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a b s t r a c t

Symmetry widely exists in nature and man-made shapes, but it is unavoidably distorted during the
process of growth, design, digitalization, and reconstruction steps. To enhance symmetry, traditional
methods follow the detect-then-symmetrize paradigm, which is sensitive to noise in the detection
phase, resulting in ambiguities for the subsequent symmetrization step. In this work, we propose
a novel optimization-based framework that jointly detects and optimizes symmetry for 2D shapes
represented as polygons. Our method can detect and optimize symmetry using a single objective
function. Specifically, we formulate symmetry detection and optimization as a mixed-integer program.
Our method first generates a set of candidate symmetric edge pairs, which are then encoded as binary
variables in our optimization. The geometry of the shape is expressed as continuous variables, which
are then optimized together with the binary variables. The symmetry of the shape is enforced by the
designed hard constraints. After the optimization, both the optimal symmetric edge correspondences
and the geometry are obtained. Our method simultaneously detects all the symmetric primitive pairs
and enhances the symmetry of a model while minimally altering its geometry. We have tested our
method on a variety of shapes from designs and vectorizations, and the results have demonstrated its
effectiveness.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Symmetry is an essential attribute of nature, and it also plays
n important role in the design of various man-made objects
uch as buildings, furniture, and mechanical parts [1]. However,
ymmetry can easily be distorted in real life. For example, in
hape design, imperfect input data, like the raw shapes created
y users in sketching-based modeling software, often do not
xhibit the desired symmetry. Manually editing the models to
nhance symmetry is a tedious and time-consuming task. It can
e more challenging for large-scale architectural models, where
ymmetry is much more easily distorted due to the inevitable
oise and outliers during the data acquisition process. In general,
bjects exhibiting symmetric structures are easier to perceive
nd understand, and it also serves as effective prior knowledge
n a variety of applications [2], such as object alignment [3],
diting [4,5], compression [6,7], and reconstruction [8,9].
Automatic symmetrization of 2D shapes is a challenging task.

imply copying and transforming object parts [10] usually does
ot lead to acceptable results. For example, the overall geometry
f the shape shown in Fig. 1(a) is reflective symmetric, copy-
ng and transforming either the left or the right part cannot

∗ Corresponding author.
E-mail address: liangliang.nan@tudelft.nl (L. Nan).
ttps://doi.org/10.1016/j.cad.2023.103572
010-4485/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access a
generate a satisfying result because the geometric information
from the counterpart is simply ignored. This is confirmed by the
symmetrization results shown in Fig. 1(b) and (c).

Existing approaches [8,10–16] to the shape symmetrization
problem follow a two-stage paradigm: explicit symmetry de-
tection followed by symmetry enhancement. In the first stage,
sophisticated strategies are commonly exploited to search for the
optimal symmetry in a given shape. They typically require either
brute-force validation [17] or random sample consensus [18]
of the potential symmetry candidates to determine the optimal
symmetry configuration, which is computationally expensive due
to the large search space for exploration and is also sensitive to
noise and outliers. To improve efficiency, local shape descriptors
(mostly curvature-based) [11,12,16,19,20] are proposed to signif-
icantly reduce the search space. These methods take advantage
of the rich geometric properties of shapes that are invariant
under the considered symmetry transformations. For example,
principal curvatures are invariant to rigid transformation. In case
two points have distinct curvatures, no rigid transformation can
align the local shapes around the points, and hence they will
not be considered symmetric. It is worth noting that even with
feature-based pruning of an initial set of symmetry candidates,
the procedure to determine the optimal symmetry can still be
time-consuming [21]. Another effective strategy to reduce the
search space is to aggregate local symmetry information in the
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Comparison of two strategies for symmetrization of a 2D shape. (b) and (c) symmetrize the shape by copying and transforming half of the shape. Our method
automatically and jointly detects the optimal symmetry (defined by the edge correspondences) and optimizes the shape by minimal modification of the original
shape, resulting in a more natural symmetrization result. Note that our method achieves strict symmetry for the majority parts of the shape, except for the left
window that does not have a symmetric counterpart in the input shape.
transformation space, from which a set of symmetry candidates
with sufficient confidence are obtained from the aggregated sym-
metry representation. Finally, the optimal symmetry is identified
to symmetrize the object via transformation. Following this path,
Mitra et al. [22] introduce a shape deformation method for an
extracted set of corresponding point pairs, using an optimization
that couples the spatial domain with the transformation space to
successively achieve symmetrization. These two-stage methods
heavily rely on the quality of symmetry detection, which is less
robust against noise and often fails when there exist multiple
local symmetries.

