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A B S T R A C T

In this work we present a hybrid physics-based and data-driven learning approach to construct surrogate
models for concurrent multiscale simulations of complex material behavior. We start from robust but inflexible
physics-based constitutive models and increase their expressivity by allowing a subset of their material
parameters to change in time according to an evolution operator learned from data. This leads to a flexible
hybrid model combining a data-driven encoder and a physics-based decoder. Apart from introducing physics-
motivated bias to the resulting surrogate, the internal variables of the decoder act as a memory mechanism
that allows path dependency to arise naturally. We demonstrate the capabilities of the approach by combining
an FNN encoder with several plasticity decoders and training the model to reproduce the macroscopic
behavior of fiber-reinforced composites. The hybrid models are able to provide reasonable predictions of
unloading/reloading behavior while being trained exclusively on monotonic data. Furthermore, in contrast
to traditional surrogates mapping strains to stresses, the specific architecture of the hybrid model allows
for lossless dimensionality reduction and straightforward enforcement of frame invariance by using strain
invariants as the feature space of the encoder.
. Introduction

Recent advances in materials science and manufacturing techniques
re paving the way for the design of materials with highly-tailored
icrostructures, including metamaterials (Kumar et al., 2020; Bessa

t al., 2019), novel composite material systems (Gantenbein et al.,
021; Woigk et al., 2022), printed cementitious materials (Xu et al.,
022) and multifunctional living materials (Gantenbein et al., 2023).
he common thread in these new developments is a shift from tra-
itional design focused on tailoring structures to material constraints
owards tailoring material microstructures to macroscopic constraints.
his shift in turn requires the development of highly-detailed models of
aterial behavior across spatial scales and a shift to virtual structural

ertification, as trial-and-error design becomes infeasible (Telgen et al.,
022; Khajehtourian and Kochmann, 2021; Furtado et al., 2021).

Scale bridging has been traditionally performed through a bottom-
p approach: physics-based constitutive models at smaller scales are
alibrated using experiments and used to perform numerical simula-
ions (using e.g. the Finite Element (FE) method) on representative
ower-scale domains from which higher-scale physics-based models can
e calibrated (Van der Meer, 2016; Krauklis et al., 2019). However,
hysics-based constitutive models come with a priori assumptions that

∗ Corresponding author.
E-mail address: i.rocha@tudelft.nl (I.B.C.M. Rocha).

often fail to reproduce complex lower-scale behavior (Van der Meer,
2016). The alternative is to opt for an FE2 (or Computational Homog-
enization) approach: lower-scale FE models are embedded at every
Gauss point of a higher-scale model and material behavior is directly
upscaled with no constitutive assumptions at the higher scale (Feyel,
1999; Kouznetsova et al., 2001; Geers et al., 2010). Yet, the com-
putational cost associated with repeatedly solving a large number of
micromodels quickly becomes a bottleneck, in particular for many-
query procedures such as design exploration and optimization that
require several higher-scale simulations to be performed.

Since the bottleneck of FE2 lies in computing lower-scale models,
a popular approach to reduce computational effort is to substitute the
original FE micromodels with either structure-preserving reduced-order
models (Ferreira et al., 2022; Goury et al., 2016; Ryckelynck, 2005;
Ghavamian et al., 2017; Rocha et al., 2020b; Daniel et al., 2022; Scanff
et al., 2022) or purely data-driven surrogates (Ghaboussi et al., 1991;
Lefik et al., 2009; Le et al., 2015; Bessa et al., 2017; Rocha et al., 2020a;
Wang et al., 2022) trained offline. More recently, Recurrent Neural
Networks (RNN) have become the model of choice especially for strain
path-dependent materials, with a large body of literature dedicated to
their use and tuning to different applications (Ghavamian and Simone,
vailable online 1 June 2023
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2019; Mozaffar et al., 2019; Gorji et al., 2020; Abueidda et al., 2021;
Chen, 2021; Logarzo et al., 2021; Borkowski et al., 2022). RNNs can
reproduce complex long-term time dependencies in material behavior
by learning latent representations of the material state, making them
fast and flexible surrogates. However, these learned representations
are not a priori related to actual thermodynamic internal state vari-
ables and the model is therefore poorly interpretable (see Koeppe
et al., 2021 for an interesting discussion on the subject). Furthermore,
training for path dependency requires sampling from a potentially
infinite-dimensional space of arbitrarily-long strain paths. This means
training RNNs to reproduce complex material behavior often requires
an inordinate amount of data (curse of dimensionality) and their purely
data-driven nature limits their ability to extrapolate away from paths
seen during training.

In order to address these drawbacks, a growing number of recent
works are shifting focus to models with a fusion of data-driven and
physics-based components. Inspired by physics-informed neural net-
works (Raissi et al., 2019), the authors in Masi et al. (2021) opt for
data-driven models with physics-inspired bias by enforcing thermody-
namic principles in a weak sense through an augmented loss function.
In a similar vein, the model in Linka et al. (2021) learns hyperelasticity
by linking together several carefully crafted neural nets to represent
quantities with clear physical meaning, improving the interpretability
of the resulting model. In Vlassis and Sun (2021) the authors extend a
similar hyperelastic surrogate with a network that learns plastic flow
direction and the evolution of a yield surface parametrized by a level
set function, resulting in a hyperelastic–plastic model with superior
extrapolation capabilities. A common thread in the aforementioned
approaches, however, is that their learning architectures are heavily
dependent on the type of model being learned (e.g. hyperelasticity,
plasticity), making extensions to other models a convoluted task. In
contrast, the authors in Liu et al. (2019), Liu (2021) propose a surro-
gate for heterogeneous micromodels constructed by directly employing
unmodified versions of the constitutive models used for the micro
constituents and using a customized network architecture to infer a
homogenization operator from data that combines their responses.
Nevertheless, the method employs a highly-specialized iterative online
prediction routine requiring extra implementation effort and with in-
creased computational overhead when compared to that of traditional
surrogates mapping strains to stresses. Finally, in Wang et al. (2019),
Flaschel et al. (2021, 2022) a dictionary of candidate physics-based
models is assumed and the role of machine learning shifts instead to
that of performing model selection and/or design of experiments.

In this work we explore an alternative approach for constructing
hybrid surrogate models for path-dependent multiscale simulations. We
start from the premise that existing physics-based models — e.g. the
ones used to describe microscale constituents — are not flexible enough
to reproduce macroscale behavior but nonetheless encapsulate crucial
physical features such as frame invariance and loading/unloading con-
ditions. It is our aim to avoid learning these features directly from
data, as that would require either an excessively large dataset or a
highly-specialized learning architecture. We therefore opt for keeping
the constitutive model as intact as possible and instead increasing
flexibility by allowing some (or all) of its material parameters to evolve
in time. The resulting model can be seen in Fig. 1: a data-driven
encoder1 that learns the evolution of a set of material properties is
linked to a physics-based material model decoder that maps strains
to stresses. In contrast to other strategies in literature, we keep the
architecture as general as possible: a general feature extractor parses

1 We adopt the terms encoder and decoder in order to clearly split the model
in two distinct parts which we will treat with different learning approaches.
As in conventional machine learning models, our encoder–decoder architecture
transforms to and from a clearly defined latent space. In the present discussion
it does not imply a dimensionality bottleneck.
2

e

macroscopic strains into input features for the encoder — which can
be as simple as the strains themselves or other derived quantities (e.g.
strain invariants) — and any type of constitutive model can in principle
act as decoder (e.g. hyperelasticity, plasticity, damage). By relegating
stress computations to the decoder, we effectively introduce physics-
based bias to the model.2 Furthermore, by letting the material model
handle the evolution of its own internal variables, the model benefits
from a recurrent component with interpretable memory structure that
allows path dependency to arise naturally. The strategy we explore here
is related to the one we propose in Maia et al. (2023), but in that work
we let an encoder learn local strain distributions for several virtual
material points with fixed properties. We see the two approaches as
being complementary, and therefore with potential for being used in
combination to form a flexible range of hybrid surrogates.

The remainder of the work is organized as follows. Section 2 con-
tains a primer on concurrent multiscale (FE2) modeling and discusses
the difficulties of training purely data-driven surrogates. In Section 3,
we particularize the model of Fig. 1 to the case of a feedforward neural
network encoder and discuss aspects related to offline training and
online numerical stabilization. In Section 4 we assess the performance
of the hybrid model in reproducing the behavior of fiber-reinforced
composites using different encoder input features and decoder models.
Finally, some concluding remarks and future research directions are
discussed in Section 5.

