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Abstract
Background and Objectives
With age, somatic mutations accumulated in human brain cells can lead to various neurologic
disorders and brain tumors. Because the incidence rate of Alzheimer disease (AD) increases
exponentially with age, investigating the association between AD and the accumulation of
somatic mutation can help understand the etiology of AD.

Methods
We designed a somatic mutation detection workflow by contrasting genotypes derived from
whole-genome sequencing (WGS) data with genotypes derived from scRNA-seq data and
applied this workflow to 76 participants from the Religious Order Study and the Rush Memory
and Aging Project (ROSMAP) cohort. We focused only on excitatory neurons, the dominant
cell type in the scRNA-seq data.

Results
We identified 196 sites that harbored at least 1 individual with an excitatory neuron–specific somatic
mutation (ENSM), and these 196 sites were mapped to 127 genes. The single base substitution
(SBS) pattern of the putative ENSMs was best explained by signature SBS5 from the Catalogue of
Somatic Mutations in Cancer (COSMIC) mutational signatures, a clock-like pattern correlating
with the age of the individual. The count of ENSMs per individual also showed an increasing trend
with age. Among the mutated sites, we found 2 sites tend to have more mutations in older
individuals (16:6899517 [RBFOX1], p = 0.04; 4:21788463 [KCNIP4], p < 0.05). In addition, 2 sites
were found to have a higher odds ratio to detect a somatic mutation in AD samples (6:73374221
[KCNQ5], p = 0.01 and 13:36667102 [DCLK1], p = 0.02). Thirty-two genes that harbor somatic
mutations unique to AD and the KCNQ5 and DCLK1 genes were used for gene ontology
(GO)–term enrichment analysis. We found the AD-specific ENSMs enriched in the GO-term
“vocalization behavior” and “intraspecies interaction between organisms.” Of interest we observed
both age-specific and AD-specific ENSMs enriched in the K+ channel–associated genes.

Discussion
Our results show that combining scRNA-seq and WGS data can successfully detect putative
somatic mutations. The putative somatic mutations detected from ROSMAP data set have
provided new insights into the association of AD and aging with brain somatic mutagenesis.

From the Delft Bioinformatics Lab (M.Z., G.A.B., H.H., M.J.T.R.), Delft University of Technology; Department of Human Genetics (M.Z., H.H.), Amsterdam Neuroscience, Vrije
Universiteit Amsterdam, Amsterdam UMC; and Department of Human Genetics (G.A.B., M.J.T.R.), Leiden University Medical Center, the Netherlands.

Funding information and disclosures are provided at the end of the article. Full disclosure form information provided by the authors is available with the full text of this article at
Neurology.org/NG.

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND), which permits downloading
and sharing the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

Copyright © 2023 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology. 1

http://dx.doi.org/10.1212/NXG.0000000000200066
mailto:m.j.t.reinders@tudelft.nl
http://ng.neurology.org/lookup/doi/10.1212/NXG.0000000000200066
http://creativecommons.org/licenses/by-nc-nd/4.0/


Somatic mutations are postzygotic genetic variations that can
result in genetically different cells within a single organism.1

Possible reasons for the occurrence and accumulation of somatic
mutations in human brains are errors occurring during DNA
replication and gradual failing of DNA repair mechanisms caused
by extensive oxidative stress.2,3 Previous studies have shown that
brain somaticmutations originating in neuronal stem/progenitor
cells can lead to various neurologic disorders and brain tumors.4-6

While mutations in postmitotic neurons have been found to play
an important role in age-related and neurodegenerative diseases,7

this association remains relatively poorly understood. The link
between the accumulation of age-related mutations in neurons
and neurodegenerative disease is intuitively worth exploring,
considering aging is a major risk factor of many neurodegener-
ative diseases such as Alzheimer disease (AD).8

AD is the most predominant form of dementia and charac-
terized by the extracellular accumulation of amyloid beta (Aβ)
plaques and the intracellular aggregation of phosphorylated
tau protein into neurofibrillary tangles.9 A recent study
identified several putative pathogenic brain somatic mutations
enriched in genes that are involved in hyperphosphorylation
of tau.10 These results indicate that the aggregation of these
neuropathologic substrates can be partly explained by the
accumulation of brain somatic mutations, which raises a new
direction for investigating the pathogenic mechanism of AD.

