

Delft University of Technology

DaisyRec 2.0
Benchmarking Recommendation for Rigorous Evaluation
Sun, Zhu; Fang, Hui; Yang, Jie; Qu, Xinghua; Liu, Hongyang; Yu, Di; Ong, Yew Soon; Zhang, Jie

DOI
10.1109/TPAMI.2022.3231891
Publication date
2023
Document Version
Final published version
Published in
IEEE Transactions on Pattern Analysis and Machine Intelligence

Citation (APA)
Sun, Z., Fang, H., Yang, J., Qu, X., Liu, H., Yu, D., Ong, Y. S., & Zhang, J. (2023). DaisyRec 2.0:
Benchmarking Recommendation for Rigorous Evaluation. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 45(7), 8206-8226. https://doi.org/10.1109/TPAMI.2022.3231891

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/TPAMI.2022.3231891
https://doi.org/10.1109/TPAMI.2022.3231891

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

8206 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 7, JULY 2023

DaisyRec 2.0: Benchmarking Recommendation for
Rigorous Evaluation

Zhu Sun , Hui Fang , Jie Yang , Xinghua Qu, Hongyang Liu , Di Yu, Yew-Soon Ong , Fellow, IEEE,
and Jie Zhang

Abstract—Recently, one critical issue looms large in the field
of recommender systems – there are no effective benchmarks for
rigorous evaluation – which consequently leads to unreproducible
evaluation and unfair comparison. We, therefore, conduct studies
from the perspectives of practical theory and experiments, aiming
at benchmarking recommendation for rigorous evaluation. Re-
garding the theoretical study, a series of hyper-factors affecting rec-
ommendation performance throughout the whole evaluation chain
are systematically summarized and analyzed via an exhaustive
review on 141 papers published at eight top-tier conferences within
2017-2020. We then classify them into model-independent and
model-dependent hyper-factors, and different modes of rigorous
evaluation are defined and discussed in-depth accordingly. For the
experimental study, we release DaisyRec 2.0 library by integrating
these hyper-factors to perform rigorous evaluation, whereby a
holistic empirical study is conducted to unveil the impacts of differ-
ent hyper-factors on recommendation performance. Supported by
the theoretical and experimental studies, we finally create bench-
marks for rigorous evaluation by proposing standardized proce-
dures and providing performance of ten state-of-the-arts across six
evaluation metrics on six datasets as a reference for later study.
Overall, our work sheds light on the issues in recommendation

Manuscript received 6 June 2022; revised 3 October 2022; accepted 21
December 2022. Date of publication 26 December 2022; date of current version
5 June 2023. This work was supported in part by the National Natural Science
Foundation of China under Grant 72192832, in part by the Natural Science
Foundation of Shanghai under Grant 21ZR1421900, Delft Design@Scale AI
Lab. This work was also supported in part by the A*Star Center for Frontier
Artificial Intelligence Research and in part by the Data Science and Artificial
Intelligence Research Centre, School of Computer Science and Engineering at
the Nanyang Technological University (NTU), Singapore. The work of Zhang Jie
was supported in part by the MOE AcRF Tier 1 funding under Grant RG90/20.
This work was also supported by Shanghai Rising-Star Program 23QA1403100.
Recommended for acceptance by Y. Sun. (Corresponding author: Hui Fang.)

Zhu Sun is with the Institute of High Performance Computing and Cen-
tre for Frontier AI Research, A*STAR, Singapore 138632 (e-mail: sun-
zhuntu@gmail.com).

Hui Fang is with the Shanghai University of Finance and Economics, Shanghai
200437, China (e-mail: fang.hui@mail.shufe.edu.cn).

Jie Yang is with the Delft University of Technology, 2628, CD Delft, The
Netherlands (e-mail: j.yang-3@tudelft.nl).

Xinghua Qu is with the ByteDance AI Lab, Singapore 048583 (e-mail:
quxinghua17@gmail.com).

Hongyang Liu is with the Yanshan University, Qinhuangdao, Hebei 066104,
China (e-mail: hyliu767289@gmail.com).

Di Yu is with the Singapore Management University, Singapore 188065
(e-mail: yudi201909@gmail.com).

Yew-Soon Ong is with the Nanyang Technological University, Singapore
639798, and also with A*STAR Centre for Frontier AI Research, Singapore
138632 (e-mail: asysong@ntu.edu.sg).

Jie Zhang is with the Nanyang Technological University, Singapore 639798
(e-mail: ZhangJ@ntu.edu.sg).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TPAMI.2022.3231891, provided by the authors.

Digital Object Identifier 10.1109/TPAMI.2022.3231891

evaluation, provides potential solutions for rigorous evaluation, and
lays foundation for further investigation.

Index Terms—Benchmarks, fair comparison, recommender
systems, reproducible evaluation, standardized procedures.

I. INTRODUCTION

W ITH the advent of the Big Data era, we are flooded by
the exponentially increased information on the Internet.

To ease the severe information overload problem [1], recom-
mender systems have been extensively studied in academia and
widely applied in industry across different domains, such as
e-commerce (e.g., Amazon, Tmall), location-based social net-
works (e.g., Foursquare, Yelp), multi-media (e.g., Netflix, Spo-
tify), and so forth. With a massive amount of recommendation
approaches being proposed, one critical issue has attracted much
attention from researchers in the field of recommender systems:
there are few effective benchmarks for evaluation [2], [3], [4],
which, consequently, leads to unreproducible evaluation and
unfair comparison. As indicated by the recent study [5], results
for baselines that have been used in numerous publications over
the past five years are suboptimal; with a careful setup, the
baselines even outperform the reported results of any newly pro-
posed method. This is in alignment with another latest study [6],
which discovers that the recent proposed deep learning models
(DLMs) can be defeated by comparably simple baselines, such
as MostPop and ItemKNN [7] with fine-tuned parameters. These
findings initiate an extremely heated discussion on the evaluation
of recommendation methods and inspire us to deeply consider
the underlying barriers that hinder the rigorous evaluation in
recommendation.

As a matter of fact, there are a number of hyper-factors which
may affect the recommendation performance throughout the
whole evaluation chain, and their best settings are unknown.
They can be broadly classified into two types as depicted in
Fig. 1, namely model-independent and model-dependent hyper-
factors. The former refers to the hyper-factors that are isolated
from the model design and optimization process (e.g., dataset
and comparison baseline selection); whilst the latter indicates
the ones involved in the model development and parameter opti-
mization procedure (e.g., loss function design and regularization
terms). According to this categorization, three main aspects may
inherently lead to such non-rigorous evaluation.
� Diverse settings on model-independent hyper-factors. With

being prominent in different platforms, there are diverse

0162-8828 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Delft Library. Downloaded on June 27,2023 at 12:06:40 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-3350-7022
https://orcid.org/0000-0001-9788-6634
https://orcid.org/0000-0002-0350-0313
https://orcid.org/0000-0002-4201-1934
https://orcid.org/0000-0002-4480-169X
mailto:sunzhuntu@gmail.com
mailto:sunzhuntu@gmail.com
mailto:fang.hui@mail.shufe.edu.cn
mailto:j.yang-3@tudelft.nl
mailto:quxinghua17@gmail.com
mailto:hyliu767289@gmail.com
mailto:yudi201909@gmail.com
mailto:asysong@ntu.edu.sg
mailto:ZhangJ@ntu.edu.sg
https://doi.org/10.1109/TPAMI.2022.3231891

SUN et al.: DAISYREC 2.0: BENCHMARKING RECOMMENDATION FOR RIGOROUS EVALUATION 8207

Fig. 1. Hyper-factors within the whole recommendation evaluation chain.

recommendation datasets (i.e., dataset selection) in var-
ious application domains shown in Table 8 (Appendix,
which can be found on the Computer Society Digi-
tal Library at http://doi.ieeecomputersociety.org/10.1109/
TPAMI.2022.3231891). Taking the movie domain as an ex-
ample, the datasets vary from MovieLens (ML), Netflix to
Amazon-Movie, etc. Even for the same dataset, it may have
different versions with different sizes covering different du-
rations, such as, ML-100 K/1 M/10 M/20 M/25 M/Latest.
Different researchers may choose different datasets across
different domains based on their requirements, and only
report results on their selected datasets; meanwhile dif-
ferent settings on other model-independent hyper-factors
(e.g., dataset pre-processing and splitting strategies) may
generate entirely different recommendation performance.