2. Concurrent multiscale (FE𝟐) modeling

In this section we present a short discussion on FE2 modeling. The
goal is not to be comprehensive — the interested reader is referred
to Kouznetsova et al. (2001), Geers et al. (2010) for detailed discussions
on the subject — but rather to expose the computational bottleneck
associated with the method and pinpoint where surrogate models can
be used to alleviate the issue. We then demonstrate how a Recurrent
Neural Network (RNN) can be used as surrogate model and show-
case some of the difficulties associated with their training and their
extrapolation capabilities.

2.1. Scale separation and coupling

In FE2 we assume the problem being solved can be split into a
homogeneous macroscopic domain 𝛺 and a heterogeneous microscopic
domain 𝜔 ≪ 𝛺 where small-scale geometric features are resolved.
Here we opt for a first-order homogenization approach assuming the
displacements on both scales can be related by:

𝐮𝜔 = 𝜺𝛺𝐱𝜔 + �̃� (1)

where microscopic displacements 𝐮𝜔 are split into a linear contribution
proportional to the macroscopic strains 𝜺𝛺 and a fluctuation term �̃� that
accounts for microscopic heterogeneities.

Since 𝜺𝛺 varies throughout the macroscopic domain, a micromodel
for 𝜔 is embedded at each Gauss point in 𝛺 and a microscopic
boundary-value equilibrium problem assuming small displacements
and strains is solved:

∇ ⋅ 𝝈𝜔 = 𝟎 𝜺𝜔 = 1
2

(

∇𝐮𝜔 + (∇𝐮𝜔)T
)

(2)

icroscopic stress 𝝈𝜔 is related to microscopic strain 𝜺𝜔 with traditional
hysics-based constitutive models for each phase in the heterogeneous
omain. In the general case where the material models feature internal

2 In purely data-driven surrogates, we accept some bias in exchange for
educed variance — e.g. by employing regularization or adopting prior distri-
utions for model parameters (Bishop, 2006) — in order to counter overfitting
nd improve generalization. But in that case the bias is merely a way to reduce
omplexity, with no physical interpretation and no a priori impact on the

xtrapolation capabilities of the model.
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Fig. 1. The hybrid surrogate combining a data-driven encoder for material parameters and a physics-based material model decoder.
variables 𝜶, we can write the constitutive update for the microscale
domain as:

𝜔

{

𝜶𝜔
𝑡 = 

(

𝜺𝜔𝑡 ,𝜶
𝜔
𝑡−1,𝜽

𝜔)

𝝈𝜔
𝑡 = 

(

𝜺𝜔𝑡 ,𝜶
𝜔
𝑡 ,𝜽

𝜔) (3)

where 𝜽𝜔 are the material parameters of the microscopic constituents,
the operators  and  can be split into an arbitrary number of blocks
with different models (e.g. elasticity, elastoplasticity, damage) for the
different material phases, and 𝜶𝜔 is a concatenation of the internal
variables of every microscopic Gauss point and therefore fully describes
the path-dependent state of the microscopic problem.

In order to determine the strains 𝜺𝛺 that serve as boundary con-
ditions for the micromodels, a macroscopic small-strain equilibrium
problem is solved:

∇ ⋅ 𝝈𝛺 = 𝟎 𝜺𝛺 = 1
2

(

∇𝐮𝛺 +
(

∇𝐮𝛺
)T) (4)

but this time no constitutive assumptions are adopted. Macroscale
stresses are instead directly homogenized from the microscopic re-
sponse:

𝝈𝛺 = 1
|𝜔| ∫𝜔

𝝈𝜔d𝜔 (5)

which couples the macroscopic strain 𝜺𝛺 with the microscopic solution.
Since Eq. (1) also couples the solutions in the opposite direction, a bidi-
rectional coupling is formed which requires the two-scale equilibrium
problem to be solved iteratively.

2.2. Data-driven surrogate modeling

The coupled problem of Section 2.1 is extremely computationally
demanding. The lower-scale domain 𝜔 usually features complicated ge-
ometric features and must therefore be modeled with dense FE meshes
in order to ensure accuracy. Worse yet, an independent microscopic
problem must be solved at every integration point in 𝛺 for every
iteration of every time step of the simulation. This nested nature quickly
forms a computational bottleneck.

Since the bulk of the computational effort lies in solving the mi-
cromodels, a popular approach to make multiscale analysis viable for
practical applications is to substitute the microscopic FE models by
data-driven surrogates. The idea is to perform a number of micro-
model simulations under representative boundary conditions and use
the resulting stress–strain pairs to train a machine learning model to be
deployed when performing the actual two-scale simulations of interest.
Naturally, the approach tacitly assumes that the number of offline
3

micromodel computations required to train the model is much smaller
than the number of times the microscopic behavior will be computed
online. In the following, we use a simple example to demonstrate
a number of difficulties associated with training such a model to
reproduce path-dependent material behavior.

2.3. Example: A one-dimensional RNN surrogate

For this short demonstration, we train a Long Short-term Memory
(LSTM) network (Hochreiter and Schmidhuber, 1997) to reproduce
one-dimensional (single stress/strain component) elastoplasticity. The
goal is not to provide a comprehensive investigation on constitutive
modeling with RNNs, but rather to clearly identify parallels with our
proposed approach and, more importantly, highlight how the two
approaches differ from each other.

The architecture of the model is shown in Fig. 2(a) and is imple-
mented in PyTorch (Paszke et al., 2019). In order to minimize the risk
of overfitting, a pragmatic model selection procedure is performed by
first training the model with several non-monotonic strain paths and
gradually increasing cell size until reasonable accuracy is obtained. This
leads to a parsimonious model with a single LSTM cell with 5 latent
units.

At this point it is interesting to draw a parallel between the net-
work and the micromodel whose behavior is being reproduced: the
concatenation of the hidden state 𝐡 and cell state 𝐜 of the LSTM cell
can be seen as a lower-dimensional surrogate for the set of microscopic
internal variables 𝜶𝜔 of Eq. (3). However, in contrast to the variables
in 𝜶, the latent variables 𝐡 and 𝐜 have no physical interpretation and
evolve purely according to heuristic memory mechanisms that mimic
patterns inferred during training.

First, we train the LSTM using only monotonic data. Since only
one strain component is being modeled, this initial dataset is com-
posed simply of one strain path in tension and one in compression.
The trained model is then used to predict a tension path with one
unloading–reloading cycle. Having never seen unloading during train-
ing, the network reverses course and unloads on top of its loading
path (Fig. 2(b)). This result is hardly surprising, but sheds light on the
potentially deceiving nature of the training procedure: even though we
are only concerned with a single strain component, predictions actually
take place in an augmented space that describes strain paths in time
which can be arbitrarily high-dimensional (as paths can be arbitrarily
long).

We can further demonstrate this manifestation of the curse of di-
mensionality with the two additional examples of Fig. 3. In Fig. 3(a)
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Fig. 2. An LSTM recurrent neural network as surrogate for 1D path-dependent material behavior trained with only monotonic data.
Fig. 3. 1D LSTM surrogate trained with unloading/reloading and used to predict unseen unloading paths.
e train the network with two unloading paths and it fails to predict
third one at an intermediate strain level. Here it can be deceiving to

ssume the third path can be interpolated from the other two: in the
8-dimensional space of strain paths (we use paths with 48 time steps
ach) the network is actually operating far away from training data.
n Fig. 3(b) the network tries to reproduce a path seen during training
ut we first let the material rest at zero strain for five time steps before
oading starts and for another five time steps at the end of the path.

ith purely data-driven latent dynamics, the initial rest disturbs the
emory structure of the network and causes large deviations for a large
ortion of the path. For the rest at the end of the path, we see that
he surrogate fails to predict the characteristic that the stress does not
hange upon constant deformation.

Training data-driven models to accurately reproduce path depen-
ency is therefore not straightforward: their latent representations of
aterial state are not interpretable and even phenomena as trivial

s resting at zero strain must be learned from data. At the core of
uccessful applications of RNNs to this task are either extensive datasets
btained with carefully crafted sampling strategies (Wu et al., 2020;
ogarzo et al., 2021) or highly tailored datasets for specific macroscopic
roblems (Ghavamian and Simone, 2019). Alternatively, active learn-
ng frameworks may be used to skip offline training altogether (Knap
t al., 2008; Rocha et al., 2021), but at the cost of producing slower
urrogates.

. A hybrid surrogate model

In this work we attempt to avoid the curse of dimensionality by
4

elegating to a physics-based material model some of the tasks the RNN
of Section 2.3 has to explicitly learn from data. In this section, we
further formalize the hybrid approach of Fig. 1 by looking at the roles
of each model component and their dependencies in time. We then
particularize the model for the case of a feedforward neural network
(FNN) encoder and discuss feature selection and numerical stabilization
strategies.