Most age-related somatic mutations are only present in a
small group of postmitotic neurons or even in a single neuron.
For this reason, ultra-deep bulk sequencing and matched
peripheral tissues are often required.10 These type of data are
often generated for 1 specific research question with a rela-
tively high cost and are not always available from public da-
tabases. By contrast, the availability of public single-cell RNA
sequencing (scRNA-seq) data sets has exploded because of
continuous technological innovations, increasing throughput,
and decreasing costs.11 scRNA-seq data are most often used
for expression-based analyses, such as revealing complex and
rare cell populations, uncovering regulatory relationships
between genes, and tracking the trajectories of distinct cell
lineages in development.12,13 We hypothesized that scRNA-
seq data can also be used to detect somatic mutations. We are
not the first to realize this; in fact, other studies pioneered on
different solutions to call variants in this setting. For example,
researchers14 compare 3 different variant callers (GATK,
Strelka2, and Mutect2) and show that a two-fold higher
number of single nucleotide variants (SNVs) can be detected
from the pooled scRNA-seq when compared with bulk data.
As another example, Vu et al.,15 developed a specific variant

caller (SCmut) that can identify specific cells that harbor
mutations discovered in bulk cell data by smartly controlling
the false positives. Both studies applied their methodology to
detect single-cell somatic mutations in cancer.

In this study, we designed a workflow to detect brain-specific
somaticmutation by contrasting genotypes identifiedwithwhole-
genome sequencing (WGS) data with genotypes identified with
scRNA-seq data. To call variants in single-cell data, we exploit the
VarTrix caller from 10× Genomics16 and apply various filters to
ensure their quality. For each putative somatic mutation, we in-
vestigated associated genes and their respective relationship with
AD and age. In addition, we investigated whether AD and age
coincide with an increasing number of somatic mutations.

Methods
Case Selection
The scRNA-seq data andWGS data were obtained from the
Religious Order Study (ROS) and the Rush Memory and
Aging Project (MAP), 2 longitudinal cohort studies of ag-
ing and dementia.17 Information collected as part of these
studies, collectively known as ROSMAP, includes clinical
data, detailed postmortem pathologic evaluations, and tis-
sue omics profiling. The scRNA-seq data used in this pro-
ject were from 3 sources: (1) snRNAseqMFC study (n =
24), (2) snRNAseqAD_TREM2 study (n = 32), and (3)
snRNAseqPFC_BA10 study (n = 48); specifically, these 3
studies used single-nuclei RNA sequencing data. All spec-
imens for these 3 scRNA-seq data sources were collected
postmortem from the frontal cortex; subregions might
slightly differ between studies. The scRNA-seq data from
the 3 studies were all sequenced according to the 10×
Genomics manufacturer’s protocol. Detailed information
for cell partitioning, reverse transcription, library construction,
and sequencing run configuration for the 3 studies is available
on Synapse (snRNAseqMFC: syn16780177, snRNAseqAD_
TREM2: syn21682120, snRNAseqPFC_BA10: syn21261143).
WGS data were from a subset of the ROSMAP participants with
DNA obtained from brain tissue, whole blood, or lymphocytes
transformed with the EBV. The details for WGS library prepara-
tion and sequencing and WGS Germline variants calling were
previously described.18 Individuals (n = 90) with both scRNA-seq
data and WGS data (27 from brain tissue and 63 from whole
blood) available were selected for this study. Individuals annotated
with no cognitive impairment or mild cognitive impairment were
defined as nondemented (ND) controls; patients withADwith or
without other cause of cognitive impairment were defined as AD
samples.

Glossary
AD = Alzheimer disease; Aβ = amyloid beta; COSMIC = Catalogue of Somatic Mutations in Cancer; CSTB = cystatin B;
FDR = false discovery rate; GO = gene ontology; MAP = the Rush Memory and Aging Project; ROS = the Religious Order
Study; SBS = single base substitution; WGS = whole-genome sequencing.
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Standard Protocol Approvals, Registrations,
and Patient Consents
The ROS/MAP studies and substudies were all approved by an
Institutional Review Board of Rush University Medical Center,
and all participants signed an informed consent, Anatomical Gift
Act, and a repository consent to share data and biospecimens.

Cell Type Annotation
Each scRNA-seq data set was separately processed for clus-
tering and cell type annotation, which was performed as fol-
lows. The processed count matrix was loaded in Seurat
(version 3.2.2). Data were log-normalized and scaled before

analysis. Next, with the 2,000 most variable genes (default
with Seurat), principal components analysis was performed.
The number of principal components used for clustering was
determined using the elbow method. Furthermore, Seurat’s
FindNeighbours and FindCluster functions were used,
which use Louvain clustering; the resolution was set at 0.5.
An Uniform Manifold Approximation and Projection plot
(eFigure 1, links.lww.com/NXG/A593) wasmade to visualize
and inspect the clusters. The following cell types were iden-
tified using known and previously used markers: excitatory
neurons (SLC17A7, CAMK2A, and NRGN), inhibitory neu-
rons (GAD1 and GAD2), astrocytes (AQP4 and GFAP),

