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Parareal Method for Anisotropic Diffusion
Denoising

Xiujie Shan(B) and Martin B. van Gijzen
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Abstract. This paper studies time-domain parallelisation using
Parareal to speed up the computations of anisotropic diffusion filter-
ing. We consider both explicit and implicit Euler based method for the
propagation in time for Parareal. The Preconditioned Conjugate Gradi-
ent (PCG) method is used to solve the systems that arise in the implicit
based method. The estimation of the iteration numbers of PCG allows us
to predict the running time of Parareal calculation, which further guides
us in the experimental stage. Parallelisation of the method is imple-
mented using Coarray Fortran. We illustrate the experimental results
on 3D low-field MRI images using up to 960 cores. The computational
improvement in time is achieved.

Keywords: Image denoising · Parareal · Nonlinear Diffusion
equation · High performance computing

1 Introduction

The nonlinear diffusion equation has many applications, and one of the most
important is image denoising. The classical paper by Perona and Malik [18] pro-
posed image denoising by considering denoising as a diffusion process, in which
the diffusion parameter is chosen such that edges are preserved. Computation-
ally this amounts to integrating time into a nonlinear diffusion equation. This
process can be quite expensive. An option to speed up the computations is to
use a parallel-in-time integration method.

Parallelisation in time was first considered by Nievergelt [16], to make full
use of the potential of massively parallel computers. Parareal was proposed by
Lions, Maday, and Turinici in 2001 [15]. The method was a real breakthrough,
and it is now one of the most widely used parallel-in-time methods, particularly
for the time discretization of partial differential evolution equations. A further
concise version of the method, which is also commonly used now, was given in
[3]. In [2], Bal and Maday gave the convergence analysis of Parareal for the heat
equation and also the application to a nonlinear partial differential equation for
pricing of an American put. Maday and others have been working on this topic
continuously. Others developed a Parareal version for nonlinear PDEs [2] and a
stable Parareal method for first- and second-order hyperbolic systems [5].
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Analysis of the Parareal algorithm has provided new insights into the rela-
tions with other algorithms, which has led to new parallel-in-time algorithms. In
2007, Gander and Vandewalle [12] analyzed the connection between the Parareal
algorithm, space-time multigrid, and the multiple shooting methods. A historical
review of Parareal can be found in [12] as well. Gander et al. further explored
this topic in [11], and interpreted the Parareal algorithm as a multigrid method
which led to the multigrid-reduction-in-time (MGRIT) algorithm. By consider-
ing Parareal a preconditioned iterative process, where the coarse time integration
method acts as the preconditioner, the authors extended Parareal (two-level) to
a multi-level method in 2014 [8]. Wu [24] proposed a parallel coarse grid correc-
tion diagonalization technique and analyzed the convergence rate of this method.
Gander and Wu developed a diagonalization-based Parareal algorithm for dis-
sipative and wave propagation problems. A new Parareal algorithm for ODEs
with discontinuous source in time has been proposed [10]. By defining a smooth
input according to the coarse discretization, the authors illustrate that the coarse
propagator can capture a highly oscillatory or discontinuous source in time.

The research about domain decomposition methods for image denoising
includes successive space correction methods, parallel space correction methods,
etc. [4]. These methods aim to do parallel computing by decomposing the image
(space domain) and they have been used to solve some convex minimization
problems, and variational inequalities with the convex set constraint [7,9,25].
The Parareal algorithm to solve the anisotropic diffusion denoising belongs to a
different category, in which the algorithm is designed to do the parallel calcula-
tion in the time domain. We consider both explicit time and implicit based inte-
gration methods for the coarse and fine grids. The implicit Euler based method
requires solving an extensive nonlinear system at every time step. To linearise
the equation, we compute the diffusion based on the solution of the previous
time step. The resulting linear system is solved with preconditioned conjugate
gradient (PCG) method. We refer to [22] for the details of this solver and the
preconditioners. We will analyse the possible speed-up for both the explicit and
implicit method by estimating the computing time per Parareal iteration, using
the upper bounds on the number of CG iterations provided in [22]. The results
are validated by numerical experiments using up to 960 cores of the DelftBlue
supercomputer of the Delft University of Technology [6].

Our paper is organized as follows. Section 2 presents the denoising model
and its numerical discretization. Section 3, discusses Parareal to integrate the
equations in time. Section 4 investigates potential speedup of Parareal. Section 5
presents the numerical experiments. Section 6 makes some concluding remarks.

