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ABSTRACT Automated vehicles promise numerous advantages to their users. The proposed benefits
could however be overshadowed by a rise in the susceptibility of passengers to motion sickness due to
their engagement in non-driving tasks. Increasing attention is paid to designing vehicle motion to mitigate
motion sickness. In this work, the deep reinforcement learning (DRL) method is used to plan vehicle
trajectories, with a focus on minimizing low-frequency accelerations. These are known to be the primary
cause of motion sickness. The goal is achieved by incorporating a frequency-weighted discomfort term
into the reward function during training. The ability of the trained agent to target undesirable frequencies
in accelerations is verified by comparing it with another agent trained for improving overall acceleration
comfort. A reduction of 9.6% in frequency-weighted discomfort is achieved. The motion plan from the
DRL agent is further compared with trajectories generated by human drivers in real-world scenarios. The
results demonstrate comparable performance between the DRL agent and human drivers. Meanwhile, a
significant reduction in online computation time has been observed when compared to a motion planner
based on numerical optimization.

INDEX TERMS Automated driving, deep reinforcement learning, motion planning, motion sickness,
proximal policy optimization.

I. INTRODUCTION

AUTOMATED driving is advancing fast in recent years.
It is attractive thanks to the potential benefits they offer

in terms of improved safety, higher traffic efficiency, and an
increase in user productivity. Being freed from the responsi-
bility of driving the vehicle, users of automated vehicles are
expected to engage in numerous non-driving tasks ranging
from conversing with co-passengers and listening to music
to texting and Web surfing [1]. In order for the passengers
to be able to perform such tasks, it is imperative that auto-
mated vehicles provide a high level of driving comfort. It is
anticipated that with the advent of complete automation in
cars, there would be an increased susceptibility of passen-
gers to motion sickness [2]. This could be due to a multitude

The review of this article was arranged by Associate Editor Jia Hu.

of reasons. The driver would take on a much more passive
role, especially with higher levels of automation, which is
well known to increase motion sickness [3]. The industry
is also re-imagining vehicle cockpit design, unveiling con-
cepts with office-like environments, rearward-facing seats,
and passengers facing each other. Combined with the pas-
sengers engaging in non-driving tasks, this would lead to a
lack of a stable visual horizon and lower predictability of
the direction of motion. The combined effect of all these
factors may very well lead to a significant increase in the
occurrence of motion sickness, posing a substantial threat to
the envisioned benefits of automation, and consequently to
the acceptance of automated vehicles among customers.
Motion sickness arises from illusory or actual passive

self-motion. The symptoms of motion sickness range from
drowsiness and fatigue to stomach awareness and nausea [4].
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FIGURE 1. Motion Sickness frequency weightings for lateral and vertical
accelerations, as adapted from [8].

The most widely accepted theory explaining motion sick-
ness is the sensory mismatch theory, which postulates that
motion sickness arises from the conflict between antici-
pated and sensed motion stimuli [5]. The Central Nervous
System (CNS) maintains an internal model of the dynamics
of the human body, which estimates the spatial orientation
of the body by fusing information from the motor outflow
and noisy sensory signals. The conflict between these effer-
ence signals with the polysensory afference signals obtained
from the sensory organs is used to update and improve the
internal observer model but also gives rise to motion sick-
ness. The incidence of motion sickness is predominantly
caused by low-frequency accelerations (below 0.5Hz), with
the effect peaking around a frequency of 0.2Hz for vertical
accelerations [6], with a similar peak for longitudinal oscil-
lations [7]. For lateral accelerations, it was found that the
incidence of motion sickness was independent of frequency
from 0.0315 to 0.25Hz, followed by decreasing intensity
with higher frequency levels [8]. The frequency weighting
filters to predict the incidence of nausea for lateral and ver-
tical oscillations have been shown in Fig. 1. As is evident
from the frequency weighting, in order to efficiently inhibit
the incidence of motion sickness, it is necessary to deal
with low-frequency accelerations. This would in turn require
motion planning over longer time horizons to accurately
predict low-frequency acceleration components.
Although some studies explored the design of automated

vehicles to mitigate motion sickness among passengers such
as through the layout of the seating arrangement [9], pro-
vision of audio and visual cues [10], [11], suspension
tuning [12], and the use of advanced suspension actua-
tors [13], they do not directly address the underlying cause
of motion sickness, which is the motion regime itself. In
a study on comfort in ADS, it has been shown that the
motion regime needs to be designed in a manner spe-
cific to the maneuver or situation [14]. The magnitudes of
accelerations generated by different drivers are found to be
independent of the vehicle characteristics and were heavily
influenced by the driving style of the individual driver [15].
In [16], the driver was found to be heavily implicated in
the generation of motion sickness among passengers, with

low-frequency lateral accelerations being primarily responsi-
ble for the nauseogenic symptoms. No significant correlation
between vertical, roll, or pitch motion and motion sickness
was established. Based on these findings, it is safe to con-
clude that to effectively combat the occurrence of motion
sickness in automated vehicles, the vehicle motion itself
needs to be planned with particular attention to lateral and
fore-aft accelerations.
Passenger comfort has been considered as an objective in