Figure 1 scRNA Reads and Cell Count Across Selected Samples

Participants (n = 90) from the ROSMAP project with both scRNA-seq data and whole genome sequencing data available were selected for this study. (A) The
distribution of the number of scRNA reads across individuals. The dashed red line indicates the cutoff of <6 × 107 for the minimal read coverage, i.e.,
individuals below this line were excluded from the study (n = 9). The colors indicated the study that included an individual. Individuals who colored either blue
or red were from the 2 batches (B1 and B2) of the snRNAseqMFC study. Individuals colored orange were from the snRNAseqAD_BA10 study, and individuals
colored purple were from the snRNAseqPFC_TREM2 study. (B) The number of cells per cell type per individual. The cell types were distinguished with 7
different colors (see legend). The colors of the edges indicated different studies, as in (A). Abbreviations: ExNeurons = excitatory neurons; InNeurons =
inhibitory neurons; OPCs = oligodendrocyte progenitor cells; scRNA-seq = single-cell RNA sequencing; scRNA = single-cell RNA.
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oligodendrocytes (MBP, MOBP, and PLP1), oligodendro-
cyte progenitor cell (PDGFRA, VCAN, and CSPG4),
microglia (CSF1R, CD74, and C3), and endothelial cells
(FLT1 and CLDN5).19 Based on the markers’ expression
patterns across clusters determined by Seurat’s FindMarkers
function, cell types were assigned to cells (eAppendix, 1,
links.lww.com/NXG/A591). When clusters were charac-
terized by markers of multiple cell types, they were assigned
“unknown.”

scRNA-seq Short Variants Calling
Single-nuclei RNA reads were mapped to the reference hu-
man genome GRCh37 using STAR aligner (STAR v2.7.9a).
After alignment, duplicate reads were identified using Mark-
Duplicates (Picard v2.25.0), and reads with unannotated cell
barcodes were removed using samtools (smatools v1.11).
Reads containing Ns in their cigar string were split into
multiple supplementary alignments using SplitNCigarReads
(GATK v4.2.0.0) to match the conventions of DNA aligner.
Base Quality Recalibration was performed per sample to de-
tect and correct for patterns of systematic errors in the base
quality scores using BaseRecalibrator and ApplyBQSR
(GATK v4.2.0.0). Short variant discovery was performed on
chromosome 1-22 with a 2-step process. HaplotypeCaller was
run on each sample separately in genomic variant call format
mode (GATK v4.2.0.0) producing an intermediate file format
called gVCF (for genomic VCF). gVCFs from each individual
were combined together and run through a joint genotyping
step (GATK v4.2.0.0) to produce a multisample VCF file.
eFigure 2 (links.lww.com/NXG/A593) indicates the steps of
scRNA-seq short variants calling in a flow chart. Variant fil-
tration was then performed using bcftools (bcftools v1.11). A
basic hard filtering referring to GATK technical documenta-
tion20 was performed using cutoffs of (1) the total read depth
DP <50,000; (2) the quality of calling QUAL >100; (3) the
quality by depth >2; (4) the strand odds ratio <2; and (5) the
strand bias Fisher exact test FS <10.

Identical Individual Check Using IBD Estimation
To make sure the sequences of scRNA-seq and WGS are
matching and from the same individual, we performed a
pairwise identical by descent (IBD) estimation using filtered
variants from scRNA-seq and WGS in a combined VCF file.
The estimation was calculated using PLINK v1.9. The pro-
portion IBD value PI_HAT from the output of PLINK was
used as the estimator; when the profiles are from the same
individual, the PI_HAT value will be close to 1; otherwise it
will be close to 0.

Somatic Mutation Detection Using VarTrix
VarTrix, a software tool for extracting single-cell variant in-
formation from 10× Genomics single-cell data, was used to
detect somatic mutations. For single-nuclei gene expression
data, VarTrix requires a precalled variant set in VCF format,
an associated set of alignments in BAM or compressed
alignment file format, a genome FASTA file, and a cell
barcodes file produced by Cell Ranger as input. After an
exploratory phase, we observed that only cells annotated as
excitatory neuron had enough read coverage for somatic
mutation detection. Therefore, for each individual, a subset
of the BAM file including only reads from cells annotated as
excitatory neuron was used as the input of VarTrix. Corre-
spondingly, the precalled variant set was also detected from
the subset of the BAM file, which included only barcodes
from cells annotated as excitatory neuron.

Human reference genome GRCh37 was used as the genome
FASTA file. In this study, VarTrix was run in coverage mode
generating a reference coverage matrix and an alternate coverage
matrix indicating the number of reads that support the reference
allele and the alternate allele. These matrices were later used for
filtering variant sites and detecting somatic mutations in the
excitatory neurons.

