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Abstract—SHA-3 is considered to be one of the most secure
standardized hash functions. It relies on the Keccak-f[1 600]
permutation, which operates on an internal state of 1 600 bits,
mostly represented as a 5 × 5 × 64−bit matrix. While existing
implementations process the state sequentially in chunks of
typically 32 or 64 bits, the Keccak-f[1 600] permutation can benefit
a lot from speedup through parallelization. This paper is the first
to explore the full potential of parallelization of Keccak-f[1 600]
in RISC-V based processors through custom vector extensions
on 32-bit and 64-bit architectures. We analyze the Keccak-
f[1 600] permutation, composed of five different step mappings,
and propose ten custom vector instructions to speed up the
computation. We realize these extensions in a SIMD processor
described in SystemVerilog. We compare the performance of our
designs to existing architectures based on vectorized application-
specific instruction set processors (ASIP). We show that our
designs outperform all related work in throughput due to our
carefully selected custom vector instructions.

Index Terms—Keccak, SHA-3, Vector Extensions, SIMD Pro-
cessor, RISC-V

I. INTRODUCTION

Data integrity is a crucial metric to guarantee the accuracy
and reliability of transmitted information [1]. The Secure Hash
Algorithm (SHA), a family of cryptographic hash functions
published by the National Institute of Standards and Technol-
ogy (NIST), has a wide range of applications in the domain of
data integrity verification [2]. SHA-3, the newest generation,
is used in a number of candidate algorithms in the NIST
Post Quantum Cryptography (PQC) contest [3]. Especially in
lattice-based schemes, SHA-3 functions are used to calculate
hashes and generate random numbers on a large scale. The
Keccak permutation in SHA-3 is computationally intensive due
to its high number of rounds and a high number of state bits.
It is always one of the speed-critical components in lattice-
based algorithms [4]–[6]. In CRYSTALS-Kyber, the same seeds
are usually adopted as input data to generate the polynomial
matrix A, the secret key vectors s, and the error data vectors
e using SHA-3 functions. Take the matrix A generation in
Kyber1024, for example [4]. The public 4 × 4 matrix A is
generated from a two-layer loop structure by SHAKE-128,
an extendable output function in SHA-3, whose input data
is the seed concatenated with the row order and the column
order. Because of the large amount of computation and similar
input data, it would be beneficial if one or more Keccak states
could work simultaneously to generate A, s, and e. This work

explores the feasibility of using vector instructions to make one
or more Keccak states work in parallel. To realize this goal,
we need a vector instruction set architecture (ISA) supporting
a flexible vector length that is large enough to include one
or more Keccak states. RISC-V vector extensions meet this
requirement. To the best of our knowledge, there are no other
papers that use RISC-V vector extensions for speeding up SHA-
3.

To investigate how RISC-V vector extensions can improve
the performance of SHA-3, we use the same scalable SIMD
RISC-V based processor as in [7] to do ASIP designs. We
allow different numbers of elements in one vector register to
process one or more Keccak states simultaneously. We analyze
the algorithm consisting of five different step mappings in the
Keccak permutation, propose ten custom vector extensions for
32-bit and 64-bit architectures, and realize all these custom
extensions in the SIMD processor described in SystemVerilog.
Then, we design the Keccak permutation targeting the 32-bit
and 64-bit architectures using our custom vector extensions
and existing vector extensions for RISC-V. Our contributions
include the following aspects:

• We use RISC-V vector extensions to vectorize the Keccak-
f[1 600] permutation of the SHA-3 function. To the best
of our knowledge, we are the first to use these extensions
to speed up SHA-3.

• We analyze the five step mappings in the Keccak permuta-
tion, propose ten custom vector extensions for 32-bit and
64-bit architectures and realize all these extensions in a
SIMD processor written in SystemVerilog.

• We optimize the Keccak program for the 32-bit and 64-
bit architectures using the custom and existing RISC-
V vector extensions. The results show that our ASIP
designs significantly outperform all previously proposed
implementations.

