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G R A P H I C A L A B S T R A C T

H I G H L I G H T S

We quantify the energy losses in a membraneless flow-through electrochemical cell.
Butler–Volmer kinetics activation losses add to frictional pumping dissipation.
The associated optimal electrode pore size and gap are found computationally and analytically.
Successful validation with 2D Brinkman Nernst–Planck porous electrode simulations.
Our simple analytical formulas are also found to work for interdigitated flow fields.
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A B S T R A C T

Microfluidic fuel cells, electrolyzers, and redox flow batteries utilize laminar flow channels to provide reactants,
remove products and avoid their crossover. These devices often also employ porous flow-through electrodes as
they offer a high surface area for the reaction and excellent mass transfer. The geometrical features of these
electrodes and flow channels strongly influence energy efficiency. We derive explicit analytical relations for
the optimal flow channel width and porous electrode volumetric surface area from the perspective of energy
efficiency. These expressions are verified using a two-dimensional tertiary current distribution and porous
electrode flow model in COMSOL and are shown to be able to predict optimal parameters in commonly used
flow-through and interdigitated flow fields. The obtained analytical models can dramatically shorten modelling
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time and expedite the industrial design process. The optimal channel width and pore sizes we obtain, in the
order of 100 microns and 1 micron respectively, are much smaller than those often used. This shows that there
is a significant room for improvement of energy efficiency in flow cells that can sustain the resulting pressure
drop.
Nomenclature

Greek symbols

𝛼red/ox Reduction/oxidation charge transfer coefficient
𝛽 Empirical constant based on porosity
𝜖 Porosity of electrode
𝜖ns Porosity of nanoporous separator
𝜂 Activation overpotential, [V]
⟨𝜂⟩ Average activation overpotential, [V]
𝜅 Effective ionic conductivity, [S∕m]
𝜇 Dynamic viscosity, [Pa s]
𝛷 Electric potential in electrode, [V]
𝜙 Electric potential in electrolyte, [V]
𝜌 Fluid density, [kg∕m3]
𝜎 Effective electronic conductivity, [S∕m]

Latin symbols

𝐴 Geometrical electrode area 𝑙𝑦ℎ, [m2]
𝑎 Volumetric surface area electrode, [m−1]
𝐴ch Channel flow area 𝑙𝑦𝑙ch, [m2]
𝑎opt,lin/Taf 𝑎opt in the linear/Tafel regime, [m−1]
𝐴pe Porous electrode flow area 𝑙𝑦𝑙pe, [m2]
𝐶KC Kozeny–Carman coefficient
𝑐ox Concentration of the oxidant, [mol∕m3]
𝑐red Concentration of the reductant, [mol∕m3]
𝐶f Empirical constant based on porosity
𝑐w Reactant concentration at pore wall, [mol∕m3]
𝑐𝑖 Concentration of the 𝑖th species, [mol∕m3]
c Cup-mixing reactant concentration, [mol∕m3]
cin Inlet cup-mixing concentration, [mol∕m3]
cout Outlet cup-mixing concentration, [mol∕m3]
𝑑f Fibre diameter of the porous electrode, [m]
𝐷𝑖 Effective diffusivity 𝑖th species, [m2∕s]
𝐹 Faraday’s constant, [C∕mol]
ℎ Length of cell along the flow direction, [m]
𝐢 Ionic current density, [A∕m2]
𝑗 Total current density, [A∕m2]
𝑗∗ Local exchange current density, [A∕m2]
𝑗⟂ Local electronic current density, [A∕m2]
⟨𝑗⟩ Average total current density, [A∕m2]
𝐣 Electronic current density, [A∕m2]
𝐾 Permeability of electrode, [m2]
𝑘m Mass transfer coefficient, [m∕s]
𝑙ch,opt Optimum electrolyte channel width, [m]
𝑙ch Width of electrolyte channel, [m]
𝑙pe Thickness of porous electrode, [m]
𝑙𝑦 Width of cell in y-direction, [m]
𝑛 Number of electrons per reactant
𝐍𝑖 Flux of the 𝑖th species, [mol∕m2 s1]
𝑃 Power loss in the cell, [W]
𝑝 Pressure, [Pa]
2

𝑃act Power loss due to activation overpotential, [W]
𝑃fr Power loss due to friction via pumping, [W]
𝑃res Power loss due to ohmic dissipation, [W]
 Gas constant, [J∕mol K]
𝑠r Space between ribs, [m]
𝑇 Temperature, [K]
⟨𝑢⟩ Average superficial velocity, [m∕s]
𝐮 Superficial velocity, [m∕s]
𝑤 Channel width interdigitated flow field, [m]
𝑤ns Thickness of nanoporous separator, [m]
𝑋 Conversion factor
𝑧𝑖 Charge number of the 𝑖th species

1. Introduction

The intermittent nature of wind and solar based renewable energy
sources demands the usage of energy storage devices that act as a reser-
voir or source of energy during times of high availability or demand
of energy, respectively. These storage devices operate in small scales
(kW/kWh) for individual usage to grid scales (GW/GWh). Electrochem-
ical energy storage systems like redox flow batteries, electrolyzers,
and fuel cells are attractive candidates for grid-based electrical en-
ergy storage since their storage and power capacities can be scaled
up independently [1,2]. This results in versatile storage and power
capabilities [3]. However, these electrochemical devices are subject to
energy efficiency losses that need to be minimized to facilitate their
wide-scale acceptance.

Electrochemical systems often utilize an ion exchange membrane
to hinder cross-over of chemical species and avoid self-discharge. This
membrane adds significantly to the cost and ohmic resistance of the
battery [4,5]. Hence, ‘membraneless’ electrochemical systems were
proposed to not only reduce costs but also to reduce the overall
efficiency losses resulting from the ohmic potential drop across the
membrane [3,6,7].

A common design used in membraneless systems relies on a laminar
flow between the two electrodes to keep the electrolytes at the anode
and cathode separated. The laminar flow ensures that only molecular
diffusion is responsible for the transverse transport of species in the
channel, while advection in the axial direction removes any reac-
tion products in the channel. Different battery chemistries like- vana-
dium [6–11], hydrogen/bromine [12], alkaline hydrogen/oxygen [13]
and formic acid/oxygen [14–16] systems have been investigated using
such membraneless designs. Laminar flow channels have also been
studied extensively for their use in micro fuel cells (MFC) or membrane-
less microfluidic fuel cells (MMFC) [17,18]. However, these designs are
difficult to scale up as the width of the diffusion zone increases with
the length of the channel. Hence, if the length of the channel is too long
reaction products of the cathode will reach the anode and vice-versa.
A nanoporous separator was added to further suppress the crossover
of species in hydrogen/bromine [19], boronhydride/cerium [20] and
methanol [21] systems. Flow channels are also used in electrochemical
CO2-reduction to ensure hydration of the catalyst layer and to remove
products [22–25].

3D porous electrodes are another common feature in electrochem-
ical energy storage systems. In a porous electrode the total current
density is an accumulation of the local current densities along the
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Fig. 1. A schematic of the half-cell geometry used for optimizing the volumetric surface area of the porous electrode.
current direction. A porous electrode with a substantially high sur-
face area has a lower magnitude of local current density. Therefore,
the overpotential for such an electrode is lower than for a smooth
planar electrode where the local current density is equal to the total
current density [26,27]. The working of porous electrodes in different
electrochemical devices has been thoroughly explored in numerous
previous works, see for example [26,28–36]. Physical parameters such
as porosity, internal pore diameter, and thickness characterize these
electrodes and can be tailored to improve their performance [37–
40]. Unlike in the ‘flow-by’ flow configuration, in ‘flow-through’ and
‘interdigitated’ designs the flow of reactants is through the porous
electrode itself. Hence, significant pumping energy losses can occur in
both these designs.

In addition to pumping losses, laminar channels and porous elec-
trodes can also give rise to ohmic dissipation [41–44]. Additionally,
electrodes give rise to activation losses. A proper design of their geom-
etry can strongly reduce these losses. In the present work we present
an explicit analytical expression for the optimal laminar flow channel
width that minimizes the sum of pumping losses and ohmic dissipation.
For porous electrodes, we present expressions for the volumetric surface
area to minimize the combined pumping and activation losses in flow-
through and interdigitated flow configurations. We then verify these
expressions using 2-dimensional numerical simulations in COMSOL
Multiphysics.

Typical values of electrolyte channel widths used in experiments are
of the order of 1 mm [10,11,19] and the pore size in the electrode
is in the order of 10 microns [19,23,45]. We find that the optimum
values of these parameters are usually an order of magnitude lower.
This means that significantly less ohmic and activation losses can be
achieved by further miniaturization. This does lead to higher pressure
drops, requiring more careful engineering. It seems to be a general
trend in many research papers in the literature that a higher efficiency
is sacrificed for a more practical pressure drop. We hope that our
work draws more attention to this underappreciated aspect of cell
engineering and can further improve performance optimization.