Because the scRNA-seq data were collected from 3 studies, the
average coverage varied between different sources. To minimize
the batch effect from different studies, we filtered the variant site
based on the read number of each individual. Specifically, we
calculated a cutoff Ci for each individual i as below:

Ci =
ni

+N
n = 1ni=N

C

where ni is the number of reads for individual i, andN is the
total number of individuals. The constant value C is set as
25 to guarantee that a sufficient amount of reads (>5) can
support a variant site for every sample. A variant site would
be used for somatic mutation detection when for all indi-
viduals the read depth at this site is higher than the cutoff
Ci for that individual. Next, a somatic mutation was
identified as present in an individual when: (1) the ge-
notype of this individual at the site in WGS was ref/ref, and
the ratio of reads that support the alternate allele in
scRNA-seq is larger than 0.1 at the same site or (2) the

Table Summary Characteristics of Selected Sample From
the ROSMAP Study

Group Cogdxa n Sex Age, mean ± SD (range)

Nondemented 1 33 23 F; 19 M 85.7 ± 4.2 (76–90)

2 8

3 1

Alzheimer disease 4 32 19 F; 14 M 87.1 ± 3.9 (74–90)

5 1

Other dementia 6 1 1F 83

a Cognitive diagnosis (cogdx) is defined under 6 categories: 1, NCI: no cog-
nitive impairment (no impaired domains); 2, MCI: mild cognitive impairment
(1impaired domain) and NO other cause of CI; 3, MCI: mild cognitive im-
pairment (1 impaired domain) AND another cause of CI; 4, AD: Alzheimer
dementia and NO other cause of CI (NINCDS PROB AD); 5, AD: Alzheimer
dementia AND another cause of CI (NINCDS POSS AD); and 6, Other de-
mentia: other primary cause of dementia.
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genotype of this individual at the site in WGS was alt/alt,
and the ratio of reads that support the reference allele in
scRNA-seq is larger than 0.1 at the same site. When the
genotype of an individual at a certain site was heterozygote
in WGS, we ignored the site for that individual, regardless

of the allele ratio in scRNA-seq, because we cannot dis-
tinguish an observed homozygous variant at a site in
scRNA-seq is due to somatic mutagenesis or reads missing
when there is a heterozygous variant in WGS at the same
site.

Figure 2 Mutation Signature of 104 Putative Excitatory Neuron–Specific Single-Nucleotide Variations in the Brain

Among the 30 COSMIC SBS signatures, SBS5 was identified as the model that best explains the observed pattern of putative somatic SNVs by Mutalisk. The
cosine similarity with the 104 putative excitatory neuron–specific SNVs and the corresponding BIC for each COSMIC SBS signature are shown in eFigure 5
(links.lww.com/NXG/A593). (A) The percentage of each substitution subtype in the 104 putative excitatory neuron–specific SNVs. Subtype T > C and C > T are
the dominate subtypes and account for 43.3% and 35.6% of the fraction separately. (B) The top panel shows the observed distribution of 104 putative
excitatory neuron–specific SNVs across the 96 possiblemutation types; themiddle panel shows the distribution of the identified signature (SBS5); the bottom
panel shows the difference of each base substitution subtype between the top andmiddle panels. The same plots of the other top 5mutational signatures in
largest cosine similarity (i.e., signatures 25, 12, 26, and 9, except for signature 5) are shown in eFigure 5 (links.lww.com/NXG/A593). Abbreviations: BIC =
Bayesian information criterion; SBS = single base substitution; SNV = single-nucleotide variation.
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Mutation Signature Analysis
To characterize the contribution of mutation signatures, we
pooled all putative somatic SNVs for signature analysis. We
formatted the pooled SNVs in a VCF file and used it as input
for running Mutalisk21 with the following configurations:
maximum likelihood estimationmethod; linear regression. The
input file was compared with 30 single base substitution (SBS)
signatures from the COSMIC mutational signature database.
The best model of signature combination was suggested from
the tool by considering the Bayesian information criterion.

Variants Annotation and Effect Prediction
The gene annotation and functional effect prediction for all
putative variants were performed using SnpEff (SnpEff
v5.0).22 The human genome GRCh37 was used as reference
genome. If there were multiple genes mapping to 1 variant
site, the gene having higher putative effect was used for the
disease and age association analyses.

GO-Term Enrichment Analysis
The gene ontology (GO)–term enrichment analysis was per-
formed using topGo package (version 2.38.1) in R and com-
pressed by reduce and visualize gene ontology (REVIGO) with
semantic similarity score “Lin.” The genes that were annotated to
the variant sites with read depths higher than the cutoffs for all
samples were used as background. The p values from the uneli-
minated GO-terms were corrected using “Benjamini&Hochberg”
method, and significant results were reported with false discovery
rate (FDR) <0.05.

