytic oxidation, Chem. Sci. 13 (2022) 12260–12279.
- [42] H.S. Soo, Solar-powered biorefinery, Nat. Synth. 1 (2022) 192-193.
- [43] D.G. Boucher, S.D. Minteer, Making molecules with microplastics, Nat. Synth. 1 (2022) 751–752.
- [44] F. Tieves, S.J.-P. Willot, M.M.C.H. vanSchie, M.C.R. Rauch, S.H.H. Younes, W. Zhang, J. Dong, P. GomezdeSantos, J.M. Robbins, B. Bommarius, M. Alcalde, A.

S. Bommarius, F. Hollmann, Formate oxidase (FOx) from aspergillus oryzae: one catalyst enables diverse H_2O_2 -dependent biocatalytic oxidation reactions, Angew. Chem. Int. Ed. 58 (2019) 7873–7877.

- [45] W. Zhang, H. Liu, M.M.C.H. van Schie, P.-L. Hagedoorn, M. Alcalde, A.G. Denkova, K. Djanashvili, F. Hollmann, Nuclear waste and biocatalysis: a sustainable liaison? ACS Catal. 10 (2020) 14195–14200.
- [46] J.H. Kim, J.S. Lee, Elaborately modified BiVO₄ photoanodes for solar water splitting, Adv. Mater. 31 (2019), 1806938.
- [47] S.K. Kuk, J. Jang, J. Kim, Y. Lee, Y.S. Kim, B. Koo, Y.W. Lee, J.W. Ko, B. Shin, J.-K. Lee, C.B. Park, CO₂-reductive, copper oxide-based photobiocathode for Zscheme semi-artificial leaf structure, ChemSusChem 13 (2020) 2940–2944.
- [48] J. Kim, C.B. Park, Shedding light on biocatalysis: photoelectrochemical platforms for solar-driven biotransformation, Curr. Opin. Chem. Biol. 49 (2019) 122–129.
- [49] J. Kim, C.B. Park, Artificial photosynthetic biohybrids for CO₂ and N₂ fixation, Chem. Catal. 2 (2022) 2425–2427.
 [50] C.H. Lee, J. Kim, C.B. Park, Z-schematic artificial leaf structure for biosolar
- oxyfunctionalization of hydrocarbons, ACS Energy Lett. 8 (2023) 2513–2521.
- [51] Y. Bai, H. Bai, K. Qu, F. Wang, P. Guan, D. Xu, W. Fan, W. Shi, In-situ approach to fabricate BiOI photocathode with oxygen vacancies: understanding the N₂ reduced behavior in photoelectrochemical system, Chem. Eng. J. 362 (2019) 349–356.
- [52] M.S. Yu, S.C. Jesudass, S. Surendran, J.Y. Kim, U. Sim, M.-K. Han, Synergistic interaction of MoS₂ nanoflakes on La₂Zr₂O₇ nanofibers for improving photoelectrochemical nitrogen reduction, ACS Appl. Mater. Interfaces 14 (2022) 31889–31899.
- [53] A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications, Wiley, 2000.
- [54] H. Bai, F. Wang, Q. Ding, W. Xie, H. Li, G. Zheng, W. Fan, Construction of frustrated Lewis pair sites in CeO₂–C/BiVO₄ for photoelectrochemical nitrate reduction, Inorg. Chem. 62 (2023) 2394–2403.
- [55] J. Kim, C.B. Park, Collaborative catalysis for solar biosynthesis, Trends Chem. 5 (2023) 133–146.