3.1. Evolving material parameters

Physics-based material models are traditionally formulated with a
fixed set of parameters 𝜽 either directly computed from a specific set
of (numerical) experiments or indirectly from stress–strain measure-
ments in a Maximum Likelihood Estimation (MLE) approach.3 Here
we start from the premise that letting (part of) 𝜽 evolve in time
increases flexibility and allows the model to capture more complex
material behavior. Conversely, keeping the remainder of the model
intact improves interpretability and provides physics-based bias to the
data-driven model tasked to learn this evolution.

In Fig. 4, the hybrid model of Fig. 1 is unrolled in time for a
number of consecutive time steps and represented as a graph showing
the dependencies between variables. Filled and hollow nodes represent
observed and latent variables, respectively, and are color coded to
represent the different model components in Fig. 1. Similar to the

3 The parameters 𝜽 can also be estimated through Bayesian inference and
would therefore be described by a multivariate probability density instead of
a fixed set of values. Regardless, that density would still be stationary in time.
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Fig. 4. Graph representation of the hybrid model architecture combining a data-driven
encoder and a physics-based decoder. Filled circles represent observable variables and
hollow circles represent latent variables.

microscale models of Eq. (3), we assume the constitutive behavior at
the macroscale is given by a physics-based material model:

𝛺

{

𝜶𝛺
𝑡 = 

(

𝜺𝛺𝑡 ,𝜶
𝛺
𝑡−1,𝜽

𝛺
𝑡
)

𝝈𝛺
𝑡 = 

(

𝜺𝛺𝑡 ,𝜶
𝛺
𝑡 ,𝜽

𝛺
𝑡
) (6)

but now with time-dependent parameters 𝜽𝑡. Note that the model
response at time 𝑡 depends on the material state at time 𝑡−1 through a
set of internal variables 𝜶𝛺

𝑡−1 (Fig. 4). This gives the model a recurrent
ature not unlike that of the RNN of Fig. 2(a) with its state variables 𝐜
nd 𝐡. The advantage here is that 𝜶 has clear physical interpretation
plastic strains, damage variables, etc.) and its evolution is handled
y the fixed operator  composed of clearly interpretable algorithmic
teps grounded in physics and/or classical material phenomenology
e.g. a return mapping algorithm).

On the encoder side, we let the material properties 𝜽 evolve ac-
cording to an evolution operator  whose shape is learned from data:

𝜽𝑡 = 
(

𝝋𝑡
)

(7)

as a function of a set of input features 𝝋 that are themselves obtained
from the macroscopic strains through a feature extractor  :

𝑡 = 
(

𝜺𝛺𝑡
)

(8)

here 𝝋𝑡 could be simply the strains themselves or other quantities
erived from it. This further split of the encoder architecture into 
nd  helps clearly delimitate where the purely data-driven part of
he hybrid model begins. More importantly, note that 𝜽𝑡 depends only
n the current features 𝝋𝑡 and we therefore assume  is not recurrent
Fig. 4). This choice effectively limits the flexibility of  and makes the
ybrid surrogate fully rely on the more robust model 𝛺 to explain
ath-dependent phenomena, helping counter the curse of dimensional-
ty associated with sampling strain paths. For instance, it opens up the
ossibility to train the surrogate exclusively with monotonic data, as
e will demonstrate in the examples of Section 4.

In the following sections, we particularize the model for the case of
being a fully-connected neural network and for specific choices of 

nd . Nevertheless, the general architecture of Figs. 1 and 4 is meant
o be as flexible as possible:

• The nature and dimensionality of 𝝋 is not tied to that of 𝜺𝛺 since
strains are also given directly to 𝛺;

• Other machine learning models for regression can also be used as
, and it could in principle be split into different models handling
the evolution of different subsets of 𝜽. Any number of model
parameters may also be left out of 𝜽 and either fixed as constants
5

or optimized to constant values during training; f
• No assumption is made on the form of 𝛺 or the nature or
dimensionality of 𝜶𝛺. Instead of a single model, it could also
for instance be a mixture of physics-based models combined with
analytical homogenization techniques.

.2. Feature extractors

A pragmatic choice for  is to simply assume 𝝋 is the macroscopic
train vector 𝜺𝛺 itself. It is also a familiar one, as we can then relate the
esulting model to conventional surrogates mapping strains to stresses.
owever, since macroscopic strains are also directly passed on to the
ecoder, the architecture gives us the freedom to experiment with
ifferent input features.

Fig. 5 shows the two model architectures we explore in this work.
or the two variants in Fig. 5(a) we either use 𝜺𝛺 itself or a set of
mall-strain invariants of the macroscopic strain tensor of increasing
imensionality:

𝛺
𝜀 =

[

𝐼𝜀1
]

or 𝐈𝛺𝜀 =
[

𝐼𝜀1 𝐼𝜀2
]

(9)

where the variants are given by the well-known expressions:

𝐼𝜀1 = tr (𝜺) , 𝐼𝜀2 = 1
2
(

tr (𝜺)2 − tr
(

𝜺2
))

(10)

Additionally, since the current study focus on elastoplasticity, it is also
interesting to explore input feature spaces including invariants from the
deviatoric strain tensor:

𝐈𝛺𝜀 =
[

𝐽 𝜀
2
]

or 𝐈𝛺𝜀 =
[

𝐼𝜀1 𝐽 𝜀
2
]

(11)

where:

𝐽 𝜀
2 = 1

3
(

𝐼𝜀1
)2 − 𝐼𝜀2 (12)

y using features based on invariants, the resulting surrogate can
e made to naturally inherit frame invariance as long as the behav-
or of the physics-based decoder is also frame invariant. This stands
n contrast with traditional black-box surrogates mapping strains to
tresses. Furthermore, opting for invariant-based features can be seen as
physics-based dimensionality reduction operation that can potentially

educe the amount of data needed to train the hybrid model.
We also investigate the possibility of extracting features from the

utputs of a precalibrated material model  subjected to the same
strain path seen at the macroscale (Fig. 5(b)). This  is a physics-based
material model, similar to , with the difference that its properties
are not trained to reproduce training data but are fixed a priori (i.e.
t is precalibrated). Note that this specific architecture introduces an
dditional recurrent component to the model through the set 𝜶 of

internal variables of . From a machine learning perspective, the role
of  would be analogous to that of a temporal convolution operator or
an RNN cell appended to the encoder. The key difference, however, is
that  is fixed a priori and therefore should not require extra sampling
effort with respect to the more straightforward extractor in Fig. 5(a).

Naturally, different choices for  yield models with distinct learn-
ng capabilities, and we therefore assume  encapsulates relevant

information about not only the current values of 𝜺𝛺 but also of its
history. In the present scenario where the data is coming from micro-
model computations, we opt for the intuitive choice of having  be
one of the known constitutive models used to describe the microscopic
material phases. We can therefore conceptually see  as an imaginary
representative material point at the microscale that is always subjected
to the average micromodel strain. We then use either a subset of its
internal variables 𝜶 or a set of invariants 𝐈�̄� of its stress outputs as
eatures.
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3.3. Neural network encoder

For simplicity, we opt for modeling the evolution of 𝜽 using classi-
cal feedforward neural networks with fully-connected layers. As both
architectures in Fig. 5 ultimately compute macroscopic stresses given
macroscopic strains, we can use supervised learning to train the model
with a straightforward Maximum Likelihood approach. Gathering the
complete set of network weights in a vector 𝐰 and seeing the complete
surrogate as a monolithic model that computes an approximation 𝝈 for
stresses, we adopt the following observation model for the snapshot
stresses 𝝈:

𝝈 = 𝝈 (𝜺,𝐰) + 𝜉, 𝜉 ∼ 
(

𝜉|𝟎, 𝛽−1𝐈
)

(13)

where the superscript 𝛺 is dropped for convenience, 𝐈 is an identity
atrix, and 𝜉 is an additive Gaussian noise.4 Under the assumption of
squared loss, maximizing the likelihood of a training dataset with 𝑁
bservations amounts to minimizing the loss function (Bishop, 2006):

= 1
2

𝑁
∑

𝑛=1

‖

‖

‖

𝝈𝑛 − 𝝈
(

𝜺𝑛,𝐰
)

‖

‖

‖

2
(14)

with the variance of the noise that explains data misfit being simply 𝛽 =
𝑁∕2𝐿. The resulting loss function is the same one used for conventional
data-driven surrogates and is therefore straightforward to implement.

