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Abstract 

A neural network (NN) aided model is proposed for the filtered reaction rate in moderate or intense low- 
oxygen dilution (MILD) combustion. The framework of the present model is based on the partially stirred 

reactor (PaSR) approach, and the fraction of the reactive structure appearing in the PaSR is predicted using 
different NN’s, to consider both premixed and non-premixed conditions while allowing the use of imbalanced 

training data between premixed and non-premixed combustion direct numerical simulation (DNS) data. The 
key ingredient in the present model is the use of local combustion mode prediction performed by using 
another NN, which is developed in a previous study. The trained model was then assessed by using two 

unknown combustion DNS cases, which yields much higher dilution level (more intense MILD condition) 
and higher Karlovitz number than the DNS cases used as training data. The model performance assessment 
has been carried out by means of the Pearson’s correlation coefficient and mean squared error. For both the 
present model and zeroth-order approximated reaction rate, the correlation coefficient with the target values 
shows relatively high values, suggesting that the trend of predicted field, by the present model and zeroth- 
order approximation, is well correlated with the actual reaction rate field. This suggests that the use of PaSR 

equation is promising if the fraction of the reactive structure is appropriately predicted, which is the objective 
in the present study. On the other hand, substantially lower mean squared error is observed for a range of 
filter sizes for the present model than that for the zeroth-order approximation. This suggests that the present 
filtered reaction rate model can account for the SGS contribution reasonably well. 
© 2022 The Authors. Published by Elsevier Inc. on behalf of The Combustion Institute. 
This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Due to ever-increasing energy demand and envi-
onmental issues in the world, more stringent regu-
ations are constantly being applied to combustion
evices and their operations. In particular, realisa-
ion of higher efficiency and less pollutant emission
s considered to be the major requirement for future
ombustion devices. 

One of the promising technologies that can meet
pcoming regulations is moderate or intense low-
xygen dilution (MILD) combustion [1–3] . MILD
ombustion is realised with a combination of pre-
eating and dilution of the reactant gas, and it can
e achieved with either exhaust gas recirculation
EGR) or flue gas recirculation (FGR) configura-
ion. The reactant gas is diluted and peak com-
ustion temperature is reduced. Lower combustion
emperature helps to reduce thermal NOx forma-
ion significantly [3] . Also, due to the recircula-
ion, higher thermal efficiency is achieved. In typi-
al MILD combustion, the unburnt gas tempera-
ure T u is preheated higher than the autoignition
emperature T ign . Thus, the reaction is sustained
ven under highly diluted condition [2] . Further-
ore, the temperature rise �T = T b − T u in MILD

ombustion is lower than T u , where T b is the burnt
emperature [3] . Such small �T forms a relatively
niform combustion field and reduces combustion

nstabilities [1,2] . 
Large eddy simulations (LES) of MILD com-

ustion are useful for design and optimisation of 
ILD combustion devices and operation condi-

ions for industrial applications. In LES, coarse
rid is considered and grid scale (GS) phenom-
na are explicitly resolved by solving the spatially-
ltered transport equations. On the other hand,
henomena at the scale of subgrid scale (SGS) need
o be modelled with SGS models. In this manner,
ES can capture unsteady reacting flow structure
ith relatively low computational cost, although

he LES results are highly dependent on the cho-
en models. In turbulent combustion LES, the most
mportant SGS model is perhaps SGS turbulent
ombustion model, which predicts SGS interac-
ion of turbulence and chemical reactions. Several
GS turbulent combustion models are proposed

or MILD combustion [4–8] . However, due to its
omplex reaction zone characteristics described be-
ow, on top of usual turbulence–flame interaction,
he SGS prediction is not straightforward. 

Various experimental and numerical studies
ave been carried out to investigate the physics of 
ILD combustion. Direct photographs of MILD

ombustion and some advanced laser measure-
ents of temperature and CH 2 O fluorescence show

niformly distributed reaction zones [9–12] . How-
ver, clear flame fronts are also observed in OH
lanar laser induced fluorescence (PLIF) images

9–11,13] . Direct numerical simulation (DNS) re-
sults of MILD combustion with premixed and par-
tially premixed reactants suggest the coexistence of 
flamelet-like reaction regions and distributed reac-
tion region depending on the local thermochemi-
cal and turbulence conditions [14–16] . The flamelet
type reaction region represents typical propagating
flame; hence it is named “propagation mode” in the
present study. On the other hand, distributed reac-
tion region is formed due to flame-flame interac-
tion or localised ignition of the reactant gas, and
because of that it is named “ ignition/interaction
mode”. The two combustion modes could be po-
tentially important factors to be considered for the
SGS turbulent combustion model for MILD com-
bustion. 