In this work, we introduce a novel optimization-based frame-
ork for the automatic symmetrization of 2D polygonal shapes
hat exhibit predominantly global extrinsic reflectional symme-
ry. Our motivation is to simultaneously detect and enhance
ymmetry within a single optimization stage. In other words, our
ethod determines the optimal global symmetry axis of a shape,
nd when enhancing the symmetry using this symmetry axis, the
hange to the geometry of the shape is minimized. Different from
xisting works, we achieve symmetry detection and symmetriza-
ions at the same time, within the same optimization process.
o achieve this goal, we propose a hypothesize-and-select strat-

egy to avoid wrong or sub-optimal symmetry detection that is
commonly encountered in existing two-stage approaches. Given
a 2D shape, we first generate a set of candidate symmetric edge
pairs. Then a mixed-integer programming formulation is designed
to select the most confident symmetric edge pairs and mean-
while ensure that the optimal symmetrization is achieved by
introducing minimum geometry change to the original shape. In
our optimization formulation, we also introduce hard constraints
that enforce the final shape to be strictly symmetric. Our main
contributions are two-fold:

• The first symmetrization framework that can simultane-
ously determine edge correspondences and optimize the
symmetry of 2D shapes.

• A novel mixed-integer programming formulation based on
the hypothesize-and-select strategy, which guarantees the
final shape to be symmetric.

2. Related work

A large number of methods for symmetrization have been
proposed. In this section, we mainly review approaches that
focus on layout regularization, symmetry detection, symmetry
transformation, and deep learning based methods.
2

2.1. Layout regularization

Layout regularization refers to improving regularities in lay-
outs consisting of a certain number of graphical elements. This
problem arises commonly in user-created contents, such as room
designs, posters, and slides, in which specifying the precise re-
lationships among the elements is tedious and time-consuming.
Motivated by the fact that human can unambiguously identify
desire layouts of graphic elements by viewing all elements as a
whole, Xu et al. [23,24] present a new user interface for visu-
alizing and editing the inferred relationships in a global way. It
significantly improves the efficiency compared to the traditional
interactive snap-dragging and command-based alignment tools
for 2D and 3D layout regularization tasks. To automate layout
regularization, Jiang et al. [25] formulate constraint detection as
an integer program. They improve the imperfect layout by de-
tecting and subsequently enforcing the desired constraints, such
as alignment, same size, and equal distance between elements.
Following that, Jiang et al. [26] present an automatic method
specially for symmetrization of the layouts of building facades.
This method also follows a two-stage pipeline: symmetry detec-
tion and optimization. They optimize the structural abstractions
extracted from images and focus on symmetrizing the original
layouts while minimizing the modifications. The regularity of the
layout is enhanced by redistributing and aligning elements. These
methods are designed mainly for regularizing the overall layout
consisting of a set of man-made graphical elements, and thus
cannot be directly applied for the symmetrization of a single
shape. Several interactive beautification methods have also been
proposed. Igarashi et al. [27] introduce a new interactive system
called Pegasus to help rapid geometric design, which can receive
the freestrokes provided by users and beautify them by consider-
ing the geometric constraints among segments. Orbay et al. [28]
present a new technique for turning digital design sketches into
polished line drawings. This method involves a trainable stroke
clustering technique that groups strokes into curves and orders
them for smoother drawing, providing designers with more free-
dom and less structure. Fišer et al. [29] propose ShipShape, a
tool that enhances freehand sketches by automatically correcting
geometric relations without requiring advanced drawing skills or
knowledge of software. Parakkat et al. [30] propose an algorithm
that groups rough strokes drawn by users and represents them
with simple curves. The algorithm uses Delaunay triangulation to
group the strokes, identifies open curves, and reconstructs broken
strokes. These methods demonstrate the potential of interactive
beautification techniques in enhancing the quality of designs and
improving the user experience. In contrast to these interactive
methods, our research proposes a fully automatic method to
achieve symmetrization of 2D polygonal shapes.
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.2. Symmetry detection