II. BACKGROUND

All SHA-3 functions use the Keccak-f[1 600] permutation,
which works on a 1 600-bit state, which is ordered as a three-
dimensional x × y × z matrix. where x and y are 5, and z
is 64. Therefore, the 5 × 5 × 64−bit state can be viewed as
25 lanes, with each lane consisting of 64 bits. They can be
partitioned plane-wise as 5 planes, with each plane containing
5 lanes in the same row. Plane-wise partition is preferable to
work with vector instructions, where lanes within the same row
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Algorithm 1 Keccak-f[1 600] step mappings in plane-per-plane processing [9]
Input: Keccak state A[x, y]
Output: Keccak state H[x, y]
Note:
1. B,C,D,E,F,G are all intermediate values.
2. The pairs [x, y] define the lane(x,y), with 0 ≤ x<5 and 0 ≤ y<5.
3. r[x, y] is the rotation value for each lane in the ρ step mapping.
4. RC[i] is the round constant value in the ι step mapping.
1) θ step mapping:
for x = 0 to 4 do
B[x] = A[x, 0] ⊕ A[x, 1] ⊕ A[x, 2] ⊕ A[x, 3] ⊕ A[x, 4]

end for
for x = 0 to 4 do
C[x] = B[(x − 1) mod 5] ⊕ ROT(B[(x + 1) mod 5], 1)

end for
for y = 0 to 4 do

for x = 0 to 4 do
D[x, y] = A[x, y] ⊕ C[x]

end for
end for
2) ρ step mapping:
for y = 0 to 4 do

for x = 0 to 4 do
E[x, y] = ROT(D[x, y], r[x, y])
end for

end for
3) π step mapping:
for y = 0 to 4 do

for x = 0 to 4 do
F[x, y] = E[(x + 3y) mod 5, x]

end for
end for
4) χ step mapping:
for y = 0 to 4 do

for x = 0 to 4 do
G[x, y] = (F[(x + 1) mod 5, y] ⊕ 1) · F[(x + 2) mod 5, y]
H[x, y] = F[x, y] ⊕ G[x, y]

end for
end for
5) ι step mapping:
H[0, 0] = H[0, 0] ⊕ RC[i]

can be processed simultaneously by the same instructions [8].
We follow this processing approach in this work.

The Keccak-f[1 600] permutation comprises 24 rounds. Each
round contains five step mappings, denoted as θ, ρ, π, χ, ι. The
detailed operations for plane-per-plane processing are shown in
Algorithm 1. The θ step mapping, designed for linear diffusion,
changes the lane value by XORing each state bit with parities of
adjacent columns. The ρ step mapping, designed for inter-slice
dispersion, rotates each lane over a variable number of positions
according to its location. The π step mapping, designed for
disturbing horizontal/vertical alignment, scrambles the location
of all lanes. The χ step mapping, designed for non-linearity,
updates the value of each row with AND, NOT, and XOR
operations among different lanes. The ι step mapping, designed
for breaking the symmetry, XORs a round constant with lane 0.
The round constant (RC) value changes according to the round
number.

Fig. 1: Vector register file and address allocation [7].

A. RISC-V Vector ISA

RISC-V is an open and freely accessible ISA with small
base instructions (ISA bases) for simplified general-purpose
computers and rich optional instruction extensions for more
comprehensive applications. RISC-V vector extensions (RISC-
V vector ISA) are designed for vector operations. It includes the
following main features according to the most recent version
1.0 (RVV1.0) [10]:

1) There are 32 vector registers in total. VLEN defines the
number of bits in a single vector register. ELEN defines
the number of bits in every vector element that any oper-
ation can produce or consume. The number of elements,
EleNum, defines the number of vector elements in one
vector register. EleNum is determined by VLEN/ELEN.
The vector length, VL, specifies the number of elements to
be operated on in parallel within a vector extension [10].
It can be smaller or greater than EleNum. When VL is
smaller than EleNum, all elements are put in the same
vector register. When VL is greater than EleNum, several
vector registers are grouped to work under the same
instruction. The vector length multiplier, LMUL, specifies
the maximum number of vector registers grouped under
the same instruction. LMUL supports integer values no
larger than 8, that is, 1, 2, 4, or 8.

2) There are three types of instructions: configuration-setting
instructions, vector load, store instructions, and vector
arithmetic instructions. The configuration-setting instruc-
tions define VL, LMUL, ELEN, etc. The vector load and
store instructions define how to move values between
vector registers and data memory. Vector arithmetic in-
structions define the operands and the opcode. Their funct3
field specifies whether the two operands are vector-vector
(.vv), vector-immediate (.vi), or vector-scalar (.vx).