The rest of the paper is organized as follows: in Section 2 we present
the equations used for the numerical simulations and on the basis of
which we develop analytical models; in Section 3 we put forward our
analytical models along with the assumptions used in the optimization;
in Section 4 we compare the obtained analytical expressions with the
results from numerical simulations; in Section 5 we compare our results
with various experimental results from the literature, and in Section 6
we summarize our work and present the final conclusions.

2. Methods

2.1. Geometry

Fig. 1 gives a pictorial description of the geometry considered to
optimize the electrolyte channel width, 𝑙ch and the volumetric sur-
face area of the porous electrode, 𝑎. Two-dimensional simulations are
3

performed in the x-z plane. To optimize the specific surface area
𝑎, we consider a porous electrode through which a mixture of the
reactant, product, and electrolyte flows. Instead of a membrane, we
have an electrolyte channel through which the ionic current can flow.
The electrolyte flows between two nanoporous separators that inhibit
advection and dispersion to and from the channel. Diffusion of reactants
and products through the nanoporous separator into the electrolyte
channel is facile due to the thinness of the layer, but flow through the
nanoporous separator is strongly inhibited due to its high hydraulic
resistance. An example of this design, showing an excellent power
density of roughly 1 Wcm−2 and current density of 3 Acm−2, can be
found in Ref. [19].

2.2. Governing equations

The fluid flow in the open channel and the porous electrode are
governed by the laminar steady Navier–Stokes equation, Eq. (1), and
the Brinkman equation, Eq. (2), respectively. The incompressibility
condition, Eq. (3), is assumed to be true in all regions of the flow.

𝜌(𝐮 ⋅ ∇)𝐮 = −∇𝑝 + 𝜇∇2𝐮, (1)

𝜌(𝐮 ⋅ ∇)𝐮 1
𝜖2

= −∇𝑝 +
𝜇
𝜖
∇2𝐮 −

(

𝜇
𝐾

+ 𝛽𝜖𝜌|𝐮|
)

𝐮, (2)

∇ ⋅ 𝐮 = 0. (3)

Here, 𝐮 is the superficial flow velocity 𝑝 is the pressure, 𝜌 is the density,
𝜇 is the dynamic viscosity, 𝜖 is the porosity and 𝐾 is the permeability
of the porous medium. The term 𝛽 = 𝐶f

√

𝐾
with 𝐶f =

1.75
√

150𝜖3
is based on

Ref. [46]. The inertial terms, 𝜌(𝐮 ⋅∇)𝐮 1
𝜖2

and 𝛽𝜖𝜌|𝐮|𝐮, due to the linear
naure of the flow in the channel and small pores in the electrode, do
not make significant contributions.

We use dilute solution theory with constant transport coefficients.
The steady Nernst–Planck equation, ∇ ⋅𝐍𝑖 = 𝑆𝑖 is used for the transport
of the 𝑖th dilute species. The source term is written using Faraday’s
law as 𝑆𝑖 = −∇⋅𝐢

𝑛𝐹 , where 𝑛 is the number of electrons transferred per
molecule and 𝐢 is the ionic current density vector. The Nernst–Planck
flux reads

𝐍𝑖 = 𝐮𝑐𝑖 −𝐷𝑖

(

∇𝑐𝑖 + 𝑧𝑖
𝐹
𝑇

𝑐𝑖∇𝜙
)

. (4)

Here, 𝐍𝑖, 𝑐𝑖, 𝐷𝑖, 𝑧𝑖 are the flux, concentration, diffusivity, and
charge number of the 𝑖th species respectively; while 𝐹 and  denote
the Faraday’s constant and the gas constant respectively. For non-
charged species, 𝑧𝑖 = 0 and a standard advection–diffusion–reaction
equation results. Inside porous media, the effective diffusivities 𝐷𝑖 are
related to the molecular diffusivities 𝐷m,𝑖 by 𝐷𝑖 = 𝐷m,𝑖𝜖1.5 corrected
using Bruggeman’s relation derived for transport through polydisperse
spherical particles [47]. In the flow channel, the porosity 𝜖 = 1 and the
effective diffusivity 𝐷 equals the molecular diffusivity 𝐷 .
𝑖 m,𝑖
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The ionic current density perpendicular to the flow of electrolyte,
𝑖𝑥, is given by

𝑖𝑥 = 𝑧+𝐹𝑁𝑥,+ + 𝑧−𝐹𝑁𝑥,−. (5)

For a binary electrolyte, due to quasi-neutrality, 𝑐+ = 𝑐− = 𝑐el so
hat advection does not contribute to the current.

Using Eqs. (4) and (5), in the absence of gradients in the electrolyte
oncentration, we have

𝑥 ≈ −𝜅
𝜕𝜙
𝜕𝑥

. (6)

Here 𝜅 is the ionic conductivity and reads

𝜅 =
𝑧2𝑖 𝐹

2𝑐el
𝑇

(

𝐷+ +𝐷−
)

. (7)

Here, 𝐷+ and 𝐷− are the effective diffusivities of the positive and
egative ions so that we can write 𝜅 = 𝜅m𝜖1.5, where 𝜅m is based on the

molecular diffusivity. The electronic current density, 𝐣, in the porous
electrode is given by Ohm’s law as

𝐣 = −𝜎∇𝛷. (8)

Here, the effective medium electronic conductivity 𝜎 = 𝜎m
(

1 − 𝜖
)1.5 is

obtained from the material conductivity 𝜎m using Bruggeman’s relation
or the solids fraction 1 − 𝜖, and 𝛷 is the electronic potential. The
uperficial electronic current density and ionic current density are
elated by ∇ ⋅ 𝐢 = −∇ ⋅ 𝐣. The ionic current entering the porous electrode
s related to the local current density 𝑗⟂ according to

⋅ 𝐣 = 𝑎𝑗⟂, (9)

here 𝑎 is the volumetric surface area of the porous electrode. We
ssume that the symmetric Butler–Volmer equation holds, which reads

⟂ = 𝑗∗

(

𝑐red
𝑐red,in

e
𝜂
𝑏 −

𝑐ox
𝑐ox,in

e
−𝜂
𝑏

)

. (10)

Here 𝑗∗ is the exchange current density and 𝑐red & 𝑐ox are the concen-
trations of the reducing and oxidizing agent respectively, and 𝑐red,in &
𝑐ox,in are their inlet concentrations, and the Tafel slope 𝑏 = 2𝑇

𝐹 . Taking
𝑐𝑖 = 𝑐𝑖,in, the concentration-dependent Butler–Volmer Eq. (10) can be
olved for 𝜂 to give

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑏 asinh
(

𝑗⟂
2𝑗∗

)

symmetric,
𝑇
𝐹

𝑗⟂
𝑗∗

linear,

𝑏 ln
(

𝑗⟂
𝑗∗

)

Tafel.

(11)

or low activation overpotentials 𝜂, the relation becomes linear, while
or high overpotentials the logarithmic Tafel equation applies.

. Results: Analytical modelling

In this section, we develop an analytical model for the total relevant
ower loss 𝑃 [W], that can be optimized analytically. In order to
o so, we make some simplifications. We assume that the reactant
oncentration in the porous electrode is uniform in the 𝑥-direction. We
lso assume a uniform local current density 𝑗⊥ in the 𝑥-direction.

The net power loss in the system 𝑃 is written as

= 𝑃act + 𝑃fr + 𝑃res. (12)

Here, 𝑃act is the activation loss, 𝑃fr is the pumping loss due to
riction in viscous flow and 𝑃res is power loss due to ohmic dissipation.
hese losses reflect the losses in just those parts of the cell that we aim
o optimize, namely the flow channel and porous electrode. We have
gnored losses due to concentration depletion. In Section 3.3.1 we have
ncluded mass transfer limitations to optimize the volumetric surface
rea of the porous electrode.
4

We take the cross-sectional area of the channel/porous electrode as
ch/pe = 𝑙𝑦𝑙ch/pe and the cross-sectional area of the electrode as 𝐴 = 𝑙𝑦ℎ.

The current density magnitude 𝑗(𝑧) may vary in the flow direction, due
to reactant depletion, so we define an average value ⟨𝑗⟩ = 1

ℎ ∫ ℎ
0 𝑗𝑑𝑧.