Nevertheless, it is worth noting that since we cannot directly ob-
serve 𝜽, computing the gradients of 𝐿 with respect to 𝐰 involves
backpropagating derivatives through the decoder . Furthermore,
since 𝐰 affects the evolution of the internal variables 𝜶, backpropa-
gation in time becomes necessary. Starting from Eq. (14) and walking
back through the graph of Fig. 4, the gradient of the loss at time step 𝑡
of a given strain path is given by:

𝜕𝐿𝑡
𝜕𝐰

= 𝜕𝐿
𝜕𝝈𝑡

{

𝜕𝝈𝑡
𝜕𝜽𝑡

𝜕𝜽𝑡
𝜕𝐰

+
𝜕𝝈𝑡
𝜕𝜶𝑡

𝜕𝜶𝑡
𝜕𝜽𝑡

𝜕𝜽𝑡
𝜕𝐰

+
𝜕𝝈𝑡
𝜕𝜶𝑡

1
∑

𝑡=𝑡−1

[( 𝑡+1
∏

𝑡=𝑡

𝜕𝜶𝑡
𝜕𝜶𝑡−1

)

𝜕𝜶𝑡
𝜕𝜽𝑡

𝜕𝜽𝑡
𝜕𝐰

]}

(15)

here the remaining gradient chain 𝜕𝜽∕𝜕𝐰 is computed with conven-
ional backpropagation through the network. If  is implemented in
code base that allows for automatic differentiation (e.g. in PyTorch),

hese time dependencies are naturally taken into account as long as a
ersistent gradient tape is used within each strain path.5 In this work
e instead implement network training directly into an existing FE

ode, and therefore opt for the pragmatic approach of computing all
artial derivatives of quantities derived from  using finite differences.

4 Even though our observations come from a computer model and can be
onsidered noiseless, the surrogate 𝝈 is in general not arbitrarily flexible and
he random variable 𝜉 is therefore still necessary to explain why the model
oes not exactly fit every single observation in the dataset.

5 This is already the case for RNNs, so switching from RNNs to the present
6

odel should require little to no changes to the way training is performed. 𝜺
Finally, in order to enforce upper and lower bounds for 𝜽 and
void unphysical parameter values (e.g. negative elasticity moduli), we
pply sigmoid activation to the final layer of the network and scale the
arameters back from a [0, 1] range using predefined bounds:

𝑖 = 𝜃low𝑖 + 𝜃𝜎𝑖
(

𝜃upp𝑖 − 𝜃low𝑖
)

(16)

3.4. Material decoders

As previously mentioned, any constitutive model can in principle be
used as . For the present study we focus on reproducing elastoplas-
ticity and therefore narrow our choices down to the following set of
potential decoders with increasing levels of complexity. The simplest
one is a linear-elastic isotropic material with no internal variables:

𝜎𝑖𝑗 = 𝐷𝑖𝑗𝑘𝑙𝜀𝑘𝑙 with 𝐷𝑖𝑗𝑘𝑙 = 𝐺
(

𝛿𝑖𝑗𝛿𝑘𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘
)

+
(

𝐾 − 2
3
𝐺
)

𝛿𝑖𝑗𝛿𝑘𝑙 (17)

where index notation is used for convenience. For this model, 𝜽 com-
prises only the bulk and shear moduli 𝐾 and 𝐺, or equivalently the
Young’s modulus 𝐸 the Poisson’s ratio 𝜈.

The second decoder option is a simple plasticity model with 𝐽2 (von
Mises) flow. The stress update in this case becomes:

𝜎𝑖𝑗 = 𝐷𝑖𝑗𝑘𝑙

(

𝜀𝑖𝑗 − 𝜀p𝑖𝑗
)

(18)

where strain is additively decomposed into elastic and plastic (𝜺p)
contributions. The yield criterium and plastic flow rule are given by:

𝜙 =
√

3𝐽𝜎
2 − 𝜎y ≤ 0 and 𝛥𝜀p𝑖𝑗 = 𝛥𝛾

√

3
2

𝑆𝑖𝑗
‖

‖

‖

𝑆𝑖𝑗
‖

‖

‖F

(19)

where 𝐒 is the deviatoric part of the stresses, 𝛾 is a plastic multiplier,
y is a yield stress parameter and we write the Frobenius norm as
⋅‖F. In order to keep the model as simple as possible, we assume 𝜎y
s a material constant and therefore end up with a perfectly-plastic
odel with associative flow. The internal variables of this model are

omponents of the plastic strain vector 𝜺p and the only new material
parameter is the yield stress 𝜎y.

Finally, we also consider the more complex pressure-dependent,
non-associative plasticity model proposed by Melro et al. (2013). Stress
update is the same as in Eq. (18), but yield surface and plastic flow are
given by:

𝜙 = 6𝐽𝜎
2 + 2𝐼𝜎1

(

𝜎c − 𝜎t
)

− 2𝜎c𝜎t ≤ 0 and

𝛥𝜀p𝑖𝑗 = 𝛥𝛾
(

3𝑆𝑖𝑗 +
1 − 2𝜈p
1 + 𝜈p

𝐼𝜎1 𝛿𝑖𝑗

)

(20)

here 𝛿𝑖𝑗 is the Kronecker delta, 𝜎t and 𝜎c are yield stresses in tension
nd compression, respectively, and 𝜈p is a new parameter controlling
lastic contraction and allowing for compressible plastic flow. Harden-
ng can be described by making the yield stresses general functions of
p, but when used as a decoder we assume 𝜎t and 𝜎c do not depend on
p and instead let the decoder  describe their evolution.
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The model by Melro et al. (2013) is also the one used to describe
the microscopic material phase responsible for the nonlinear behavior
observed when homogenizing micromodel response, and can therefore
be seen as the natural choice for . Nevertheless, the other two
decoders can provide interesting insights on the effect of introducing
different levels of bias to the hybrid model.

3.5. Online predictions and inherited stability

The architecture of Fig. 1 is developed to be minimally intrusive
and allow for existing material models to be used as decoders with
minimum effort. We therefore implement the online routine of the
model as a wrapper around an existing implementation of . The basic
structure of the wrapper can be seen in Algorithm 1. The hybrid nature
of the model allows for a robust approach that ensures the numerical
stability of the original model  is inherited by the surrogate. This
is achieved by only updating 𝜽 at the end of each time step, after the
global implicit Newton–Raphson scheme converges. Material properties
are therefore fixed while the global solver is iterating, and that means
the tangent stiffness 𝐃 comes directly from  and inherits its stability
features.

Algorithm 1: Material wrapper implementing the online
component of the hybrid surrogate.

Input: strain 𝜺𝛺𝑛𝑒𝑤 at macroscopic Gauss point
Output: stress 𝝈𝛺 and stiffness 𝐃𝛺 at macroscopic Gauss point

1 use nested model with converged parameters and internal
state:

(

𝝈𝛺 ,𝐃𝛺 ,𝜶𝑛𝑒𝑤
)

← 
(

𝜺𝛺𝑛𝑒𝑤,𝜶𝑜𝑙𝑑 ,𝜽
)

;
2 if global solver has converged :
3 store latest converged strain: 𝜺𝑜𝑙𝑑 ← 𝜺𝑛𝑒𝑤;
4 commit material history: 𝜶𝑜𝑙𝑑 ← 𝜶𝑛𝑒𝑤;
5 compute new features: 𝝋𝑛𝑒𝑤 ← 

(

𝜺𝑛𝑒𝑤
)

;
6 update model parameters for the upcoming time step:

𝜽 ← 
(

𝝋𝑛𝑒𝑤
)

;
7 if first global iteration of time step and Gauss point is unstable :
8 stabilize encoder:  ← 𝚜𝚝𝚊𝚋𝚒𝚕𝚒𝚣𝚎𝙽𝚎𝚝𝚠𝚘𝚛𝚔

(

𝜺𝛺𝑛𝑒𝑤
)

;
9 recompute features: 𝝋𝑜𝑙𝑑 ← 

(

𝜺𝛺𝑜𝑙𝑑
)

;
10 recompute model parameters for the current time step:

𝜽 ← 
(

𝝋𝑜𝑙𝑑
)

;
11 return 𝝈𝛺 ,𝐃𝛺

As an example, the 𝐽2 plasticity model of Eq. (19) is unconditionally
table as long as its hardening modulus ℎ ≥ 0 for any

(

𝜺𝛺𝑡 ,𝜶
𝛺
𝑡
)

,
which is the case for the perfectly-plastic version we consider here.
It then follows that any hybrid surrogate with 𝐽2 decoder is also
unconditionally stable. Note that this is only possible because strains
are directly passed on to the decoder and would therefore not be an
option for conventional surrogates (e.g. the RNN of Fig. 3). For those
surrogates, the tangent stiffness would come directly from the jacobian
of a highly-flexible data-driven model, often at the cost of numerical
stability.