2 Model and Discretization

This section describes the anisotropic diffusion denoising model and its numerical
discretization in space and time.
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2.1 Diffusion Model

The idea of using a diffusion equation for image denoising was first considered by
Koenderink in [1] by connecting the linear heat equation to the Gaussian filter.
The nonlinear diffusion model we use was proposed by Peron and Malik in 1990
in [18] and is given by

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂u

∂t
= ∇ · (c(‖∇u‖2)∇u), in Ω × (0, T ),

∂u

∂n
= 0, on ∂Ω × (0, T ),

u(0) = û0, in Ω,

(1)

where Ω ⊆ R
d for d = 2, 3. Choices for the diffusion coefficient are given by

c1(‖∇u‖2) = e−(‖∇u‖2/K)2 , c2(‖∇u‖2) = 1

1+
( ‖∇u‖2

K

)2 , where K is a damping

parameter. The idea behind this nonlinear diffusion model is explained as fol-
lows. Since the edges of the image can be approximately estimated by ‖∇u‖2,
diffusion coefficient c(‖∇u‖2) is also called as edge detector. c(‖∇u‖2) → 0 as
‖∇u‖2 → +∞, this means that in the neighbourhood of an edge (where ‖∇u‖2
is large), the diffusion coefficient is small, i.e., the diffusion is slow. Similarly,
in a flat area, c(‖∇u‖2) → 1, when ‖∇u‖2 → 0. This means that the nonlinear
diffusion behaves like linear diffusion in a flat area, and noise is smoothed out
quickly. Apart from image processing, this model also arises in other contexts,
for example, faceted crystal growth [13] and continuum mechanics [14].

For the one dimensional space case, we consider Ω = [0, 1] and step size
hx = 1

Nx
, where Nx is the number of spatial grid points. ∂

∂x (c(|∂u
∂x |) · ∂u

∂x ) can be
discretized as

∂

∂x
(c(|∂u

∂x
|) · ∂u

∂x
)xi

≈ ci+ 1
2

(ui+1 − ui)
h2

x

− ci− 1
2

(ui − ui−1)
h2

x

,

where ci± 1
2
= ci±1+ci

2 . ci := c(|ux|i) = c(|ui+1−ui−1
2hx

|) for 0 ≤ i ≤ Nx −1. Because
of the Neumann boundary conditions, we have that u−1 = u0 and uNx−1 = uNx

.
The discretization in space is given by

du
dt

=
1
h2

x

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

−c 1
2

c 1
2

c 1
2

−(c 1
2
+ c1+ 1

2
) c1+ 1

2

. . . . . . . . .
cN− 5

2
−(cN− 5

2
+ cN− 3

2
) cN− 3

2

cN− 3
2

−cN− 3
2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

u,

where u = (u0, u1, . . . , uN−1)T . The higher-dimensional case can be discretised
analogously.
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2.2 Linearization and Time Discretization

After spatial discretisation we obtain a system of ordinary equations

du
dt

= C(u)u.

To integrate this system in time we consider the explicit and implicit Euler based
method. Using explicit Euler method, we have for m = 0, 1, 2, . . .

um+1 − um

τ
= C(um)um. (2)

We rewrite it into um+1 = (λ(I + τC(um)))um.
The implicit Euler based method follows um+1−um

τ = C(um+1)um+1,m =
0, . . . , N − 1. To linearise the right-hand side, we approximate C(um+1) by
C(um). With this modification the implicit Euler based method is given by

(
1
τ

I − C(um)
)

um+1 =
1
τ
um, (3)

which is a linear system of the form

Au = f̃ . (4)

In every time iteration, we solve a linear system (4) by using the preconditioned
Conjugate Gradient method (PCG) [20]. Since A is strongly diagonally dominant
we use diagonal scaling (Jacobi preconditioner) as preconditioner, which means
setting the preconditioned matrix M as the main diagonal elements of A.

3 Parareal Algorithm for the Anisotropic Diffusion
Model

This section starts with explaining the idea of Parareal algorithm as a multiple
shooting method [12] and giving the algorithm for solving model (1).

Divide the time interval (0, T ) into subintervals In = (Tn, Tn+1) of size ΔT ,
n = 0, 1, . . . P − 1. Then sub-interval In is decomposed further into smaller sub-
interval with size δt. Now we consider solve the problem

⎧
⎨

⎩

∂u
∂t

= C(u)u, t ∈ (0, T ),

u(0) = u0.
(5)

The initial value problems on each coarse time intervals are given by
⎧
⎨

⎩

∂un

∂t
= C(un)un, t ∈ (Tn, Tn+1),

un(Tn) = Un
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and the matching conditions are U0 = u0 and Un+1 = un(Tn+1, Un).
These conditions compose a nonlinear system which we denote it by F(U) =

0, where U = (U0, U1, . . . , UP )T . Solving this system by Newton method leads
to ⎧