motion planning and studied extensively through a variety of
methods including planning smooth paths using clothoids,
Bezier curves, and polynomial splines, minimizing accelera-
tion and jerk values in an optimization-based framework, or
other motion planning methods such as Rapidly-exploring
Random Trees [17], [18], [19], [20], [21], [22], [23], [24],
[25], [26]. There has also been research into the ride comfort
in terms of vertical oscillations in AVs [27], and also high-
level route planning [28]. However, very limited research
works have directly addressed motion sickness through
motion planning. The motion planning problem was for-
mulated as an optimal control problem in [29], where the
objective was to minimize the Motion Sickness Dose Value
(MSDV). It also revealed the relationship between sickness
levels and travel time. A similar goal was attempted in [30],
where a high pass filter was employed and the limits in
vehicle actuators are expected to filter out higher-frequency
motion. A more complex prediction model for motion sick-
ness, namely the 6-degree-of-freedom subjective vertical
conflict (SVC) model, was used in [31] for optimizing the
vehicle trajectory as well as the gains of the path-following
controller for a lane change maneuver. The works men-
tioned above mitigate motion sickness with motion planning
by solving a numerical optimization problem. While they
could potentially find an optimal solution, they are highly
demanding on computational resources. Given the limited
computational power available onboard, it could be chal-
lenging to solve the underlying optimization problem in real
time. In particular, including the frequency weighting filters
in the optimization scheme introduces extra complexity to
the planning problem.
To improve computational efficiency, learning-based

approaches could be an attractive alternative as they can
effectively shift the bulk of the computational burden offline
and are hence far less demanding on onboard resources. They
have been successfully applied to a plethora of engineer-
ing problems including object detection and classification,
speech recognition, content recommendation, etc. For our
application though, the more popular branch of supervised
learning techniques is not applicable. Because they require
labeled training data in large quantities that are difficult
to collect. To do so, human subjects should be exposed
to sickening driving regimes and their responses should be
recorded. The inherent variability among humans of suscep-
tibility to motion sickness makes it challenging to reliably
quantify the nauseogenicity of imposed motion. Instead, deep
reinforcement learning (DRL) is deemed a more suitable
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approach to this problem. It is a machine learning paradigm
that combines the fields of deep learning and reinforcement
learning. Reinforcement learning does not require labeled
training data but only needs a representative training envi-
ronment. DRL has already been applied effectively to various
levels of motion planning problems, with the notable advan-
tage of requiring relatively low computational requirements
for the trained network [32]. Some automotive applications
of DRL include behavioral decision making, path planning to
end-to-end vehicle control [33], [34], [35], [36], [37], [38].
DRL has also been shown to be able to successfully capture
long-term dependencies in systems when applied in con-
junction with methods such as Monte Carlo Tree Search and
Long Short Term Memory Neural Networks [39], [40], [41].
This could be interesting to explore with regard to capturing
the effects of low-frequency accelerations in motion sickness.
The contribution of this paper is a DRL approach to

motion planning that minimizes motion sickness among pas-
sengers of automated vehicles by optimizing the vehicle
trajectory to reduce nauseogenic accelerations. In particular,
the ability of DRL to shape the frequency of longitudinal and
lateral vehicle accelerations to reduce overall nauseogenic-
ity has been investigated. This was done by comparing
the frequency domain performance of a DRL agent trained
to minimize frequency-weighted accelerations to an agent
trained on unweighted accelerations. The performance of
these agents is also compared to a planner solving the respec-
tive environments using an optimization-based technique, to
measure how close the agents come to ‘solving’ the designed
training environment. To further establish the applicability
of DRL to motion planning with regard to motion sick-
ness, experimental trials with human drivers were carried out
on an actual road section to establish a baseline of human
performance. The nauseogenicity of the trajectories followed
by the human drivers is compared to those generated by DRL
agents, over a range of travel times to account for varying
driving styles among humans.
The paper is structured as follows. Section II gives a

basic overview of DRL and details the setup for training
and evaluating the agent. In Section III, the experimental
setup for establishing the human baseline has been explained.
Section IV details the results of the simulation and the com-
parisons between the human drivers and the trained agent,
with the final conclusions of the study in Section V.

II. DRL TRAINING ENVIRONMENT
A. DEEP REINFORCEMENT LEARNING
Reinforcement learning is a sub-field of machine learning in
which an agent learns to perform a task through a trial-and-
error process. The agent is trained within an environment
where an action taken leads to a reward. In deep reinforce-
ment learning, this agent’s observation-action mapping is
approximated by a deep neural network. The environment is
essentially a system governed by a state transition function:

sk+1 ∼ P(.|sk, ak) (1)

where sk ∈ S is the state, and ak ∈ A is the action taken by the
agent. The agent acts according to a policy πθ parameterized
by θ ∈ R

K , which is given as:

ak = πθ (ak|sk) (2)

A series of actions taken by the agent following the policy
π till a terminal state is reached is called a rollout or a
trajectory τ = [s0:H, a0:H], where H is the horizon, and the
steps from initiation s0 to the terminal state sH form an
episode. For every action the agent takes, the environment
returns a scalar reward r, which is modeled by a reward
function:

rk = R(sk, ak) (3)

The expected value of the accumulated reward over a period
of time is called the return J(θ):

J(θ) = E

{ ∞∑
k=0

γ krk

}
(4)

where γ ∈ [0, 1) is the discount factor. The agent inter-
acts with the environment and samples trajectories, with the
objective of learning an optimal policy π∗

θ which maximizes
the expected return. Most of the common DRL algorithms
are based on some form of policy gradient, and parameter
update using gradient ascent

θh+1 = θh + αh�θJ(θ = θh) (5)

where h is the update step of the policy and αh is the
learning rate for updating the weights of the network.
The algorithms that use a gradient estimate to perform
the parameter update are known as REINFORCE algo-
rithms [42]. These REINFORCE algorithms are easy to
implement but suffer from instability during training, low
sampling efficiency, and a lack of robustness [43]. The
sampling efficiency and reliability could be significantly
improved with a clipped objective function [43]. The clipped
objective estimates a pessimistic lower bound on the value
of the policy performance and consequently limits the size
of gradient update steps, preventing drastic performance
degradation. This algorithm is known as Proximal Policy
Optimization (PPO). The PPO algorithm can handle contin-
uous state and action spaces, offers ease of implementation
and reliable performance, and therefore has been chosen for
our application.