3.6. Numerical stabilization

Nevertheless, the decoder  may be inherently unstable even with
fixed material constants. This is for instance the case for the model
by Melro et al. (2013): the non-associative flow rule of Eq. (20) can
cause the tangent stiffness 𝐃𝛺 to lose positive definiteness under certain
strain conditions and for certain combinations of model parameters. To
accommodate such a scenario and open up the possibility for online
model adaptivity in other contexts, we propose a scheme for updating
the encoder  on the fly in order to enforce extra constraints locally.

Back to Algorithm 1, at the beginning of a new time step we keep
𝜽 fixed to the one obtained with converged strains from the previous
7

step and let the solver make a first strain prediction. After this first o
iteration, a stability criterion is checked and used to define a new loss
function that can be used to update network weights in case instability
is detected. Here we employ the determinant of the acoustic tensor 𝐐:

= 𝐧T𝑑𝐃
𝛺𝐧𝑑 (21)

here 𝐧𝑑 is the vector normal to the strain localization direction
reating the instability, which we find through an angle sweep pro-
edure as in Van Der Meer and Ke (2022): we sample the space of
ossible localization angles densely (a one-dimensional search for 2D
train simulations) with 100 equally-spaced angles, compute 𝐐 and
ts determinant for each corresponding normal vector 𝐧𝑑 and pick the
ngle that leads to the lowest value for the determinant. We use det (𝐐)
s a metric of stability and trigger a retraining procedure in case a
egative value is detected. We therefore introduce a new loss function:

Q = −
⟨det (𝐐)⟩−
det

(

𝐐0
) (22)

where ⟨⋅⟩− extracts the negative part of its operand and 𝐐0 is a
reference value for the acoustic tensor computed at the start of the
simulation. We minimize this new loss at every unstable point for a
small number of epochs with low learning rate, and to discourage
significant drifts from the original model6 we finish the stabilization
procedure by updating the network using the original loss of Eq. (14)
for a single minibatch. Finally, 𝜽 is updated using the retrained model
and is kept fixed for the remaining iterations.7 Note that the local
constraint of Eq. (22) is therefore only enforced in a soft way and
remaining instabilities might still cause the global solver to diverge, in
which case we cancel the current increment, go back to the beginning
of the time step and allow for the procedure to be triggered again.

4. Numerical examples

The proposed model was implemented in an in-house Finite Element
code developed using the open-source C++ numerical analysis library
Jem/Jive (Nguyen-Thanh et al., 2020). In order to allow for seamless
online retraining, network training was also implemented within the
same code. We start this section by describing the datasets and model
selection strategies used to build the surrogates. We then investigate
the performance of the approach under several choices of encoders
and decoders. Finally, we use the model within an FE2 simulation
and demonstrate the online stabilization procedure of Section 3.5.
All simulations are performed on cluster nodes equipped with Xeon
E5-2630V4 processors and 128 GB RAM running CentOS 7.

4.1. Data sampling and model selection

Models are trained to reproduce the behavior of the fiber-reinforced
composite micromodel shown in Fig. 6. Fibers are modeled as linear-
elastic and the matrix is described by the pressure-dependent non-
associative elastoplastic model by Melro et al. (2013) (Section 3.4).
Microscale material properties are adopted from Van der Meer (2016).
The microscopic geometry shown in Fig. 6 results from an RVE study
performed in Van der Meer (2016) and is therefore considered represen-
tative. Following the discussion in Section 3, our aim is to investigate
up to which extent it is possible to circumvent the curse of dimensional-
ity associated with path dependency by training surrogates exclusively
on monotonic strain paths and having time-dependent behavior arise

6 The two loss functions of Eqs. (14) and (22) are never optimized together
ithin the same minibatch, which prevents a scenario in which the two
bjectives have conflicting gradients and cause training to stall. Nevertheless,
ptimizing them in alternation might lead to the model gradually losing
ccuracy on the original training dataset.

7 Changing  and therefore 𝜽 after every iteration would not work in favor

f improving stability, but rather have the opposite effect.
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Fig. 6. The micromodel used in the examples of this work.

naturally from a physics-based decoder. We therefore limit ourselves
to monotonic paths for training. For consistency, we also employ
exclusively monotonic data to perform model selection.

For efficiency, we limit the present investigation to 2D simulations
(i.e. three strain components) in the plane perpendicular to the fibers,
but nevertheless expect the discussion and conclusions to generalize
to 3D simulations as long as appropriate orthotropic decoders are
employed. Datasets with 2000 monotonic strain paths are generated
under both plane strain and plane stress assumptions. Fig. 7 shows the
complete plane strain dataset, with a similar one also being generated
for plane stress. Each path is generated with an FE2 simulation of a
single macroscopic element under displacement control along a fixed
direction in strain space sampled from a uniform distribution. To
circumvent convergence issues, we employ an adaptive time stepping
technique that progressively reduces time step size when the simulation
does not converge and gradually increases it back for subsequent
increments. The simulations are stopped once a strain norm of 10% is
reached. As the adaptive scheme leads to paths with different numbers
of time increments, we balance the dataset by ensuring every path is
composed of 30 steps with strain norms as equally spaced as possible.

To keep model selection straightforward and avoid the need for
cumbersome k-fold cross validation or bootstrapping, we train a prelim-
inary model with enough flexibility and an extensive training dataset
and gradually increase the size of the validation set until the vali-
dation error converges to a good estimate of the expected prediction
error (Hastie et al., 2009). This results in validation sets with 500 paths
selected at random from the original datasets, leaving 1500 paths to
be used for training. We then perform model selection by gradually
increasing the complexity of our FNN encoders until the validation
error stabilizes. From experimenting with different architectures, we
find that encoders with 5 hidden layers of 50 units each with Scaled
Exponential Linear Unit (SELU) (Klambauer et al., 2017) activation
provide enough flexibility for all the examples treated here. To ensure
enough regularization when computing learning curves with small
datasets, we employ Bernoulli dropout layers with a rate of 1% after
every hidden layer. Networks are trained for 20 000 epochs using the
Adam optimizer with recommended parameters (Kingma and Ba, 2017)
and 32-path minibatches. The model with lowest historical validation
error is kept after training, further reducing the risk of overfitting on
small datasets.

To assess the capabilities of the trained surrogates, we compute
an additional test dataset comprising 50 monotonic, 50 unloading–
reloading and 50 slow cycling paths, examples of which are shown in
Fig. 8. To keep the comparisons fair, none of these paths are used to
perform model selection and are therefore only considered after the
surrogates are trained. We will use example curves like those from
Fig. 8 for visual inspection of the model performance, but also the
complete sets of 50 curves each for more rigorous statistical analysis.
A summary of the models considered in the following sections can be
seen in Table 1.
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Table 1
Summary of the hybrid models used in the numerical examples.

Features Encoder Latent space Decoder Section

𝜀𝑥𝑥 , 𝜀𝑦𝑦 , 𝛾𝑥𝑦
5 × 50 SELU 𝐸, 𝜈 Elastic 4.2𝜺 → 𝐼𝜀

1 , 𝐼
𝜀
2

𝜺 → 𝐼𝜀
1 , 𝐼

𝜀
2

𝜺 → 𝐼𝜀
1 , 𝐼

𝜀
2 5 × 50 SELU 𝜎y J2 plasticity 4.3

𝜀𝑥𝑥 , 𝜀𝑦𝑦 , 𝛾𝑥𝑦

5 × 50 SELU 𝜎t ,
𝜎c
𝜎t
, 𝜈p (Melro et al., 2013) 4.4, 4.5

𝜺 → 𝐼𝜀
1 , 𝐼

𝜀
2

𝜺 → 𝐼𝜀
1 , 𝐽

𝜀
2

𝜺 → ̄ → �̄�p𝑥𝑥
𝜺 → ̄ → 𝐼 �̄�

1 , 𝐽
�̄�
2

4.2. Elastic decoder

It is interesting to first consider the simple linear-elastic decoder
of Eq. (17), as it has no internal variables and therefore leads to a
surrogate model comparable in nature to a conventional FNN trained
on stress–strain pairs. As we will demonstrate, however, the limited
physical bias provided by such simple model already proves advanta-
geous. Here we let both elastic properties be controlled by the learned
encoder:

𝜽 =
[

𝐸 𝜈
]

(23)

where the bounds 101 < 𝐸 < 105 and 0 < 𝜈 < 0.5 are enforced as
described in Eq. (16).

We first perform a feature selection study and investigate how
efficiently the model learns as the size of the dataset is increased.
From the original plane strain training dataset of 1500 monotonic strain
paths, we draw datasets with sizes ranging between 1 and 150 paths
without replacement and use them to train networks with different
encoder features. To get a reliable estimate of the expected prediction
error, we repeat this process 50 times for each dataset size and encoder
type, and for comparison we also do the same for conventional FNNs
trained directly on stress targets (keeping the same architecture but
going directly from the final hidden layer to stresses). This amounts to a
total of 3400 trained networks from which we can compute an estimate
of the prediction error by averaging ‖

‖

𝝈 − 𝝈‖
‖

over the 500 paths left for
validation.