3) Masking is supported on many vector instructions and can
be applied to the specific locations of vector elements
in the vector register. The vm field in the vector load
and store instructions and vector arithmetic instructions
denotes whether the corresponding instructions are masked
off or not. When vm equals 1, the instruction is unmasked.
Every element in the operand vectors will participate
in the corresponding operation. When vm equals 0, the
instruction is masked. The corresponding operation only
happens to these elements whose mask bit is 1 in the mask
vector register, which resides in the vector register file.

4) The SIMD processor needs to do vector address remapping
according to LMUL. Figure 1 shows the working proce-
dure for the instruction {vadd.vv v0,v0,v2}. The elements
in the first vector register of vectors v0 and v2 are read
out simultaneously and sent to the respective execution
module with the same element index number for the
addition operation. After the process finishes, the result
of every execution sub-module will be sent to vector v0
according to the element index number. Later, all elements
from v1 and v3 will be fetched and executed, and the result
from every execution sub-module will be written back to
vector v1.
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Fig. 2: Memory allocation for Keccak states in the 64-bit architecture.

B. Related Work

Instruction Set Extension (ISE) is commonly used in ASIP
designs to extend the ISA with customized extensions for spe-
cific functions. These custom instructions are usually suited to
fine-grained operations that are best integrated into a processor
pipeline and still provide software programmability while only
needing small hardware changes to processors [11], [12].

As far as we know, there are three implementations using ISE
for SHA-3 implemented in FPGA or ASIC. All are application-
specific instruction set processors (ASIP), whose instruction set
is tailored to meet the requirements of a specific application.
In 2015, Wang et al. [13] were the first to propose custom
extensions for SHA-3 implemented in FPGA. In 2016, Elmohr
et al. [14] proposed two ASIPs based on a 32-bit processor for
SHA-3. The first one (Native ISE) uses four custom instruc-
tions, and the second one (Co-processor ISE) adds auxiliary
registers to supply parallel implementations. In the domain of
the RISC-V, Rao et al. in 2018 [12] proposed two SHA-3 ASIPs
for IoT systems. The first ASIP, named OASIP, accelerates
operations on the existing datapath with seven instruction exten-
sions. The second ASIP, named DASIP, supports 21 instruction
extensions and makes data and instructions work in parallel. In
the field of vector instructions, Rawat et al. [15] proposed six
vector instruction extensions for 128-bit vector-processing units
in some mainstream processors such as ARM (NEON), Intel
(SSE, AVX), etc. They designed the assembly code program for
Keccak-f[1 600] for a 64-bit architecture and integrated these
vector instructions for simulation. As the authors mentioned
in the paper, they achieved 66 instructions per keccak-f[1 600]
round. Until now, no other published works have used RISC-V
vector extensions to design the Keccak functions1. In this work,
we will use the four designs mentioned above as our reference
for performance comparison in Section IV.

III. SYSTEM DESIGN

The authors in [7] realized a scalable SIMD processor that
can support RISC-V ISA bases and RISC-V vector extensions
written in SystemVerilog. We will use the same SIMD pro-
cessor to investigate the performance improvement of SHA-
3 with the goals of low latency and high throughput. The
SIMD processor in [7] contains a scalar core and a vector
processing unit. Both parts are 32-bit architectures. However,

1After we finished this work, the RISC-V Cryptography Extensions Task
Group published Vector Crypto Draft 20220920 on 20 September 2022. Until
now, there are no vector extensions for Keccak in the draft.

as the configuration-setting instructions can set the ELEN
parameter to different values, the data width in the vector
processing unit does not have to be consistent with the scalar
core. Following the description from Reference [10], it can
be any length that is a power of 2 and no smaller than 8.
This mismatch does not impact the load and store operations
because the vector load and store instructions can also define
the width of the data read from the data memory. We will set
the element length (ELEN) to 64 bits and 32 bits separately
to realize the 64-bit architecture and the 32-bit architecture,
respectively. To show the entire vectorization process for the
Keccak permutation, we do not combine operations like many
software designs do, for example, by combining the ρ and π
step mappings [8].

A. 64-bit Architecture
For the 64-bit architecture, we set ELEN to 64 bits for

making the SIMD processor’s vector processor unit deal with
64-bit operands. Keccak-f[1 600] is easy to map to the 64-bit
architecture as its lane width in the Keccak state is compatible
with the element length in the vector register.

