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Fast-paced advances in the fields of machine learning and data assimilation are
triggering the flourishing of a new generation of measurement strategies in a vast
variety of applications, including fluid flow measurements. Techniques often used
in data post-processing are progressively being pushed upstream in the
measurement chain to improve the quality of the processed data. Advanced image
processing techniques, data mining and compressed sensing strategies to
overcome the inherent limits of measurement techniques are just few examples of
the novel research pathways opened in the field of fluid flow measurements.
Additionally, the advent of three-dimensional (3D) and time-resolved flow
measurements has opened new avenues to augment the spatial and temporal
resolutions and minimize the measurement uncertainty by enforcing the
compliance between the measured data and the governing equations of fluid
motion. This Special Issue features 11 contributions covering relevant aspects of
the most recent advances in machine learning and data assimilation techniques
applied to flow field measurements, with particular emphasis on particle image
velocimetry (PIV).

The Special Issue contains two contributions aiming at reviewing and assessing
the state of the art in machine learning and manifold learning techniques in
experiments. Discetti and Liu [1] offer a perspective on the current status and
tendencies in machine learning techniques in flow field measurements. The
perspective focuses mainly on pre-processing, data treatment and conditioning in
post-processing for PIV measurements. Possible routes for research in the next
years are depicted, tailored to the current limitations in terms of robustness,
generalizability and uncertainty quantification. In his review paper, Mendez [2]
spans a range of dimensionality-reduction tools, covering linear and nonlinear
techniques. The work is a journey guiding the reader through nonlinear
techniques such as kernel principal component analysis, locally linear embedding
and isometric mapping, and their application for tasks of great interest in flow
field measurements such as filtering, identification of oscillatory patterns, and
data compression.

Several contributions of this Special Issue have focused on the use of deep
learning to process PIV images, focusing on feature identification [3, 4] and
direct extraction of flow fields [5, 6]. Tsalicoglou and Rösgen [3] investigate the
use convolutional neural networks (CNNs) to identify, segment and classify
streaks in 3D particle streak velocimetry (PSV) and tufts for flow visualization.
The proposed architectures show good robustness also for high seeding densities,
thus paving the way to high-resolution 3D PSV. Dreisbach et al [4] address the
problem of the generalization capability to experiments of neural networks trained
on synthetic images for particle image detection in defocusing PIV. In particular,
they demonstrate improved performance when synthetic images are enriched with
image features from the experimental recordings using an unsupervised
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image-to-image translation. Two works of the Special Issue exploit machine
learning for direct flow prediction from images. Lagemann et al [5] investigate
the performances of a neural network architecture for optical flow estimation (the
recurrent all-pairs field transforms) under varying image and lighting conditions,
using both synthetic and experimental data. The algorithm shows good robustness
against common error sources and peak locking, as well as high spatial resolution.
Manickathan et al [6] propose training CNNs with synthetic data generated from
random displacement fields. This procedure reduces the burden of generating
large datasets from simulations, and allows feeding the training with sufficient
data to avoid overfitting at a reasonable computational cost. Their results show
that this kinematic training improves significantly the accuracy of the CNN.

The contribution by Sharifi Ghazijahani et al [7] leverages machine-learning
for data post-processing. The authors use an echo state network to predict
temporal coefficients from proper orthogonal decomposition in the wake of a
cylinder at Reynolds number equal to 100 and 1000. Their results show that the
time horizon for an accurate reconstruction decreases with increasing Reynolds
number.

In this Special Issue, data assimilation approaches that combine numerical
models and flow measurements by PIV, particle tracking velocimetry (PTV) or
Lagrangian particle tracking (LPT) are shown to be a powerful tool to enrich the
measured flow fields, e.g. by suppressing the measurement noise, increasing the
spatial resolution beyond the Nyquist limit or providing access to flow properties
not measured directly. Hasanuzzaman et al [8] introduce a physics-informed
neural network model aimed at reducing the noise of stereoscopic PIV velocity
measurements. The approach provides accurate predictions of the flow statistics
by solving the Reynolds-averaged Navier-Stokes (RANS) equations for
incompressible turbulent flows without any a-priori turbulence model, and
employing the measured mean velocity and Reynolds stresses at the domain
frontier as boundary conditions. Mons et al [9] present a variational data
assimilation procedure to infer 3D flow velocity, Eulerian acceleration and
pressure fields from sparse single-instant velocity measurements, as those
obtained by two-pulse PTV. The approach is based on the solution of the unsteady
Navier–Stokes equations, whereby the Eulerian acceleration is treated as a forcing
term, which is adjusted to minimize the discrepancy between the reconstructed
and the measured velocities. Cakir et al [10] extend the use of the vortex-in-cell
(VIC) framework to increase the spatial resolution of sparse LPT data in presence
of solid objects within the measurement domain. The authors assess the
performances of two methods, namely the arbitrary Lagrangian–Eulerian VIC+
and the immersed-boundary approach: the results showed the increased accuracy
of these approaches in reconstructing the flow properties in proximity and on the
surface of solid objects. In the work by Sperotto et al [11], the authors propose a
meshless approach based on radial basis functions regression to compute pressure
fields from PIV or PTV data. The method hinges upon the solution of two
constrained least-square problems, the first one to generate an analytical
representation of the velocity field and the second one to perform a meshless
integration of the Poisson equation for pressure. The regressions allow accounting
for physical knowledge on the problem under investigation, in the form of
boundary conditions (e.g. no-slip condition at solid walls) and compliance with
the governing equations of fluid motion (conservation of mass and momentum).

We sincerely hope that the readers of Measurement Science and Technology
will find this Special Issue as a compass for orientation in the recent developments
of machine learning and data assimilation for fluid flow measurements.
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