Assuming the average of the squared current density approximately
equals the square of its average, ⟨𝑗2⟩ ≈ ⟨𝑗⟩2, which is true if ⟨𝑗⟩ is
uniformly distributed along the 𝑧-direction, we show in Appendix A
that the ohmic power can be approximated by

𝑃res ≈
⟨𝑗⟩2𝐴𝑙ch

𝜅
. (13)

We use the conductivity 𝜅 at the inlet in our model. This is valid if
the electrolyte concentration does not vary significantly along the flow
direction. The dissipation per unit area due to the average activation
overpotential ⟨𝜂⟩ = ∫

𝑙pe
0 𝜂𝑑𝑥 in case of a local current density 𝑗⊥ that is

constant in the 𝑥-direction reads
𝑃act
𝐴

≈ 𝑗⟨𝜂⟩. (14)

This notation for the dissipation per unit area is understood to be
valid also locally, in case 𝑗 varies with 𝑧. The pressure gradient, 𝛥𝑝∕ℎ
for a unidirectional laminar flow in a channel of length ℎ and average
velocity ⟨𝑢⟩ is given by
𝛥𝑝
ℎ

=
𝜇⟨𝑢⟩
𝐾

, (15)

𝐾 =

⎧

⎪

⎨

⎪

⎩

𝜖3

𝐶KC𝑎2
(Porous medium),

𝑙2ch
12 (Channel flow),

(16)

where 𝐶KC is an empirical constant which depends on the geometry
of the porous medium. For spherical particles of diameter 𝑑p it is easy
o show that 𝑎 = 6(1−𝜖)

𝑑p
and the Kozeny–Carman constant was found

to be 𝐶KC ≈ 150−180
62 ≈ 4.2 − 5. For a porous medium consisting of

fibres of diameter 𝑑f, 𝑎 = 4(1−𝜖)
𝑑f

and for 𝐶KC a large variability exists
etween measurements [48,49]. The hydraulic pore diameter is related
s 𝑑h = 4𝜖∕𝑎 = 𝜖

1−𝜖 𝑑f so that for 𝜖 ≈ 0.25 the inverse 1∕𝑎 can be seen as
a rough measure of a typical pore diameter.

In Appendix A we show that the frictional dissipation in the channel
(ch) or porous electrode (pe) reads

𝑃fr =
𝜇𝐴ch/pe⟨𝑢⟩2ℎ

𝐾
. (17)

The average velocity ⟨𝑢⟩ is often chosen on the basis of the ‘conver-
sion’ 𝑋, which denotes the fraction of reactants entering the cell that
is consumed.

We define 𝑋 as

=
cout − cin

cin
, (18)

here c =
∫
𝑙ch/pe
0 c𝑢𝑑𝑥

∫
𝑙ch/pe
0 𝑢𝑑𝑥

is the velocity-averaged or ‘cup-mixing average’

reactant concentration. The weighting with velocity accounts for the
fact that the concentration of the faster flowing liquid in the centre of
the channel contributes more than the slowing moving liquid near the
walls. We hope that the only slightly different font used here for this
quantity does not lead to confusion.

Since for every 𝑛 electrons a reactant molecule is used, we can relate
⟨𝑢⟩ and 𝑋 as follows

⟨𝑢⟩ =
⟨𝑗⟩ℎ

𝑛𝐹 cin𝑋𝑙ch/pe
. (19)

Inserting Eq. (19) into Eq. (17) and Eq. (16), we have,

𝑃fr =

⎧

⎪

⎪

⎨

⎪

⎪

𝐶KC𝑙𝑦𝜇
𝑙pe

(

𝑎⟨𝑗⟩
𝑛𝐹 cin𝑋

)2 ( ℎ
𝜖

)3
(Porous medium),

12𝜇𝑙𝑦
(

⟨𝑗⟩
𝑛𝐹 cin𝑋

)2
(

ℎ
𝑙ch

)3
(Channel flow).

(20)
⎩
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A pump energy efficiency can be easily included by dividing the
viscosity 𝜇 with it.

3.1. Optimal electrolyte channel width at given 𝑋

In this section, we consider the optimization of a flow channel
between the two electrodes, two separators/membranes, or between an
electrode and a separator/membrane. This is relevant for membraneless
and microfluidic electrochemical cells. We assume that a reactant in the
channel achieves a particular degree of conversion, 𝑋, but this can also
be replaced by a certain outlet concentration of the reactant or product.
We note that with 𝑋 very close to 1, concentration overpotentials may
no longer be negligible. In such cases it remains to be seen how well
our analysis will hold.

The electrolyte channel width, 𝑙ch, is one of the factors influencing
umping and ionic resistance losses. The power loss impacted by the
lectrolyte channel width is defined as

𝑙ch ≈ 𝑃fr + 𝑃res. (21)

Keeping the flow-rate and the average current density constant
nd increasing the channel width increases the power loss due to
hmic dissipation but reduces the power loss due to friction. Hence,
n optimum width exists that minimizes 𝑃𝑙ch .

Using Eqs. (13) and (20), the overall power loss in the electrolyte
hannel reads,

𝑙ch =
⟨𝑗⟩2𝑙ch𝑙𝑦ℎ

𝜅
+ 12𝜇𝑙𝑦

(

⟨𝑗⟩
𝑛𝐹 cin𝑋

)2 ( ℎ
𝑙ch

)3
. (22)

The optimal gap width, 𝑙ch,opt is obtained for that 𝑙ch which minimizes

𝑙ch . Solving
𝑑𝑃𝑙ch
𝑑𝑙ch

= 0 for 𝑙ch gives,

𝑙ch,opt = (36𝜇𝜅)1∕4
√

ℎ
𝑛𝐹 cin𝑋

. (23)

For 𝑛 = 𝑋 = 1 and 𝜇 = 1 mPas and 𝜅 = 1 S/cm Eq. (22) gives
𝑙ch,opt ≈ 14

√

ℎ[cm]∕cin [M] μm. In Ref. [50] the flow-rate instead of
he conversion 𝑋 was taken as an independent variable that does not
hange during the optimization, giving a similar weak dependence on 𝜇
nd 𝜅. Because the relation between flow-rate and velocity depends on
he parameter 𝑙ch/pe that is optimized, this relation cannot a posteriori
e inserted as is done in Ref. [50]. Our analysis with 𝑋 as the indepen-
ent variable is only valid for cases where the electrolyte is utilized in
he reaction. Otherwise ⟨𝑢⟩ should be used as an input parameter for
he model. A similar result to Eq. (23) was also obtained in Ref. [51]
or a flow-through cell with flow parallel to the current.

We have not included a membrane in our channel, however our
odel would hold true even in the presence of a membrane.

.2. Optimal electrolyte channel width avoiding boundary layer overlap

In case a flow channel is used to avoid cross-over of reactants or
roducts it should be sufficiently wide and the velocity sufficiently high
o avoid the boundary layers arising on opposite sides of the channel
o overlap. In Appendix C we derive the conditions that minimize the
um of ohmic and pumping losses. We assumed that the species in both
oundary layers have equal diffusivity 𝐷 and allow at the end of the
hannel 1% of the concentration tail to overlap. The optimal velocity
equired to ensure this reads

𝑢⟩opt = 0.82

(

𝐷ℎ
𝜇

⟨𝑗⟩2

𝜅

)1∕3

, (24)

nd the associated optimal channel width, which reads

ch,opt = 6.3
(

√

𝜇𝜅 𝐷ℎ
⟨𝑗⟩

)1∕3
, (25)

Note that the viscosity and conductivity enter Eq. (25) very weakly with
−9
5

a power of merely 1∕6. With 𝜇 = 1 mPas, 𝜅 = 1 S/cm, and 𝐷 = 10
m2/s Eq. (25) gives 𝑙ch,opt ≈ 43 μm
(

ℎ [cm]
𝑗 [A/cm]

)1∕3
and, from Eq. (24),

⟨𝑢⟩opt = 0.17 [m/s]
(

ℎ [cm]
(

⟨𝑗⟩ [A/cm]
)2
)1∕3

. These optimal values
will typically lead to very small microfluidic gaps and relatively high
velocities. Some example values for lab-scale cells are show in Table 3
and will be discussed later in Section 5.

3.3. Volumetric surface area

Next, we optimize the volumetric surface area of porous electrodes.
A flow-through electrode is considered in which the electrolyte flows
through the porous electrode, parallel to a membrane or a microporous
separator. In Section 4.2.2 we apply this model to an interdigitated flow
field. Increasing the volumetric surface area, 𝑎, reduces the activation
losses but increases the pumping losses. Thus, an optimum exists that
minimizes the sum of these losses. We will neglect the flow through any
additional surface area that may be present in the form of, roughness, a
coating, or inside a fibre bundle of a carbon cloth. This internal surface
area will effectively increase the exchange current density 𝑗∗ of the
external surface area, 𝑎 considered here. This allows the use of the
same symbol and value for the surface area in Eq. (9) and the hydraulic
surface area in Eq. (16). First, the concentration-independent case will
be considered and the next section deals with the effect of mass transfer
limitations.