We set the number of elements in one vector register,
EleNum, determined by VLEN/ELEN, to fit the 5 × 5 lanes
inside the vector register file, with 5 planes occupying 5 vector
registers. Moreover, as illustrated in Figure 2, if EleNum is
large enough, more than one Keccak state can be put in the
vector register file. In this figure, the EleNum parameter is 16,
and sxy denotes the lane index in one Keccak state with row
index x and column index y. The planes with the same order
from different Keccak states reside in the same vector registers.
We use the vector register address to denote the y-axis and the
element index order modulo 5 to indicate the x-axis of one
state. The first Keccak state, A0, occupies element index order
0 to 4, shown in green; the second Keccak state, A1, occupies
element index order 5 to 9, shown in purple; and the third
Keccak state, A2, occupies element index 10 to 14, shown in
blue.

B. 32-bit Architecture
For the 32-bit architecture, we set the ELEN parameter of

the SIMD processor to 32 bits. Later, we need to consider
cutting the 64-bit lane into two 32-bit lanes to reside inside
the vector register file and work on 32-bit operands. The most
common way is the bit interleaving technique, where the odd
bits are put in one 32-bit word and the even bits in another 32-
bit word. This technique is beneficial for the rotation operation,
especially in the ρ step mapping, where the rotation length is
sometimes larger than 32. However, when SHA-3 algorithms
work with other programs, extra efforts are required to separate
the lane into odd and even parts and then combine them. In this
design, we divide each lane into the most significant and least
significant parts, with each part containing 32 bits. We store the
two parts separately inside the vector register file, as shown in
Figure 3.

C. Custom Vector Extensions
As the existing RISC-V vector instructions are for general-

purpose applications, specific instructions for implementing
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Fig. 3: Memory allocation for Keccak states in the 32-bit architecture

Keccak in the 64-bit and 32-bit architectures are needed. For
example, there are no vector rotation instructions in RISC-V
vector ISA, and vector slide instructions define behaviors that
are not applicable to our use case, etc. In this part, we propose
custom vector extensions for SHA-3 and realize them through
SystemVerilog in the SIMD processor. We define the parameter
SN to denote the number of Keccak states working in parallel.
5 × SN should not be greater than the number of elements
in one vector register. Note that all the following instructions
only operate on elements that store the Keccak state values
(element index number ∈ [0, 5 × SN − 1]). Elements with
index numbers not smaller than 5×SN are unchanged. In the
following parts, vd denotes the destination vector operand. v1
and v2 denote the source vector operands. uimm defines the
unsigned immediate. simm specifies the signed immediate. rs1
specifies the scalar register operand. vm denotes whether vector
masking is enabled. In this design, we use custom instructions
and rewrite unused existing instructions to extend instructions
in RISC-V. We do not modify the compiler because it is too
time-consuming and not flexible. All instructions and their
latency are shown in Table I.

1) Vector slide modulo five instructions: In the θ step map-
ping, intermediate values move up and down the corresponding
vector register after XORing all planes. Moreover, inside the χ
step mapping, all planes must move down their corresponding
vector registers with offsets one and two, respectively. We
propose two extensions for both architectures: vslidedownm to
do the moving down operation, and vslideupm to do the moving
up operation. To keep lanes belonging to different Keccak states
from interfering, we use modulo-five operations to restrict the
element index number, as shown in Figure 4.

2) Vector rotation instructions: There are two step mappings
using rotation operations: θ and ρ. In the θ step mapping, the
parity of the right column rotates one bit towards the most
significant direction. For the 64-bit architecture, we propose
the rotation operation vrotup with two vector operands and
one immediate value, which defines the offset. For the 32-bit
architecture, we need to concatenate two 32-bit words into one
64-bit word and then do the rotate operation. As there are two
vector operands, we choose the default rotation offset of 1 and

Fig. 4: Vector slide and modulo-five instructions. SN denotes the
number of Keccak states. N is the offset. Here, we take the offset
of 1 as an example.

TABLE I: Vector instructions and latency. * denotes ⌈VL/EleNum⌉.