Symmetry detection aims at identifying the symmetric ele-
ent pairs in a given shape. Several algorithms have been pro-
osed to search for the optimal symmetry in the transformation
pace. The transformations include translation, rotation, reflec-
ion, and uniform scaling. Mitra et al. [11] propose to match
imple local shape signatures in pairs and use these matches
o accumulate evidence for symmetry detection in the trans-
ormation space. After that, potential symmetric matches are
lustered to form significant symmetries of the shape, from which
he strongest symmetric match gives the final symmetry. This
ethod relies on curvature estimation for point matching and
andidate filtering, which is sensitive to noise and some user-
pecified parameters (e.g., patch radii). Shi et al. [16] adopt the
ame framework and introduce a more robust metric in the
ransformation space. Cailliere et al. [12] improve this method
or global symmetry plane detection by replacing the clustering
tep with Hough transform to obtain better results with higher
omputation efficiency. Other methods are also proposed for
etecting symmetry axes or planes. An ICP-based algorithms for
ymmetry plane detection in point clouds is used in [31,32].
ipiran et al. [8] propose a method for symmetry plane detection
n incomplete objects. It uses feature extraction based on the
eat Kernel Signature descriptor [33] and a voting scheme. For
hapes that have few high-curvature points, this method tends to
ail since the descriptor has difficulty to recognize the symmetric
eatures, which limits its applicability. Hruda et al. [34] introduce
novel differentiable measure for symmetry plane detection,
here a fast gradient-based optimization is utilized to find sym-
etry in a given shape. This method does not perform well for
on-uniformly sampled point clouds and may fail in the presence
f scattered outliers. Ruchay et al. [35] determine the optimal
ymmetry plane of 3D point clouds with the help of a modified
ausdorff metric.
The above works concentrate on detecting extrinsic symme-

ries, which are defined as invariance under rigid transformations
nd scaling. At the same time, a wide class of deformations, such
s articulated motion in humans, preserve the object’s internal
tructure. These deformations leave intact intrinsic symmetries
f an object. Therefore, there have also been advances in the
ield of intrinsic symmetry detection [10,13,36–38]. The work
f Mitra et al. [22] mainly deals with shapes that are close to
eing intrinsically symmetric. Zheng et al. [10] develop a sym-
etrization method for intrinsically asymmetric shapes, extract
nd enhance the approximate intrinsic symmetries therein. It
easures intrinsic distances over a curve skeleton, symmetrizes

he skeleton, and then propagates the symmetrization to the
hape.
Specific symmetry detection methods have also been proposed

or specific applications. Fan et al. [39] introduce a derivative-free
ptimization-based approach for detecting architectural symme-
ries from point clouds. Haunert et al. [40] introduce a symmetry
etector specially for urban-space analysis. These approaches
ely on local geometric features or shape descriptors (mostly
urvature-based) for symmetry detection, and their results highly
epend on the quality of handcrafted features or descriptors,
aking it sensitive to the varying quality of the input data.

.3. Symmetry transform

In computer vision, several general symmetry transforms de-
ined on all pixels of an in image have been proposed for ro-
ust detection of rotational symmetry in natural images. Reisfeld
t al. [41] define a generalized symmetry transform for local
ymmetries, and several variants are proposed in [42,43]. These
3

methods have been proved to be effective in finding the local
symmetries in noisy images. Podolak et al. [3] introduce a planar
reflective symmetry transform (PRST) mainly for 3D meshes that
captures a continuous measure of the symmetry with respect
to all possible planes. An efficient Monte Carlo sampling algo-
rithm [3] is also proposed to compute the transform for surfaces.
This method requires rasterizing the input objects, which is usu-
ally computationally expensive. Furthermore, the initial results
are not precise enough, and a post-processing step called Iterative
Symmetric Points (ISP) is required for refinement. Inspired by this
method, Xu et al. [36] introduce a voting scheme to compute an
intrinsic reflectional symmetry axis (IRSA) of a closed manifold
mesh. It is robust thanks to its statistical nature and the aid of
a modified region growing method and an iterative refinement
step. However, the voting scheme may fail when symmetry is
present on relatively small parts of a complex model.

Compared to existing methods relying on a dedicated step
to explicitly detect symmetry, our symmetrization framework
tackles symmetry detection and symmetry optimization jointly
in a single optimization step, which can avoid the impact of the
ambiguities or errors in symmetry detection on the subsequent
optimization.

2.4. Deep learning based methods

As deep learning techniques have gained popularity in recent
years, numerous deep learning based methods for symmetry
detection or application of symmetry have been proposed. Shi
et al. [44] introduce an end-to-end deep neural network to detect
both reflectional and rotational symmetry of 3D shapes from
single-view RGB-D images. They use a multi-task learning ap-
proach to avoid overfitting, and the network is trained to predict
symmetry correspondences as well. Li et al. [45] propose Symm-
NeRF, a new network that improves the accuracy of single-view
view synthesis by using symmetry as an additional prior knowl-
edge in the scene representation. Gao et al. [46] propose a new
learning framework that uses a 3D convolutional neural network
to automatically discover planar reflective symmetry of a 3D
shape. They introduce a dedicated symmetry distance loss and
regularization loss to prevent the generation of duplicate symme-
try planes. Qiao et al. [47] propose a learning-based method for
detecting intrinsic reflectional symmetry using a functional map
matrix that is computed based on the signs of Laplacian eigen-
functions. Seo et al. [48] introduce EquiSym, a group-equivariant
convolutional network for symmetry detection that leverages
equivariant feature maps with respect to a dihedral group of
reflection and rotation. Moreover, Shi et al. [49] propose a 3D
symmetry detection method that uses weakly supervised learning
to detect symmetry from single-view RGB-D images and generate
plausible shapes using a symmetry-aware shape prior. These deep
learning based methods typically require expensive data prepara-
tion and learning processes. In contrast, our method can be inte-
grated into computer-aided design software as a plug-in, enabling
its immediate use without significant additional preparation.