The power loss influenced by 𝑎 is given by

𝑃𝑎 = 𝑃fr + 𝑃act. (26)

The ohmic drop is not influenced by the volumetric surface area
and as such is not present in the expression for power loss influenced
by 𝑎. Note that Eq. (19), relating current density and velocity, does not
involve 𝑎. Therefore, we can keep the velocity as an independent vari-
able and later inserting Eq. (19), without influencing the optimization.
As a result, the optimization can be performed for a particular position
𝑧. Therefore, we use the local current density 𝑗 instead of the channel-
average ⟨𝑗⟩ that we used before, and we obtain an optimum that will
depend on 𝑧 through 𝑗.

For the symmetric Butler–Volmer kinetics of Eq. (11), Eq. (26)
becomes Eq. (A.7) which can be written for the dissipation per unit
area as
𝑃𝑎
𝐴

≈
𝑃0
𝐴

(

2�̄� asinh 1
�̄�
+ �̄�2

)

. (27)

Here �̄� =
2𝑎𝑙pe𝑗∗

𝑗 , �̄� = 𝑃act
2𝑃0 asinh

1
�̄�
= 𝑗𝐴𝑏

2𝑃0
, and

𝑃0
𝐴

=
𝑃fr∕𝐴
�̄�2

=
𝐶KC𝜇
𝑙pe𝜖3

(

𝑗⟨𝑢⟩
2𝑗∗

)2
. (28)

ere 𝑗∗ is the local exchange current density, so 𝑎𝑙pe𝑗∗ is the effective
superficial exchange current density [27]. The optimal value of the
dimensionless surface area �̄� can be obtained by solving 𝜕𝑃𝑎

𝜕�̄� = 0, which
gives,

�̄�3
√

1 + �̄�−2 = �̄� (29)

This gives a cubic equation in �̄�2 that can be solved analytically by

�̄� = 1
√

6

√

𝑓 + 4
𝑓

− 2, (30)

where 𝑓 =
(

108�̄�2 + 12
√

81�̄�4 − 12�̄�2 − 8
)1∕3

. The limiting solutions for
igh and low values of �̄� are given by

�̄�opt =

⎧

⎪

⎨

⎪

�̄�1∕3 �̄� ≫ 1 (Linear),
�̄�1∕2 �̄� ≪ 1 (Tafel),

(31)
⎩
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Fig. 2. The optimal volumetric surface area, 𝑎opt, for a flow-through porous electrode
obtained by minimizing the sum of pumping and activation losses, as a function of
current density 𝑗 is shown. The numerical solution of Eq. (29) is combined with the
asymptotic solutions of Eq. (31) for the cases of linear and Tafel kinetics respectively
and the matching result of Eq. (33). The values of the parameters for these plots are
taken from Table B.6. The relative error between the approximate Eq. (29) and (33) is
shown in the inset for different 𝑞 values. All powers between 𝑞 = 3 and 𝑞 = 10 show a
reasonably low maximum relative error ≲ 10%, with a minimum of 0.6% error around
𝑞 ≈ 4.9.

which in dimensional form reads

𝑎opt ≈

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑎opt,lin = 𝜖
(

𝑇
2𝐶KC𝜇𝐹𝑗∗

)1∕3 (
𝑗

⟨𝑢⟩𝑙pe

)2∕3
𝑗 ≪ 𝑎𝑙pe𝑗∗,

𝑎opt,Taf =
1
⟨𝑢⟩

(

𝑏𝜖3𝑗
2𝐶KC𝜇𝑙pe

)1∕2
𝑗 ≫ 𝑎𝑙pe𝑗∗.

(32)

Note the absence of 𝑗∗ in the Tafel regime, so that the optimum
depends on the electrode kinetics only through the Tafel slope, 𝑏. The
optimal surface area in both cases increases with increasing porosity,
as this increases the permeability, allowing smaller pores for the same
pressure drop. A higher current density increases activation losses so
favours more surface area. A higher velocity increases pumping losses,
so favours less surface area.

Depending on the effective electrical conductivity 𝜎 and 𝜅, beyond
a certain thickness the overpotential will no longer be constant and
the full electrode will no longer be effectively used. Ref. [27] derives
the associated optimal electrode thickness. In Appendix D we show the
resulting expressions for the optimal volumetric surface area in case
that the electrode is also chosen to be of optimal thickness.

We can add the two limits in Eq. (32) with powers −𝑞 < 0 to give
most weight to the smallest one and obtain an expression that reduces
to the proper limits and remains approximately valid in between:

�̄�opt ≈
(

�̄�−𝑞∕3 + �̄�−𝑞∕2
)−1∕𝑞

. (33)

Fig. 2 shows that the relative error with the exact solution of
Eq. (29) is minimized to 0.6% for 𝑞 = 4.9.

3.3.1. Effects of mass transfer in the Tafel regime
The mass transfer within a pore of the electrode is governed by

the concentration profile near the pore wall. Especially, for high cur-
rent densities, often in the Tafel regime, the effects of mass transfer
limitations can become prominent. In order to include the effects of
intra-porous mass transfer in the optimal volumetric surface area, we
consider the concentration-dependent Tafel kinetics regime, obtained
from Eq. (10) as

𝜂 = 𝑏 ln
(

𝑗⟂ 𝑐w
)

. (34)
6

𝑗∗ cin
Fig. 3. Inset (a) shows the concentration profile inside a pore. Here c is the cup-mixing
average concentration and 𝑐w is the concentration at the wall. Arrows in inset (b) depict
the velocity 𝐮 inside pores of characteristic diameter 𝑑 within the porous electrode.

Here, 𝑐w is the concentration at the pore wall, see Fig. 3, and the
reference concentration is taken to be the concentration at the inlet,
𝑐in.

With 𝑘m the mass transfer coefficient based on the concentration
difference c − 𝑐w, we obtain for the local molar flux, 𝑁⟂

𝑁⟂ =
𝑗⟂
𝑛𝐹

= 𝑘m(c − 𝑐w). (35)

Using Eq. (A.2), 𝑗
𝑎𝑙pe

= 𝑗⟂, in case 𝑗⊥ is constant, this gives

𝑗 = 𝑛𝐹𝑎𝑙pe𝑘m(c − 𝑐w). (36)

Hence, the limiting current 𝑗lim that can maximally be obtained
when 𝑐w = 0, is given by

𝑗lim = 𝑛𝐹𝑎𝑙pe𝑘mc. (37)

Combining Eqs. (36) and (37) we obtain,
𝑐w
c

= 1 −
𝑗

𝑗lim
. (38)

Combining Eqs. (14), (20), (34) and (38), we extend Eq. (27) in the
Tafel regime into,

𝑃𝑎 ≈ 𝑃0

(

2�̄� ln
(

1
�̄�

1
1 − �̄�lim∕�̄�

)

+ �̄�2
)

, (39)

where we define 𝑎lim as

𝑎lim =
𝑗

𝑛𝐹 𝑙pe𝑘mc
. (40)

Hence, 𝑗∕𝑗lim = 𝑎lim∕𝑎.
To optimize Eq. (39) with respect to �̄� we will assume that 𝑎lim

is independent of �̄�. This introduces an error since typically the mass
transfer coefficient 𝑘m does weakly depend on the pore size.

Taking the derivative 𝜕𝑃𝑎
𝜕�̄� = 0 gives

�̄�2 − �̄� �̄�lim − �̄� = 0, (41)

which gives with �̄�opt,Taf = �̄�1∕2

�̄�opt =
�̄�lim
2

⎛

⎜

⎜

⎜

⎝

1 +

√

√

√

√

√1 +
4�̄�2opt,Taf

�̄�2lim

⎞

⎟

⎟

⎟

⎠

≈ �̄�opt,Taf + �̄�lim. (42)

For �̄�lim = 0, we obtain the previous solution �̄� = �̄�opt,Taf and if
�̄�lim ≫ �̄�1∕2, we find �̄�opt = �̄�lim.