Instruction Description Latency

vslidedownm.vi vd, vs2, uimm, vm

for i from 0 by 1 to SN − 1 do
for j from 0 by 1 to 4 do
vd[5 × i + j] ← vs2[5 × i+

(j + uimm) mod 5]
end for

end for

1+*

vslideupm.vi vd, vs2, uimm, vm

for i from 0 by 1 to SN − 1 do
for j from 0 by 1 to 4 do
vd[5 × i + j] ← vs2[5 × i+

(j − uimm) mod 5]
end for

end for

1+*

vrotup.vi vd, vs2, uimm, vm
vd ← (vs2 ≪ uimm) ∨ (vs2 ≫ (64 − uimm))
Note: ∨ denotes a bit-wise OR operation. 1+*

v32lrotup.vi vd, vs2, vs1, vm

vd ← (((vs2 ∥ vs1) ≪ 1) ∨ ((vs2 ∥ vs1)
≫ 63))[31 : 0]
Note: vs2 ∥ vs1 is the concatenation of vs2 and vs1,
to build 64-bit word.

1+*

v32hrotup.vi vd, vs2, vs1, vm
vd ← (((vs2 ∥ vs1) ≪ 1) ∨ ((vs2 ∥ vs1)
≫ 63))[63 : 32]

1+*

v64rho.vi vd, vs2, simm, vm

for i from 0 by 1 to SN − 1 do
for j from 0 by 1 to 4 do
vd[5 × i + j] ← (vs2[5 × i + j] ≪

rho shift[simm][j]) ∨ (vs2[5 × i + j] ≫ (64−
rho shift[simm][j]))

end for
end for
Note: if simm is -1, the five rows process in sequence.
The counter lmul cnt in hardware indexes the row.

1+*

v32lrho.vi vd, vs2, vs1, vm

1) vs2 ∥ vs1;
2) The counter lmul cnt in hardware indexes the row
number automatically for reading the lookup table;
3) The same process as v64rho is executed, and the
least significant 32 bits are stored.

1+*

v32hrho.vi vd, vs2, vs1, vm

1) vs2 ∥ vs1;
2) The counter lmul cnt in hardware indexes the row
number automatically for reading the lookup table;
3) The same process as v64rho is executed, and the
most-significant 32 bits are stored.

1+*

vpi.vi vd, vs2, simm, vm

The process is illustrated in Figure 5
1) Reading elements from vs2 in the vector register
file and re-arranging the elements into columns.
2) Storing each column in the vector register with the
starting address of the column equals to vd.
3) If simm equals 0, 1, 2, 3, or 4, only one row is
processed. If simm is -1, the five rows process in
sequence. lmul cnt in hardware indexes the row.

2+*

viota.vx vd, vs2, rs1, vm

for i from 0 by 1 to SN − 1 do
for j from 0 by 1 to 4 do

if(j ≡ 0)
vd[5 × i + j] ← vs2[5 × i + j] ⊕ RC[rs1]

else
vd[5 × i + j] ← vs2[5 × i + j]

end for
end for
Note: RC are round constant data.

1+*

create two custom extensions: v32lrotup and v32hrotup. The
results are the low 32 bits and the high 32 bits of the rotated
64-bit data, respectively.

The ρ step rotates each lane over a variable number of
positions. For the 64-bit architecture, we do not use the rotation
operation vrotup here because it makes all lanes in one plane
rotate with the same offset under the same immediate value.
We store the rotation values in a lookup table and create v64rho
for the 64-bit architecture, and v32lrho and v32hrho for the 32-
bit architecture. For v64rho, the two operands are vector and
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immediate data. When the immediate is -1, all five planes in
the Keccak are executed in sequence. The immediate -1 is used
when LMUL is greater than 1. Here, we use a counter in the
execution module of the SIMD processor, named lmul cnt to
denote the row number for reading the offset from the lookup
table. When the immediate equals 0, 1, 2, 3, or 4, only one plane
is operated with the row index defined by the immediate, and
LMUL should equal 1. For v32lrho and v32hrho, we combine
two 32-bit words into one 64-bit word and then do the rotate
operation. As there are only two operands, i.e., two vectors,
there is no value defining the row number. Thus, they also use
the counter lmul cnt to index the row number for reading the
lookup table. The results of v32lrho and v32hrho, are the least-
significant 32 bits and the most-significant 32 bits of the rotated
64-bit data, respectively.

3) Vector π instruction: The π step mapping contains two
steps: 1) reading every row from the vector register file in
sequence and re-arranging the elements into columns; 2) storing
each column in the vector register. The column number is equal
to the Keccak state number, SN . The operation is illustrated
in Figure 5. We add interfaces between the execution module
and the vector register file in the SIMD processor to make data
writing in column mode available. We propose a new custom
extension vpi. This instruction can work in both architectures.
The two operands are vector and immediate data. When the
immediate value is -1, all five planes in the Keccak are executed
in sequence. This is used for LMUL greater than 1. When the
immediate equals 0, 1, 2, 3, or 4, only one plane is processed,
where the order is defined by the immediate, and LMUL should
equal 1.