� Diverse settings on model-dependent hyper-factors. There
are different choices for the model-dependent hyper-
factors. For instance, the loss function could be either point-
wise (square error loss [149] and cross-entropy loss [134])
or pair-wise (log loss [150], hinge loss [54] and top-1
loss [151]); different types of model optimizers are also
available, ranging from stochastic gradient descent (SGD)
to adaptive moment estimation (Adam). The recommen-
dation results may vary a lot with different settings on
these model-dependent factors even with fixed settings on
model-independent ones.

� Missing setting details. Most importantly, a majority of
papers do not report details on the settings of either model-
independent and model-dependent hyper-factors, such as
data processing and parameter settings, which increases
the difficulty on evaluation and leads to inconsistent re-
sults in reproduction by different researchers, thus heavily
aggravating the unreproducible evaluation and unfair com-
parison issues.

With the above issues in mind, we are seeking at bench-
marking recommendation for rigorous (i.e., reproducible and
fair) evaluation, thus helping achieve a healthy and sustainable
growth of research in this area. Considering the diverse recom-
mendation tasks (e.g., temporal, sequential, diversity, explana-
tion, location, group and cross-domain aware recommendation),
we first mainly focus on the general top-N recommendation
task, which is one of the hottest and most prominent topics in
recommendation. To this end, we conduct extensive studies from
the perspectives of both practical theory and experiments.
� Regarding the theoretical study, we conduct an

exhaustive review on 141 papers related to top-N
recommendation published in the recent four years

(2017-2020) on eight prestigious conferences as
representatives, including KDD, SIGIR, WWW, IJCAI,
AAAI, RecSys, WSDM and CIKM.1 In doing so, we
systematically extract and summarize hyper-factors
throughout the whole evaluation chain, and classify them
into model-independent and model-dependent factors in
Fig. 1. Accordingly, different modes (e.g., relax, strict and
mixed) of rigorous evaluation are defined and discussed
in-depth, acting as valuable guidance for later study.

� For the experimental study, we release a Python-based
recommendation testbed – DaisyRec 2.0 to integrate the
hyper-factors throughout the evaluation chain2. Our testbed
advances existing libraries (e.g., LibRec [152], Deep-
Rec [153] and RecBole [154]), which mainly aim to imple-
ment various state-of-the-art recommenders, in the light of
performing rigorous evaluation in recommendation. Based
on DaisyRec 2.0, a holistic empirical study has been per-
formed to comprehensively analyze the impact of different
hyper-factors on recommendation performance.

Supported by both theoretical and experimental study, we
finally create benchmarks by proposing the standardized proce-
dures to help enhance the reproducibility and fairness of evalua-
tion. Meanwhile, the performance of ten well-tuned state-of-the-
arts on six widely-used datasets across six metrics is provided
as a reference for fair evaluation. Additionally, a number of
interesting findings are noted throughout our study, for exam-
ple, (1) the recommendation performance does not necessarily
improve with denser datasets; (2) some non-deep learning based
baselines, e.g., PureSVD [155] can achieve a better balance
between recommendation accuracy and complexity; (3) the best
hyper-parameter settings for one specific metric does not nec-
essarily guarantee optimums w.r.t. other metrics; (4) although
the objective function with pair-wise log loss generally outper-
forms others, different methods may have their best fit objective
functions; (5) uniform sampler, though simple, performs better
than the popularity based sampler; and (6) different parameter
initializers and model optimizers can extensively affect the final
recommendation accuracy. To sum up, our work sheds lights on
the issues in evaluation for recommendation, provides potential
solutions for rigorous evaluation, and paves the way for further
investigation3.

1They are most important venues (full names see Table 9 in Appendix, avail-
able in the online supplemental material) to accept high-quality recommendation
papers and other related conferences and journals will be considered in our future
study.

2[Online]. Available: https://github.com/recsys-benchmark/DaisyRec-v2.0
3A preliminary report of our work was published at RecSys’20 as a repro-

ducibility paper [4]. In this study, we have extended it from two aspects: (1)
with regards to theoretical study, we conduct a more in-depth analysis on the
hyper-factors throughout the whole evaluation chain by reviewing more latest
literature in 2020, whereby several new hyper-factors (e.g., regularization terms,
parameter initializers and model optimizers) are further considered; we sys-
tematically classify these hyper-factors into model-independent and -dependent
ones, whereby different modes of rigorous evaluation are well defined and
discussed in-depth; and (2) for the experimental study, we release DaisyRec
2.0 by further fusing these new hyper-factors and extending existing ones (e.g.,
more types of loss function designs, negative sampling strategies, data splitting
methods and deep learning based baselines). To be more user-friendly, we design
a user interface tool for automatic command generation. Thereby, more holistic
experiments are conducted based on DaisyRec 2.0 to unveil the impacts of
different hyper-factors on recommendation performance, where more interesting
and insightful observations are gained.

Authorized licensed use limited to: TU Delft Library. Downloaded on June 27,2023 at 12:06:40 UTC from IEEE Xplore. Restrictions apply.

http://doi.ieeecomputersociety.org/10.1109/TPAMI.2022.3231891
http://doi.ieeecomputersociety.org/10.1109/TPAMI.2022.3231891
https://github.com/recsys-benchmark/DaisyRec-v2.0

8208 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 7, JULY 2023

II. RELATED WORK

While long been recognized as a key feature of scientific
discoveries, reproducibility has been increasingly characterized
as a crisis recently [156], [157], [158]. It is becoming a primary
concern in computer and information science, evidenced by
the recently developed ACM policy on Artifact Review and
Badging4 and emerging efforts including seminars [160], work-
shops [161], reproducibility checklist5 [162], and focused tracks
at major conferences, such as ECIR [163], ACM MM [164],
SIGIR6, and ISWC [165]. Specific to recommender systems
research, besides the reproducibility track starting from 2020
on the premier conference for recommender systems – Rec-
Sys [166], the discussions have been concentrated on the fairness
of comparison between newly proposed and baseline meth-
ods [5], [6]. In very recent work, Dacrema et al. [6] found neural
models hardly outperform fine-tuned memory- and latent factor-
based methods, and a similar finding was also discovered in [5].