Statistical Analysis
All calculations were performed using R (version 3.6.3). The
R-scripts for statistical analysis are available on GitHub: github.

com/mzhang0215/ENSM_project. The Wilcoxon rank sum
test, linear regression, Fisher exact test, and logistic regression
were performed using the “stats” R package. By categorizing the
“presence” of a somatic mutation as 1 and the “absence” of a
somatic mutation as 0, the logistic function was defined as fol-
lows: p = 1=ð1 + expð−ðβ0 + β1age + β2groupÞÞÞ, where age is
the age of the sample at death, group is the assigned group for the
individual based on the cogdx category, and β0::2 are the coeffi-
cients of the intercept and the explanatory variables. For this
analysis, only individuals from the AD andND groups were used.

Data Availability
Data are available from the AD Knowledge Portal (contact via
adknowledgeportal.org) for researchers who meet the criteria
for access to confidential data.

Results
Excitatory Neuron–Specific Somatic Mutations
To study somatic mutations acquired over age and between
demented (AD) and nondemented (ND) persons, we re-
trieved data from 90 participants from the ROSMAP study for
which WGS data in blood or brain, as well as scRNA-seq data
of the frontal cortex was present (Methods). Because the
scRNA-seq data (n = 90) were collected within 3 different
studies, the read coverage for samples varied between the
studies (Figure 1A). To reduce the bias generated from the
unbalanced read coverage, we excluded individuals (n = 9)
with a total read count smaller than 6 × 107 and applied a
sample-specific cutoff for the required read coverage to detect
a somatic mutation based on the total read count per sample
(Methods). Cells from the scRNA-seq data were annotated

Figure 3 Quantitative Comparison of the Number of ENSMs Regarding AD and Aging

(A) The number of ENSMs per individual against the age of the individual. The line shows how this number regresses with age. The significance of the
coefficient (β ≠ 0) was tested using a t test. The same analysis for AD and non-AD samples separately is shown in eFigure 6 (links.lww.com/NXG/A593). (B)
Boxplot of the number of ENSMs in ND controls and patients with AD. TheWilcoxon rank sum test does not show a significance difference (ns). Abbreviations:
AD = Alzheimer disease; ENSMs = excitatory neuron–specific somatic mutations; ND = nondemented.
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according to 7 major cell types (Methods). Because the
amount of cells varied for different cell types (Figure 1B), we
first explored the feasibility of detecting somatic mutations for
each cell type. This exploratory analysis showed that somatic
mutations could only be detected from the excitatory neurons
(when requiring a minimum number of reads (≥5) per sample
for a putative variant site, Methods), the dominant cell type in
our scRNA-seq data. This underpins that a sufficient amount
of cells is needed for scRNA-seq–based somatic mutation
detection. As a consequence, we focus our analysis on excit-
atory neurons only. To further ensure data quality, we ex-
cluded individuals (n = 5) who had less than 200 excitatory
neurons. After filtering, 76 participants (23 from the
snRNAseqMFC study, 30 from the snRNAseqPFC_BA10
study, and 23 from the snRNAseqAD_TREM2 study) had an
adequate read coverage and sufficient number of excitatory
neurons. Demographic data (sex, age at death, and cognitive
diagnosis [cogdx] categories23) of these participants are
summarized in Table. More than 72% of them were 85 years
of age or older at death; 56% were women. Individuals were
grouped based on their cognitive diagnosis in either being
nondemented (n = 42) or being an AD sample (n = 33).

Summary of Detected ENSMs
Somatic mutations in the 76 participants were detected using the
workflow described in the Methods. For that, the scRNA-seq
data of the excitatory neurons are compared with WGS data of
the blood (n = 23) or brain (n = 53). IBD estimation using
shared variant sites confirmed thematching between the scRNA-
seq and WGS samples (pair-wised PI_HAT >0.85, eFigure 3,
links.lww.com/NXG/A593, Methods). From the 9,751,193
short variants called from the scRNA-seq data, we identified 196

sites that harbored excitatory neuron–specific somatic mutations
(ENSMs). These genetic sitesmap to 127 genes (Methods), and
104 sites among themwere SNVs. From these 196 sites, 98 were
shared between multiple individuals (n > 2) and thus are re-
current somatic mutations (eFigure 4, links.lww.com/NXG/
A593). A few sites havemutations present in almost all individual
genomes, which are likely to be either RNA editing events24;
transcription errors, which can occur in a wide variety of genetic
contexts with several different patterns25,26; or technical errors.27

53 sites have mutations uniquely present in the brains of the AD
samples (eTable 1, links.lww.com/NXG/A594).