Fig. 9(a) plots averages of the validation error over the 50 training
datasets used for each size. Although the hybrid architecture does not
show an advantage over the FNN when the encoder is trained on strain
features, there is a clear gain in learning speed when using only the
two first strain invariants as features. Apart from accelerating learning
and resulting in lossless dimensionality reduction, using invariants also
results in a surrogate which is frame invariant under small strains.
For comparison, we also train a conventional FNN on the same set of
features, but those are unsurprisingly not enough to describe general
strain states and much of the material response is interpreted by the
FNN as observation noise. We zoom into the first part of the learning
curves in Fig. 9(b), this time also showing single standard deviation
uncertainty bands coming from the variance among the 50 training
datasets. The hybrid network outperforms conventional FNNs in the
low data regime and tends to be less sensitive to changes in dataset
starting from about 20 training paths. Nevertheless, the extra flexibility
of conventional FNNs allow them to achieve lower validation errors if
significantly more training paths are used.

Training the invariant-based hybrid network with the complete
dataset of 1500 curves leads to surrogates with validation errors of
about 4MPa, accurately representing the monotonic behavior of the
original micromodel. Fig. 10 shows representative predictions of this
model for paths from the test set. It is also interesting to plot how
the latent space of the hybrid model evolves within a single strain
path. This is done for the monotonic path of Fig. 10a in Fig. 11
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Fig. 7. The complete plane strain dataset used to train the surrogates, comprising 2000 monotonic strain–stress paths. A similar dataset is generated under plane stress conditions.
Fig. 8. Examples from a test dataset with 50 paths of each type. They are not used to train any of the networks or perform model selection.
Fig. 9. Learning curves of models with elastic decoders and conventional FNN models. Mean error over the 500 validation monotonic paths.
(solid lines). In order to reproduce exponential hardening followed by
perfect plasticity, the value of 𝐸 decays asymptotically to zero while 𝜈
stabilizes at a relatively high level.

As can be seen in Fig. 10, this surrogate with no internal variables
is not capable of predicting non-monotonic strain paths, and effectively
behaves like a hyperelastic material model just as the conventional FNN
would. Nevertheless, the flexible and interpretable encoder–decoder
9

architecture of Fig. 1 allows for new creative approaches in feature
selection. As a demonstration, we keep the trained network of Fig. 10
intact and only modify its feature extractor to introduce a simple
path-dependent mechanism:

𝝋𝑇 ≡
[

𝐼
𝜀

𝐼
𝜀] = argmax

(

(

𝐼𝜀
)2 +

(

𝐽 𝜀)
)

(24)
1 2 𝑇 0<𝑡<𝑇
1 𝑡 2 𝑡
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Fig. 10. Performance of the elastic decoder model for different test scenarios.
Fig. 11. Evolution of latent space properties of elastic decoder models for a monotonic test path.
Fig. 12. Predicting unloading with a linear-elastic decoder through history-aware feature extraction.
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hich freezes the evolution of 𝜽 if the path becomes non-monotonic.
ote that the network does not need to be retrained and this modifica-

ion can be employed exclusively when making online predictions, as
he new features reduce to the original ones for the monotonic paths
sed for training (c.f. Fig. 11, dashed line).

We plot two representative non-monotonic paths predicted by the
modified model in Fig. 12. From the hyperelastic behavior of Fig. 10,
the modified surrogate now behaves as a damage model: the non-linear
material behavior is explained by a loss of stiffness which is made
persistent by the history-aware feature extractor. This path-dependent
behavior can also be observed by looking at the evolution of material
properties during the slow cycling path of Fig. 12b, which we plot
in Fig. 13. With the original encoder (solid lines), properties are al-
lowed to recover during unloading, while the modified feature extractor
(dashed lines) keeps them constant until the path is fully reloaded.
Nevertheless, although an improvement to the original model, it is
10

unreasonable to expect the physical bias introduced by a purely elastic
model to reliably represent an elastoplastic micromodel. We therefore
move to decoders with more relevant physics.

4.3. 𝐽2 decoder

In this section we choose as decoder  the elastoplastic model
f Eq. (19) with 𝐽2 plastic flow. Standing on its own, the model is a
riori perfectly plastic (constant 𝜎y),8 but here we let its yield stress be
ontrolled by the data-driven encoder:

=
[

𝜎y
]

(25)

8 We also experimented with models with linear hardening but since the
ncoder is in principle a universal approximator, no additional flexibility is
btained by assuming more complex hardening behavior. There are also no
ains to be booked in terms of numerical stability, as a perfectly-plastic 𝐽2

model is already unconditionally stable.
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Fig. 13. Evolution of latent space properties of elastic decoder models for a slow cycling test path.
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Fig. 14. Evolution of the mean validation loss for the first 200 training epochs of a
etwork with 𝐽2 decoder. Single dataset with 1500 monotonic paths.

while enforcing 101 < 𝜎y < 103 and keeping the Young’s modulus and
oisson’s ratio fixed to values obtained from a single linear micromodel
imulation. In contrast to the model with elastic decoder of the previous
ection, we now employ prior knowledge of the micromodel behavior
nd assume that all non-linearity should be explained by plasticity and
o not let the elastic properties be dictated by the encoder. Still, the
ssumption of isotropic and incompressible plastic flow is a departure
rom the more complex pressure-dependent and non-associative behav-
or shown by the micromodel. Here we are therefore concerned with
he effect of trading the flexibility of an elastic decoder for significantly
ore physical bias from a lower-fidelity representation of material

ehavior.
At this point it is interesting to compare the performance of the

ybrid surrogate with predictions coming from the state-of-the-art
esoscale material model for polymer composites proposed by Vogler

t al. (2013). It is an orthotropic elastoplastic model with pressure-
ependent non-associative flow precalibrated with a small number
f monotonic uniaxial and biaxial stress–strain curves obtained from
imulations on the exact same micromodel of Fig. 6 (see Van der Meer,
016 for details on the calibration procedure). For this section, we
witch to a dataset in plane stress, allowing the 𝐽2 model to describe
icher nonlinear behavior under biaxial strain states.

Fig. 14 shows the evolution of the validation set loss when train-
ng the 𝐽2-decoded model with 1500 plane stress training paths. The
rror quickly stabilizes at around 20MPa, significantly lower than
he 44MPa average prediction error obtained with the precalibrated
esomodel. The added flexibility with respect to the original perfectly-
lastic 𝐽 model can be seen in the test set curves plotted in Fig. 15:
11

2

the data-driven encoder leads to correct predictions of nonlinear hard-
ening (Fig. 15(a)) and pressure-dependent plastic flow (Fig. 15(b)).
The figures also highlight the inability of the mesomodel to predict
the behavior in certain regions of the strain space, particularly under
compression-dominated scenarios.

The minimum validation error attained by the model is, however,
nevertheless significantly higher than the 4MPa obtained with the
elastic decoder of the previous section. This result is not entirely
surprising, as the elastic decoder introduces much less bias into the
model and therefore allows for a greater degree of flexibility when
fitting monotonic data. On the other hand, what cannot be directly
gleaned from Fig. 14 is that the 𝐽2 decoder benefits from having
physics-based memory coming from its internal variables that allows
for making predictions of non-monotonic behavior based solely on our
assumption that nonlinearities come from plastic strain and therefore
without ever having to see it during training.

In Fig. 16 we plot predictions of the 𝐽2 surrogate for two different
unloading–reloading paths from the test dataset. The model predicts
unloading very well without being trained for it. Nevertheless, as
Fig. 14 suggests, the model struggles to predict monotonic behavior
under a number of different scenarios, from which it follows that
any non-monotonic predictions along the same directions will also be
inaccurate. Fig. 17 shows three examples of this behavior.

The choice of decoder therefore involves a tradeoff between bias
and flexibility that can be deceiving to base solely on validation error
computed on monotonic data. Indeed, the decoder used in the next sec-
tion outperforms 𝐽2-based decoders in most situations, but nevertheless

choice for the simpler decoder might still be justified — e.g. if the
nconditional numerical stability of a 𝐽2 decoder is desirable.

.4. Non-associative pressure-dependent elastoplastic decoder

As one final exploration on model selection, we use as decoder
he same elastoplastic model by Melro et al. used to describe the
atrix material at the microscale (Melro et al., 2013). As mentioned

n Section 3.4, this model is the natural choice for , as it attempts
o explain the observed microscopic non-linear behavior with the same
odel from which the behavior arises. As before we keep the elastic
roperties of the model intact and let only the yield stresses and the
lastic Poisson’s ratio change in time:

=
[

𝜎t
𝜎c
𝜎t

𝜈p
]

(26)

here 101 < 𝜎t < 104, 0 < 𝜈p < 0.5 and 1 < 𝜎c
𝜎t

< 100. We opt for the
atio 𝜎c

𝜎t
instead of simply 𝜎c in order to also enforce 𝜎c > 𝜎t .