The final expression in Eq. (42) is a rough approximation with
a maximum relative error of 25%. It shows that the optimal surface
area is approximately the sum of the optimal surface area without
mass transfer limitations and 𝑎lim, so that it is mostly determined by
the largest of these two contributions. In terms of pore size, �̄�opt,Taf
determines the optimum until they become too large and the maximum
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Fig. 4. Boundary conditions used in the simulations for optimizing (left) the channel width and (right) the volumetric surface area in a flow through configuration. For optimizing
the volumetric surface area in the linear regime in the flow through configuration, the electrolyte channel and upper nanoporous separator were excluded from the geometry. This
was done as the pressure-driven crossover, or leakage, of reactants into the electrolyte channel would significantly violate Eq. (19). For the Tafel regime, the leakage flux of the
reactants less large compared to the higher current densities.
Table 1
The channel width 𝑙ch and flow velocity ⟨𝑢⟩ are varied over the indicated ranges
to make sure that ⟨𝑗⟩ and 𝑋 obtained within the simulations of each case are a
constant. Correspondingly, the electric potential 𝛷 across the cell is also changed.
Remaining parameters used in the simulations are shown in Table B.5.
Case ⟨𝑗⟩ [A∕m2] 𝑋 𝑙ch [μm] ⟨𝑢⟩ [mm∕s]

‘Low’ 655 0.17 2.92 − 234 17 − 136
‘High’ 3032 0.78 2.92 − 140 28 − 136

pore size is dictated by mass transfer limitations. Inserting dimensional
parameters we get,

𝑎opt ≈
1
⟨𝑢⟩

√

𝑏𝜖3𝑗
2𝐶KC𝜇𝑙pe

+
𝑗

𝑛𝐹 𝑙pe𝑘mc
. (43)

For constant conversion the velocity and current density are pro-
portional, so that the first term in Eq. (43) decreases with increasing
𝑗 while the second term, associated with concentration overpotential,
increases. If the variation in 𝑗 and c with 𝑧 is known or can be estimated,
Eq. (42) or Eq. (43) can be used to create a variable volumetric surface
area that is optimal for all 𝑧.

4. Results: Numerical modelling

We solve the tertiary current density distribution using the Nernst–
Planck module available in COMSOL Multiphysics v5.5. In order to
solve for the fluid flow, we use the Free and Porous Media Flow module.
The boundary conditions are displayed in Fig. 4. The parameters used
in the simulations are listed in the tables in Appendix B. These models
allow us to take full account of concentration effects and mass-transfer
limitations, and hence the predictions are more comprehensive than
those of our simplified analytical model.

4.1. Optimal electrolyte channel width

For the optimal electrolyte channel width, numerical simulations
are performed for the two cases shown in Table 1:

For the ‘low’ case of low current density and conversion the assump-
tions of the analytical model are reasonably well satisfied. For the ‘high’
case, of high current density and conversion, reactant depletion leads
to a highly inhomogeneous current and reactant distribution in the
electrolyte channel, see Figs. 5(d) and 5(f). These conditions violate the
assumptions made in the derivation of the ohmic power loss in Eq. (13),
so will be a good test of the robustness and generality of the analytical
results.

The power loss, 𝑃𝑙ch = 𝑃fr + 𝑃res, for the numerical simulations
is calculated using Eqs. (A.1) and (A.5). The analytical value of the
resistive dissipation 𝑃res is calculated from Eq. (13) by evaluating the
electrolyte conductivity 𝜅 using the inlet electrolyte concentration,
7

𝑐in,el. Figs. 5(a) and 5(b) shows the power loss of the cell as a function
of the width of the electrolyte channel.

It is seen that for both the ‘high’ and the ‘low’ cases, our analytical
model underpredicts 𝑃𝑙ch for higher channel widths (Figs. 5(a) and
5(b)). The effect is more pronounced for the ‘high’ case. This discrep-
ancy is due to the violation of the assumption of constant current
density. The ohmic losses described by the first term in Eq. (22) contain
⟨𝑗⟩2 instead of ⟨𝑗2⟩ in the exact result of Eq. (A.1). It can be shown that
⟨𝑗⟩2 ≤ ⟨𝑗2⟩ so our analytical expression underestimates the losses. In the
‘high’ case, as can be seen from Fig. 5(f), a limiting current is attained
throughout most of the channel due to reactant depletion. This gives
rise to a current density that, as shown in Fig. 5(d), drops dramatically
over a very short distance near the entrance.

However, the calculated 𝑙ch,opt of 7.83 × 10−5 m and 3.64 × 10−5

m from the analytical model equation (23) for the ‘low’ and ‘high’
cases respectively, are in the same order as those seen in numerical
simulations; 7.91 × 10−5 m and 3.01 × 10−5 m respectively. It is seen in
Fig. 5(a) that for the smaller channel widths, when the concentration
remains close to the inlet concentration and the current distribution is
relatively homogeneous, the results from the analytical and numerical
calculations are similar.

From Figs. 5(a) and 5(b) we see that the power loss in the cell in-
creases rapidly with decreasing channel width, 𝑙ch below the optimum
value. This is because the pumping losses scale inversely proportional
to the cube of 𝑙ch, as seen from Eq. (22). However, the power loss
increase is more gradual when the channel width is higher than the
optimum value due to the weaker linear dependence of ohmic losses
on the channel width, see Eq. (22). Hence, the value of 𝑙ch,opt should
perhaps, as a design criterion, rather be used as a lower limit below
which the power loss drastically increases.

4.2. Volumetric surface area

Next, we turn our attention to the determination of the optimal pore
size or volumetric surface area of a porous electrode. We first consider
the flow-through geometry of Fig. 4 (right) and next the interdigited
flow-field geometry shown in Fig. 7. We assume 𝑗 ≪ 𝑗lim so we
can neglect the internal pore mass transfer limitations considered in
Section 3.3.1. To test both limits of Eqs. (31) and (32) we consider the
two cases shown in Table 2: a case of relatively low current density
and high exchange current density for which linear kinetics will hold
for all used values of 𝑎 and a case of high current density and a lower
exchange current density so that Tafel kinetics will hold.

A complication is that for the small pores used in the nanoporous
separator for the Tafel case the pressure drop in the electrode becomes
much higher than that in the channel, resulting in a flow from the
electrode to the channel. This poses a serious problem to membrane-
less cells with flow through the electrode normal to the current. To
avoid this problem, in our simulations we chose an extremely small
permeability of 𝐾 = 9 ⋅ 10−24 m2 for the nanoporous separator. We
ns
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Fig. 5. The value of 𝑃𝑙ch
from the numerical simulations is compared to the results from Eq. (22) in (a) and (b) for a low average total current density of ⟨𝑗⟩ = 655 A/m2 and

high average total current density of ⟨𝑗⟩ = 3032 A/m2 respectively . It is seen that in the case with a higher current density the power loss deviates from the analytical results
for higher channel widths. This is attributed to current inhomogeneity, violating the assumption ⟨𝑗2⟩ ≈ ⟨𝑗⟩2 underlying Eq. (13). In (c) and (e) the normalized electrolyte current
density and normalized reactant concentration are shown for 𝑙ch = 2.34 ⋅ 10−4 m for the low average total current density. In figures (d) and (f) these quantities are shown for the
high average total current density at 1.4 ⋅ 10−4 m. Note that in the ‘high’ case a limiting current is approached due to reactant depletion. This leads to a strongly inhomogeneous
current distribution.
Fig. 6. 𝑃𝑎 for both the Tafel and linear kinetic regimes is compared to the analytically obtained results. In the simulation for the Tafel case, the leakage of the reactant through
the nanoporous separator into the electrolyte channel adds to the deviation from the analytically obtained result. In the linear case the electrolyte channel was not a part of the
simulation. In this case the deviation of our approximation for 𝑃act, Eq. (14), from the exact expression in Eq. (A.3).
note that this is a much smaller value than commercial nanoporous
separators have and actually unrealistically small using the formula of
Eq. (16). Therefore, such a low value will likely require pores sizes
of the order of the molecules. This predicts that porous separators
are not effective in avoiding advection-driven cross-over. A membrane
would be much better in this case as it can sustain larger differential
pressures without as much liquid permeation. Therefore, we argue
8

that usually a membraneless system in combination with flow-through
electrodes is not possible without large advective cross-over, unless
accurate pressure balancing is ensured between the channel and the
electrode.

Another option to avoid strong advective cross-over is to making
sure that the pressure in the electrode and channel are similar. Using
Eqs. (15) and (16) the channel velocity may be chosen in such a
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Fig. 7. (a) Boundary conditions used in the simulations for optimizing the volumetric surface area in an interdigitated configuration. The geometry within the dashed box is
simulated. The flow comes in an interdigitated flow field through different flow channels. We assumed a network of 15 inlet channels. Therefore, the inlet flow rate is set to �̇�∕15.
Coincidentally, also the channel flow-rate is set to �̇�. (b) The 𝑃𝑎 for the interdigitated flow field in the Tafel regime as compared to the analytically obtained results. (c) shows
the overpotential normalized by the Tafel slope and normalized electrolyte current density with ⟨𝑗⟩ = 2 A∕cm2 and a relatively high volumetric surface area of 𝑎 = 6.4 ⋅ 107 m−1.
At lower 𝑎 the profiles look similar but the legends indicate higher 𝑗⟂∕⟨𝑗⟩ and 𝜂. (d) shows the velocity vectors obtained in the simulations with the concentration profile in the
background. A different scale is used for the arrows in the channel, where the velocities are much higher than in the electrode. The concentration abruptly drops over the thin
nanoporous separator in between the electrode and the channel since advection in the channel keeps the concentration low.
Table 2
The channel average current density and exchange current density used
in the ‘linear’ and ‘Tafel’ cases studied to investigate numerically the
optimal volumetric porous electrode surface area in a flow-through and
interdigitated geometry. With 𝑙pe = 0.75 mm, the superficial exchange
current density 𝑎𝑙pe𝑗∗ can be seen to be larger than ⟨𝑗⟩ for all values
for 𝑎 studied in the linear case and smaller than ⟨𝑗⟩ in the Tafel case.
In the linear case no flow channel was present. Remaining parameters
used in the simulations are shown in Table B.6.
Case ⟨𝑗⟩ [A∕cm2] 𝑗∗ [A/m2] 𝑎∕104 [m]

‘Linear‘ 0.27 202 2.5 − 4.4
‘Tafel’ 2 4.04 2 − 194

way that the pressures balance. Since in general the channel width
is much larger than the electrode pore size, this will require a pro-
portionally larger channel velocity. Flow-rate controllers activated by
pressure difference sensors may in practice ensure that leakage can be
largely avoided. In the interdigitated design the pressure drop is not
linearly distributed over the channel so that this pressure balancing is
impossible. Since the pressure drop over the electrode is usually much
smaller in this design, this is however less of a problem.