B. ENVIRONMENT AND OBSERVATION SPACE
We developed a custom training environment using OpenAI
Gym. In order to ensure that the agent learns to plan com-
fortable paths for a wide range of scenarios, random road
profiles were generated for training. In each episode, the
agent is given a road profile that has a total length of L and
consists of intermediate sectors of constant-curvature arcs.
The initial and final sectors are straight paths while each of
the remaining sectors has a curvature κi sampled randomly
from the uniform distribution U[κmin,κmax]. The length of each
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sector was obtained by partitioning the total length of the
road into sectors, again in a manner to ensure that the lengths
form a uniform distribution U[lmin,lmax]. The initial velocity is
randomly sampled from a uniform distribution U[vmin,vmax].
The road was assumed to be a constant width through-
out the entire section. The environment was assumed to be
completely observable, and the state vector was defined as:

s = [
κ0:n−1, l0:n−1, y0, v0

]
(6)

where κ0:n−1 is the array of curvatures of the road sectors,
l0:n−1 are the lengths of the respective sectors, and y0 and
v0 are the initial lateral position and longitudinal velocity of
the vehicle, respectively. Since the curvatures and lengths of
the road profile and the vehicle velocity can take any value
within the defined limits, the state space is continuous in
nature. The state contains complete information about the
vehicle and the road required for the agent to plan the tra-
jectory. The states and observations spaces are normalized to
lie between [−1, 1], which ensured that the different quan-
tities are scaled appropriately and the weights in the neural
network are not skewed due to different orders of magnitude
of the state variables.

C. MOTION DEFINITION AND ACTION SPACE
The vehicle motion was defined in terms of its position and
velocity, and it is assumed that a path-following controller
would be used to follow the defined trajectory. The position
of the vehicle is defined with a lateral deviation with respect
to the lane center, measured perpendicular to the normal
driving direction and with the left-hand side being positive.
To ensure smoothness in the planned trajectory, a cubic spline
is utilized to approximate the velocity and position profiles.
The reference position was described as a cubic function of
the distance traveled along the centerline of the path. The
reference position is calculated as the lateral deviation y from
the centerline, given by the following equation

yi(u) = ay,iu
3 + by,iu

2 + cy,iu+ dy,i i = 0, . . . , k − 1 (7)

where u ∈ [0, 1] is a normalized distance parameter, 0 and
1 at the beginning and end of each sub-interval Pi of the
spline respectively. ay,i, by,i, cy,i and dy,i are the cubic spline
coefficients for the ith polynomial Pi. k is the total number of
cubic polynomials that compose the spline. The coefficients
are calculated to satisfy the following boundary conditions

• The first derivative at the beginning and end of each
polynomial is continuous

P(1)i−1(1) = P(1)i (0) i = 1, . . . , k − 1 (8)

• The second derivative at the beginning and end of each
polynomial is continuous

P(2)i−1(1) = P(2)i (0) i = 1, . . . , k − 1 (9)

• At the start and end of the road, the first derivative
is zero. This ensures an initial and final heading along

the road direction, and zero initial and final longitudinal
acceleration

P(1)0 (0) = P(1)k−1(1) = 0 (10)

A total of k control points or knots are distributed along
the road to shape determine the shape of the trajectory. The
velocity profile is calculated in a similar fashion where the
knots are placed at the same positions as the spline used to
calculate lateral positioning.

vi(u) = av,iu
3 + bv,iu

2 + cv,iu+ dv,i i = 1, . . . , k − 1 (11)

Together, the predicted values at the control points for both
position and velocity comprise the action space of the DRL
agent. The action space of the agent is therefore given as
follows

a = [
y1(0), y2(0) . . . , yk−1(0), yk−1(1),

v1(0), v2(0) . . . , vk−1(0), vk−1(1)
]

(12)

Similar to the state and observation space, the action space
was also normalized to lie between [−1, 1]. The bounds for
normalization are decided based on the vehicle and lane
width and speed limits. Considering a typical lane width of
3.3m according to road design guidelines in the Netherlands,
and a vehicle width of 2.1m, the control knots for trajec-
tory are limited to a maximum deviation of 0.5m from the
lane center to keep the vehicle within the lane boundaries.
Inside built-up areas in the Netherlands, the most common
speed limit is 50 kmh−1, which gives the upper limit for
velocity. The lower limit for velocity is set to 18 kmh−1.
The knot vectors along the length of the road are placed so
as to obtain equal partitions of the total length of the road.
A minimum length is enforced on each sector of constant
curvature so that it contains at least one spline knot vector.
This constraint ensured that for every corner the spline could
accommodate a change in the direction corresponding to a
change in curvature of the path.