Fig. 5: π operation in the design.

4) Vector ι instruction: We propose the instruction viota to
XOR a round constant with lane 0 in the first row of every
Keccak state for the ι step mapping. The two operands in the
instruction are a vector register and a scalar register. The latter
is used to index the round constant data. The data width of the
round constant for the 64-bit architecture is 64 bits. For the
32-bit architecture, every round constant is divided into a high
32-bit value and a low 32-bit value, and the viota instruction
runs twice for each Keccak round.

IV. IMPLEMENTATIONS AND RESULTS

This design uses one RISC-V GNU Compiler Toolchain2 to
compile all our software programs. The Xilinx Alveo U250

2https://github.com/riscv-collab/riscv-gnu-toolchain/

TABLE II: Results of our 64-bit architectures and comparison with
a 64-bit reference architecture. The execution time for one round is
reported as the number of cycles to complete one round (cyc/rnd). The
execution time to complete the entire permutation is reported as the
number of cycles per byte (cyc/byte).

Implementation Execution time throughput
(bits /cycle)

Area
(slices)

Throughput/Area
(bits /(cycle × slices))cyc/rnd cyc/byte

Vector Extensions [15] 66 - 1 010.1×10−3 (only simulation)
64-bit with LMUL =1
(EleNum=5, SN=1 ) 103 12.8 624.02×10−3 7 323 85.21×10−6

64-bit with LMUL =1
(EleNum=15, SN=3) 103 12.8 1 872.07×10−3 24 785 75.52×10−6

64-bit with LMUL= 1
(EleNum=30, SN=6) 103 12.8 3 744.15×10−3 48 180 77.71×10−6

64-bit with LMUL =8
(EleNum=5, 1SN=1) 75 9.5 845.67×10−3 7 323 115.48×10−6

64-bit with LMUL =8
(EleNum=15, SN=3) 75 9.5 2 537.00×10−3 24 789 102.34×10−6

64-bit with LMUL=8
(EleNum=30, SN=6) 75 9.5 5 073.00×10−3 48 180 105.29×10−6

TABLE III: Results of our 32-bit architectures and comparison with
32-bit reference architectures.

Implementation Execution time Throughput
(bits /cycle)

Area
(slices)

Throughput/Area
(bits /(cycle × slices))cyc/rnd cyc/byte

LEON3 [13] - 369 21.68 ×10−3 8 648 2.51×10−6

MIPS Native [14] - 178.1 44.92×10−3 6 595 6.81×10−6

MIPS Coprocessor [14] - 137.9 58.01×10−3 7 643 7.59×10−6

OASIP [12] - 291.5 27.44×10−3 981 27.97×10−6

DASIP [12] - 130.4 61.36×10−3 1 522 40.31×10−6

32-bit with LMUL=8
(EleNum=5, SN=1) 147 18.1 441.98×10−3 6 359 69.5×10−6

32-bit LMUL=8
(EleNum=15, SN=3) 147 18.1 1 325.97×10−3 23 408 56.65×10−6

32-bit LMUL=8
(EleNum=30, SN=6) 147 18.1 2 651.93×10−3 48 036 55.2×10−6

Data Center accelerator card is selected as the hardware plat-
form. We use Vivado 2020.1 tools to synthesize and implement
the SIMD processor at 100 MHz. We compare our designs with
the existing ASIP designs mentioned in Section II-B, which
adopt tailored processors with a subset of instructions to meet
design requirements. In our implementations, we also use a
smaller set of base instructions and vector extensions together
with the custom extensions for Keccak, which are supported
in the SIMD processor. We keep all instructions in the scalar
core of the SIMD processor, where the base RISC-V ISA and
multiplication and division extensions are supported. The vec-
tor processing unit reserves configuration-setting instructions,
vector load and store instructions, vector logical instructions
in vector arithmetic, and all custom extensions for different
architectures.