To include chemical and turbulence interac-
tions, partially stirred reactor (PaSR) approach was
suggested for LES of MILD combustion in pre-
vious studies, and shown to be effective [7,8] . The
PaSR approach assumes the single numerical cell
of LES to have both reactive structure and non-
reactive surrounding fluid at the same time [17] .
The reaction rate of the reactive structure can be
calculated with a perfectly stirred reactor (PSR) or
plug flow reactor (PFR). Meanwhile, the fraction
of the reactive structure is obtained with a pair of 
characteristic chemical and mixing timescales [18] .
The timescales can be chosen from a range of def-
initions. However, there is no proven method to
choose the best pair of timescales, even though the
choice affects the result of the simulations substan-
tially [8] . 

In the present study, a new reaction rate model
is proposed, which is loosely based on the con-
cept of PaSR. The present model utilises the frac-
tion of ignition/interaction mode. Neural network
(NN), which has been reported as promising in var-
ious combustion modelling approaches [19–24] , is
employed to predict the reactive structure within
the cell. The model is trained, validated and tested
with the DNS of MILD combustion, considering
both premixed and partially-premixed configura-
tions at various thermo-chemical conditions. The
present DNS cases are first described in Section 2 .
Ignition/interaction mode, which is the key con-
cept for the proposed model, is then introduced
in Section 3 . Subsequently, the proposed model
is described in Section 4 . Finally, the developed
model is tested and its performance is compared in
Section 5 . 

2. DNS cases 

For the present study, the total of fiv e cases of 
DNS data are used. Three of them, A1, A2 and B1,
are premixed cases, whilst two of them, AZ1 and
BZ1, are partially premixed cases, as summarised in
Table 1 . These DNS datasets are explained in this
section. 
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Fig. 1. Instantaneous (a) fully resolved reaction rate and (b) filtered reaction rate ( � = δth,nom 

) of the case B1 in the mid- 
xy plane, normalized by using the maximum value. Dashed black lines denotes the sampling domain to avoid the open 
boundary effect on the filtering. 

Table 1 
Turbulent combustion conditions of the present DNS 
data. u ′ (m/s) is the turbulence intensity and l 0 (mm) is 
the integral length scale. 

Mode 〈 X O 2 ,r 〉 u ′ l 0 

A1 Premixed 0.035 16.4 1.5 
A2 Premixed 0.035 10.0 1.7 
B1 Premixed 0.025 16.4 1.5 
AZ1 Partially premixed 0.035 16.7 1.4 
BZ1 Partially premixed 0.025 16.7 1.4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1. Premixed cases 

The cases A1, A2 and B1 consider MILD com-
bustion under premixed conditions at different
turbulence and thermochemical conditions, which
have been already reported in previous studies [25] .
The reactant mixture is a methane-air premixed
mixture with the equivalence ratio of 0.8, which is
preheated to 1500 K and also partially mixed with
the corresponding burnt mixture to yield the mean
oxygen molar fraction 〈 X O 2 ,r 〉 shown in Table 1 .
The case A1 and A2 yield the same EGR dilution
level while higher dilution is considered for the case
B1. Also, almost identical turbulent fields are con-
sidered for the cases A1 and B1, while a less in-
tense turbulence is considered for the case A2. With
these turbulence and thermochemical conditions,
the case A2 yields the smallest Karlovitz number
K a among the premixed cases. Also, the case B1
yields largest K a and most “intense” MILD con-
dition. As described later in Section 4 , the case B1
is only used for the testing purpose, but is not used
for training of any NN in the present study. 

Figure 1 shows a typical variation of the re-
action rate ω c of the reaction progress variable c
in the resolved (DNS) and filtered (LES) fields,
where a filter size � of size equal to the flame ther-
mal thickness δth is considered. Here, c is defined
based on the temperature, and ω c = �H/c p / (T b −
T u ) , where �H and c p are respectively heat re-
lease rate and specific heat capacity of the mix-
ture. Since in MILD combustion, reaction zones
are highly convoluted with a range of localised 

events (flame propagation, their interaction and ig- 
nition) as shown in Fig. 1 a, these localised events 
are considered to yield small length scales com- 
pared to typical �. 