D. REWARD FUNCTION
The agent is expected to learn to plan paths that minimize
motion sickness while also maintaining reasonable travel
time. Hence a reward function is designed to reflect these
factors. First, a discomfort term D is defined as the integral
of the squared planar accelerations over the entire duration
of the motion:

D =
∫ T

0

(
a2
x + a2

y

)
dt (13)

where ax and ay are the longitudinal and lateral accelerations
of the vehicle, respectively, and T is the total travel time to
traverse the planned trajectory. Our goal is to selectively
minimize accelerations with the most significant contribu-
tion to the generation of motion sickness in passengers, and
therefore the accelerations need to be weighted based on
the frequency dependence of motion sickness. Models such
as the SVC model [44], [45] can be used to approximate
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FIGURE 2. The bandpass filters used for weighting lateral and longitudinal
accelerations to calculate the discomfort term.

the relation between acceleration frequencies and motion
sickness. The SVC model can also account for rotational
accelerations. However, the point-mass model used to calcu-
late the accelerations cannot provide any information about
rotations. In addition, the application of SVC model to weigh
the accelerations would increase the computational complex-
ity of the reward calculation. The frequency dependence of
accelerations can also be modelled by frequency weighting
filters, as proposed in [7], [8]. To further simplify the cal-
culation of the reward for our purpose, 2nd order transfer
functions were used to approximate these frequency weight-
ing filters, and then applied to the accelerations prior to
calculating the discomfort term. As can be seen from Fig. 1,
for lateral oscillations, accelerations in the frequency range of
0.02 to 0.25Hz have the most significant contribution toward
inducing motion sickness in passengers, with the weighting
independent of the frequency of excitation [8]. Incidence of
nausea has been shown to peak around 0.2Hz for longitudi-
nal oscillations, with the frequency dependence dropping off
with higher and lower frequencies [7]. To incorporate these
findings into the discomfort term, two bandpass filters were
adopted for weighting the lateral and longitudinal acceler-
ations separately. The cut-off frequencies are 0.02Hz and
0.25Hz for lateral acceleration and 0.15Hz and 0.25Hz for
longitudinal acceleration. Each bandpass filter is expressed
by the following transfer function in continuous time:

BP(s) = K
1

τ1s+ 1

s

τ2s+ 1
(14)

where τ1 and τ2 are the time constants of the low and high
pass filters respectively. To ensure that neither of the lateral
or longitudinal acceleration is weighted preferentially, the
gain K of the filter for longitudinal acceleration has been
adjusted to obtain an equal area under the curve for the
frequency range between 0 and 1Hz. The resulting bandpass
filters are shown in Fig. 2. The filters are then converted
to state-space models and discretized in order to fit into
the calculation for the reward function. A 30 s cooldown
period is added to the end of the motion plan where zero

acceleration input is given. This is to take into account the
long-tail effect of the bandpass filter with slow dynamics
where the effect of the previous acceleration input continues
to be observed in the filter output. The penalty on the filter
output during this period should be included in the reward.
The overall reward is formulated as a negative weighted

sum of the discomfort D and the travel time T , with the
latter preventing the agent from acquiring the behavior of
driving at excessively low speed:

R = −(WT + D) (15)

where W is a weighing factor and a larger W means travel
time is considered with more importance, encouraging the
agent to plan for traveling faster while sacrificing some
motion comfort. To calculate the accelerations and travel
time, the path is first discretized into stations spaced 1m
apart along the length of the road. At each station k, the
velocity vk, and the waypoint’s lateral deviation yk, are
determined using the respective spline functions. Given the
coordinates of a station and its normal direction, the cor-
responding waypoint can be located in the global frame.
Consequently, it is possible to find the distance between
two consecutive waypoints and the curvature, enabling the
calculation of the reward:

�Tk = 2dk/(vk+1 + vk) (16)

ax,k =
(
v2
k+1 − v2

k

)
/2dk (17)

ay,k = κk
(
vk + ax,k�Tk

)2 (18)

�Dk =
(
a2
x,k + a2

y,k

)
�Tk (19)

R =
N−1∑
k=1

(W�Tk +�Dk) (20)

The calculation is purely based on kinematics so the train-
ing requires minimal computation. It also leads to a more
general trajectory planner which can be implemented on a
range of vehicles, independent of individual vehicle parame-
ters. In order to quickly guide the agent away from planning
excessively aggressive motions at the beginning of the train-
ing, we impose a conditional penalty that will be given to
the agent when the combined planar acceleration exceeds 1g
at any timestep.

E. DRL AGENT TRAINING
The training consisted of single-step episodes. In each
episode, the agent first receives the initial information s0
from the environment as defined in (6). Based on this,
the agent then outputs knot vectors for the entire path and
receives the corresponding reward. As described in Section I-
A, the PPO algorithm is used to train the agent. We adopt
the standard PPO implementation from the Stable Baselines3
library [46]. The hyperparameters listed in Table 1 are cho-
sen after being optimized with Optuna [47]. All training
and testing were performed on a laptop PC with an Intel
i5-10210U CPU plus an NVIDIA GeForce MX250 GPU.
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FIGURE 3. A satellite view of the road section including the two roundabouts has been depicted. The vehicle positions as measured by the GPS sensor for one of the test runs
have been shown in white, along with the estimated trajectory as obtained from the Kalman filter. As can be seen, the trajectory is reconstructed and the discontinuities in the
data have been eliminated.

TABLE 1. Hyperparameters for the PPO algorithm and their corresponding values.