Despite the importance, improving reproducibility in rec-
ommender systems research is highly challenging due to the
many influential evaluation factors for recommendation perfor-
mance. Said et al. [2] found large differences in the effectiveness
of recommendation methods across different implementation
frameworks as well as across evaluation datasets and metrics. A
companion toolkit RiVal [3] was released to allow for the control
of data splitting and evaluation metrics, while Elliot [167] further
improves it by implementing more baselines and incorporating
statistic significance tests. Beel et al. [168] found a similar
phenomenon in news and research paper recommendation and
identified influential factors such as user characteristics and time
of recommendation. Valcarce et al. [83] specifically studied
the properties of evaluation metrics for item ranking, marking
precision as the most robust and NDCG presenting the highest
discriminative power. More recently, Rendle et al. [5] demon-
strated the importance of hyperparameter search in baseline
methods, e.g., matrix factorization, and stressed the need for
standardized benchmarks where methods should be extensively
tuned for fair comparison. Sachdeva et al. [169] particularly
examined the impact of dataset sampling strategies on model
performance, and indicated that sampling methods, including
the random ways do matter with regard to final performance of
recommendation algorithms.

Existing benchmarks are, however, either restricted to
pre-neural methods [2], a single evaluation factor [83], or rating
prediction [5] which has been discouraged as a way to formulate
the recommendation problem [170]; besides, most of the existing
benchmarks consider two or three datasets (including [6]),
ignoring the richness of available datasets often chosen by newly
published work. The two most recent work, RecBole [154]
and Elliot [167], has partially alleviated the aforementioned
issues by implementing more baselines (neural ones included),
considering varied datasets and recommendation scenarios

4[Online]. Available: www.acm.org/publications/policies/artifact-review-
badging; see also SIGIR’s implementation of the policy [159].

5[Online]. Available: aaai.org/Conferences/AAAI-22/reproducibility-
checklist/.

6[Online]. Available: sigir.org/sigir2022/call-for-reproducibility-track-
papers/.

(e.g., temporal and context-aware ones), and incorporating
hyper-parameter optimization strategies. However, similar
to other recommender system libraries (e.g., Librec [152],
MyMediaLite [171], and Surprise [172]), they strive to
provide a unified framework for developing and reproducing
algorithms for different scenarios in terms of different evaluation
metrics.

Instead, aimed for a full treatment of evaluation issues, our
work takes a bottom-up approach analyzing an extensive amount
of literature to search for and summarize important evalua-
tion factors, denoted as hyper-factors (categorized as model-
dependent and model-independent ones), which might influence
model performance in model evaluation, towards the goal of
performing rigorous evaluation. We further present a benchmark
supported by an empirical study at a bigger-than-ever scale with
the hope of laying a strong foundation for future research.

III. PRACTICAL THEORY STUDY

A. Hyper-Factor Extraction

As we seek to benchmark recommendation for rigorous eval-
uation, we first conduct study from the angle of practical theory
by an exhaustive literature review, so as to extract and summarize
hyper-factors affecting recommendation performance through-
out the whole evaluation chain. In particular, we review papers
published in the recent four years (2017-2020) on eight top
tier conferences, namely, AAAI, CIKM, IJCAI, KDD, RecSys,
SIGIR WSDM and WWW. As a starting point, we mainly focus
on recommendation methods for implicit feedback based top-N
recommendation, which is one of the hottest topics in recom-
mendation. Other tasks (e.g., sequential recommendation) are
remained for future exploration. Specifically, we first search the
accepted full paper lists (8 ∗ 4 = 32) for the eight conferences
in the four years. Given our interest and the 32 lists, we only
consider papers with titles containing keywords ‘recommend∗’
or ‘collaborative filtering’. After that, we manually select papers
towards top-N recommendation adopting ranking metrics (e.g.,
Precision, Recall) to evaluate the accuracy of recommendation.
In the end, we obtain a collection of 141 relevant papers as listed
in Table I.

By delicately reviewing the collected papers in Table I, we
find that there are a bunch of hyper-factors that may affect the
recommendation performance along with the entire evaluation
chain. Typically, they can be classified into two types: (1) model-
independent factors that are isolated from the model design and
optimization process (e.g., dataset and baseline selection); and
(2) model-dependent ones involved in the model development
and parameter optimization process (e.g., loss function and regu-
larization terms). Fig. 1 illustrates the two types of hyper-factors
along with the whole evaluation chain, starting with the dataset
selection and ending with hyper-parameter tuning strategy. Fig. 3
shows the tree diagram of these hyper-factors in recommenda-
tion evaluation. Next, we will analyze them one by one.

B. Analysis on Model-Independent Hyper-Factors

1) Dataset Selection: We find two major issues on the uti-
lized datasets by analyzing the collected papers: (1) domain

Authorized licensed use limited to: TU Delft Library. Downloaded on June 27,2023 at 12:06:40 UTC from IEEE Xplore. Restrictions apply.

www.acm.org/publications/policies/artifact-review-badging
www.acm.org/publications/policies/artifact-review-badging
aaai.org/Conferences/AAAI-22/reproducibility-checklist/
aaai.org/Conferences/AAAI-22/reproducibility-checklist/
sigir.org/sigir2022/call-for-reproducibility-track-papers/.
sigir.org/sigir2022/call-for-reproducibility-track-papers/.

SUN et al.: DAISYREC 2.0: BENCHMARKING RECOMMENDATION FOR RIGOROUS EVALUATION 8209

TABLE I
SUMMARY OF THE COLLECTED PAPERS

Fig. 2. (a) popularity of the top-15 datasets, where ‘ML, AMZ’ denote MovieLens and Amazon, respectively; (b) popularity of the top-15 baselines; and (c)
popularity of the top-10 evaluation metrics. Note that the selected datasets, baselines and metrics in our study are highlighted in blue.

diversity, i.e., there are massive different datasets within and
across various domains, as shown in Table 8; and (2) version
diversity, i.e., many datasets, though with the same names, may
have different versions. For example, we find more than three
versions for Yelp, as it has been updated for different rounds of
the challenge. By treating different versions as a same dataset,
there are 84 different datasets used in the 141 papers. Fig. 2(a)
shows the dataset popularity, i.e., percentage of papers for the
top-15 used datasets. Around 90% of the 141 papers adopt at
least one of the 15 datasets.

For a practical study, we further delicately select six among
them by considering popularity and domain coverage, thus
resolving the domain diversity issue. They are ML-1 M (Movie),
Yelp (LBSNs), LastFM (Music), Epinions (SNs), Book-X
(Book) and AMZe (Consumable), covering 62% papers of the
collection. To ease the version diversity issue, we conduct a
careful selection by considering the authority and information
richness of data sources, which could benefit the study on
diverse recommendation models. Specifically, we use
MovieLens-1 M (ML-1 M) released by GroupLens7; Yelp
was created by Kaggle in 20188; LastFM was released by

7[Online]. Available: grouplens.org/datasets/movielens/
8[Online]. Available: www.kaggle.com/yelp-dataset/yelp-dataset

Fig. 3. The tree diagram of hyper-factors in recommendation evaluation.

the 2nd international workshop HetRec 2011 [173]; Epinions
was crawled by [174] containing timestamp and item category
information; Book-Crossing (Book-X) [175] was collected

Authorized licensed use limited to: TU Delft Library. Downloaded on June 27,2023 at 12:06:40 UTC from IEEE Xplore. Restrictions apply.

grouplens.org/datasets/movielens/
www.kaggle.com/yelp-dataset/yelp-dataset

8210 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 7, JULY 2023

TABLE II
STATISTICS OF THE SIX SELECTED DATASETS

by Cai-Nicolas Ziegler from the Book-Crossing community9;
Amazon Electronic (AMZe) was released by Julian McAuley10.
The statistics of all datasets are listed in Table II and all links
for the datasets are available at the homepage of DaisyRec 2.0.