We compile all the optimized programs using vector exten-
sions for three different structures: (1) 64-bit architecture with
LMUL equal to 1, (2) 64-bit architecture with LMUL equal to
8, and (3) 32-bit architecture with LMUL equal to 8. Every
generated binary machine code is stored inside the program
memory of the SIMD processor. The former two structures
use the same SystemVerilog code because the instructions
can support different LMUL settings. As we increase the
EleNum value, the vector register file can hold more than
one Keccak state, and the architecture can perform multiple
Keccak operations in parallel. The Keccak state number (SN )
determines the number of states processed in parallel. The
latency is the same no matter how many Keccak states there
are in the system simultaneously.

We compare our results to the four reference designs intro-
duced in Section II-B. All results and comparisons are shown
in Table II and Table III. All references [12]–[14] use the
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number of slices as the unit to represent the resource utilization
(area). In our work, we derive the number of slices from the
post-implementation results in Vivado. We define two types of
execution time: cycles per Keccak round (cycles/round) and
cycles per message byte in one Keccak state (cycles/byte).
Cycles/round is the latency to finish one Keccak round, while
cycles/byte is the latency measured in clock cycles for hashing
one byte of the message in the entire 24-round Keccak permuta-
tion. Either is justified to present the execution time. The reason
to use the two is that different references use different measures.
For example, reference [14] uses cycles/byte to denote the
execution time; reference [12] adopts bytes/cycle to compare
the performance. In addition, reference [15] uses cycles/round
to represent its running time. Besides, we do not include
the clock frequency to compare the performance because the
reference designs either use different clock frequencies or do
not mention their frequency.

LMUL = 1 vs. LMUL = 8 In Table II, we can see that
in the 64-bit architecture, when LMUL is equal to 8, the
performance improves. The throughput increases with a factor
of 1.35 compared to when LMUL equals 1.

SN = 1 vs. SN > 1 When the number of states increases,
both the throughput and area increase. However, the ratio,
Throughput/Area, decreases slightly.

64-bit architecture vs. 32-bit architecture When comparing
the 64-bit and 32-bit architectures with LMUL 8, we can see
that the 64-bit architecture runs almost twice as fast as the
32-bit architecture, and both use similar resources. The reason
that the resources are similar is that the 32-bit architecture
uses more resources for the rotation instructions, while the 64-
bit architecture uses more resources for the datapath and the
register file.

32-bit architecture vs. MIPS Co-processor ISE [14]
When compared with the Co-processor ISE in [14], where
parallel operations are supported, the throughput of our 32-
bit architecture (LMUL = 8 and EleNum = 30) is improved by
a factor of 45.7. The area is increased by a factor of 6.3.

32-bit architecture vs. DASIP [12] Our 32-bit architecture
(LMUL = 8 and EleNum = 30) is 43.2 times faster but
31.5 larger than DASIP [12], which supports data-level and
instruction-level parallelism.

64-bit architecture vs. Vector Extensions [15] For the 64-
bit architecture (LMUL = 8 and EleNum = 30), the performance
is increased by a factor of 5.3 compared to the vector extensions
design for Keccak in [15] because more Keccak states can be
processed simultaneously.

V. CONCLUSION AND FUTURE WORK

In this paper, we explore the use of custom vector instruction
set extensions for the implementation of the Keccak-f[1 600]
permutation in SHA-3 hash functions. We analyze the five step
mappings, propose ten custom vector extensions for 64-bit and
32-bit architectures, and realize these custom instructions in
the SIMD processor in SystemVerilog. Then, we design the
Keccak-f[1 600] permutation for both the 64-bit and the 32-
bit architectures using the custom vector instructions and the
existing RISC-V vector extensions. Our results for the 32-bit

architecture show an improvement of 45.7 and 43.2 times in
throughput compared to two existing parallelized designs [12],
[14]. The 64-bit architecture offers optimization of 5.3 times
in throughput compared to an existing design where vector
extensions are supported [15]. Our work uses instruction-set
customization and does not fuse adjacent operations for the
purpose of showing the whole vectorization process using
RISC-V vector extension. Predictably, the two architectures’
performance will improve more if we increase the granularity
or combine some adjacent operations.

In future work, we will integrate this work into the im-
plementation of PQC algorithms, such as CRYSTALS-Kyber
and CRYSTALS-Dilithium to see how the performance can be
improved by the vectorization of Keccak-f[1 600] permutation.
Moreover, we will investigate the optimization of the complete
post-quantum cryptography schemes with other techniques,
such as polynomial multiplication optimizations.
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