Given the limited computational resources, the optimization
of hyperparameters is only preliminary. Hence this method
may hold more potential than what is presented in this paper.

F. OPTIMIZATION-BASED PLANNER
To determine the upper limit of agent performance
in the designed custom environment, we developed an
optimization-based spline planner that has the same amount
of freedom as the DRL agent:

max
a

R(s = s0, a)

where: a = [
y1:k−1, v1:k−1

]
s.t. ymin ≤ yi ≤ ymax

vmin ≤ vi ≤ vmax (21)

where a consists of the control points as defined in (12),
R is the reward function given in (15), and s = s0 is the
initial state of the environment. The constraints on the vehi-
cle velocities and lateral positions are identical to those
imposed on the DRL agent. The Sequential Least SQuares
Programming (SLSQP) algorithm from the SciPy library is
used to solve the optimization problem above. It should be
clarified that the trajectory generated by this optimization-
based planner is not the best possible motion plan for a given
road profile. Instead, it is a measure of the best performance
the DRL agent can be expected to achieve in a spline-based
planning scheme.

III. HUMAN BASELINE PERFORMANCE
In addition to comparing the performance of DRL agents
with regard to targeting motion sickness, it is also interesting
to compare the frequency content of the accelerations
generated by the DRL planner to the accelerations typi-
cally generated by human drivers. In this study, a human
performance baseline has been established by measuring
an instrumented vehicle’s position, velocity, and acceler-
ation values as it is driven by volunteers on a chosen
road section. The chosen road section is located in the
Netherlands. It begins at the exit ramp of motorway A12
(52.064◦N, 4.818◦E) and ends at the distributor road N420
(52.068◦N, 4.828◦E, see Fig. 3). When driving through
the road section, the vehicle has to navigate through two
roundabouts connected by a path consisting of consecutive
turns. The section is considered sufficiently demanding on
the driver’s capability in planning and controlling vehicle
motion.
To evaluate the performance of the DRL agent, we focused

only on the trajectory followed on each of the roundabouts,
as the remaining portions of the path consisted mostly of
long straight sections which would substantially increase
the number of control points required, and subsequently
the training time. The chosen sections of the roundabouts
spanned 134 m in length, including the straight parts at entry
and exit. The roundabouts will be referred to as RB1 and
RB2 in sequential order respectively. The motion profile as
output by the agent was then evaluated in a high-fidelity IPG
CarMaker environment with a multi-body vehicle model,
as the custom training environment only used a point-mass
model which would not be directly comparable to actual
vehicle accelerations. Section III-A describes the experi-
mental setup, Section III-B introduces the data processing
method, and Section III-C details the controllers and vehicle
model used for evaluating the motion planned by the DRL
agent.
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FIGURE 4. The test vehicle, a Hyundai Tucson (top), equipped with a double
antenna GPS (bottom left) and IMU system (bottom right) for measuring the driving
performance of human drivers.

A. DRIVING EXPERIMENT
An instrumented vehicle has been driven by volunteers to
provide a preliminary human driving performance baseline.
The test vehicle was a Hyundai Tucson with an automatic
transmission to reduce the workload of the drivers and min-
imize the impact of gear shifting on comfort. To record the
vehicle trajectory, we installed a high-precision 100Hz dual-
antenna GPS sensor from Racelogic in combination with an
inertial measurement unit (IMU) from XSENS (see Fig. 4).
A total of 6 volunteers were recruited with an average age of
27.5 and an average driving experience of 7.2 years count-
ing from the date of receiving the first driving license. The
volunteers were informed about the purpose of the experi-
ment and tried to drive the test route smoothly and swiftly.
Each volunteer was given two attempts and the one with
lesser interaction with road users is chosen. The trials were
conducted in the evening between 19:30-21:00 when the
traffic is less busy in the area. This improves the chance of
capturing an unobstructed test run.

B. PROCESSING OF EXPERIMENT DATA
The test runs resulted in a collection of vehicle position,
velocity, and acceleration profiles. The motion profiles were
portioned for the two roundabouts of interest using the
GPS position information. To establish the human base-
line performance, however, the measurement data could
not be used directly. to ascertain the start and end of
the trajectories due to errors resulting from measurement
noise. To produce reasonable driving data representative
of actual vehicle trajectories, a Kalman filter was imple-
mented. A kinematic model is used here with the state given
by vehicle position and velocity and the accelerations as
inputs:

pk = pk−1 + vk−1�t + 1

2
ak−1�t

2

vk = vk−1 + ak−1�t (22)

where pk, vk and ak are the position, velocity, and acceler-
ation vectors in the global coordinate system at time step
k and �t is the sampling time. The state is expressed as
x = [pTvT ]T . The acceleration vector is taken as the IMU
measurements but converted to global coordinates using yaw
orientation. The process noise is assumed to be a result of the
noise in IMU measurements. The acceleration data has been
low-pass filtered beforehand to remove the high-frequency
noise using FFT-based techniques. We assume the system to
be fully observable with all state measurements zk available
from the GPS sensor:

zk =
[
p
v

]
+ ηk ηk ∼ N (0,R) (23)

Using the system dynamics given by (22) and the measure-
ment model given by (23), and assuming normally distributed
Gaussian noise for all sensors, the Kalman filter could obtain
a better estimation of vehicle trajectory and velocity pro-
file over the test run. The desired portions of the trajectory
of RB1 and RB2 were extracted using the estimated vehi-
cle position. An example of the measured and estimated
trajectory and velocity profiles has been shown in Fig. 3.