2) Dataset Pre-Processing: There are typically two core
steps for the dataset pre-processing, namely binarization and
filtering.

Binarization. As our current study focuses on the implicit
feedback, all the datasets with explicit feedback (e.g., ratings or
counts) should be binarized into implicit data. Let u ∈ U , i ∈ I
denote user u and item i; U , I are user and item sets; and
rui ∈ R is the binary feedback of user u over item i. For each
user u, we transform all her explicit feedback with no less than
a threshold (denoted by r) into positive feedback (rui = 1);
otherwise, negative feedback (rui = 0). Different papers may
have different settings for r (e.g., r = 1/2/3/4). By following
the majority studies [74], [76], [103], we recommend to set r = 4
for ML-1 M, and r = 1 for the rest datasets.

Filtering. The original datasets are generally quite sparse,
where some users (items) only interact with few items (users),
e.g., less than 5. To ensure the quality, the filtering strategy is
usually adopted to help remove the inactive users and items.
By analyzing the paper collection, we have found out that
around 57% of papers adopt filtering strategies; while 22%
of papers utilize the original datasets; and 21% of papers do
not report details on data filtering. Among the papers adopting
pre-processing strategies, more than 58% of them utilize 5- or
10-filter/core setting [38], [73], [102] on the datasets, which
filter out users and items with less than 5 or 10 interactions,
respectively. While, others adopt, such as 1-, 2-, 3-, 4-, 20-
or 30-filter/core settings. Therefore, to check the performance
and robustness of different methods w.r.t. various data sparsity
levels, besides original datasets, we also take the two most
common settings (i.e., 5- and 10-filter) on all selected datasets,
the statistics of which are summarized in Table II. Note that
F -filter is different from F -core: the former means that users
and items are only filtered with less than F interactions in one
pass; by contrast, the latter indicates a recursive filtering until
all users and items have at least F interactions.

3) Dataset Splitting Methods: Three types of data splitting
methods are mainly used in the collected papers, including split-
by-ratio (69% of the papers), leave-one-out (21% of the papers)

9[Online]. Available: grouplens.org/datasets/book-crossing/
10[Online]. Available: jmcauley.ucsd.edu/data/amazon/links.html

TABLE III
AVERAGE SIZE OF TRAINING & TEST SETS FOR EACH USER

and split-by-time (6% of the papers). There are also 4% of papers
not reporting their data splitting methods. In particular, split-by-
ratio means that a proportion ρ (e.g., ρ = 80%) of the dataset
(i.e., user-item interaction records) is treated as training set, and
the rest (1− ρ = 20%) as test set; leave-one-out refers to that for
each user, only one record is kept as test set and the remaining are
for training; and split-by-time indicates directly dividing training
and test sets by a fixed timestamp, that is, the data before the
fixed timestamp is used as training set, and the rest as test set.

Although 69% of papers adopt split-by-ratio, they are quite
different from each other due to: (1) different proportion settings,
e.g., ρ = 50%, 60%, 70%, 80%, 90%; (2) global- or user-level
split. That is, some globally split the entire records into training
and test sets regardless of different users; whilst others split
training and test sets on the user basis; and (3) random- or
time-aware split. Among papers exploiting split-by-ratio, 87%
of papers merely randomly split the data, whereas 13% of
papers split the data based on the timestamp, i.e., the earlier
(e.g., ρ = 80%) records as training and the later ones as test.
In terms of leave-one-out, the split is generally on the user
basis and timestamp is taken into account by 60% of papers.
To validate the impact of different data splitting methods, in
our study, we compare the recommendation performance with
random-/time-aware split-by-ratio at global-level with ρ = 80%
and random-/time-aware leave-one-out at user-level, and leave
split-by-time as our future exploration.

Besides, to improve the test efficiency, they usually ran-
domly sample a number of negative items (e.g., neg_test =
99, 100, 999, 1, 000) that are not interacted by each user, and
then rank each test item among the (neg_test+ 1) items for
recommendation [44], [104], [110], [138]. To speed up the
test process, we randomly sample negative items for each user
to ensure her test candidates to be 1,000, and then rank all
test items among the 1,000 items w.r.t. both split-by-ratio and
leave-one-out. Table III depicts the average number of test
items for each user on the six datasets across origin, 5- and
10-filter settings w.r.t. split-by-ratio, where all values are smaller
than 100, indicating that 1,000 test candidates are sufficient to
examine the performance of recommenders.

4) Comparison Baseline Selection: As observed, the com-
pared baselines vary a lot in different collected papers. We
show the top-15 widely-compared baselines in these papers
in Fig. 2(b), covering 98% of papers in total, that is, 98%
of the papers consider at least one of the 15 baselines. They
can be classified into three types, (1) memory-based meth-
ods (MMs): MostPop, ItemKNN [7]; (2) latent factor methods
(LFMs): BPRMF [150], FM [176], WRMF [177], SLIM [178],
PureSVD [155], eALS [179] and DCF [180]; and (3) deep

Authorized licensed use limited to: TU Delft Library. Downloaded on June 27,2023 at 12:06:40 UTC from IEEE Xplore. Restrictions apply.

grouplens.org/datasets/book-crossing/
jmcauley.ucsd.edu/data/amazon/links.html

SUN et al.: DAISYREC 2.0: BENCHMARKING RECOMMENDATION FOR RIGOROUS EVALUATION 8211

learning methods (DLMs): NeuMF [134], CKE [181],
NeuFM [134], CDAE [182], NGCF [102] and Multi-VAE [136].

For a practical study, we ultimately take 10 baselines into
account, as highlighted in blue in Fig. 2(b). Specifically, two
MMs are considered. MostPop is a non-personalized method
and recommends most popular items to all users; and ItemKNN
is aK-nearest neighborhood based method recommending items
based on item similarity. We adapt it for implicit feedback
data by following [177], and adopt cosine similarity. In terms
of LFMs, BPRMF is selected as the representative of matrix
factorization method (WRMF, eALS and DCF are remained for
future exploration); BPRFM (factorization machine) considers
the second-order feature interactions between inputs and we
train it by optimizing the BPR loss [150]; SLIM [178] learns
a sparse item similarity matrix by minimizing a constrained
reconstruction square loss; and PureSVD directly performs con-
ventional singular value decomposition on the user-item implicit
interaction matrix, where all the unobserved entries are set as
0. Regarding DLMs, NeuMF [134] is a state-of-the-art neural
method taking advantage of both generalized matrix factoriza-
tion and multi-layer perceptron (MLP); NFM [134] seamlessly
combines the linearity of FM in modelling second-order feature
interactions and the non-linearity of neural network in modelling
higher-order feature interactions, and we train it by optimizing
the BPR loss; NGCF [102] leverages graph neural networks
to capture the high-order connectivity in the user-item graph;
and Multi-VAE [136] is a generative model with multinomial
likelihood and extends variational autoencoders to collaborative
filtering. CKE and CDAE are remained for future study, as
CKE involves textual and visual information besides user-item
interaction data; both CDAE and Multi-VAE are in the family
of autoencoders, while Multi-VAE has proven to be a stronger
baseline [6].