2.2. Partially premixed cases 

The cases AZ1 and BZ1 consider MILD com- 
bustion under partially premixed conditions with 

substantial mixture fraction variations, which have 
been already reported previously [16] . This config- 
uration is more realistic than the cases A1-B1, since 
most combustion devices utilise separate streams of 
fuel and oxidiser, which are then mixed for a rela- 
tively short time before combustion. Similar to the 
premixed cases, the partial premixing of fresh non- 
uniform gas and hot products is also considered, 
and two different dilution levels are considered as 
summarised in Table 1 . The averaged unburnt tem- 
perature is the same as the premixed cases. For AZ1 
and BZ1, almost identical turbulent fields are used 

as a initial and inflowing velocity fields. 
For these partially premixed cases, there is ad- 

ditional complexity, where the flame propagation 

speed and ignition delay are varying locally de- 
pending on the local mixture fraction Z. Due to 

this varying scales, together with their interactions, 
prediction of SGS reaction rate would be more dif- 
ficult for the partially premixed cases than that for 
the premixed cases. 

As described later in Section 4 , the case BZ1 is 
only used for the testing purpose, but is not used 

for the training of any NN in the present study. 
The present choice of training and testing datasets 
would make the model assessment more meaning- 
ful and rigorous. 

2.3. Choice of reference flame quantities 

In the following part of the study, various flame 
quantities are used for the input features of the 
present NN’s. These quantities include thermal 
flame thickness δ , unburnt T and burnt T tem- 
th u b 
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eratures, unburnt mixture density ρu and flame
peed S L . For the premixed cases, these quantities
re uniquely determined for each case, since the
ixture fraction Z is almost constant throughout

he domain (with very small fluctuation due to dif-
erential diffusion effect), and they are computed
rom the reference laminar flame based on MILD
ame element (MIFE) [25] . For the partially pre-
ixed cases, these quantities are computed from a

abulation where Z is the control variable. There-
ore, these reference flame quantities vary from po-
ition to position in the combustion domain. This
abulation is constructed based on various laminar
ame solutions at a range of Z values. 

Also in the present study, various values of 
are considered. For reference sake, the consid-

red � is normalized by using the “nominal” flame
hermal thickness δth,nom 

. For the premixed cases,
th,nom 

= δth = 1 . 3 mm . For the partially premixed
ases, δth,nom 

(= 3 . 2 mm ) is obtained from a canon-
cal laminar flame based on the reactant mixture
omposition obtained by averaging the inhomoge-
eous mixture fed to the DNS domain. Therefore,
ach case yield unique δth,nom 

value. Note that δth,nom 

s for reference only, and the choice of its definition
oes not influence the performance of the present
odel. 

. Ignition/interaction mode 

In the present turbulent combustion model,
GS prediction of ignition/interaction mode is a
ey. Therefore it is briefly described here. As it is
entioned in the introduction, MILD combustion

eld may be considered to consist of two types
f reaction regions, propagation mode and igni-
ion/interaction mode. The former mode has no-
iceable scalar gradient |∇c | , while the latter mode
as no significant |∇c | . However, both modes have
imilarly high reaction rates ω c . 

Considering such characteristics, the modes can
e distinguished separately in the resolved combus-
ion field by comparing ω c and |∇c | values [14] . For
nstance, threshold values for ω c and |∇c | can be in-
roduced for mode identification. In such manner,
gnition/interaction mode can be defined as follows,

(ω, ψ ) = 

{
1 , if ω > ω 

∗ and ψ < ψ 

∗

0 , otherwise , (1)

here ω 

∗ and ψ 

∗ are the threshold values for
 c and |∇c | , respectively. When ω c is higher and

∇c | is lower than their chosen threshold val-
es, the equation gives “1”, which represents ig-
ition/interaction mode in the resolved field. Oth-
rwise, the equation gives “0”, which means the
ixture is either propagating flame or non-reacting

one. In this way, the equation works as a marker
or ignition/interaction mode in the resolved com-
ustion field. 
Unfortunately, despite the simplicity and intu-
itiveness of Eq. (1) , it could only work with fully
resolved fields that may be obtained from DNS or
highly-resolved laser measurement images. In other
words, Eq. (1) cannot be directly applied for fil-
tered fields in LES, unless very small � is consid-
ered [26] . When a reasonable � is considered, it
fails to capture SGS fluctuations, which has signif-
icant influence on the local combustion mode of 
MILD combustion [26] . Also, the threshold values
used in Eq. (1) may depend on combustion condi-
tions and � of the LES, making them harder to be
utilised. In addition to that, the meaning of marker
“0” and “1” is rather unclear in unresolved LES
fields. For these reasons, it is not practical to im-
plement Eq. (1) for LES directly. 