C. SIMULATION SETUP
The motion profiles generated by the DRL agent were based
on a point-pass model, so in order to have a fair comparison
with the human drivers, the trajectories were evaluated in
a virtual IPG CarMaker environment. The vehicle model
used was comparable in dimensions and kerbweight to the
actual test vehicle in order to have as close a comparison as
possible. To track the reference trajectories generated by the
motion planner, a simple Stanley controller was implemented
as follows

δ = (ψr − ψ)+ atan
ksteer(yr − y)

v
(24)

where δ and ψ are the steering input and heading of the
vehicle respectively, yr is the reference position, while ksteer
is a parameter that decides the aggressiveness of the con-
troller. The throttle percentage PT or brake percentage PB
is decided as a weighted sum of reference forward acceler-
ation ax,r with the error in velocity, scaled by a factor kdrive
or kbrake depending on whether the vehicle is desired to be
accelerated or decelerated.

PT = kdrive
(
ax,r + kspeed(vr − v)

) × 100% (25)

PB = kbrake
(
ax,r + kspeed(vr − v)

) × 100% (26)

The parameters of the Stanley controller were tuned to
achieve a RMS tracking error of less than 0.1m for all the
planners, for all motion plans with different weights W. The
focus of the research was on developing the DRL motion
planner, and investigating the path tracking performance
was not a primary goal of the study. In principle, other
path-following techniques can also be used [48].

354 VOLUME 4, 2023



IV. RESULTS
The results have been divided into three parts: Section IV-A
goes into the frequency analysis of two DRL agents trained
in a simple environment, one minimizing motion sickness
and the other optimizing general motion comfort described
by total acceleration energy. The agents have also been com-
pared to optimal planners. The Section IV-B establishes the
human baseline performance for the roundabout scenarios
and compares the performance of the trained DRL agent with
the optimal planner as well as human drivers. Furthermore,
we report on the computation efficiency of the proposed
method in Section IV-C. To measure the effectiveness of the
proposed system, we have used Key Performance Indicators,
such as the discomfort term, the RMS accelerations, travel
time and computation time for each of the motion plans.

A. FREQUENCY DOMAIN PERFORMANCE
For the purpose of investigating whether the DRL agent
is able to target the low-frequency acceleration compo-
nent, a simple environment was used. The road length was
assumed to be 100 m, with a single turn. The trajectory
was defined with splines controlled by k = 5 control points.
Two agents were trained in the same environment, with the
only difference in their respective reward functions. Agent
A was trained on a discomfort term calculated without
frequency-weighted accelerations, while agent B was trained
using a reward function incorporating the bandpass filters as
described in Section II-D. The accelerations outside the cut-
off frequencies are attenuated by the bandpass filters, and so
the frequency-weighted discomfort term is generally lower
in value for comparable travel times. To compensate for this
and ensure similar travel times for both agents, W = 0.6
and W = 1 were used for agents A and B respectively. Both
agents were trained for 1M steps.
The planned trajectories of agents A and B for a randomly

generated scenario from the training environment have been
shown in Figs. 5 and 6 respectively. In the test case, the
vehicle is initialized with a randomly generated speed of
7.25m/s and has to traverse through a sharp left turn. As
can be seen from these figures, both agents learn to accel-
erate in the straight sections of the road and decelerate on
approaching the corner. The spatial plans also are close to a
path that would be intuitively expected to be the most com-
fortable around the corner, with the vehicle entering from
the outside edge, moving close to the apex, and then exiting
toward the outside edge of the corner. Both agents learn to
utilize the complete limits of the available lateral deviation.
In the particular test case shown here, the vehicle velocity
range is not completely used, however, that is in the interest
of producing lower vehicle accelerations. The peak lateral
accelerations in both cases are around 3.5m/s2.

For the particular case being analyzed, the frequency-
weighted discomfort term is 6.5% lower for the trajectory
planned by agent B, with the same travel time as agent
A. The drop in the discomfort term mainly arises from the
lower lateral accelerations in the motion plan generated by

FIGURE 5. Trajectory as planned by agent A, trained without filtered accelerations.
The subfigures depict the vehicle accelerations, velocity and positions from the
motion plan. The filtered accelerations have also been shown to depict the frequency
content of the accelerations causing nauseogenicity. The entire path takes 11.84 s to
navigate.

FIGURE 6. Trajectory as planned by agent B, trained with filtered accelerations. The
subfigures depict the vehicle accelerations, velocity and positions from the motion
plan. The filtered accelerations have also been shown to depict the frequency content
of the accelerations causing nauseogenicity. The entire path takes 11.87 s to navigate.

agent B. Meanwhile, travel time is unaffected due to the
higher longitudinal accelerations from agent B. The vehicle
was commanded to make more aggressive speed changes
before and after the corner. This is reflected in the speed
range as plan B has a minimum and maximum velocity of
6.4m/s and 11.5m/s respectively, as opposed to 7.0m/s and
9.7m/s in motion plan A. The preferential lowering of lateral
accelerations by agent B can be attributed to the frequency
filter. The longitudinal accelerations have a narrower band-
pass filter as opposed to lateral accelerations and hence are
attenuated more. In addition, the longitudinal frequency filter
has a lower peak gain, to have the same area under the curve
over the frequency range of 0 to 1Hz. The agent learns to
increase accelerations beyond the cut-off frequencies, and
target the frequencies of interest.
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FIGURE 7. Frequency content comparison of the longitudinal accelerations in the
motion plans A and B. The line plots represent the DRL agents, while the scatter plots
represent the optimal planners.