We expand upon the feature selection study of Fig. 9 by looking at
everal feature extractors coming both directly from strains and from
he output of a precalibrated Melro model  with the same properties

used at the microscale (Fig. 5(b)). As mentioned in Section 3.2, this
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Fig. 15. Predictions from the network with 𝐽2 decoder. Letting the yield stress evolve extends the model to more complex plasticity behavior.
Fig. 16. Network predictions with 𝐽2 decoder for unloading paths after being trained exclusively with monotonic paths.
Fig. 17. Examples of strain paths not well predicted by the 𝐽2 decoded model.
(

recalibrated model has fixed material properties and does not directly
erform macroscopic stress predictions but rather only acts as a time
onvolution operator, converting the complete strain history seen by
he surrogate into a single set of input features 𝝋 for the encoder. By
ncapsulating the same physics that generates the nonlinear material
ehavior present in training snapshots, it can therefore be seen as
physics-rich alternative to e.g. a network of 1D convolution layers

arsing the complete history of strains from 𝑡 = 0 until the time step at
hich predictions are sought.

Aside from the familiar choice of strain features (
[

𝜀𝑥𝑥 𝜀𝑦𝑦 𝛾𝑥𝑦
]

→

Melro), we look into invariants of the strain tensor (
[

𝐼𝜀1 𝐼𝜀2
]

→ Melro),
combinations including invariants of the deviatoric strain tensor
(
[

𝐽 𝜀
2
]

→ Melro,
[

𝐼𝜀1 𝐽 𝜀
2
]

→ Melro), plastic strain internal variables com-
ing from the precalibrated feature extractor (

[

𝜀p 𝜀p 𝛾p
]

→Melro) and
12

𝑥𝑥 𝑦𝑦 𝑥𝑦
stress invariants coming from the extractor (
[

𝐼𝜎1 𝐽𝜎
2

]

→ Melro). We also
include predictions from the precalibrated mesomodel by Vogler et al.
(2013) and selected curves from Fig. 9(a) for comparison purposes.
As before, we train 50 networks of each type for each size of dataset
ranging from 1 to 150 paths drawn from the original dataset with 1500
paths. Each trained network is then used to compute the validation
error over the 500 monotonic validation paths and the 150 test paths
50 extra monotonic paths, 50 paths with unloading–reloading and 50

slow cycle paths). This results in an extensive study comprising 6800
trained networks and over one million test set simulations.

Results are summarized in Fig. 18, with each point in a curve
being the average over 50 networks. Once again using invariants as
features proves beneficial, leading to lossless dimensionality reduction
and frame invariant surrogates. All tested models perform better than
the precalibrated mesomodel, with a gap of more than one order of
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Fig. 18. Expected validation errors for Melro-decoded surrogates with different feature
xtractors (averages over 50 datasets).

agnitude for the best performing surrogates. Interestingly, models
ith Melro-based decoders seem to learn as fast and be as flexible as
odels with elastic decoders, already for the monotonic curves in the

alidation dataset. This suggests that the new decoder does not impose
xtra undesirable bias in learning the specific material behavior treated
ere other than the assumptions that had already been introduced by
lasticity (e.g. symmetries and couplings encoded by the elastic stiffness
ensor). Any benefits reaped when extrapolating to non-monotonic
aths, as we will see in the following, are therefore obtained at a
egligible price in terms of monotonic behavior accuracy. This stands in
ontrast with the discussion on the 𝐽2 decoder of the previous section.

Although Fig. 18 is not enough to discern between several of our
ncoder choices, it is interesting to take a closer look at the two clearly
nderperforming options. Fig. 19 shows predictions from

[

𝐽 𝜀
2
]

→ Melro
and

[

𝜀p𝑥𝑥 𝜀p𝑦𝑦 𝛾p𝑥𝑦
]

→ Melro for the same monotonic test path. The
odel with a single feature struggles to predict the entirety of the
ath, indicating that further reducing the dimensionality of the feature
pace is not possible for this dataset. The oscillatory stress predictions
ake this model unsuitable for online stress evaluation in a multiscale

etting. For the model with plastic strain features, the feature extractor
hows no plastic strains until high stress levels while in the micromodel
lasticity starts much earlier, forcing the surrogate to remain in the
lastic regime until a sudden jump brings it back to the expected path.

Moving to unloading–reloading paths, we compare the performance
f different feature sets by plotting the average test error over the
0 unloading–reloading paths in Fig. 20(a). Here an interesting obser-
ation can be made: even the surrogate

[

𝐼𝜀1 𝐼𝜀2
]

→ Elastic — which
annot predict unloading at all — attains a lower test error than the
recalibrated mesomodel. This apparent contradiction can be explained
y plotting in Fig. 20(b) the average error computed only at unloading
r reloading time steps: use of an elastic decoder — and therefore of a
onventional FNN or an RNN trained with insufficient data — excels at
redicting monotonic response but is consistently inaccurate for non-
onotonic paths and shows little improvement when more monotonic
aths are added to the training dataset.

In contrast, the best-performing Melro models are consistently more
ccurate than the precalibrated mesomodel even when trained on very
ittle data. We plot in Fig. 21 selected representative unloading paths
rom the test dataset for four of the surrogates. Unloading is once
gain well captured without having been seen during training, and
ince it emerges from a purely physical mechanism, it is reasonable to
xpect unloading at different points along the path to yield comparable
esults (c.f. Fig. 3(a)). Nevertheless, relatively small differences in
13

nloading slope can still lead to large differences in stress at the end
f the unloading branches. Furthermore, the model can struggle with
ension–compression switches and predict spurious hysteresis loops.

Indeed, we observe a consistent inability by the models to properly
redict switches between tension and compression within the same
ath. This becomes clear when looking at slow cycling test paths com-
osed of several of these switches (Fig. 8(c)). We plot learning curves
or the test error on slow cycling paths in Fig. 22, for complete paths
s well as exclusively for the non-monotonic branches of the paths.
n contrast with results up until now, here we see larger differences
n performance for different feature sets. As expected, elastic decoders
re once again shown to be unsuitable to predict non-monotonic paths,
nd the difference here is even more pronounced than in for single-
nloading paths (c.f. Fig. 20) as most of the path is composed of un-
oading/reloading branches. The model encoded with stress invariants
oming from an elastoplastic feature extractor performs best among the
odels we test. But crucially, none of the surrogates manages to surpass

he precalibrated mesomodel in this case.
As a demonstration, we select a representative path from the test

ataset and plot predictions made with four different feature sets in
ig. 23. As expected, larger errors are observed for more pronounced
ension–compression switches as models either over- or undershoot
he stress levels at compression–tension switch points. Interestingly,
ost models manage to converge back to the correct stress path after

eloading, since hardening behavior is completely dictated by their non-
ecurrent data-driven encoders. The exception is the model with stress
nvariant features (

[

𝐼𝜎1 𝐽𝜎
2

]

→ Melro) which we plot in more detail in
Fig. 24 for each stress component separately, performing significantly
better than the rest but showing a number of undesired oscillations in
stress response due to the (physically) recurrent nature of its features
forcing its neural network encoder to operate in extrapolation.

4.5. FE2 example

We conclude our discussion with an FE2 demonstration using the
roposed hybrid surrogate. We model the tapered macroscopic bar with
eometry and boundary conditions shown in Fig. 25. The model is
eshed with 1620 linear triangles with a single Gauss point each and

s loaded in tension until plastic strain localization takes place. The
ombination of the tapered geometry with the several circular voids
long the model result in a complex range of stress states throughout
he model. In contrast to the cases considered so far, this example
lso covers non-proportional strain paths. To facilitate convergence, the
ubstepping approach proposed in Somer et al. (2009) is employed and
n adaptive stepping algorithm is used at the macroscale that auto-
atically reduces time step size and recomputes the current increment

f either the micro- or macroscopic Newton–Raphson solver fails to
onverge.

We use the
[

𝐼𝜎1 𝐽𝜎
2

]

→ Melro model of the previous section as
surrogate, trained on the complete set of 1500 monotonic training strain
paths. The global load–displacement curve at the right edge of the
model is plotted for the full-order FE2 solution and using the hybrid
surrogate in Fig. 26(a). Since we update decoder properties in an
explicit fashion (i.e. once per time step, see Algorithm 1), we use a
displacement increment 𝛥𝑢 = 3.5 × 10−3 mm for the approximate model,
10 times smaller than the one used for the full-order model.