With the above in mind, the filtered combustion
mode �res , 

�res = �(ω c , |∇c | ) , (2)

can be introduced for LES application. It repre-
sents the volume fraction of ignition/interaction
mode in a single numerical cell of LES, and it can
be obtained by filtering Eq. (1) . However, fully re-
solved fields of ω c and |∇c | are still needed to ac-
quire such quantity. Thus, to avoid using fully re-
solved fields, which are not available in the LES
context, a NN model that can predict �res with fil-
tered quantities, ω c and |∇ ̃  c | , has been proposed in
a previous study [26] . It can be written as follows: 

�NN = G( ω 

+ 
c , |∇ ̃  c | + , �+ ) , (3)

where G is a function that represents the NN, and
it relates the three input variables in the RHS of 
Eq. (3) with the filtered combustion mode �res .
Moreover, the subscript “NN” represents quanti-
ties predicted by NN, and filtered and Favre filtered
quantities are denoted by · and ̃  ·, respectively. For
the inputs, ω 

+ 
c , |∇ ̃  c | + and �+ are chosen. Note that

the superscript “+ ” denotes normalization of the
quantities based on reference laminar flame quan-
tities. In detail, ω c and |∇c | are respectively nor-
malized with ρu S L /δth and 1 /δth . Meanwhile, � is
normalized with 2 δth . After the normalization, the
three inputs become of similar order magnitude,
which worked as a feature scaling for the NN. 

4. Model description 

4.1. Partially stirred reactor (PaSR) model 

In PaSR models, it is assumed that each single
numerical cell of LES has the reactive structure and
the surrounding fluid at the same time [17] , and the
chemical reactions occur only within the reactive
structure. Therefore, the mean reaction rate of the
cell predicted by a PaSR model is written as: 

ω c,PaSR = κ · ω 

∗, (4)
c 
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where κ and ω 

∗
c are the fraction of the reactive

structure and the reaction rate in the reactive struc-
ture, respectively. 

Introducing κ, PaSR models can represent im-
perfect mixing of the reactant gas. It represents the
ratio of the reactive structure volume to the cell vol-
ume. Usually, κ is calculated with a representative
chemical timescale τchem 

and a mixing timescale τmix

as follows [18] : 

κ = 

τchem 

τchem 

+ τmix 
. (5)

According to Eq. (5) , κ ≈ 0 when τmix � τchem 

,
while κ ≈ 1 when τmix 	 τchem 

. Consequently,
PaSR models can consider interaction of chemical
and turbulence events. Combination of τchem 

and
τmix can be chosen from various types of timescales.
For example, combination of τchem 

based on the
species formation rate and τmix based on the Z vari-
ance and its dissipation rate is proposed for MILD
combustion [8] . The choice of these timescales di-
rectly affects the accuracy of the PaSR prediction
as already reported in [8] . Thus, they need to be
carefully selected considering the type of combus-
tion being handled, which could be an ad-hoc pro-
cess. 

As for ω 

∗
c in Eq. (4) , it can be directly obtained

from perfectly stirred reactor (PSR) with a resi-
dence time τ ∗ [8,27] , or calculated as follows, 

ω 

∗
c = 

ρ(c ∗ − c 0 ) 
τ ∗ , (6)

where ρ, c ∗, c 0 and τ ∗ are mean density, and the
reaction progress variables (scalar) in the reactive
structure and the surrounding fluid and reactive
structure residence time, respectively. c ∗ can be ob-
tained from PSR or plug flow reactor (PFR), and
τ ∗ is determined as τmix [18] , or min (τmix , τchem 

) [8] .