5) Evaluation Metric Selection: The evaluation metrics vary
a lot in different papers in the collection. Fig. 2(c) depicts the
popularity of the used evaluation metrics. We thus adopt the top-
6 evaluation metrics covering 99% of the collected papers. That
is to say, 99% of these papers adopt at least one of the six metrics.
They are Precision, Recall, Mean Average Precision (MAP), Hit
Ratio (HR), Mean Reciprocal Rank (MRR) and Normalized
Discounted Cumulative Gain (NDCG). In particular, the first
four metrics intuitively measure whether a test item is present in
the top-N recommendation list, whilst the latter two accounts for
the ranking positions of test items. Detailed formulas are given
by Table 10 (Appendix, available in the online supplemental
material), where R(u), T (u) represent the recommendation set
and the test set for user u, respectively; relj = 1/0 indicates
whether the item at rank j is in the intersection of R(u) and
T (u), i.e., (R(u) ∩ T (u)); δ(x) = 1 if x is true, otherwise 0;
and IDCG means the maximum possible DCG through ideal
ranking.

C. Analysis on Model-Dependent Hyper-Factors

1) Loss Function Design: Two types of objective functions
are widely utilized by the collected papers: point-wise (55%
of the collected papers) and pair-wise (40% of the collected

TABLE IV
OBJECTIVE FUNCTIONS OF DIFFERENT BASELINES

papers). The former only relies on the accuracy of the prediction
of individual preferences; whilst the latter approximates ranking
loss by considering the relative order of the predictions for pairs
of items. Regardless of which one is deployed, it is critical
to properly exploit unobserved feedback within the model, as
merely considering the observed feedback fails to account for
the fact that feedback is not missing at random, thus being not
suitable for top-N recommenders [182]. Let L denote the objec-
tive function of recommendation task. The point- and pair-wise
objectives are thus given by:

Lpoi =
∑

(u,i)∈ ˜O
f(rui, r̂ui) + λΩ(Θ);

Lpai =
∑

(u,i,j)∈ ˜O
f(ruij , r̂uij) + λΩ(Θ), (1)

where Õ = {O+ ∪ O−} is the augmented dataset with the
unobserved user-item set O− = {(u, j)|ruj = 0} in addition
to the observed user-item set O+ = {(u, i)|rui = 1}; f(·) is
the loss function; rui, r̂ui are the observed and estimated feed-
back of user u on item i, respectively; (u, i, j) is the triple
meaning that u prefers positive item i to negative item j;
ruij = rui − ruj , r̂uij = r̂ui − r̂uj ; Ω(Θ) is the regularization
term, whose impact is illustrated in Section III-C5; and Θ is the
set of model parameters.

W.r.t. the loss function f(·), point-wise objective usually
adopts square loss and cross-entropy (CE) loss, whereas pair-
wise objective generally employs log loss, top-1 loss and hinge
loss:

Lpoi =

⎧⎨⎩Square Loss fsl =
1
2 (rui − r̂ui)

2

CE Loss fcl = −ruilog(r̂ui)
−(1− rui)log(1− r̂ui)

Lpai =

⎧⎨⎩Log Loss fll = −log(σ(r̂uij))
Top-1 Loss ftl = σ(−r̂uij) + σ(r̂2uj)
Hinge Loss fhl = max(0, 1− r̂uij).

(2)

Table IV shows the original objectives used by BPRMF,
BPRFM, SLIM, NeuMF, NFM, NGCF and Multi-VAE. Besides,
we vary different objectives on these baselines to further exam-
ine their respective impacts. Note that MostPop, ItemKNN and
PureSVD do not have objective functions; we did not consider
the square loss, as it is more suitable for rating prediction
task instead of ranking problem [150]; Multi-VAE cannot be
easily adapted with different objective functions; and we did
not study the impacts of different objectives on SLIM due to its
high complexity and low scalability, which will be discussed in
Section IV-B3.

Authorized licensed use limited to: TU Delft Library. Downloaded on June 27,2023 at 12:06:40 UTC from IEEE Xplore. Restrictions apply.

8212 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 7, JULY 2023

2) Negative Sampling Strategies: As pointed out in
Section III-C1, properly exploiting the unobserved feedback
(i.e., negative samples) helps learn users’ relative preferences
and benefits more accurate top-N recommendation. This can
be further supported by the fact that around 65% of the col-
lected papers consider the unobserved feedback when designing
objective functions regardless of point- and pair-wise ones.
However, it is not practical to leverage all unobserved feedback
in large volume, as most users only provide feedback for a small
number of items. Negative sampling is, therefore, adopted to
balance the efficiency and effectiveness. It is noteworthy that
we follow majority studies [73], [84], [134], [137] and directly
treat the unobserved feedback as negative feedback. There may
be different explanations behind the unobserved feedback [183],
but we leave it for further exploration.

There are various kinds of negative sampling strategies.
Specifically, uniform sampler [134], where all unobserved
items of each user are sampled with an equal probability, has
been adopted by almost all papers in the collection. To better
study the impact of negative sampling, we additionally con-
sider item popularity-based samplers, which have also been
adopted in recommendation [38], [179]. Low-popularity sam-
pler refers to that for each user, her unobserved items with a
lower popularity are sampled with a higher probability. This
is based on the assumption that a user is less likely to prefer
less popular items. High-popularity sampler is opposite to the
low-popularity sampler, where the unobserved items of each
user with a higher popularity are more likely to be sampled. The
rationale behind is that if a user provides no feedback for a quite
popular item favored by a large number of users, it indicates
that she may be not into this item. Moreover, we also compare
two types of hybrid samplers by leveraging both uniform and
popularity samplers, namely uniform+low-popularity sampler
and uniform+high-popularity sampler. In these cases, half of the
unobserved items are sampled via the uniform sampler, while
the rest half are sampled via popularity samplers.

3) Parameter Initializer Selection: There are normally a set
of learnable parameters (e.g. user/item representation matrix and
the network weights) for the recommendation models, ranging
from early LFMs to recently emerged DLMs. A proper param-
eter initializer will assist in a faster model convergence and
better model performance. Specifically, the core of LFMs is to
learn accurate user and item representations, which are generally
initialized based on either a Uniform distribution in the range of
(0, a) or a Normal/Gaussian distribution with zero mean and a
variance of σ2 [28], [92], given by,

vuf/vvf ∼ U(0, a); vuf/vvf ∼ N (0, σ2), (3)

where the common settings are a = 1; and σ = 0.01.
Regarding DLMs, besides user and item representations,

initializing with proper weights helps ensure the network to
converge in a reasonable amount of time; otherwise the network
loss function does not go anywhere even after hundreds of
thousands of iterations. Given too small weights, the variance
of the input diminishes as it passes through each layer in the
network, and eventually drops to a really low value thus failing

to work. Contrarily, a too-large weight leads to exploding gradi-
ents. Xavier initialization [184] has been proven as an effective
fashion, and widely adopted by DLMs in recommendation [105],
[114], [116], [130]. Typically, the weights are also initialized
based on either a Uniform or Normal distribution, defined as11,

W ij ∼ U

(
−

√
6√

nin + nout
,

√
6√

nin + nout

)
;

W ij ∼ N
(
0,

2

nin + nout

)
, (4)

where W ij is the network weight; nin, nout are the number of
input and output neurons, respectively.