3. Methodology

The input to our method is a 2D shape represented by one
or multiple polygons consisting of N edges. Without loss of gen-
erality, we assume that the symmetry axis approximately passes
through the centroid of the bounding sphere of the input shape. In
Section 3.1, we describe our method for shapes whose symmetry
axis aligns with the Y -axis, and Section 3.2 elaborates on handling
shapes with arbitrary symmetry axis.
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Fig. 2. An illustration of the symmetrization method on a vectorized building
shape with a symmetry axis aligned with the Y -axis. It takes as input a 2D
hape (a) and first generates a set of candidate symmetric edge pairs (b). Every
wo edges connected by a line (in random color) in (b) have the potential to
efine a reflectional symmetry. After optimization, the symmetry of the shape
s optimized by introducing minimal deviation to the shape’s vertices (c), and
eanwhile, the symmetric edge correspondences are identified. In this case,
very two edges connected by the line in (c) are the symmetric edge pairs.
For interpretation of the references to color in this figure legend, the reader is
eferred to the web version of this article.)

.1. Symmetrization for shapes with Y-symmetric axis

For shapes whose symmetry axis aligns with their Y -axis,
ymmetrization is still challenging because the symmetric edge
orrespondence information is not known. We jointly find the
dge correspondences and symmetrize the shape by exploring
set of symmetry hypotheses and optimizing the vertices of

he shape in a way such that the symmetry of the shape is
aximized with minimal change to its original shape. The idea
f the proposed method is illustrated in Fig. 2, and it consists of
he following two parts:

• Hypothesis generation. We identify a set of candidate sym-
metric edge pairs. This initial set of edge pairs is further
pruned based on two geometric tests, to reduce the size
of the resulting optimization problem in the subsequent
symmetry optimization step.

• Symmetry optimization. We optimize the symmetry of the
shape in a way such that the overall change to the shape
is minimal. The symmetrization is formulated as a mixed
integer quadratic program, with an objective penalizing the
overall deformation and with hard constraints enforcing
strict symmetry of the final shape. The potential symmetric
edge pairs are encoded as binary variables, and the geome-
try (i.e., vertices) of the shape is expressed as a set of con-
tinuous variables. After solving the optimization problem,
both the optimal symmetric edge pairs and the geometry
are obtained.

.1.1. Hypothesis generation
We generate a sufficiently large number of candidate symmet-

ic edge pairs, and we use these edge pairs to define our objective
unction for symmetry optimization. In theory, every edge pair
as the potential to be symmetric, and the total number of such
dge pairs is

(N
2

)
. Since the potential edge pairs are encoded as

inary variables in the subsequent symmetry optimization step,
xhaustive enumeration of all the edge pairs will result in a large
ptimization problem that may not be feasible to solve within
reasonable time window. Based on the observation that two
dges ui and uj are nearly symmetric if they are on the opposite
ides of the symmetry axis and have sufficient proximity along
he symmetry axis, illustrated in Fig. 3(a), we prune the edge pairs

y two simple geometric tests:

4

Fig. 3. A few example cases processed by the geometric tests that prune
candidate symmetric edges pairs with low confidence. This will reduce the size
of the resulting optimization problem. The edge pair shown in (a) has a high
probability to be symmetric, which will pass the geometric test. In contrast, the
edges pairs in (b) and (c) do not have sufficient confidence (evaluated against
some threshold detailed in Section 3.1.1) to represent meaningful symmetry and
thus will be rejected.

• Side-of-axis test. The two edges must lie on the two sides of
the symmetry axis, i.e.,

sign(ei) ∗ sign(ej) < 0, (1)

where sign(e) denotes the relative orientation of the edge
e concerning the Y -axis. Specifically, sign(e) has a positive
value if e lies on the left side of the Y -axis and a negative
value on the right side. The example shown in Fig. 3(b) will
not pass the side-of-axis test.