4.2. Details of the present neural network model 

The proposed NN aided filtered reaction rate
model is loosely based on the PaSR approach in
terms of assuming reactive structure and surround-
ing fluids to exist together in a single numerical cell
of LES. Thus, ω c is predicted similarly to Eq. (4) .
However, to avoid ambiguity in timescale determi-
nation, τ ∗, τchem 

and τmix , the reactive structure is
considered to be a homogeneous reactor, thereby its
reaction rate is assumed simply by a zeroth-order
approximation ω c, 0 th based on GS quantities such
as ˜ Y i and 

˜ T . Therefore, the problem of filtered reac-
tion rate prediction now comes down to estimating
the volumetric fraction of such homogeneous reac-
tors in the cell on a par with the conventional PaSR.
The ways to calculate κ is different in the present
study, and also an additional adjustment term f 
is introduced into the equation as an extension to
handle different mixing modes. 

In order to predict κ, a NN is implemented
and its structure is shown in Fig. 2 . The NN com-
putes κNN with four GS quantities at the position 

x in a point-wise manner. As shown in Fig. 2 , 
the four inputs for the NN are �NN , Favre-filtered 

progress variable ˜ c , its scalar gradient |∇ ̃  c | + and 

�+ . The quantities with superscript “+” are be- 
ing normalised with the reference laminar flame 
quantities similarly as it is mentioned in Section 3 . 
Among these input features, �NN identifies the lo- 
cal combustion mode, which is essentially the bal- 
ance of chemical source and flux terms as described 

in Section 3 . This quantity is considered to feed 

some information which acts as an alternative to 

the chemical and mixing time scales appearing in 

a conventional PaSR. Therefore, this is considered 

as a key in the present model. |∇ ̃  c | + is often used in 

various SGS models. 
In terms of the structures and parameters of 

the NN, it consists of three fully connected layers. 
The input layer has four nodes without activation 

function, while the hidden layer has 50 nodes with 

ReLU activation function [28] . The output layer 
has a single node and a sigmoid activation func- 
tion is considered. This is to bound κ in Eq. (5) be- 
tween 0 and 1. As for other training parameters, 
Adam with a learning rate of 10 −5 is chosen as an 

optimization algorithm [29] , the batch size is set as 
eight, and the mean squared error is chosen as a 
loss function. In addition to that, He initialization 

is used as a weight initialisation [30] . 
In the present study, f NN is further introduced to 

consider the local mixing characteristics in the reac- 
tion zones, i.e. premixed or non-premixed, and em- 
ployed in the present modelling as described later 
in this section. It is obtained with another NN that 
is depicted in Fig. 2 . The NN requires six GS quan- 
tities, and the prediction is performed in a point- 
wise manner on par with the κNN model. The four 
of the six quantities are similar to the inputs of 
the NN that is used for κNN prediction. The two 

remaining quantities are 
, which is related to the 
Favre-filtered mixture fraction 

˜ Z , and its scalar gra- 
dient |∇ 

˜ Z 

+ | . They would represent the extent of 
premixing of a local region and would be impor- 
tant for partially premixed conditions. In particu- 
lar, 
 is defined as 
 = exp (−Z/Z st ) , where Z st is 
the stoichiometric mixture fraction. This helps to 

identify local compositions, where 
 = 1 for the 
oxidizer stream, 
 → 0 for the fuel stream, and 


 = 1 /e for a stoichiometric mixture. Locally lean 

mixtures yield 1 /e < 
 < 1 and rich mixtures yield 

0 < 
 < 1 /e . The structure and parameters of the 
NN is almost similar to the NN model used for 
κNN prediction. Therefore, a sigmoid function is in- 
troduced as an activation function for the output 
node, ensuring 0 ≤ f NN ≤ 1 . The only differences 
are that the input layer has 6 units, the learning rate 
of Adam is set as 10 −4 and the batch size is taken 

as four. 
The separate prediction approach of κNN and 

f NN allows flexibility in the choice of training 
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Fig. 2. The NN structures for κNN and f NN predictions. Corresponding inputs for each NN are also shown, which are 
normalised based on reference laminar flame quantities. 

Table 2 
Summary of training and validation (TV) and testing 
(TE) datasets. Note that �NN has been already trained 
in [26] , and not modified in the present study. 

�NN [26] κNN f NN ω c,NN 

A1 TV TV TV - 
A2 TV TV TV - 
B1 TE - - TE 

AZ1 - - TV - 
BZ1 - - - TE 
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atasets, i.e. it allows the use of imbalanced train-
ng data between premixed and non-premixed com-
ustion data for κNN , which has a great impact on
he overall model performance. In fact, the present
NN is trained by only using premixed cases and
uccessfully applied to the partially premixed test
ase as discussed in Section 5 . 