Per individual genome, the number of ENSMs ranged from 24
to 41. This does not seem to contradict the other observations
that found an average of approximately 12 somatic SNVs in
hippocampal formation tissue using deep bulk exome se-
quencing10 and an average amount of approximately 1,700
somatic mutations (substitutions approximately 1,500; indels
approximately 200) in neurons using a whole-genome duplex
single-cell sequencing protocol.28 However, this comparison
might be complicated by the differences in sequencing and
somatic mutation detection methods, as well as brain regions.

Number of ENSMs Increase With age
To characterize the ENSMs, a mutation signature analysis was
performed on the 104 detected putative somatic SNVs
(Methods). The results show that, from the 30 COSMIC
mutational signatures, SBS5 best explains the observed pat-
tern of putative somatic SNVs by Mutalisk (Figure 2,
eFigure 5, links.lww.com/NXG/A593). SBS5 is a clock-like
signature, i.e., the number of mutations correlates with the age
of the individual. This suggests that the underlying mutational

Figure 4 Occurrence of Somatic Mutation With Age in (A) RBFOX1 and (B) KCNIP4 Genes

Red dots: cases with AD; blue dots: ND individuals. Logistic regression was used to test the prevalence of somatic mutations with increasing age. Abbrevi-
ations: AD = Alzheimer disease; ND = nondemented; WT = wild type.

Neurology.org/NG Neurology: Genetics | Volume 9, Number 3 | June 2023 7

http://links.lww.com/NXG/A593
http://links.lww.com/NXG/A593
http://links.lww.com/NXG/A593
http://links.lww.com/NXG/A594
http://links.lww.com/NXG/A593
http://neurology.org/ng


processes of the found ENSMs might be part of the normal
aging process in excitatory neurons.29 A previous study using
bulk exome sequencing also found an abundance of the SBS5
signature in aged brain tissues.10

When studying the count of somatic mutation in our analyses,
we found only a slight increase with age (β = 0.15, Figure 3A)
that was not statistically significant (p = 0.12). Similar results
were observed when performing the same analysis in AD
samples and ND individuals separately (eFigure 6, links.lww.
com/NXG/A593). We should note that the number of
samples is relatively low and represent a relatively narrow age
range (from 74 to 90 year of age). Moreover, participants with
an age older than 90 years were all censored by age 90 years,
which could also influence the significance of the age trend. A
significant trend is observed when we exclude individuals at
age 90 years from the regression (β = 0.37, p = 0.005; eFig-
ure 7, links.lww.com/NXG/A593).

RBFOX1 and KCNIP4 Harbor
Age-Associating ENSMs
Because several detected ENSMs are being detected in mul-
tiple individual genomes (eFigure 4, links.lww.com/NXG/
A593), we next tested the association of age with somatic
mutation prevalence for each site individually using a logistic

regression (Methods). We added AD status as an explanatory
term and excluded the sample with other primary cause of
dementia (Methods) from this analysis. Two sites (16:
6,899,517 (RBFOX1), p = 0.04; 4:21,788,463 (KCNIP4), p <
0.05) are found to have significantly more mutations in older
individuals. The age distributions in mutated and unmutated
samples for these 2 sites are shown in Figure 4. Some caution
should be treated when interpreting this plot for individuals
older than 90 years because these are all mapped to 90-year-
olds. To assess the effect due to censoring on age, we per-
formed a sensitivity analysis by removing all samples with an
age 90 years or older. The results indicated stronger signals for
these 2 sites (16:6,899,517 [RBFOX1], p = 0.02; 4:21,788,463
[KCNIP4], p = 0.03; eFigure 8, links.lww.com/NXG/A593).

ENSM Sites in KCNQ5 and DCLK1 Associate With
AD Status
Genes that were enriched with somatic mutations in AD
samples might have a higher possibility to be associated with
AD. We found 53 ENSM sites that were detected only in AD
samples. This prompted the question whether the number of
ENSMs associate with AD status. A Wilcoxon rank sum test
indicated that there was no significant difference (p = 0.71) in
the average count of ENSMs between AD samples and non-
demented controls (Figure 3B). This finding is in line with a

Figure 5 GO-Terms Enriched With Genes Having AD-Specific ENSMs

32 genes that have ENSMs seen only in AD samples, and the KCNQ5 andDCLK1 genes that have a higher occurrence in AD samples are used in the GO-term enrichment
analysis. The left panel of the figure shows the enriched terms, their corrected p value, the number of genes annotated with that term (size of circle), and the fraction of
overlappinggenes thatharboranAD-specific ENSM(colorof circle). The falsediscovery rate–corrected significantGO-termsaregrouped into3 categories: BP, CC, andMF.
The right panel shows the subset of geneshaving anAD-specific ENSM that are annotatedwith the enrichedGO terms, red squares,while ablue square indicates that the
genedoesnothave thatannotation. Thosegenes that arenot annotatedwithanyof theseGO-termsarenot included in thispanel. Abbreviations:AD= Alzheimerdisease;
BP = biological process; CC = cellular component; ENSMs = excitatory neuron-specific somatic mutations; GO = gene ontology; MF = molecular function.
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previous report10,28,30 that indicated that somatic mutations
are associated with AD in certain patterns, but not by amount.