• Proximity test. The two edges must be within sufficient
proximity along the Y -axis. In our work, this condition is
satisfied if two edges overlap or their distance is smaller
than a threshold along the Y -axis, i.e.,

∥distY (ei, ej)∥ ≤ dt . (2)

In this work, we set dt = 0.5 ∗ max{length(ei), length(ej)},
where length(e) denotes the length of an edge e. The exam-
ple shown in Fig. 3(c) will not pass the proximity test.

By pruning the potential symmetry edge pairs using these
simple tests, we can significantly reduce the number of candi-
date edge pairs. For example, in Fig. 5(13), the total number of
candidate edge pairs is reduced from 2346 to 450, speeding up
the subsequent symmetry optimization step.

3.1.2. Symmetry optimization
After obtaining the candidate symmetry edge pairs P , the next

step is to jointly select an optimal subset of the candidate edge
pairs and optimize the symmetry of the shape.

Let a binary variable zij encode if an edge pair (ei, ej) is valid
(zij = 1) or not (zij = 0). By expressing the shape geometry (i.e., the
coordinates of the vertices of the shape) in continuous vari-
ables, the symmetrization of the shape can be formulated as a
mixed-integer program that balances two terms: deformation and
tolerance.

• The deformation term measures how much the resulting
shape deviates from its original geometry. This term is de-
signed to minimize the change to the original shape while
achieving symmetrization, which is defined as the sum of
the weighted square deviation of all the vertices, i.e.,

Ed =

∑
i

wd · ∥vi − v′

i∥
2, (3)

where vi and v′

i denote the coordinates of a vertex before
and after symmetrization, respectively. wd is the coefficient
of each vertex, which is computed as,

w = eπ−γ , (4)
d
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Fig. 4. Two types of edge correspondence patterns. The vertices with superscript
, b, l, and r represent the corresponding top, bottom, left, and right endpoint
f an edge, respectively. (a) The vertical pattern. Two vertices of only the same
ype can be matched (i.e., only top–top or bottom–bottom is allowed). (b) The
orizontal correspondence pattern. Two vertices of only different types can be
atched (i.e., only left–right or right–left is allowed). For both (a) and (b), the

eft and right subfigures respectively illustrate the edge pair before and after
ymmetry optimization.

where γ is the angle between the two incident edges of
the vertex vi. Intuitively, this weighting scheme encourages
vertices with smaller γ to have less freedom to move, which
is intended to preserve sharp features.

• The tolerance term is designed to allow us to handle approxi-
mately symmetric shapes. It is simply defined as the number
of the non-symmetric edge pairs, i.e.,

Et =

∑
(ij)∈P

(1 − zij), (5)

where P denotes the entire set of potential symmetric edge
pairs. zij has a value of 1 if two edges ei and ej are indeed
symmetric after optimization.

Hard constraints. To ensure strict symmetry in the final shape
nd encourage structure preservation, we also introduce two hard
onstraints in the symmetry optimization process.

• Perfect symmetry. This constraint enforces that the final
shape is strictly symmetric. To achieve this, we define two
edge correspondence patterns based on the relative orien-
tation of a potentially symmetric edge pair, namely vertical
and horizontal, as shown in Fig. 4. Given an edge pair (ei, ej),
if the projected length of at least one of the two edges on the
X axis is longer than the corresponding projected length on
the Y axis, this edge pair is considered to have the horizontal
pattern, and it is denoted as (ei, ej) ∈ H for simplicity.
Otherwise, the edge pair has the vertical pattern, denoted
as (ei, ej) ∈ V . Considering these relative orientations of
edge pairs, the perfect symmetry hard constraint can be
formulated as

zij · S(ei, ej) = 0, ∀(ei, ej) ∈ P, (6)

where P denotes the complete set of potentially matched
edge pairs, and S(e , e ) measures how much the edge pair
i j

5

deviates from being perfectly symmetric, i.e.,

S(ei, ej) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∥xli + xrj ∥ + ∥xri + xlj∥+
∥yri − ylj∥ + ∥yli − yrj ∥, if (ei, ej) ∈ H

∥xti + xtj∥ + ∥xbi + xbj ∥+
∥yti − ytj∥ + ∥ybi − ybj ∥, otherwise

. (7)

The symbols and their superscripts are illustrated and ex-
plained in Fig. 4.

• Single matching. In a symmetric shape, one edge is matched
to only one other edge. This constraint is intended to pre-
serve the structure of the shape by disallowing one edge to
be symmetric with multiple other edges.

The complete formulation. With the aforementioned energy
erms and hard constraints, the complete formulation for sym-
etry optimization can be written as

in Ed + λEt

s.t.