4.2.1. Flow-through flow field
We verify Eqs. (27) and (31) using numerical simulations of the

flow-through porous electrode configuration of Fig. 4 (right).
9

The power loss in the porous electrodes is calculated using Eq. (26).
The analytical results are obtained by obtaining the overpotential, 𝜂,
for the Tafel regime and linear regime using Eq. (11). The average
total current density, ⟨𝑗⟩, we keep constant. For the Tafel regime, we
modify Eq. (19) to take into account the flux of reactants leaked into
the electrolyte channel using

⟨𝑢⟩ =
⟨𝑗⟩∕𝑛𝐹 +𝑁leak

𝑐in𝑋𝑙pe
ℎ. (44)

Here, 𝑁leak is the flux of reactants leaked into the electrolyte
channel. This flux has been obtained from the numerical simulations.
It can also be estimated using Eq. (15) by calculating the pressure drop
between the channel and the electrode and using the permeability of
the nanoporous separator. For the linear regime, the electrolyte channel
was not included in the simulation geometry because the leakage flux
was comparable to the flux of reactants producing electric current. This
undesirable operating regime would cause significant deviation from
the analytical model.

In Fig. 6 we see that the analytical prediction of 𝑃act agrees rea-
sonably well with the results from the numerical simulation. A minor
discrepancy comes primarily from the difference between the exact
and approximate expressions for 𝑃act. The exact expression for the
dissipation, Eq. (A.3), is an integration of the product of 𝜂 and 𝑗⟂ over
the porous electrode area, while Eq. (14) multiplies the average of
𝜂 with an integration of 𝑗⟂ over the porous electrode area. For both
the linear and the Tafel cases, the analytically obtained 𝑎 values
opt
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Table 3
A comparison of the electrolyte channel width and velocity used in experiments and the optimal values
calculated using Eq. (25), assuming (𝜇𝐷)1∕6 = 10−2N1∕6. This corresponds to for example 𝜇 = 10−3 Pa s and
𝐷 = 10−9 m2/s. The maximum experimentally used current densities are indicated and were used in the
calculations. Clearly the predicted optimal gap thickness is much smaller, and the optimal velocity is much
higher, than actually used in the experiments.
Reference ⟨𝑗⟩[A∕cm2] ⟨𝑢⟩ [mm∕s] 𝑙ch [mm] 𝜅 [S∕m] ℎ [cm] ⟨𝑢⟩opt [mm/s] 𝑙ch,opt [mm]

[23] 0.06 0.8 1.5 15 2 64 0.1
[45] 0.08 1.6 1 20.2 2 70 0.1
[19] 3 0.01 0.6 22.5 1.1 620 0.024
of 3.1 × 104 m−1 and 1.7 × 105 m−1 respectively, are within 5% of the
umerically obtained optima (2.9 × 104 m−1 and 1.6 × 105 m−1). The
redictions can be improved by including the variation of 𝜂 and 𝑗⟂ in
he model.

.2.2. Interdigitated flow field
The interdigitated flow field is commonly used in electrochemical

evices. Liquid flows in through a channel with a dead end, so it has to
low through the porous electrode to a nearby outlet channel. Fig. 7(a)
llustrates this schematically. An advantage of this flow field is that the
luid travels over only a small fraction of the entire porous electrode
ength, resulting in a much smaller pressure drop compared to a flow-
hrough electrode where the entire electrode length is traversed. We
ill here illustrate how our analytical results for the optimal pore size

an also be used for an interdigitated flow field.
We have to make a few modifications to use Eq. (27) for the power

osses, we will do so by redefining some of the geometrical variables.
ig. 7(a) introduces the channel width 𝑤 and the distance 𝑠r between
ib centres. First, the distance over which the pressure drop arises
hanges to roughly ℎ = (𝑠r + 𝑙pe − 𝑤). This expression approximates
ith straight lines the average length of a path that a typical fluid
arcel will traverse, in case the flow distributes well over the electrode.
his trajectory describes roughly the middle of the dashed lines shown

n Fig. 7(a) or the middle series of arrows in Fig. 7(d). Since for
well-designed interdigitated flow field the pressure drop over the

lectrode is much larger than that in the channel, the fluid will indeed
sually distribute itself relatively homogeneously. In the dimensionless
oefficient of Eq. (27), �̄� = 𝑏⟨𝑗⟩𝑠r𝑙𝑦

2𝑃0
, we take 𝐴 = 𝑠r𝑙𝑦 with 𝑠r or the

electrode area of just one of the repeating units shown in Fig. 7(a)
between the blue dashed lines. Correspondingly, the frictional pressure
drop 𝑃fr will also be taken to correspond to only the flow indicated
for this half-channel-pair so we take 𝐴pe = 𝑤𝑙𝑦∕2. These replacements
change Eq. (19) to ⟨𝑢⟩ = ⟨𝑗⟩

𝑛𝐹𝑐in𝑋
𝑠r
𝑤∕2 and Eq. (17) becomes 𝑃fr =

𝛥𝑝⟨𝑢⟩𝐴pe = 𝜇 ⟨𝑢⟩2𝐴
𝐾 ℎ =

(

⟨𝑗⟩𝑠r
𝑛𝐹𝑐in𝑋

)2 𝑠r+𝑙pe−𝑤
𝜖3∕𝐶KC𝑎2

𝑙𝑦
𝑤∕2 . Therefore, 𝑃0 = 𝑃fr∕�̄�2,

with �̄� =
2𝑎𝑙pe𝑗∗
⟨𝑗⟩ , becomes

0 =
2𝐶KC𝑙𝑦𝜇

𝜖3

(

𝑠r⟨𝑗⟩2

2𝑛𝐹𝑋𝑐in𝑗∗𝑙pe

)2 ( 𝑠r + 𝑙pe

𝑤
− 1

)

. (45)

Fig. 7 shows the two-dimensional simulation results for an interdig-
itated geometry. The boundary conditions for the simulation are shown
in Fig. 7(a). Only a part of the cell along the 𝑧-direction is simulated.
The symmetry in the flow field of the porous electrode is utilized to
truncate the simulation geometry. Similar simulations were performed
in [52] and the authors concluded that 2D simulations captured all the
important features of the cell. A constant conversion of 𝑋 ≈ 0.048 was
used and a current density of ⟨𝑗⟩ = 2 A cm−2.

We see in Fig. 7(b) that our analytical model accurately predicts
the power loss in the porous electrode. The analytical optimum value
of 5.9 × 106 m−1 is in the same order of magnitude as the numerically
obtained optimum of 5.1 × 106 m−1.

Despite the complex flow configuration considered here, the analyt-
10

ical predictions turn out to be surprisingly good.
5. Comparison with literature experiments

The analytical expressions derived in Section 3 are used here to
derive the optimal volumetric surface area for the porous electrodes
used in some experiments from previously published literature.

5.1. Channel thickness

In Table 3 we consider three papers with an electrolyte channel.
Refs. [23,45] are from the field of CO2 electrolysis, while Ref. [19]
considers a membraneless hydrogen–bromine flow battery. In all these
publications it is desirable to avoid overlapping boundary layers grow-
ing from two sides of the channel. For this we derived the optimal
velocity in Eq. (24) and the optimal channel thickness in Eq. (25). We
immediately see that the used velocities are much lower than what
is predicted to be optimal and the gap thickness much wider than
the optimum. This shows that there is still a lot of room to decrease
the ohmic losses while keeping the frictional losses acceptable. Due to
the wide gaps and low velocities, the present pressure drops over the
channel can be estimated to be always below 1 Pa. With the optimal
parameters this will increase to ten to tens of millibars, which may
be easily achievable. Therefore, our recommendations provide a simple
and straightforward way to further improve these systems. In the case
of Ref. [19] the pressure drop will be more than 1 bar, in which case it
will be very hard to keep advective cross-over under control, even with
the microporous separators present. Very delicate pressure balancing
between the channel and the porous electrode will be required in
this case, which may be the understandable reason why suboptimal
conditions were chosen in this case.