For the training of the NN for κNN prediction,
he target quantity is computed as ω c,DNS /ω c, 0 th ,
hich represents the true κ. Here, ω c, 0 th is the
eroth-order approximated reaction rate, as de-
cribed later in this section. Also, ω c,DNS is the “cor-
ect” value of the filtered reaction rate obtained
irectly from the DNS data using a Gaussian fil-
ering, along with other input quantities. Similarly,
 c,DNS / (κNN · ω c, 0 th ) is set as the target for the train-

ng of the NN for f NN . It represents the adjustment
erm for κ based on the local mixing mode. 

The choice of training, validation and testing
atasets are summarised in Table 2 . A total of 
2,104 samples from the case A1 and A2 at nine
ifferent snapshots and four different filter sizes �
re used for training of the NN for κNN , while 5238
amples from the case A1, A2 and AZ1 at three dif-
erent snapshots and four different filter sizes � are
sed for the training for f NN . 

Finally, for ω 

∗
c in Eq. (4) , a zeroth-order approx-

mation of the reaction rate ω c, 0 th is used ( ω 

∗
c =

 c, 0 th ), by assuming a sufficiently small residence
time (integration time) τ ∗. Therefore, ω c, 0 th is com-
puted based on a chosen kinetic mechanism by sim-
ply substituting the corresponding GS quantities
for inputs. Subsequently, κNN , f NN and ω c, 0 th are
multiplied in order to acquire the prediction of an
SGS reaction rate ω c,NN in a similar manner to
Eq. (4) as: 

ω c,NN = κNN · f NN · ω c, 0 th . (7)

Note that for the prediction of �NN , ω 

+ 
c is required

as an input. For the ultimate purpose of ω 

+ 
c pre-

diction, this looks a circular reference and it is
not desirable. However, as tested and described in
Section 5.2 , the input ω 

+ 
c for �NN can be obtained

from the previous time step in an actual LES. 

5. Results and discussion 

In this section, the performance of the proposed
model is tested, and the model’s sensitivity to �NN 

is investigated. 

5.1. Model performance 

As visual evaluation of the proposed model,
the mid- xy plane of the instantaneous ω 

+ 
c,NN and

ω c,DNS fields are compared for different � for the
cases B1 and BZ1. Figure 3 shows ω c,NN and ω 

+ 
c,DNS

of the case B1 for four different �, ranging from
0 . 5 δth,nom 

to 2 δth,nom 

. It is clear that the model could
predict reasonably well for all � considered. The
similar performance is obtained for prediction of 
the case BZ1 as shown in Fig. 4 . This is also sup-
ported by the correlation of prediction and target
values shown in Fig. 5 . 

The Pearson’s correlation coefficient r P and
mean squared error (MSE) ε MSE between ω 

+ 
c,NN 

and ω 

+ 
c,DNS are examined for the quantitative model

assessment (denoted as NN/DNS). Also, for the
purpose of quantifying the SGS activities, r P and
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Fig. 3. Typical comparison of ω 

+ 
c,DNS and ω 

+ 
c,NN for 

�/δth,nom 

= 0 . 50 , 1 . 00 , 1 . 50 , 2 . 00 for the case B1. 

Fig. 4. Typical comparison of ω 

+ 
c,DNS and ω 

+ 
c,NN for 

�/δth = 0 . 25 , 0 . 5 , 0 . 75 , 1 . 00 for the case BZ1. 

Fig. 5. Joint PDF and scatters between ω c,NN an
ε MSE between ω 

+ 
c, 0 th and ω 

+ 
c,DNS are computed (de- 

noted as 0th/DNS). 
The calculated r P is shown in Fig. 6 for a 

range of �, and r P shows relatively higher val- 
ues, which are over 0.79 for 0th/DNS, and over 
0.90 for NN/DNS. Generally, r P decreases with in- 
creasing � for both NN/DNS and 0th/DNS due 
to the increasing contribution from SGS, except 
for NN/DNS for the case BZ1. The value of r P of 
0th/DNS relatively high for the prediction of the 
case BZ1, and it is higher than that of NN/DNS 

for �/δth,nom 

= 0 . 25 for the case BZ1. This falsely 
suggests that the zeroth-order approximation ω c, 0 th 

yields equal or better prediction performance com- 
pared to ω c,NN for some conditions. However, as 
described next, the correlation coefficient alone is 
not a definitive quantification of the model perfor- 
mance, since it only accounts for the “trend” of the 
predicted distribution. Nevertheless, relatively high 

r P for 0th/DNS suggests that the use of PaSR equa- 
tion in Eq. (4) is promising only if κ is appropri- 
ately predicted, which is the objective in the present 
study. 