FIGURE 8. Frequency content comparison of the lateral accelerations in the motion
plans A and B. The purple and yellow line plots represent the DRL agents A and B
respectively, while the scatter plots represent the optimal planners.

To analyze the frequency content of the accelerations, the
non-uniform fast Fourier transform has been shown in Figs. 7
and 8. To further provide an insight into the performance of
the proposed method, the comparison with the optimization-
based planner detailed in Section II-F has also been included.
As expected from the acceleration values, it can be seen
that the peak amplitudes of lateral accelerations are lower in
motion plan B than in A. Throughout the frequency band of
0.0315 to 0.25Hz, the amplitudes are significantly lower in
motion plan B. This does lead to higher peaks between 0.3
and 0.9Hz, but that is expected and desirable behavior in
our case. With DRL agent B, it can be seen that the energy
is transferred from lateral to longitudinal accelerations, with
significantly higher peaks compared to agent A. However,
two important points need to be noted. Near the peak nau-
seogenic frequency of 0.2Hz, motion plan B has a lower
minimum as compared to agent A. Also, lateral accelerations
have significantly higher amplitudes throughout the relevant
frequency spectrum as compared to longitudinal accelera-
tions, and so agent B learns to minimize low-frequency

FIGURE 9. Trajectory as planned by DRL agent for RB1. The weight on time for the
agent is W = 8. The planned path takes 19.04s to navigate.

FIGURE 10. Trajectory as planned by DRL agent for RB2. The weight on time for the
agent is W = 8. The entire path takes 15.52s to navigate.

lateral accelerations at the cost of higher longitudinal accel-
erations. A previous study [16] found a higher correlation of
lateral accelerations with motion sickness in passengers as
compared to fore-aft accelerations, so the behavior learned
by agent B works in this direction.
The above analysis was performed for a single randomly

generated test case. However, to have a holistic idea of the
performance of the agents, the average frequency-weighted
discomfort value and the travel times over 10,000 episodes
were calculated. The frequency-weighted discomfort value
D for agent A was 19.61, while the for agent B was 17.73,
which is a drop of 9.6%, quite significant for the rela-
tively short and simple road profiles under consideration.
The average travel times for the same were 9.78 and 9.87 s
respectively, which is a difference of less than 1%, and
therefore can be considered comparable.

B. PERFORMANCE IN TIME AND COMFORT
As described previously in Section III-A, the two round-
abouts from the human driving data, RB1 and RB2, are of
primary interest. Therefore, the training has been done on
a 6-section road with a total length of 134m. A variety of
weights on travel time, ranging from W = 4 to W = 16,
has been used in the training to produce an inclusive set of
possible trajectories representative of different driving styles.
All agents were trained for 1.5M steps. The example trajec-
tories for RB1 and RB2 from the agent trained with W = 8
are shown in Figs. 9 and 10, respectively. RB1 is a slower
roundabout with smaller radii of curvature, while RB2 could
allow a higher speed as it bends less sharply.
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FIGURE 11. Comparison of frequency weighted discomfort values and the travel
times for the DRL agent and the optimal planner, for roundabout 1.

FIGURE 12. Comparison of frequency weighted discomfort values and the travel
times for the DRL agent and the optimal planner, for roundabout 2.

The performance of the DRL agent has again been
compared with the optimization-based planner described in
Section II-F. In addition, the nauseogenicity of planned
motion has been compared with the driving comfort of
human drivers measured through the experimental setup as
described in Section III-A. It is commonly recognized that
time efficiency and comfort are conflicting factors. Hence
to fairly compare the performance, the discomfort values
have been plotted against travel time in Figs. 11 and 12. It
is visible that the discomfort value increases as travel time
becomes shorter. This is effectively a Pareto front for a multi-
objective optimization problem where time and comfort are
optimized simultaneously. We fitted the individual points on
the time-discomfort plane into a curve of the following form
in order to compare the discomfort values at a given travel
time or vice versa:

y = axb + c (27)

For RB1, the performance of the learning-based planner
is between 10.9% to 12.9% below the optimization-based
planner. The performance difference is between 6.2% and
14.2% for RB2. The worse performance over RB2 is due
to the increased difficulty of navigating the turn at higher
speeds leading to higher accelerations, particularly at lower
travel times. In both cases, the DRL-based planner has higher
discomfort values than the optimization-based counterpart.

FIGURE 13. Change in RMS acceleration values with varying weight W .

As anticipated, the discomfort values are significantly lower
in RB2 due to the mellower turns it involves.
These figures also provide a rough description of human

driving performance. In both roundabouts, there is signif-
icant variation in the performance of human drivers. The
travel time ranges from 16.8 to 26.6 s for RB1, and from
13.1 to 16.6 s for RB2. The frequency-weighted discomfort
rating varies from 74.3 to 118.1 for RB1 and 54.4 to 96.3
for RB2. The general trend complies with the observations
of the motion planners that a lower travel time leads to more
discomfort. Meanwhile, some drivers outperformed the oth-
ers with the location of their test run closer to the lower-left
corner on the time-discomfort plane. The DRL-based plan-
ner is comparable to the better-performing drivers in RB1
and slightly underperforms the best test run by 11.3%. It
can be seen that the discomfort rating of the DRL agents
shows a sharper increasing trend than the human drivers with
lower travel times, and this can be attributed to the larger
modeling errors associated with the point mass model on
approaching higher vehicle speeds and acceleration values.
The RB2 scenario, on the other hand, does highlight some
limitations in the design of the training environment itself. A
total of 3 test runs exhibit a lower discomfort value than the
optimization-based planner. Apart from the potential mis-
match in the road geometry, a major contributing factor to
this is the use of splines. It limits the freedom of action of
the agent and the optimization-based planner formulated in
the same framework. The second reason could be the higher
modeling errors with using a point-mass model for trajec-
tories, but this effect will only be pronounced with faster
travel times and higher acceleration values.
We further present the trend of root-mean-square (RMS)