5.2. Volumetric surface area

In Table 4 we show the parameters used for three papers using flow-
through porous electrodes. Unlike in our analytical model, Refs. [10,
11] have flow inside the porous electrode parallel to the electric field
instead of normal to it. Fortunately, the analytical model developed
in our work can be applied to these situation as well. As seen in
Eq. (17), 𝑃fr is proportional to volume of the electrode through which
the electrolyte flows so that it does not matter in which direction the
flow is.

We see that, in the chosen examples, the volumetric surface area
is several times, to more than an order of magnitude, smaller than is
optimal. This means that the activation losses could have been substan-
tially lower, while keeping the pumping losses acceptable. These more
optimal conditions do come with a strongly increased pressure drop, of
the order of 0.1, 0.3, and 1.6 bar for the three references in the table,
respectively. Such significant pressure drops require stronger pumps
and puts higher demands on seals, to ensure leak-tightness. In the case
of Ref. [19] these pressure drops would additionally lead to excessive
flows from the porous electrode into the channel. That is, unless the
pressure at any position is exactly balanced by an equal pressure in the

channel.
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Table 4
A comparison of the optimum volumetric surface areas and the parameter used in experiments and the
optimal value calculated from Eq. (32) assuming Tafel kinetics with 𝑏 = 56.5 mV and 𝐶KC = 5. The viscosities
and the porosities that were not reported were estimated. The used volumetric surface areas 𝑎 for the used
commercially available porous electrodes were obtained from [53].
Reference ⟨𝑗⟩ [A∕cm2] ⟨𝑢⟩ [mm∕s] 𝜖 𝑙pe [mm] 𝜇 (cP) 𝑎 [1∕m] 𝑎opt,Taf [1∕m]

[10] 0.13 0.37 0.78 0.15 5 105 2 × 106

[11] 0.4 0.33 0.78 1 5 105 8 × 105

[19] 3 25 0.88 0.33 1 2.6 × 105 7 × 105
6. Conclusion

We analysed the geometric parameters of an electrochemical flow
cell and their effects on the power loss. Simple explicit analytical
relations are provided to obtain the optimal values of these parameters
that maximize the energy efficiency.

We studied the dependence of pumping power losses and ohmic
dissipation on the electrolyte channel width. In the case of a constant
conversion of reactants, we found that the optimum electrolyte channel
width from the analytical model matches the results from the 2D binary
electrolyte numerical simulations, even when the assumptions of a
constant current density and electrolyte concentration are strongly vio-
lated, close to the limiting current density. It deserves recommendation
to use this optimum as a lower limit in the design, since decreasing
the channel width below the optimum rapidly increases the pumping
losses.

We also obtained the optimum volumetric surface area, roughly
the inverse of a typical pore size, considering the pumping and the
activation overpotential losses. Both Tafel and linear kinetics regimes
are considered. As with the electrolyte channel width, this model of ac-
tivation losses is compared with the 2D model from simulations, which
combine the Navier–Stokes equation, including the Brinkman term,
with a Nernst–Planck tertiary current distribution electrode model
using Butler–Volmer kinetics. The analytical model accurately predicts
the optimum value of the volumetric surface area for both flow-through
and interdigitated flow fields. A model taking into account the mass
transfer inside the pores of the electrode is also considered, to extend
the obtained expression for the optimum volumetric surface area. This
model will be useful for cases in which the current density is close to
the limiting value. The expressions obtained in this work give direct
insight into what parameters are of most influence and allow designing
flow cells that are optimal for the intended operating conditions. In
comparing with several experiments from the literature we find that
typically the channel thicknesses and pores sizes in experiments are
chosen an order of magnitude too large, compared to what is optimal
from an energy perspective. Therefore, we argue that more attention
should be paid to operating cells with higher pressure drops, in order
to lower overall energy use.
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Appendix A. Power losses

The power loss due to ohmic dissipation across the electrolyte
channel is given by

𝑃res = 𝑙𝑦 ∫

𝑙ch

0 ∫

ℎ

0

𝑖2

𝜅
𝑑𝑧 𝑑𝑥. (A.1)

Assuming uniform ionic conductivity and a one-dimensional flow
of current in the 𝑥-direction and ⟨𝑖2⟩ ≈ ⟨𝑖⟩2 = ⟨𝑗⟩2, we obtain Eq. (13).
Note that we use the symbol 𝑗 here for the 𝑧-dependent magnitude of
the current density in the current collector, not for the local magnitude
of the vector 𝐣 which depends also on 𝑥. Correspondingly, the averaging
here is over 𝑧.

If the electrode effectiveness factor [27] is close to 1, the local
current density 𝑗⟂ can be assumed to be constant in the 𝑥-direction.
Integrating Eq. (9) in this case gives

𝑗⟂ =
𝑗

𝑎𝑙pe
. (A.2)

The power dissipated due to activation losses in the porous electrode
is given by

𝑃act = 𝑎𝑙𝑦 ∫

𝑙pe

0 ∫

ℎ

0
𝜂𝑗⟂ 𝑑𝑧 𝑑𝑥. (A.3)

Assuming 𝑗⟂ does not depend on 𝑥, using Eqs. (9) and (A.2), gives
Eq. (14).

The power dissipated due to frictional losses in the electrolyte
channel/porous electrode is given by

𝑃fr = 𝑙𝑦 ∫

𝑙ch/pe

0 ∫

ℎ

0
(𝐮 ⋅ ∇𝑝) 𝑑𝑧 𝑑𝑥. (A.4)

Using the incompressibility condition, Eq. (3), and the fundamental
theorem of calculus

𝑃fr = 𝑙𝑦

[

∫

𝑙ch/pe

0

(

𝑝𝑢𝑧
)

|𝑧=0 𝑑𝑥 − ∫

𝑙ch/pe

0

(

𝑝𝑢𝑧
)

|𝑧=ℎ 𝑑𝑥

]

. (A.5)

Here, 𝑢𝑧 is the superficial velocity along the length of the channel
or porous electrode. If the pressure is considered constant along 𝑥, its
difference between the inlet and outlet of a channel/porous electrode
is denoted by 𝛥𝑝, and the average velocity in the channel/porous
electrode as ⟨𝑢⟩ = 1

𝑙ch/pe
∫
𝑙ch/pe
0 𝑢𝑧 𝑑𝑥; the pumping loss 𝑃fr can be written

as

𝑃fr = 𝛥𝑝𝐴ch/pe⟨𝑢⟩. (A.6)

Combining Eqs. (15) and (A.6), we obtain Eq. (17).
Taking the symmetric case for the definition of the overpotential

𝜂 from Eq. (11), using Eq. (A.2), Eq. (A.2), and previously defined
quantities in Eqs. (14) and (20) we find

𝑃𝑎 = 𝑗𝑏 asinh

(

𝑗
)

+
𝜇𝑙pe⟨𝑢⟩2

3
𝐶KC𝑎

2. (A.7)

𝐴 2𝑎𝑙pe𝑗∗ 𝜖
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Table B.5
Parameters to find the optimal
electrolyte channel width.
Parameter Value

ℎ 0.1 m
𝑙𝑦 0.071 m
𝐷el 1.71 ⋅ 10−9 m2∕s
𝜌reac+el 1216 kg∕m3

𝜇reac+el 8.9 ⋅ 10−4 Pa s
𝐷reac 1.37 ⋅ 10−9 m2∕s
𝑗∗ 4.04 A∕m2

𝑐in,elec 1 M
𝑐in,reac 1 M
𝑐red,ref 2 M
𝑐ox,ref 1 M

which gives also the local dissipation per unit area at a given 𝑧.
Taking 𝑐 as the local concentration of the reactant entering either

hrough the channel or the porous electrode, we define c as the cup-
mixing average concentration of the reactant in the channel/porous
electrode of width 𝑙ch/pe:

c =
∫
𝑙ch/pe
0 𝑐𝑢𝑑𝑥
⟨𝑢⟩𝑙ch/pe

. (A.8)

By using Faraday’s law and equating the difference between the rate
t which reactants are entering and leaving the cell to the rate of charge
eaving the cell, we have

𝑐in − cout)𝑙𝑦⟨𝑢⟩𝑙ch/pe =
⟨𝑗⟩ℎ𝑙𝑦
𝑛𝐹

. (A.9)

Here 𝑛 is the number of electrons transferred per reactant molecule.
sing Eq. (18) we obtain from this expression Eq. (19).

ppendix B. Parameters

See Tables B.5 and B.6.

ppendix C. Optimal electrolyte channel width for a given bound-
ry layer thickness

In membraneless systems, a function of the laminar flow channel
s to avoid product cross-over. As products are formed and enter the
lectrolyte channel they continue diffusing in the transverse direction
hile also being advected in the streamwise direction. The result is
boundary layer thickness, defined by the distance at which the

oncentration has decreased by 99% compared to its wall value, given
y

≈ 1.6
(

𝐷𝑙chℎ
⟨𝑢⟩

)1∕3
, (C.1)

here 𝐷 is the product species diffusion coefficient. This expression
ssumes a linearized flow profile 𝑢 ≈ 6⟨𝑢⟩𝑥∕𝑙ch near the wall of a

Poiseuille flow (Lévêque approximation) and constant wall concen-
tration (Dirichlet) boundary conditions. See e.g. Ref. [54] for the
analytical solution. Only the pre-factor changes slightly in case of
constant flux (Neumann) boundary conditions.