By analyzing the collected papers, we find that around 59%
of them do not report the parameter initializers. Among the
papers mentioning parameter initializers, 36% of them are based
on a Normal distribution; 10% of them use a Uniform distri-
bution; 18% of them adopt the Xavier Initialization; 13% of
them employ the pre-trained embeddings (e.g., via BPRMF)
for initialization; and the rest 23% utilize other methods. The
impacts of different parameter initializers are investigated in
Section IV-C3.

4) Model Optimizer Selection: Opitimizer is used to update
model parameters, thus minimizing the loss function; meanwhile
loss function acts as a guide to the terrain telling optimizer if
it is moving in the right direction to reach the bottom of the
valley, i.e., global minimum. Different optimizers also affect
the recommendation performance. By looking into the collected
papers, we find that 23% of them do not report their optimizers.
Among the papers mentioning used optimizers, 50% of them
adopt Adam [134], [136], [182]; 23% of them use SGD [150],
[176]; and the rest 27% employ other optimizers (e.g., ALS [35],
AdaGrad [104] and RMSProp [85]).

Here, we discuss six commonly-selected optimizers as shown
in Table 11 (Appendix, available in the online supplemental
material). (1) Gradient Descent (GD) is a first-order optimization
algorithm which is dependent on the first order derivative of a
loss function. The parameters are then updated in the negative
gradient direction to minimize the loss; (2) Stochastic Gradi-
ent Descent (SGD) is a variant of GD to update the model’s
parameters after computation of loss on each training example,
whilst parameters are changed after calculating gradient on the
whole dataset by GD; (3) Mini Batch Stochastic Gradient De-
scent (MB-SGD) is an improvement on both SGD and standard
GD, where the dataset is divided into various batches and after
every batch, the parameters are updated; (4) Adaptive Gradient
(AdaGrad) is an algorithm for gradient-based optimization that
adapts the learning rate to the parameters, performing smaller
updates (i.e. low learning rates) for frequently parameters, whilst
larger updates (i.e. high learning rates) for infrequent parame-
ters; (5) Root Mean Square Propagation (RMSProp) is devised
to resolve AdaGrad’s radically diminishing learning rates, and
divides the learning rate by the average of the exponential decay
of squared gradients; and (6) Adaptive Moment Estimation
(Adam) calculates the adaptive learning rate for each parameter

11[Online]. Available: https://pytorch.org/docs/stable/nn.init.html

Authorized licensed use limited to: TU Delft Library. Downloaded on June 27,2023 at 12:06:40 UTC from IEEE Xplore. Restrictions apply.

https://pytorch.org/docs/stable/nn.init.html

SUN et al.: DAISYREC 2.0: BENCHMARKING RECOMMENDATION FOR RIGOROUS EVALUATION 8213

from estimates of first and second moments of the gradients. In
addition to the decaying average of past squared gradients like
RMSprop, it also keeps a decaying average of past gradients.

5) Strategies to Avoid Over-Fitting: In machine learning,
different strategies are exploited to combat the issue of over-
fitting, which refers to the model over-fits the training data, thus
achieving poor performance on the validation or test data. As a
matter of fact, the most widely used regularization techniques
include regularization terms, dropout and early-stop mechanism.

Regularization. It is generally integrated into the loss function,
so as to help avoid over-fitting while training a recommendation
model. Two types of terms are mainly adopted, namely L1
and L2 regularization (i.e. norm). L1 norm is also known as
Manhattan Distance, which is the most natural way of measure
distance between vectors. It is the sum of the magnitudes of
the vectors in a space, where all the components of the vector
are weighted equally. L2 norm is the most popular norm, also
known as the euclidean norm, which is the shortest distance
between two points. Different from L1 norm, each component
of the vector is squared for L2 norm, indicating that the outliers
have more weighting, so it can skew results. The main difference
between the L1 and L2 regularization lies in (1) L1 regulariza-
tion attempts to estimate the median of the data, whereas L2
regularization tries to estimate the mean of the data to avoid
over-fitting; and (2) L1 regularization helps in feature selection
by eliminating less important features, which is helpful given a
large number of feature points.

Dropout. It has been widely adopted in DLMs to help avoid
over-fitting [185]. The key idea is to randomly drop units (along
with their connections) from the neural network during training,
which prevents units from co-adapting too much. Hence, an extra
hyper-parameter, i.e., the probability of retaining a unit p, is
introduced, controlling the intensity of dropout. For instance,
p = 1 implies no dropout and low values of p mean more
dropout. Smaller p could lead to under-fitting; whereas large p
may not produce enough dropout to prevent over-fitting. Typical
values of p for hidden units are in the range of 0.5 to 0.8 [185].

Early-stop Mechanism. Early-stop is also a form of regular-
ization used to avoid over-fitting. A major issue with training
recommenders (e.g., LFMs and DLMs) is in the choice of the
number of training epochs to use. Too many epochs can lead to
over-fitting of the training dataset, whereas too few may result
in an under-fit model. Early-stop is a method that allows us to
specify an arbitrary large number of training epochs and stop
training once the model performance stops improving on a hold
out validation dataset. To be more specific, if the validation loss
stops decreasing for several epochs in a row, the training stops.
Through analyzing on the collected papers, only 11% of them
point out early-stop strategy is adopted in their papers. In our
study, we also investigate the impacts of early-stop mechanism
on recommendation evaluation.

6) Hyper-Parameter Tuning Strategies: Hyper-parameter
tuning, including validation and searching strategies, plays a
vital role in the training process of recommendation approaches,
and greatly influences the final recommendation performance.

Validation Strategy. Through the paper analysis, we notice
that more than 33% of papers directly tune hyper-parameters

according to the performance on the test set. That is to say, they
use the same data to tune model parameters and evaluate the
model performance. Information may thus leak into the model
and overfit the historical data. As a matter of fact, besides the
training and test sets, an extra validation set should be retained
to help tune the hyper-parameters, which is called nested vali-
dation12. With nested validation, the optimal hyper-parameter
settings are obtained when the model achieves the best per-
formance on the validation set. By doing so, the information
leak issue is well avoided in the model training and evaluation
process. Therefore, in our study, we adopt the nested validation
strategy. To be more specific, we further select 10% of records
from the training set as the validation set for split-by-ratio;
and for leave-one-out, we retain one record from the training
set as the validation set to tune hyper-parameters. Finally, the
performance on the test set is reported. Due to the computational
requirements of certain baselines, we were unable to search
the hyper-parameter space for cross-validation in a reasonable
amount of time.

Searching Strategy. From our observation, almost all collected
papers employ the most straightforward and simple method –
grid search [73], [134] to find out the optimal parameter settings.
In particular, each hyper-parameter is provided with a set of pos-
sible values (i.e., search space) based on the prior-knowledge,
and the optimal setting is then obtained by traversing the entire
search space. Suppose a model has m parameters, where each
parameter has an average of n possible values, the model needs
to be executed for nm times to find out optimal settings for
all parameters. Hence, grid search is more suitable for models
with less hyper-parameters; otherwise, it may suffer from the
combination explosion issue. To improve the tuning efficiency,
other strategies have been introduced. Given the search space of
each parameter, random search [186] randomly chooses trials
for a pre-defined times (e.g., 30) instead of traversing the entire
search space. It is able to find models that are as good or slightly
worse but within a smaller fraction of the computation time.
In contrast, Bayesian HyperOpt [187] is not a brute force but
more intelligent technique compared to grid and random search.
It makes use of information from past trials to inform the next
set of hyper-parameters to explore, while not compromising the
quality of the results [6]. Therefore, for each baseline, we adopt
Bayesian HyperOpt to perform hyper-parameter optimization on
NDCG, which is the most popular metrics as shown in Fig. 2(c);
and other metrics are expected to be simultaneously optimized
with the optimal results on NDCG.