Next, we examined whether the occurrence of an ENSM is
overrepresented within AD samples. A Fisher exact test that
identifies sites that have a higher odds ratio to detect a somatic
mutation in AD samples (Methods) yielded 2 sites with sig-
nificant odds ratios. These sites are mapped to 2 genes
(6:73,374,221 [KCNQ5], p = 0.01 and 13:36,667,102
[DCLK1], p = 0.02).

Genes Harboring AD-Specific ENSMs Do Relate
to Alzheimer or Processes Involved
in Alzheimer
The 53 AD-specific ENSM sites map to 42 genes. When we
exclude genes for which also an ENSM occurs in an ND
individual (n = 10), we end up with 32 genes that have
ENSMs only seen in AD samples (eAppendix 2, links.lww.
com/NXG/A592). Among these 32 genes, there are several
well-known AD-associated genes, such as SLC30A3,TTL, and
CTSB, which thus harbor somatic mutations unique for AD.

Together with the 2 genes for which AD samples had a higher
occurrence of ENSMs (KCNQ5 and DCLK1), we conducted a
GO-term analysis to investigate the biological pathways that may
be involved (Methods). The most enriched biological process is
“vocalization behavior” (FDR <0.001). In addition, “intraspecies
interaction between organisms” is found to be significant (FDR
<0.04). Detected genes with these functions are DLG4,
CNTNAP2, andNRXN3 (Figure 5). Our results also identified a
group of genes (CACNA1B, CNTNAP2, DLG4, KCNQ3, and
KCNQ5) enriched with the GO-term “ion channel complex”
(FDR<0.03).KCNQ genes encode 5members of the Kv7 family
of K+ channel subunits (Kv7.1–7.5). Four of these (Kv7.2–7.5)
are expressed in the nervous system.31 Concerning AD-related
neuropathology, a link between Aβ accumulation and Kv7
channels has been reported by some studies.32,33

Discussion
Late-onset Alzheimer disease, whose incidence increases with
age, is often referred to as an age-related disease. Although the
accumulation of Aβ peptides and phosphorylated tau proteins
are the main neuropathologic characteristics of AD, they fail
to fully explain the molecular pathogenesis. As such, a cell-
level investigation might be necessary to study the underlying
pathogenic mechanism. In this study, we identified somatic
mutations using public data collected from 76 ROSMAP
donors and investigated their associations with AD and aging.

Although scRNA-seq data are normally used for expression-
based analyses, our results have shown that scRNAseq data
can be used for the detection of somatic mutations at a cell-
type specific level. As long as RNA sequences align correctly
to a reference genome, the pipeline that was used for variant
calling can be used for both bulk RNA-seq and scRNAseq
data.34 However, calling variants for each cell separately is not

efficient, experiences low coverage, and each cell is likely to
have a unique set of identified variants. For this reason, we
aggregated cells per individual and per cell type, generating
cell type–specific pseudobulk data. An exploratory run of
this workflow revealed that we were able to confidently de-
tect somatic mutations only for excitatory neuron because
this was the most abundant cell type in the scRNA-seq data
and thus resulting in sufficient read coverage. Hence, it is
imperative to have a sufficient amount of cells or relatively
deep sequencing to reliably detect somatic mutations from
scRNA-seq data.

Our analysis showed that the prevalence of somaticmutations in
the KCNIP4 and RBFOX1 genes are associated with increasing
age (when corrected for AD status). KCNIP4 encodes a
member of the family of voltage-gated potassium (K+)
channel–interacting proteins (KCNIPs), which suggests altered
ion transports/channels may be associated with the aging pro-
cess.35 RBFOX1 is a neuron-specific splicing factor predicted to
regulate neuronal splicing networks clinically implicated in
neurodevelopmental disorders.36,37 The increased somatic
mutations in RBFOX1 with age indicates neurodevelopmental
disorders may also associate with human brain aging.