⎨

⎩

Uk+1
0 = u0,

Uk+1
n+1 = un(Tn+1, U

k
n) +

∂un

∂Un
(Tn+1, U

k
n)(U

k+1
n − Uk

n),

where k = 0, 1, . . ..
Approximating un(Tn+1, U

k
n) by the fine propagator F (Uk

n) and
∂un

∂Un
(Tn+1, U

k
n)(U

k+1
n − Uk

n) by the coarse propagators G(Uk+1
n ) − G(Uk

n), the
recursion formula of the Parareal method is

{
Uk+1
0 = u0,

Uk+1
n+1 = F (Uk

n) + G(Uk+1
n ) − G(Uk

n),

For the explicit Euler scheme, we have G(Un) = (I+ΔT ·C(Un))Un and F (Un) =
(I + δt · C(Un))Un. For the implicit Euler based method, we have G(Un) =
(I − ΔT · C(Un))−1Un and F (Un) = ((I − δt · C(Un))−1)

ΔT
δt Un.

One usual initial guess for U0
n+1 is G(U0

n). As the iteration converges and
Uk+1

n+1 − Uk
n+1 → 0, the results from the coarse method G(Uk+1

n ) and G(Uk
n) will

cancel out and Parareal will only reproduces the fine time solution. It has been
proven in [12] that Parareal converges after a maximum of P iterations.

Algorithm 1. Parareal algorithm for solving the model
U0

0 ← Ũ0
0 ← u0

for n = 0 to P − 1 do
Ũ0

n+1 ← G(Ũ0
n)

U0
n+1 ← Ũ0

n+1

end for
U1

0 ← u0

for k = 0 to Kmax − 1 do
for n = 0 to P − 1 do (parallel)

Ûk
n+1 ← F (Uk

n)
end for
for n = 0 to P − 1 do

Ũk+1
n+1 ← G(Uk+1

n )

Uk+1
n+1 ← Ûk

n+1 + Ũk+1
n+1 − Ũk

n+1 which equals to:
Uk+1

n+1 ← F (Uk
n) + G(Uk+1

n ) − G(Uk
n)

end for
if

‖Uk+1
n+1−Uk

n+1‖2

‖u0‖2
< ε then

BREAK
end if

end for
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4 Analysis of the Algorithm

The speed-up of Parareal has been estimated in [2]. The cost of the fine iteration
method is proportional to T

δt . The computational cost of Parareal is proportional
to k( T

ΔT + ΔT
δt ). Fixing k, the cost of Parareal is optimal when T

ΔT = ΔT
δt . For

the aim of comparison, keeping T
δt fixed leads to ΔT =

√
Tδt. Therefore, the

maximum gain in computational time is S = 1
4

√
T
δt for k = 2.

In our paper, for solving the problem with the implicit method, the iteration
number of PCG can be bounded. Later we will use the bounds to estimate the
algorithm’s running time. Since maxi(|Ci,i|) ≤ 2d

h2 , by using the Gershgorin’s
theorem, we have

κτ ≤ 1 +
4dτ

h2
,

where τ is the time step and d is the space dimension. For the details we refer
to [22]. The iteration number of PCG is given as

Nτ = ln
(

ε

2
√

κτ

)

/ ln
(√

κτ − 1√
κτ + 1

)

. (6)

4.1 Potential Speedup by Parareal (Ideal Case)

The total amount of calculation for the fine method with the time step δt is T
δt .

By using the explicit Euler method as fine and coarse propagators, we have the
speedup for Parareal method is:

S ≈
T
δt(

(k + 1) T
ΔT + k ΔT

δt

) ,

where k + 1 is from the initialization of Parareal.
For implicit Euler based method with PCG as fine and coarse propagators,

we have

S ≈
T
δt

N T
δt(

(k + 1) T
ΔT N T

Δt

+ k ΔT
δt NΔT

δt

) , (7)

where N{·} stands for the PCG iterations for different time step. By fixing k, T
and δt, we can search the maximal gain in time.

4.2 Potential Speedup by Parareal (with Communication Time)

Assuming that one communication time between fine and coarse is Tco = Tf2c +
Tc2f , we have total communication time for Parareal is kTco. By calculating
the CPU time for one step time iteration Tf in the sequential case, we have
the estimated CPU time for Parareal as Tf

(
(k + 1) T

ΔT + k ΔT
δt

)
. The total time

for Parareal calculation for the explicit Euler in the super computer is then
Ttotal = Tf

(
(k + 1) T

ΔT + k ΔT
δt

)
+kTco. By denoting the CPU time for one PCG

iteration as Tfcg
, we have Ttotal = Tfcg

(
(k + 1) T

ΔT N T
Δt

+ k ΔT
δt NΔT

δt

)
+ kTco for

the implicit Euler based method.
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5 Experimental Results

This section will give the run time and image results tested by the denoising
model. Image data and parameter choices for the Parareal algorithm are provided
as well, including the CG iteration number, tolerance ε for Parareal, ΔT for
coarse method, and δt for fine method.