D. Categorization on Evaluation Modes

Based on the model-independent and model-dependent hyper-
factors introduced in Sections III-B-III-C, we define four modes
of rigorous evaluation as below.
� Relax Mode keeps exactly the same settings for all model-

independent hyper-factors and follows the original settings
as per individual approach for model-dependent hyper-
factors.

12[Online]. Available: https://scikit-learn.org/stable/auto_examples/model_
selection/plot_nested_cross_validation_iris.html

Authorized licensed use limited to: TU Delft Library. Downloaded on June 27,2023 at 12:06:40 UTC from IEEE Xplore. Restrictions apply.

https://scikit-learn.org/stable/auto_examples/model_selection/plot_nested_cross_validation_iris.html
https://scikit-learn.org/stable/auto_examples/model_selection/plot_nested_cross_validation_iris.html

8214 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 7, JULY 2023

� Hard-strict Mode keeps exactly the same settings for both
model-independent and model-dependent hyper-factors
for all approaches.

� Soft-strict Mode keeps exactly the same settings for all
model-independent hyper-factors and empirically finds out
the optimal settings for per individual approach for model-
dependent hyper-factors.

� Mixed Mode keeps exactly the same settings for all model-
independent hyper-factors; while applies hard-strict mode
on some model-dependent hyper-factors (e.g., the same
initializer/optimizer), and relax or soft-strict modes on
the others (e.g., empirically searching the optimal hyper-
parameter settings for different baselines).

Through analysis, we find that most of the collected pa-
pers adopt the mixed mode for evaluation [42], [46], [116],
for example, using the same model optimizer and parameter
initializer for all approaches; adopting different loss functions as
indicated in the original papers; and empirically finding out best
parameter settings for all approaches. Regardless of different
modes, it is essential to keep exactly the same settings for
all model-independent hyper-factors for a rigorous evaluation.
W.r.t. the model-dependent hyper-factors, different modes have
their own pros and cons.
� Relax mode can extremely reduce the cost on exploring

the optimal performance. However, it relies on the original
settings indicated by the individual approach, which are
not always available and may lead to a unfair comparison,
e.g., one model defeats the others merely because it adopts
a different loss function.

� Hard-strict mode ensures a fair comparison among differ-
ent baselines, while it may not always be reasonable to, e.g.,
have the same settings for all shared hyper-parameters for
all baselines, as the optimal hyper-parameter settings for
different baselines may vary a lot across different datasets.

� Soft-strict mode could help find out the optimal perfor-
mance for per individual approach, which, however, may
be quite expensive due to the large amount of combinations
of model-dependent hyper-factors.

� Mixed mode would be a better balance among complexity,
performance and fairness for per individual approach. For
instance, soft-strict mode can be applied regarding, e.g.,
optimal hyper-parameter settings, to maintain model per-
formance; hard-strict mode can be used for, e.g., parameter
initializer and model optimizer, to ensure fair comparison
and less exploration complexity.

In summary, mixed mode could be the most practical way for
achieving rigorous evaluation in recommendation.

IV. EXPERIMENTAL STUDY

A. Introduction to DaisyRec 2.0

To support the empirical study, we release a user-friendly
Python toolkit named as DaisyRec 2.0, where Daisy is short
for ‘Multi-Dimension fAIrly compArIson for recommender
SYstem’. Different from existing open-source libraries (e.g.,
LibRec [152], OpenRec [188] and DeepRec [153]), which
mainly aim to reproduce various state-of-the-art recommenders,

DaisyRec 2.0 is designed with the goal of performing rigorous
evaluation in recommendation by seamlessly accommodating
the extracted hyper-factors in Section III. It is built upon the
widely-used deep learning framework Pytorch (pytorch.org),
and Fig. 4 depicts its overall structure consisting of four
modules: GUI Command Generator, Loader, Recommender
and Evaluator.

In particular, GUI Command Generator13 is used to help
generate tune and test commands in a more user-friendly fashion.
Taking the tune command generator as an example, users first
need to select values for the basic settings (e.g., algorithm name
and dataset) from a drop-down menu. Based on the selected
algorithm, it then automatically displays the algorithm-specific
parameters (e.g., KL regularization for Multi-VAE). Accord-
ingly, users can select and set the search space for the algorithm-
specific parameters. Lastly, it generates the corresponding tune
command (shown in Fig. 5) based on all selected settings, which
can be directly copied and pasted into the terminal to run.

Loader mainly aims to: (1) load and pre-process the dataset;
(2) split it into training and test sets based on the selected
Splitter; (3) divide validation set from training set by choosing
proper Splitter according to Step 2; (4) sample negative items
for training by choosing different samplers; and (5) convert
the data into the specific format to fit the Recommender. Four
components are included in Recommender, where ‘Algorithms’
implements the ten selected state-of-the-arts in Section III-B4
(more recommenders will be implemented); ‘LossSelector’
makes it flexible to change different objective functions for
the algorithms; ‘ParameterInitializer’ allows to select different
initialization methods (e.g., Xavier uniform distribution); and
‘Regularizer’ provides options for different regularization terms
to avoid overfitting (e.g.,L1 andL2). Evaluator is equipped with
‘Tuner,’ ‘ModelOptimizer,’ ‘Metric,’ and ‘Early-stop,’ where
‘Tuner’ helps accomplish hyper-parameter optimization; ‘Mod-
elOptimizer’ provides options for different optimizers; ‘Metric’
implements the classic ranking metrics, e.g., Precision; and
‘Early-stop’ helps further avoid over-fitting.

To sum up, all modules in DaisyRec 2.0 are wrapped friendly
for users to deploy, and new algorithms can be easily added into
this extensible and adaptable framework. We keep DaisyRec 2.0
updated by adding more features.

B. Analysis on Model-Independent Hyper-Factors

1) Impacts of Dataset Pre-Processing: To study the impacts
of pre-processing strategies (origin, 5- and 10-filter), we adopt
Bayesian HyperOpt to perform hyper-parameter optimization
w.r.t. NDCG@10 for each baseline under each view on each
dataset for 30 trails [6]. We keep original objective functions for
each baseline (see Table IV), employ the uniform sampler, and
adopt time-aware split-by-ratio at global level (ρ = 80%) as the
data splitting method. Besides, 10% of the latest training set is
held out as the validation set to tune the hyper-parameters. Once
the optimal hyper-parameters are decided, we feed the whole
training set to train the final model and report the performance

13[Online]. Available: https://daisyrec.netlify.app/

Authorized licensed use limited to: TU Delft Library. Downloaded on June 27,2023 at 12:06:40 UTC from IEEE Xplore. Restrictions apply.

pytorch.org
https://daisyrec.netlify.app/

SUN et al.: DAISYREC 2.0: BENCHMARKING RECOMMENDATION FOR RIGOROUS EVALUATION 8215

Fig. 4. The overall structure of DaisyRec 2.0, composed of four components, i.e., GUI Command Generator, Loader, Recommender, and Evaluator.