To complement the lack of r P as a quantifi- 
cation of model performance, ε MSE for NN/DNS 

and 0th/DNS is also computed and shown in 

Fig. 7 . Clearly, for all the cases and �, the error 
is substantially lower for the present NN model 
ω c,NN ( Eq. (7) ) than the zeroth-order approxima- 
tion ω c, 0 th , suggesting that SGS contribution is well 
taken into account in the present NN model. The 
comparison of r p and ε MSE also suggests that the 
prediction of κ in Eq. (4) is pivotal in the PaSR 

approaches, and the present model’s approach κ = 

κNN · f NN does this successfully. 
The filtered reaction rate is also predicted by us- 

ing a conventional PaSR method for further com- 
parison. There are various choices of submodels re- 
quired to compute Eq. (4) , and here is the present 
choice. The reaction rate of the reactive structure, 
ω 

∗
c , is directly obtained from the PSR [8,27] with 

the residence time τ ∗ = τmix [18] . The chemical and 

mixing timescales, τchem 

and τmix , are computed as 
τchem 

= max [ Y 

∗
i / (d Y 

∗
i /dx )] and τmix = 

√ 

τ�τη [7] . 
Here, the quantities of the reactive structure (super- 
d ω c,DNS for the cases (a) B1 and (b) BZ1. 
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Fig. 6. Pearson correlation coefficients r P computed for NN/DNS (black) and 0th/DNS (grey) obtained for the cases B1 
(solid line) and BZ1 (dashed line). �/δth,nom 

= 0 . 25 , 0 . 50 , · · · , 2 . 00 . r P is computed by using nine different snapshots for 
each filter sizes for the case B1, while three snapshots are considered for the case BZ1. 

Fig. 7. Mean squared errors ε MSE computed for NN/DNS and 0th/DNS for the cases B1 and BZ1. For the sampling 
method and the line legend, see Fig. 6 . 
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cript “∗”) are computed by using PSR. Also, τ� =
/u ′ and τη = 

√ 

ν/ε�, where ε� = u ′ 3 / �. Since the
resent prediction is performed in the a priori con-
ext, u ′ is directly obtained from the DNS results.
owever, in the actual LES simulations, this quan-

ities needs to be also estimated by using an ap-
ropriate submodel. The correlation coefficient r P 
f the predicted and DNS values ranges between
.57–0.60 for the case B1 and 0.74–0.88 for the case
Z1 for the filter sizes considered in Fig. 6 . 

.2. Features of predicted reactive structure 

Figure 8 shows typical instantaneous fields of 
 NN , κNN , f NN and �NN predicted by the NN mod-
ls. As described in Section 4.2 , κNN does not ex-
ctly equal to κ in the conventional PaSR in Eq. (4) .
owever, there are some similarities between the

ariations of κNN and ω c,NN for the premixed case
f B1. This suggests that κNN is still the key in
 c,NN prediction on a par with κ in the conventional
PaSR. Also, a similar relationship can be observed
for κNN and �NN for the case B1. This suggests that
the local combustion mode is useful for the local re-
active structure prediction. These local correlations
between ω c,NN and κNN , and κNN and �NN are less
obvious for the non-premixed case of the case BZ1.
This is considered predominantly due to the local
mixing effect of fuel and oxidizer, which is sepa-
rately treated by f NN . Indeed, f NN ranges larger val-
ues for the case BZ1 than B1, suggesting that there
is additional complexity due to the imperfect mix-
ing and this is handled well by f NN . 

5.3. Sensitivity of �NN on prediction of ω c 

As noted in Section 4.2 , the prediction of �NN 

requires ω c as an input, which is not possible in an
actual LES. What can be done is that the reaction
rate at the previous time step is used instead of ω c

as an input for the prediction of �NN . Denoting the
reaction rate at the previous time step by ω 

∗, there
c 
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Fig. 8. Typical variations of ω NN , κNN , f NN and �NN for B1 (a; �/δth,nom 

= 1 . 0 ) and BZ1 (b; �/δth,nom 

= 0 . 75 ). 