value of lateral and longitudinal accelerations obtained with
varying weights in Fig. 13. The lateral acceleration behaves
as expected, showing an upward trend when increasing W.
Interestingly, the RMS longitudinal acceleration only shows
minimal changes and even drops when W increases from
12 to 16. This is because when the vehicle approaches the
roundabout with a moderate initial velocity, the need for a
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shorter travel time is interpreted into a smaller change in
velocity as the planner commands to take the corners at a
higher speed. The rise in lateral acceleration is tolerated as it
does not overshadow the reward of saving time due to a larger
W being used. The DRL agent also shows an increasing
trend of RMS lateral accelerations, and nearly constant RMS
longitudinal accelerations, with a slight drop with increasing
weight W. However, the RMS values of the DRL agent
cannot be directly compared here with the optimal planner,
since their travel times learnt for each weight W are different.

C. COMPUTATION TIME
The metric in which the DRL agent comprehensively outper-
forms the optimization-based planner is the computational
time. Once completed with training, the DRL-based planner
can generate a sub-optimal motion plan in less than 2ms.
The computation time is rather consistent compared to an
optimization-based approach where the number of iterations
before convergence is hardly predictable. The latter takes
an average of 5 s to compute the optimal motion plan. The
improvement in computation time is by three orders of mag-
nitude while the loss of performance is less than 15%. An
essential upside of the DRL-based planner is, even with a
more complex training environment, the added complexity
will not be reflected in online computation.

V. CONCLUSION
In this research, a novel method of minimizing motion sick-
ness in motion planning with Deep Reinforcement Learning
has been presented. The nauseogenicity of the planned tra-
jectory is evaluated by frequency-weighted accelerations
according to motion sickness models in the literature. It
has been shown that by including such a discomfort term in
the reward function, the DRL agent is able to learn to target
the frequency range that is primarily responsible for motion
sickness. The frequency-weighted discomfort is reduced by
9.6% on average, compared to an agent trained without the
frequency sensitivity in accelerations. The improvement is
a result of shifting the acceleration energy away from the
frequency range of interest.
The DRL agent has been trained using a variety of weights

to represent different preferences between comfort and time
efficiency. The learning-based planning performance has
been evaluated on two roundabout scenarios derived from
real road sections in the Netherlands. An optimization-
based spline planner has been developed for comparison
purposes, next to a human performance baseline established
experiments where volunteers drove an instrumented vehicle
through the actual road sections. The DRL-based plan-
ner outperforms most human drivers in one scenario while
providing comparable performance in the other. Compared
to the optimization-based planner, the proposed method
shows a performance deficit in the range of 10-15% but
nevertheless cuts computation time significantly by three
orders of magnitude.

It has been shown that for scenarios with a reasonable
complexity level, DRL can be used in motion planning for
reducing accelerations in the most nauseogenic frequency
bands. The performance of the method is however limited
by the design of the environment, for example, by limiting
the planning freedom to placing control points of a spline. To
be applied in more complex environments, training needs to
be done with a larger state and action space. For more com-
plex driving situations such as multi-lane highways, highway
ramps, or intersections, the performance of the method still
needs verification. In addition, the work needs to be extended
to dynamic environments with multiple actors, where the
comfort benefits of the proposed method remain to be seen.
The state representation consists of a constant length of the
road, with a fixed number of curvature changes. While this
representation can be used to encode road information for a
large number of possible road profiles, it is still not general
enough to accommodate road profiles with a higher number
of curvature changes within the defined length. The use of
Recurrent Neural Networks (RNNs) could be investigated
for incorporating a variable state space so as to have a more
general representation of the road profile. RNNs can deal
with variable sizes of the state space so they can be used to
represent a varying number of road sections depending on
the number of curvature changes present in the road profile.
The motion planning approach presented in this work is a
proof-of-concept of the applicability of DRL to acceleration
frequency shaping and motion sickness minimization, and
not a mature algorithm which can be used in its present
form. The approach presented is only applicable to the envi-
ronment in which the agent was trained, and the performance
of the DRL agent in a variety of environments remains to
be investigated.
In this study, we have encountered challenges that are

commonly mentioned in DRL-related studies. The training
time increases exponentially along with the dimensionality
of the state and action space. Given the basic computa-
tional power, the training process is too time-consuming
to optimize the hyperparameters, or consequently, to obtain
more satisfactory performance. In addition, it is unclear
whether the reduction in frequency-weighted accelerations
would translate to real-world comfort improvements for pas-
sengers. It is possible that focusing on motion sickness
mitigation might lead to degraded acceleration comfort in
general. The benefits of the method may only be appreciable
in longer journeys through curvy roads. The subjective eval-
uation of the proposed method could be evaluated through
simulator-based or on-road experiments.
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