As mentioned in Section 3.5, the model by Melro et al. can suffer
from numerical stability issues even with fixed material properties, and
it is reasonable to expect these issues to become worse when letting
properties evolve with time. Indeed, with no additional stabilization
the model using the network fails to converge at the point marked
in Fig. 26(a). In contrast, the stabilization procedure of Section 3.5
allows for a complete path to be obtained. For this first result, we
stabilize the network for 5 epochs with a learning rate of 1 × 10−5 for
the stabilization loss (Eq. (22)) and 1 × 10−9 for retraining on a single

monotonic training path selected at random.
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Fig. 19. Monotonic test set predictions from feature-deficient Melro models (complete training dataset with 1500 paths).
Fig. 20. Learning curves for unloading–reloading test errors of Melro-decoded surrogates (averages of 50 datasets).
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We also consider a model with an unloading/reloading switch after
the onset of macroscopic plasticity. Results are shown in Fig. 26(b).
The surrogate approximates the full-order behavior fairly accurately9

and several orders of magnitude faster than the full-order model.
It is worthwhile to further comment on the obtained levels of accel-

eration. On average, the computation of a single monotonic training
path takes approximately 250 s, and training a surrogate for 20 000
epochs with the complete 1500-path dataset takes approximately 51 h
on a single computing core. This would amount to a total offline com-
putation time of 155 h, higher than the required for the FE2 simulations
of Fig. 26. This would however not be a consistent comparison. The
hybrid nature of the proposed approach allows for training accurate
surrogates with only a small fraction of this complete dataset. Indeed,
Fig. 18 suggests a surrogate trained on 20 paths would offer comparable
performance, which would amount to a total offline computation time
(dataset generation and training) of approximately 2 h. Furthermore,
this offline cost does not scale with the density of the macroscopic
mesh being considered or with the number of macroscopic simulations
being performed — e.g. in a parametric study or design optimization
procedure.

9 The obtained global load–displacement behavior suggests the macroscopic
lastic localization mechanism has been correctly captured by the surrogate
odel. Nevertheless, we cannot guarantee the complete macroscopic plastic

train field has been correctly predicted by the surrogate, and since our FE2

odel does not provide homogenized values for macroscopic plastic strains, a
14

ore thorough comparison is left for future investigations. f
We now look closer on the performance of the proposed online
tabilization approach. We empirically find that retraining the network
ntil every violating material point is fully stabilized is not strictly
ecessary in order to achieve convergence, and therefore opting for a
mall number of stabilization epochs proves to be an efficient approach.
t is nevertheless interesting to investigate the impact of the number of
tabilization epochs and of the subsequent retraining minibatch on the
riginal dataset. We solve the monotonic example of Fig. 26(a) with
ifferent numbers of stabilization/retraining epochs ranging from 2 to

100 and compute the validation loss (on the 500-path validation set used
for model selection) at the end of every macroscopic time increment in
order to keep track of how much the stabilized network deviates from
its original pretrained state.

Results are shown together with the corresponding load
–displacement curves in Fig. 27. All curves remain stable at first,
as stabilization is only triggered when the first unstable points are
detected. From that point, models which do not undergo retraining
after stabilization lose accuracy at a rate proportional to the number
of stabilization epochs. However, this unintuitively does not lead to
improved global stability: the loss of accuracy by the surrogate leads
to spurious global softening (c.f. Fig. 27(b)) which in turn leads to
further need for stabilization. Models stabilized for 50 and 100 epochs
ontinuously fail to converge and we opt for terminating the simula-
ion after 100 canceled time increments. On the other hand, models
etrained with as little as a single strain path (out of the original 1500)
fter each stabilization epoch are able to maintain the original model
ccuracy while offering enough stability gains to allow the simulation
o converge until the final step, with little change in global behavior
or different stabilization regimes.
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Fig. 21. Response of Melro-decoded surrogates with different features for selected unloading/reloading test paths (1500 monotonic training paths).
Fig. 22. Slow cycling test errors for Melro-decoded surrogates (averages of 50 datasets for each size).
More insight can be obtained on the different stabilization strate-
ies by plotting the cumulative execution time of the simulation and
he cumulative number of detected unstable strain states with time
ncrements for different numbers of stabilization epochs. Results can be
een in Fig. 28. In general, simulations without retraining tend to run
aster and result in improved stability, although any gains are quickly
vershadowed by losses in accuracy (c.f. Fig. 27). Stabilizing for more

epochs results in a reduction in the total number of unstable points de-
tected, but beyond 5 epochs this does not result in an overall reduction
in the computational cost of the simulation given the increased effort
spent on individual stabilization operations.

As one final result, we run the monotonic simulation with the hybrid
surrogate for different time step sizes. As previously mentioned, the
hybrid approach allows for explicit update of 𝜽 within an implicit
15
simulation by obtaining the tangent stiffness matrix directly from the
decoder. This however introduces a time step size dependency whose
impact merits investigation. We plot in Fig. 29 predictions with step
sizes spanning four orders of magnitude, including the same one used to
obtain the full-order response. The combination of the explicit property
update with the online stabilization procedure indeed introduces an
upper bound for time step size for this specific problem. It stands to
reason that the sensitivity to time step size also depends on the choice
of decoder and on which material properties are included in 𝜽. Further
investigation into the matter in future works is therefore warranted.

5. Conclusions

In this paper, we propose a hybrid surrogate modeling architecture
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Fig. 23. Response of Melro-decoded surrogates with different features for selected slow cycling test paths (1500 monotonic training paths).
Fig. 24. Slow cycling response of a Melro-decoded surrogate with stress invariant features, different stress components plotted separately.
Fig. 25. FE2 example: geometry, mesh and boundary conditions. Full-order (left) and surrogate-based (right) FE2 simulations are compared.
for multiscale modeling of heterogeneous materials. The model is com-
posed of a data-driven encoder for material properties and a physics-
based decoder that computes stresses. In the resulting architecture,
the encoder increases the flexibility of existing material models by
16
letting their properties evolve in time, while the decoder provides
beneficial bias and interpretability to the model. The model is con-
ceived with flexibility in mind, allowing existing implementations of
physics-based material models to be used with no extra modifications.
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Fig. 26. FE2example: load–displacement curves with and without online stabilization, compared to the ground-truth solution.
Fig. 27. Performance of the surrogate model for stabilization strategies of varying intensities with and without retraining after stabilization.
Fig. 28. Impact of stabilization regime on execution time and number of unstable points throughout the simulation.
Furthermore, by letting the decoder directly receive strain inputs, the
encoder architecture is highly flexible and allows for preservation of
frame independence. A semi-explicit online prediction algorithm is also
proposed that allows for imposing extra constraints to model behavior
in a semi-supervised way.
17
We demonstrate the architecture by reproducing pressure
-dependent elastoplastic behavior coming from homogenized fiber-
reinforced composite micromodels. The simple model with a linear-
elastic decoder learned faster than conventional data-driven surrogates,
allowed for lossless feature space dimensionality reduction through the
use of strain invariants, and was able to approximate path-dependent
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Fig. 29. FE2 example: Effect of time step size on surrogate predictions.

behavior through a simple history-aware feature extractor. Models with
perfectly-plastic 𝐽2 decoders were shown to successfully learn nonlinear
hardening and pressure dependency and predict unloading–reloading
while being trained exclusively on monotonic data, outperforming a
state-of-the-art mesomodel for composites in accuracy for arbitrary
loading directions. Employing as decoder the same plasticity model
used at the microscale led to highly-accurate monotonic response and
fairly accurate extrapolation to unloading/reloading behavior. Finally,
the model was used to solve a complex FE2 model and the benefit of
the online stabilization procedure was demonstrated.

We find the approach to be a promising new way to build hybrid
surrogates which therefore merits further research on a number of
fronts. The current architecture is not by construction concerned with
enforcing unconditional thermodynamic consistency or other physical
constraints of interest. Although we do find empirically that well-
trained surrogates with thermodynamically consistent decoders tend to
perform well, some constitutive models might not be suitable for having
their properties evolve in time. Fortunately, the framework can cope
with extra constraints without necessarily giving up on its flexibility,
by enforcing them locally through online retraining. Although training
exclusively on monotonic paths already allows for path dependency
to be fairly well captured, some decoders might perform better in
extrapolation if trained with a (small) number of extra non-monotonic
and non-proportional strain paths — for instance when encoder and
decoder can each explain the same phenomenon on their own (e.g.
pressure dependency in the model by Melro et al.). We also foresee
combining the present approach with the one in Maia et al. (2023) into
a unified family of flexible hybrid surrogates with a range of possible
combinations of feature extractors for physics-rich time convolution,
fixed-property models with learned strain distributions and evolving
material models.
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