Fig. 9. Variation of ω 

δz 
c,NN , in which �NN is calculated 

with ω 

δz 
c for different �/δth,nom 

. Compare with Fig. 3 to 
see the effect of εω on ω c,NN . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Corresponding r P ( ◦) and εmse ( ×) of the ω 

δz 
c,NN 

field shown in Fig. 9 at different �. 
is a difference between the reaction rates from the
two consecutive snapshots ε ω = | ω c − ω 

∗
c | . Due to

the Courant-Friedrichs-Lewy (CFL) condition, ε ω 
is expected to be relatively small, but the sensitiv-
ity of ε ω in the input of the �NN for the prediction
of ω c,NN needs to be assessed. Also, such an assess-
ment would explain the effect of uncertainty prop-
agation from �NN to ω c via κNN . 

In the context of a priori assessment, ω 

∗
c is im-

possible to obtain. Instead, ω 

∗
c is substituted by ω 

δz
c 

in this study. Here, ω 

δz 
c is ω c sampled from a neigh-

bouring z plane whose z position is different by
δz from the plane at which all other quantities are
sampled. Here, δz = 0 . 5� is considered. We assume
that ε ω ∼ | ω c − ω 

δz 
c | . Also, δz = 0 . 5� is considered

to be sufficient for this assessment due to the CFL
condition (i.e. � � U �t) in an LES. 

Figure 9 shows the prediction of ω 

δz 
c,NN at differ-

ent � considering ω 

δz 
c as the input for �NN . Com-

paring with Fig. 3 , it is clear that ε ω results in only
slight deviation in the predicted field. For a more
quantitative assessment, r P and ε MSE are shown for
ω 

δz 
c,NN at different � in Fig. 10 . While ε MSE shows

only slight increase, r P progressively decreases with
� compared to Fig. 6 . This is because the “shift”
of the z -plane δz increases with �. To improve the
model at larger �, ω c can be iteratively obtained:
the predicted ω c from the first iteration can be fed
again to yield better prediction of �NN . Neverthe-
less, given r P � 0 . 8 and a relatively small ε MSE com-
pared to the one for the zeroth-order approxima-
tion shown in Fig. 7 , it is expected that the use of 
ω 

∗
c would not unduly influence the performance of 

the proposed model, and this strategy is applicable 
for an actual LES without reducing the model per- 
formance. 

6. Conclusions 

A filtered reaction rate model has been devel- 
oped for MILD combustion. The framework of the 
present model is based on the PaSR approach. The 
fraction of the reactive structure is predicted using 
two separate NN’s, to consider both premixed and 

non-premixed conditions, while allowing the use 
of imbalanced training data between premixed and 

non-premixed combustion DNS data. The training 
of these NN’s are carried out by using DNS data of 
premixed and partially premixed MILD combus- 
tion. The key ingredient in the present model is the 
use of the local combustion mode prediction per- 
formed by using another NN, which was developed 

in a previous study. 
The trained model was then assessed by using 

two unknown combustion DNS cases, which yields 
much higher dilution level (more intense MILD 

condition) and a higher K a than the DNS cases 
used for training. The model assessment has been 

carried out by means of the Pearson’s correlation 

coefficient and mean squared error. 
For both the present model and zeroth-order 

approximated reaction rate, the correlation coeffi- 
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ient shows relatively high values, suggesting that
he trend of predicted field, by the present model
nd zeroth-order approximation, is well correlated
ith the actual reaction rate field. This suggests that

he use of the PaSR equation is promising only if 
he fraction of the reactive structure is appropri-
tely predicted, which is the objective in the present
tudy. On the other hand, substantially lower mean
quared error is observed for a range of filter sizes
or both premixed and partially premixed cases for
he proposed NN model than that for the zeroth-
rder approximation. The comparison of the pre-
icted fields by the three NN suggests that the lo-
al combustion mode is useful for the local reac-
ive structure prediction. These results suggest that
he present NN approach works well in the predic-
ion of MILD combustion despite the imbalanced
raining datasets. Future work should investigate
hether this holds for prediction of Y i species as
ell. 
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