We detected the occurrence of somatic mutations within some
well-known AD-associated genes, such as SLC30A3, TTL, and
CTSB. SLC30A3 is known to be downregulated in the prefrontal
cortex of patients with AD.38 SLC30A3 is assumed to play a
protective role against endoplasmic reticulum stress, which has
been thought to be involved to neurodegenerative diseases such
as AD.39 TTL is a cytosolic enzyme involved in the post-
translational modification of alpha-tubulin.40 A previous study
found that levels of TTL were decreased in lysates from AD
brains comparedwith age-matched controls and that, by contrast,
D2 tubulin was significantly higher in the AD brains, indicating
that loss of TTL and accompanying accumulation of D2 tubulin
are hallmarks of both sporadic and familial AD.41 Gene CSTB
encodes cystatin B (CSTB), an endogenous inhibitor of cystine
proteases.42 Human CSTB has been proposed to be a partner of
Aβ and colocalizes with intracellular inclusions of Aβ in cultured
cells.43 Protein levels of CSTB have been also reported to in-
crease in the brains of patients with AD.44 Apart from these well-
known AD-associated genes, we also identified that the DCLK1
gene harbored more somatic mutations in patients with AD. A
study reported that DCLK1, which has both microtubule-
polymerizing activity and protein kinase activity, phosphorylates
MAP7D1 on Ser 315 to facilitate the axon elongation of cortical
neurons.45 These observations suggest that somatic mutations
may initiate or are involved in the AD process in many ways.

Advance AD-related dementia is often accompanied with lan-
guage problems, behavioral issues, and cognitive decline.8 Our
results identified AD-associated somatic mutations in the genes
CNTNAP2, DLG4, and NRXN3, which are involved in, among
other processes, vocalization behavior and intraspecies interaction
between organisms. These results may indicate that AD-related
speech or language problems andwithdrawal from social activities
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might be associatedwith somaticmutations in excitatory neurons.
In addition, we identified AD-associated somatic mutations in
CACNA1B,CNTNAP2,DLG4,KCNQ3, andKCNQ5, which are
all ion channels or involved with ion channels. Previous studies
have reported on the possible role of altered neuronal excitability,
controlled by different ion channels and their associated proteins,
occurring early during AD pathogenesis.46,47 Specifically, K+

channels, which are the most numerous and diverse channels
present in themammalian brain, may partly explain this alteration
in neuronal excitability.48 In addition, a dysfunction of K+ chan-
nels has been observed in fibroblasts49 and platelets44 of patients
with AD. In addition, Aβ has been demonstrated to not only be
involved in the AD pathogenesis but also modulate K+ channel
activities50 and may have a physiologic role in controlling neu-
ronal excitability.51 Somatic mutations involved in K+ channels
were detected to associate with both AD and age, indicating the
existence of common processes behind neurodegenerative dis-
ease and aging. It also seems that K+ channels are naturally
subjected to oxidation by reactive oxygen species (ROS) in both
aging and neurodegenerative disease, which are characterized by
high levels of ROS.52

Calling variants and detecting somatic mutations from public
scRNA-seq data expand the use and scope of scRNA-seq data
and may provide new insight into postzygotic genetic change
at a cell type–specific level. The use of a single cell type
(excitatory neurons) and the minimal read coverage re-
quirement minimized biases driven by gene-specific expres-
sion. However, some limitations can also not be ignored. First,
the workflow is relatively complex, and results are sensitive to
the chosen settings of the parameters. Consequently, quality
control was highly critical for this study. Nevertheless, we
would like to stress the value of further validation of the
proposed workflow, e.g., by validating candidate ENSMs us-
ing targeted amplicon sequencing in excitatory neurons. Be-
sides these technical aspects, RNA editing events and
transcription errors that happen in RNA sequences might also
be identified as somatic mutations using this workflow, which
may explain the recurrent mutations that we identified.
However, the association between this type of mutation and
AD or aging could also be interesting.53 Another limitation of
this study is the relative narrow age range of the included
individuals. Moreover, ages older than 90 years were censored
to be 90 years. These 2 factors may explain that we found only
a relative weak association between age and the accumulation
of somatic mutations. On the contrary, the significant trend
after removing individuals with an age older than 90 years
might also suggest that nonagenarians and centenarians
generally have a healthier individual genome. Another limi-
tation of our work is that heterozygous variants from theWGS
data were ignored in this study (due to potential ambiguity
because of differences in gene expression). Therefore, many
potential somatic mutations were excluded from the start. In
addition, to reduce the effect of technical noise, we need more
than 10% of the reads to support a mutational base, which
may exclude the mutations present in just 1 or a few neurons.
Finally, because 10× scRNA-seq data were used to detect

somatic mutations, only variants located on the DNA that gets
transcribed into mRNA were detected.

Our study has explored the feasibility of using scRNA-seq data
to generate potential new insights into the association of AD
and aging with brain somatic mutagenesis. It should be noted
that follow-up studies with larger cohorts are required to
validate our findings.
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