⎧⎨⎩ zij · S(ei, ej) = 0, ∀(ij) ∈ P∑
j̸=i zij ≤ 1, ∀1 ≤ i ≤ N

zij ∈ {0, 1}, ∀(ij) ∈ P
,

(8)

where λ is used to control the degree of non-symmetry, and∑
j̸=i zij counts the total number of edges that are symmetric with

ei in the final shape. The formulation in Eq. (8) is a standard
mixed integer quadratic-constrained programming problem. In
this formulation, the binary variables indicate whether the can-
didate edge pairs are symmetric or not, and the continuous vari-
ables correspond to the coordinates of the vertices in the shape.
We solve this optimization problem using off-the-shelf Newton
Barrier solver provided by Gurobi [50]. After optimization, the
optimal values for both the binary and continuous variables are
obtained, meaning the optimal symmetric edge pairs have been
identified, and meanwhile the optimal positions of all the vertices
have been optimized.

3.2. Symmetrization for general shapes

In Section 3.1, we have described the symmetrization method
for shapes whose symmetry axis are aligned with the Y -axis.
However, general shapes may have arbitrary orientations, and
thus the formulation given by Eq. (8) cannot directly handle
them. In this section, we provide a simple strategy to achieve
symmetrization of shapes with arbitrary axis without breaking
the formulation given Eq. (8). Our idea is to find the symmetry
axis such that, after symmetry optimization, the symmetry axis
leads to a symmetrization result with the least deformation to
the original shape.

Let θ denote the angle between the symmetry axis of a shape
and its Y -axis, our goal is to detect the optimal symmetry axis
(i.e., determine θ ) and meanwhile symmetrize the shape. These
two subproblems constitute a chicken-and-egg problem since de-
tecting the symmetry axis of a shape requires symmetric input
and knowing the symmetry axis is also a precondition to optimize
the symmetry of the shape. To tackle this problem, we first
sample a discrete set of Θ = {θi} uniformly with an interval of
∆θ . For each θi, we rotate the object by the angle of θ (thus the
symmetry axis will align with its Y-axis) and carry out the same
symmetrization described in Section 3.1. In our experiments, we
take into consideration the trade-off between accuracy and time
complexity and empirically set ∆θ to 10◦. The residual of the
symmetrization for θi is then measured by the overall change
to the shape after symmetrization, which is the same as the
objective function in Eq. (8), i.e.,

r(θ ) = E (θ ) + λE (θ ). (9)
i d i t i
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Fig. 5. The symmetrization results of a set of 2D shapes from three categories: nature (1–6), design (7–12), and architecture (13–18).
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inally, the optimal symmetrization is the one that yields the
inimum residual, and the final symmetry axis is defined by the
orresponding value of θi, i.e.,

θ∗
= argmin

θ

r(θi). (10)

. Results and evaluation

We have implemented our method in C++ based on the Easy3D
ibrary [51]. The optimization problem given in Eq. (8) is solved by
sing the Gurobi solver [50]. All experiments were conducted on a
aptop MacBook Pro 2021 with an Apple M1 processor and 32 GB
AM. Experiments on a variety of shapes have demonstrated the
ffectiveness of the proposed method.

.1. Symmetrization results

We have tested our method on three categories of 2D shapes,
amely nature, design, and architecture, as demonstrated in Fig. 5.
1)-(6) demonstrate the symmetrization of natural vegetation and
nimals, including trees, flowers, leaves, deers, butterflies, and
agles. (7)-(12) were originally captured from designs, among
hich (7)-(8) are commonly used chairs, (9)-(10) mechanical
roducts, and (11)-(12) art logos. (13)-(18) are polygonal rep-
esentations of line drawings of several well-known buildings,
uch as the Great Bell (13), the Eiffel Tower (15), and the Taj
ahal (18). From these visual results, we can see that although

he input shapes have diverse structures of different styles, our
ethod succeeded in obtaining visually pleasing symmetrization

esults. It is worth noting that the global symmetry axis of (8) is
ot aligned with the Y -axis, for which our method determined its
ptimal symmetry axis and achieved the desired symmetrization
f this shape.
Our method is also robust in handling shapes with self-

ntersections. Fig. 6 shows such an example, from which we can
ee that though the shape has three pairs of intersecting edges,
ur method still precisely determined the symmetric edge cor-
espondences and achieved a promising symmetrization result.
t is interesting to observe that our method also identified that
he horizontal edge in the middle of the shape does not have a
ymmetric counterpart.
In our experiments, we also found that when the local ge-

metry of a shape is far from being perfectly symmetric, our
ymmetry optimization process modifies some edges in a way
hat is equivalent to the edge contraction operation (i.e., merging
he two endpoints of the edge) to enforce strict symmetry in the
inal shape. As shown in Fig. 7, the two adjacent edges of the
lack edge find their corresponding symmetric edges that share
ne common vertex. Therefore, the black edge is contracted, as
he coordinates of its two endpoints become identical after sym-
etrization. This is attributed to the fact that our symmetrization

ormulation seeks to optimize the symmetry of the shape by
ntroducing minimum deformation into its original geometry.