The parallel implementation for the Parareal method is done in Fortran using
Coarray Fortran (CAF). CAF follows the SPMD model. Each process (called
image) has its private variables. Variables which have a so-called codimension are
addressable from other images. We use CAF to implement the fine propagator in
parallel on each coarse interval. We run the fine steps parallel in time indicating
the number of cores.

The numerical tests have been performed on the DelftBlue supercomputer,
which now has 228 Intel Xeon compute nodes with 48 cores each. We test a 3D
melon image (128 × 128 × 128) scanned by low-field MRI machine [17] using model
(choosing diffusion coefficient to be c1 with K = 20) in Table 1 and Table 2. The
fine time step is 1e−7 and the total number of time steps is 960, meaning that
T = 960× 1e−7. The relative tolerance for Parareal and PCG to converge is 1e−6.

Table 1 shows the results for explicit method. When the number of coarse steps
equals 48,we have the lowest run time,with a speed-up of about two.The estimated
time is obtained from the ideas described in Sect. 4.2 without communication time.
This estimated time predicts well the optimal number of coarse steps for this exam-
ple. The estimated times are consistently lower than the measured run times. This
can be explained by the fact that we did not consider communication time in the
estimated time.

The results for implicit Euler based method are tabulated in Table 2. The CG
iterations we got from the experiments match the theoretical iterations in (6). We
again observe that the estimated times predict well the optimal number of cores,
which is 48, and again we see a speed-up of about a factor of two for the optimal
number of cores. We do observe that, with for increasing number of cores, our esti-
mation for the run time becomes too pessimistic. For this we do not have a satis-
factory explanation yet (Fig. 1).

Table 1. Parareal times obtained for explicit Euler. ( “Coarse” stands for coarse step
T/ΔT , “Parareal” the total Parareal iterations, “Elapsed time” the running time for
the algorithm, “Total iterations” the fine and coarse iterations with Parareal iterations,
“Estimated time” is calculated as Ttotal. )

Coarse Parareal Elapsed time Total iterations Estimated time
1 1 286 960 286.00

12 12 480 1116 332.48
48 4 127 320 95.33
96 3 136 414 123.34

192 3 243 783 233.27
480 2 449 1444 430.19
960 1 646 1921 572.30
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Table 2. Parareal time obtained for implicit Euler based method. (“CG coarse” stands
for the iterations of CG for one coarse propagation, “CG fine” iterations of CG for one
fine propagation, “Total iterations” the CG iterations for coarse and fine propagations
with Parareal iterations, “Estimated time” is calculated as Ttotal. )

Coarse Parareal CG coarse CG fine Elapsed time Total iterations Estimated time
1 1 2 2 1102 1920 1102

12 8 7 2 1413 2036 983
48 5 4 2 656 1352 578
96 4 3 2 690 1520 707

192 3 3 2 874 2334 1075
480 3 2 2 1882 3852 2211
960 1 2 2 1502 3842 2205

Fig. 1. Three slides from the 3D melon image, the model is with diffusion coefficient c2
and K = 15. The total diffusion time is 2.4e−6.

6 Conclusions

In this paper, we have investigated the use of the Parareal method to speed up
anisotropic diffusion filtering. The parallelisation in time can be done with only
local modifications to the code, without the need to completely restructure the
program. We have derived theoretical estimates for the run time that can be used
to predict the optimal number of cores. A modest but useful speedup with a factor
of two is obtained to denoise a 3D low-field MR image of a melon.

Acknowledgements. The authors thank the Leiden University Medical Center for
providing the low-field MR image and the reviewers’ comments to help improve the
paper.
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A Appendix

So far, we have focused on the classical denoising models as proposed in [18] by
Perona and Malik. The total variational model proposed in [19] is a widely used
alternative. In this appendix, we give numerical results for this technique. We use
Parareal with the linearised implicit Euler method. As explained in [21], it is not
possible to derive a useful upper bound on the number of CG iterations for the total
variation model and make an a priori prediction for the optimal number of cores
for this method. Solving the total variation model with gradient descent method
equals solving (1) with c(‖∇u‖2) = 1

‖∇u‖2
. Following the idea of [23], we solve it

with a lagged diffusivity fixed point iteration. For the numerical experiments, we
use 1

‖∇u‖+ε instead of 1
‖∇u‖ , where ε = 1e−5. One fine time step is 1.5e−6 and the

total evaluation time is 7.2e−4 (Table 3).

Table 3. Parareal times obtained for implicit Euler. ( “Coarse” stands for coarse step
T/ΔT , “Parareal” the total Parareal iterations, “Elapsed time” the running time for the
algorithm.)
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