In case two such boundary layers arise from products with similar
diffusion coefficient, from the top and bottom of the channel, and we
require that their 99% ‘tails’ do not overlap at the end of the channel,
we require

𝑙ch ≥ 3.2
(

𝐷𝑙chℎ
⟨𝑢⟩

)1∕3
. (C.2)

When this is marginally satisfied it gives

𝑙ch =
√

3.23𝐷ℎ . (C.3)
12

⟨𝑢⟩
Table B.6
Parameters to find the optimal volumetric surface area of a
porous electrode in both the flow-through and interdigitated
simulations. Here 𝑙ns, 𝜖ns, and 𝑑ns are the width, porosity, and
pore size of the nanoporous separator in between the porous
electrode and channel, where the density and viscosity are
taken to be that of the electrolyte. �̇� is the rate of mass flow
in both the electrolyte channel and porous electrode.
Parameter Value

ℎ 0.095 m
𝑙𝑦 0.071 m
𝑙ns 1.25⋅10−4 m
𝜖ns 0.7
𝐾ns 9 ⋅ 10−25 m2

𝜖 0.65
⟨𝑢⟩ch 3.4 cm/s
𝑙ch 1 mm
𝑙pe 0.75 mm
𝐶KC 5
𝜌el 1117 kg∕m3

𝜇el 9.53 ⋅ 10−4 Pa s
𝐷− 1.71 ⋅ 10−9 m2∕s
𝐷+ 7.56 ⋅ 10−9 m2∕s
𝐷reac 1.37 ⋅ 10−9 m2∕s
𝜌reac+el 1216 kg∕m3

𝜇reac+el 8.9 ⋅ 10−4 Pa s
𝐷reac 1.37 ⋅ 10−9 m2∕s
𝜎 (electrode) 909 S∕cm
�̇� 0.0027 kg∕s
𝑇 328.15 K
𝑗∗ (flow-through) 0.1 A∕m2

𝑗∗ (interdigitated) 4.04 A∕m2

𝑤 (interdigitated) 1 mm
𝑠r (interdigitated) 2 mm
𝑐in,elec (electrode) 2 M
𝑐in,reac (electrode) 5 M
𝑐in,elec (channel) 6.6 M
𝑐red,ref 2 M
𝑐ox,ref 5 M

Eq. (21) with Eqs. (16), (17), and Eq. (13) gives
𝑃𝑙ch

𝐴
= 12

𝜇⟨𝑢⟩2

𝑙ch
+

⟨𝑗⟩2𝑙ch
𝜅

. (C.4)

Inserting Eq. (C.3) gives
𝑃𝑙ch

𝐴
= 12

𝜇⟨𝑢⟩5∕2
√

3.23𝐷ℎ
+

⟨𝑗⟩2

𝜅

√

3.23𝐷ℎ
⟨𝑢⟩

. (C.5)

This expression can be minimized with respect to ⟨𝑢⟩ by solving
𝜕𝑃𝑙ch∕𝜕⟨𝑢⟩ = 0 to give Eq. (24), where

(

3.23∕60
)1∕3

≈ 0.82. Re-inserting
into Eq. (C.3) gives (25), where

√

3.23∕0.82 ≈ 6.3. The optimal velocity
and gap thickness both increase with channel length ℎ. A higher current
ensity increases the optimal velocity, but decreases the optimal gap
hickness.

Note that the energy efficiency of a pump can be easily included in
he definition of the frictional power losses by dividing the viscosity

with the pump energy efficiency. This increases the power losses
ssociated with friction and will result in a slightly higher optimal gap
hickness.

ppendix D. Optimal electrode thickness

In Ref. [27] an expression is derived for the thickness of a porous
lectrode that minimizes the activation overpotential. It was assumed
hat the ionic current enters the electrode from the direction of the
ounter-electrode and sees a constant effective conductivity 𝜅 while
he electronic current enters from the opposite side, facing the current
ollector, and sees a constant effective conductivity 𝜎. The optimal
lectrode thickness is given by

pe,opt ≈
𝑏
√

2𝜎𝜅
. (D.1)
𝑗
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For the high conductivity 𝜎 typical of most metals, this optimum can
ecome very large. This happens because the electronic ohmic drop
s very small so that the electrode can be made very thick in order
o benefit from a small decrease in the activation overpotential. Since
ost and practical arguments usually also play a role, a more pragmatic
ptimum is that beyond which the decrease in activation overpotential
ith increasing electrode thickness becomes small. This leads to the
xpression given by [27]

pe,opt ≈
4𝑏
𝑗

(

1
𝜎
+ 1

𝜅

)

(D.2)

In this expression, contrary to Eq. (D.1), the electronic conductivity
no longer plays a role when it is much larger than the ionic conduc-
tivity. Note that either way, the optimal porous electrode thickness is
inversely proportional to the current density so that the higher current
densities call for thinner porous electrodes.

Inserting these expressions into Eq. (32) for Tafel kinetics gives

𝑎opt,Taf =
𝑗
⟨𝑢⟩

√

𝜖3
2𝜇𝜍𝐶KC

. (D.3)

Here 𝜍 =
√

2𝜎𝜅 when using Eq. (D.1) or 𝜍 = 4
(

1
𝜎 + 1

𝜅

)−1
for

Eq. (D.2).
In case of linear kinetics the optimal electrode thickness reads [27]

𝑙pe, opt =
√

𝑇
𝐹

𝜍
𝑎𝑗∗

. (D.4)

where 𝜍 = √𝜈opt𝜎𝜅∕ (𝜎 + 𝜅). Here, 𝜈opt ≈ 2 when 𝜎 and 𝜅 are of
similar magnitude, but slightly higher if they differ by orders of magni-
tude [27]. In this case the optimal thickness depends on the volumetric
surface area, so that we cannot simply insert it after optimizing 𝑎. Since
now the relation between current, velocity, and conversion, Eq. (19),
depends on 𝑎 we have to choose which of these to maintain constant
during the optimization. For linear kinetics 𝑏 asinh

(

𝑗⟂
2𝑗∗

)

≈ 𝑇
𝐹

𝑗⟂
𝑗∗

so
Eq. (D.5), after inserting the optimal electrode thickness of Eq. (D.4),
becomes

𝑃𝑎
𝐴

=
√

𝑇
𝐹𝑎𝑗∗

(

𝑗2
√

𝜍
+

𝜇
√

𝜍⟨𝑢⟩2

𝜖3
𝐶KC𝑎

2

)

. (D.5)

For constant ⟨𝑢⟩ this is optimized by solving 𝜕𝑃𝑎∕𝜕𝑎 = 0 to give

𝑎opt,lin =
𝑗
⟨𝑢⟩

√

𝜖3
3𝜇𝜍𝐶KC

. (D.6)

Note by comparing with Eq. (D.3) that for an optimally thick electrode
𝑎opt,lin =

√

2
3𝑎opt,Taf so that the kinetic regime hardly matters. When it

s known how 𝑗 depends on 𝑧 this result, along with Eq. (D.4), can be
sed to tailor the volumetric surface area and electrode thickness to be
ptimal for all 𝑧.

For constant 𝑋 we insert Eqs. (19) and (D.4) to obtain

𝑃𝑎
𝐴

=
√

𝑇
𝐹𝑎𝑗∗𝜍

𝑗2 + 𝜇

√

𝐹𝑗∗
𝑇

(

⟨𝑗⟩ℎ
𝑛𝐹𝑐in𝑋

)2 𝐶KC𝑎5∕2
√

𝜍𝜖3
. (D.7)

Solving 𝜕𝑃𝑎∕𝜕𝑎 = 0 gives

𝑎opt,lin = 𝜖

(

𝑇 ∕𝐹
5𝜇𝑗∗𝐶KC

(

𝑗
⟨𝑗⟩

𝑛𝐹𝑐in𝑋
ℎ

)2
)1∕3

, (D.8)

where in case of a constant current density 𝑗∕⟨𝑗⟩ = 1.
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