We also conducted tests on 2D shapes with limited openings,
he results of which are presented in Fig. 8. Our method produces
atisfactory results. While the symmetrization of the closed shape
n (a) achieves perfect symmetry, the openings in (b) and (c) are
ot closed as there are no discernible clues in the shape to recover
he geometry.

While there are existing methods proposed in the field of sym-
etrization, direct comparison with our method is challenging
ue to differing scenarios. Specifically, our method focuses on
xtrinsic symmetrization, whereas [10] focus on intrinsic sym-
etrization. As the authors of [10] have pointed out, the output
f their method can serve as a good input for extrinsic sym-
etrization. Additionally, Mitra et al.’s work [22] is better suited
7

Fig. 6. Symmetrization of a shape with self-intersections. In (b), the edges with
the same color reveal the symmetric edge pairs identified by our method, and
the black edge indicates that it is not symmetric with any other edges. (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Fig. 7. An example where our method achieves a strict symmetry by contracting
an edge (i.e., merging its two endpoints). The black edge in the close-up
view (left) becomes degenerated and is thus removed after optimization. (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

for shapes that are nearly intrinsically symmetric. While these
two papers are relevant to our work, the application scenarios are
different. Therefore, we believe that our method offers a distinct
contribution to the field of shape symmetrization.

4.2. Robustness and complexity analysis

We have evaluated the robustness of our method by sym-
metrization of a shape with an increasing amount of Gaussian
noise. Fig. 9 demonstrates the results. We can see that our method
produces very promising results even when the noise level is
as high as δ = 0.35. When the noise becomes extremely large
(e.g., δ ≥ 0.45) such that the input shape is completely con-
taminated, our method still obtains a visually convincing sym-
metrization result, and the overall structure of the chair has been
recovered by our method. In practical applications such as design
and digitalization of real-world shapes, the standard deviation of
the noise introduced to the shapes is usually small, making our
method quite applicable in optimizing or beautifying such shapes.

Our method handles shapes represented as general polygons.
The symmetry optimization step involves solving a mixed integer
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Fig. 8. Symmetrization of shapes with and without openings. (a) is a closed
olygonal shape where all symmetric edge pairs are identified by our method,
esulting in perfect symmetry. In (b) and (c), our method identifies all potential
ymmetric edge pairs except for the openings where the geometry cannot be
ully recovered due to the absence of clues. The edges with the same colors
enote the identified symmetric edge pairs, while the black edge indicates that
t is not symmetric with any other edges. (For interpretation of the references
o color in this figure legend, the reader is referred to the web version of this
rticle.)

Fig. 9. Symmetrization results of a shape with an increasing level of noise. The
top row shows the input shapes, and the bottom row shows the corresponding
symmetrization results. For each noise level, σ indicates the standard deviation
f Gaussian noise.

uadratic program whose complexity depends on the number
f edges in the input shape. To understand the scalability of
ur method, we have plotted a curve of the running times with
 a

8

Fig. 10. The running time (in seconds) of our method with respect to the
number of input edges. The statistics are recorded from symmetrization of 20
shapes shown in Figs. 5, 6, and 7.

respect to the complexity of the input shapes in Fig. 10. Note that
the running time we reported only considers that the symmetry
axis is aligned with the Y -axis. The data were collected from
the symmetrization of 20 shapes of various styles from different
categories shown in Figs. 5, 6, and 7. For most of the shapes in
Fig. 5, the input polygons have fewer than 180 edges, and the
running times are less than 30 s. In Fig. 5 (10), the gear shape
has 192 edges, which led to 1152 candidate symmetric edge pairs
(and thus the same number of integer variables). This resulted in
a large mixed integer quadratic program, and our method took
56 min to solve it.

4.3. Extension to partial symmetric objects

Our method is designed for 2D shapes with a single global
symmetry axis, but it can be extended to shapes with partial sym-
metry. The basic idea is to reduce the influence of the tolerance
erm in our objective function given in Eq. (8), which will allow
eaving more edges non-symmetric during the optimization. We
urther studied the impact of the tolerance term by gradually
hanging the weight of this term. The results are reported in
ig. 11, where the window of the building does not have a
ymmetric counterpart.
From Fig. 11, we can see that when λ has a small value

e.g., λ ≤ 20 in (b) and (c)), most edges are in unpaired status,
nd only few edges are enforced to deform to be symmetric with
heir counterparts. By increasing λ, the optimization step imposes
stronger global symmetry constraint, and consequently, more
nd more edges are paired, and the overall shape including the
iddle window is strictly symmetrized. However, some local

egions such as the bottom-left window are left non-symmetric
ven when the influence of the tolerance term is increased to a
ery high value (i.e., λ = 800). These properties indicate that
he weight of the tolerance term provides control over the desired
evel of non-symmetry, and our method is capable of symmetriza-
ion of global shapes while maintaining their non-symmetric local
arts.

.4. Additional vertical and horizontal constraints

By incorporating the options of horizontal and vertical con-
traints into the original equation, we can improve the overall
egularity of 2D shapes. This is because orthogonality and par-

llelism are common characteristics in these shapes, and the
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l
v

Fig. 11. The effect of the tolerance term. Symmetrization results of a 2D shape
(a) by gradually increasing the influence of the tolerance term. The value below
each subfigure denotes the weight used in the optimization. The edges with
the same color (except black indicating the non-symmetric edges) are paired
and enforced to be symmetric in the final optimization. (For interpretation of
the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 12. The effect of additional vertical and horizontal constraints, demon-
strated on two shapes. (a) Input. (b) Symmetrization result without these
constraints. (c) Symmetrization result with these constraints.

addition of these constraints allows for the consideration of these
two types of regularities and symmetry in the equation.

Before the hypothesis generation step, we identify potential
horizontal and vertical edges in the original shape by measuring
the angle between each edge and the X/Y axis. If the angle is
ess than a threshold of γ , the edge is added to either the set of
ertical edges Rv or the set of horizontal edges Rh depending on

its proximity to the two axis. In our work, γ is set to 15◦. After
the symmetrization process, these edges are aligned well with
9

Fig. 13. A failure case of our method. This is due to that our method is designed
for the symmetrization of shapes with a single global symmetry axis, while the
input model in this case has two dominant local ones.

the X/Y axis, achieved by adding a new hard constraint to Eq. (8),
defined as follows,

s.t.

⎧⎨⎩ xli − xrj = 0, if ei ∈ Rv

yti − yb = 0, if ei ∈ Rh

, (11)

where x and y with superscripts t , b, l, and r denote the coor-
dinates of the top, bottom, left, and right endpoint of an edge,
respectively.

As illustrated in Fig. 12, the introduction of the new con-
straints results in more edges in (c) to be either orthogonal or
parallel to the symmetry axis, as seen in comparison with the
symmetrization result (b), which further improves the overall
regularity of the shape. Note that the proposed vertical or hor-
izontal constraints are different from the vertical or horizontal
patterns introduced in Section 3.1.2. The distinction lies in the
fact that the patterns are defined on the candidate edge pairs,
while the constraints are directly defined on the edges.

4.5. Limitations

Our symmetrization method is intended for 2D shapes with
a single global symmetry axis. For shapes with multiple local
symmetries, our method strives to enhance the most dominant
symmetry (see Fig. 11), and it may fail to generate reasonable
results when the multiple symmetries are comparably domi-
nating the shape. Such a failure example is given in Fig. 13,
where our symmetry optimization identifies only the dominant
symmetry. Another limitation is that the symmetry optimization
step requires solving a mixed integer quadratic program, and its
complexity highly depends on the number of edges in the input
shape. According to our experiments, the running time may not
be acceptable for shapes with more than 200 edges. In this case,
performing simplification of the input shape is necessary as a
pre-processing step. Furthermore, our method does not guarantee
the final output free of self-intersections, though we have not
encountered such an issue in our experiments. This is because we
assume that the topology of the 2D polygon remains unchanged
after optimization and have not included any additional steps to
exclude self-intersections.

5. Conclusion and future work

We have presented an automatic method for the symmetriza-
tion of 2D shapes based on a mixed-integer programming for-
mulation. Our formulation aims to jointly identify the optimal
symmetry axis (by determining the correct symmetric edge pairs)
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nd optimize the symmetry of the shape simultaneously. Exten-
ive experiments on various types of 2D shapes have demon-
trated the effectiveness of the proposed method. In particular,
ur method is robust to noise, non-symmetric local geometry, and
rtifacts such as self-intersections.
Our current symmetrization framework assumes that a shape

as a single global symmetry axis. In the future, we would like
o extend our method to handle shapes with multiple symmetry
xes by incorporating user interactions. Introducing structural
riors and regularities, such as repetition [52] into symmetry
ptimization is also an interesting direction. Additionally, we be-
ieve that extending our framework to handle intrinsic symmetry
r 3D representations would be a promising direction for future
esearch.
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