Fig. 5. An example of the generated tune command for Multi-VAE.

on the test set. Fig. 6 depicts the final results, where SLIM is
omitted due to its extremely high computational complexity on
large-scale datasets, which is unable to complete in a reasonable
amount of time; and NGCF on Yelp and AMZe under origin view
is also omitted because of the same reason (see Section IV-B3).
Due to the space limitation, we only report the results on
NDCG@10.

Overall, three different trends can be observed from the re-
sults: (1) the performance of different baselines keeps relatively
stable on ML-1 M with varied settings; (2) on Book-X, Yelp
and AMZe, the performance of all baselines generally climbs
up; and (3) an obvious performance drop is observed on LastFM
and Epinions. The most probable explanation is that although the
density of the datasets increases (origin → 5-filter → 10-filter)
as shown in Table II, the average length of the training sets for
each user keeps stable on ML-1 M (86); increases on Book-X,
Yelp and AMZe; and decreases on LastFM (39 → 30 → 27) and
Epinions (35 → 23 → 20), as depicted by Table III. The more
training data per user, the better a model can be trained, meaning
that the more accurate performance can be achieved, and vice
versa.

Regarding the performance of different baselines, several
major findings can be noted as below. (1) Regarding MMs,
MostPop performs the worst in most cases, showing the im-
portance of personalization in recommendation; and ItemKNN
is defeated by LFMs and DLMs, indicating the superiority of
LFMs and DLMs on effective recommendation. However, on
ML-1 M, the performance of MostPop exceeds that of ItemKNN,
PureSVD and even BPRMF, demonstrating the potential of pop-
ularity in effective recommendation; and on LastFM, ItemKNN
achieves the best performance compared with LFMs and DLMs.
This implies that, the neighborhood-based idea, though simple,
could be absorbed by LFMs and DLMs to further improve the
recommendation accuracy [189]. (2) W.r.t. the three LFMs,
BPRMF generally performs better than PureSVD but worse

than BPRFM. Although PureSVD is simple – directly apply-
ing conventional sigular value decomposition on the user-item
interaction matrix, it sometimes achieves comparable and even
better performance in comparison with BPRMF and BPRFM
(see LastFM, Book-X and Yelp with 5/10-filter views). (3) For
the four DLMs (i.e., NeuMF, NFM, NGCF and Multi-VAE),
their performance varies across different datasets. For instance,
NeuMF obtains the highest accuracy on Epinions; NFM is the
winner on AMZe; NGCF defeats the others on both LastFM
and Yelp; and Multi-VAE achieves extraordinary results on ML-
1 M. However, they generally perform comparably to BPRFM
across all datasets, and sometimes even worse than BPRFM
(e.g., ML-1 M and Book-X). Besides, on LastFM, they even
underperform ItemKNN. This is consistent with the previous
findings [6] that DLMs are not always better than traditional
methods with well-tuned parameters, but mostly cost much more
in training as verified by Table V.

2) Impacts of Dataset Splitting Methods: We now test the
impacts of different data splitting methods on the recommen-
dation performance. To this end, we compare random- and
time-aware split-by-ratio (i.e., RSBR vs. TSBR) at global level
with ρ = 80% as well as random- and time-aware leave-one-out
(i.e., RLOO vs. TLOO) on the 10-filter view. Note that we adopt
Bayesian HyperOpt to perform hyper-parameter optimization
w.r.t. NDCG@10 for each baseline under each data splitting
method on each dataset for 30 trails. Meanwhile, LastFM and
Book-X do not have the timestamp information, so their results
on TSBR and TLOO for each baseline are omitted.

Fig. 7 displays the results of ten baselines on the six datasets.
First of all, we can clearly observe that the performance of
TSBR/SBR (split-by-ratio) is generally better than that of
TLOO/LOO (leave-one-out). This could be largely affected by
the different settings on the test procedure. To be specific, as
introduced in Section III-B3, to improve the test efficiency, we
randomly sample negative items for each user to ensure her test
candidates to be 1,000, and then rank all test items among the
1,000 items w.r.t. both SBR and LOO. However, the number of
positive items in the test set of SBR (> 1) is normally larger
than that of LOO (= 1), thus leading to a higher accuracy of
SBR. Second, baselines with RSBR/RLOO outperform those
with TSBR/TLOO, especially on Epinions. The reason behind
is that compared with random-aware split, time-aware split poses

Authorized licensed use limited to: TU Delft Library. Downloaded on June 27,2023 at 12:06:40 UTC from IEEE Xplore. Restrictions apply.

8216 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 7, JULY 2023

Fig. 6. Performance of baselines w.r.t. time-aware split-by-ratio on the six datasets across origin, 5- and 10-filter settings.

TABLE V
BASELINE COMPARISONS ON TRAINING TIME W.R.T. TIME-AWARE SPLIT-BY-RATIO ON THE 10-FILTER VIEW (SECONDS).

Fig. 7. Performance of baselines w.r.t. 10-filter on the six datasets with different data splitting methods.

a stronger constraint on the pattern of training and test data, thus
increasing the training difficulty. However, this is more close to
the real recommendation scenario, which strives to infer future
by history. Our study also implies that the empirical results dis-
closed in previous studies using RSBR might be overestimated
compared to those for real-world scenarios.

3) Complexity of Comparison Baselines: Table V shows the
training time for the ten baselines on the six datasets with optimal
hyper-parameters found by Bayesian HyperOpt on 10-filter view

via split-by-ratio. Note that, the optimal batch size may differ for
different baselines, which may also affect the training time. All
the experiments are executed on an Nvidia V100 GPU with 32
GiB memory, each running is paired with 11 Intel(R) Xeon(R)
Platinum 8260 CPU (2.4 GHz) sharing 40 GiB memory.

According to Table V, we can note that MostPop is the
fastest one in training, as it merely ranks all the items by
the calculated popularity. PureSVD is the runner-up with time
complexity O(min{m2f, n2f}), where m,n, f are the number

Authorized licensed use limited to: TU Delft Library. Downloaded on June 27,2023 at 12:06:40 UTC from IEEE Xplore. Restrictions apply.

SUN et al.: DAISYREC 2.0: BENCHMARKING RECOMMENDATION FOR RIGOROUS EVALUATION 8217

of users, items and singular values, respectively. Compared with
other LFMs and DLMs, it achieves a better balance between
time complexity and ranking accuracy. Particularly, it performs
comparably and sometimes even better than, e.g., BPRMF and
NeuMF on LastFM, as depicted by Fig. 6, while its training
time is hundreds or thousands times less than that of BPRMF and
NeuMF as shown in Table V. Although the training efficiency of
ItemKNN ranks third among all baselines with 10-filter setting,
the time cost quadratically increases with origin setting due
to its time complexity O(mn2). Besides, the similarity matrix
also takes up huge memory, for example, on the original AMZe
(n ≈ 106), it will cost (64 bit ∗ 106 ∗ 106)/1012 = 64 T to save
the similarity matrix. To ease this issue, we only keep the top-100
similar items for each target item in the memory.

The training time of BPRMF and BPRFM is comparable,
where the time complexity for both methods is O(|R|d), where
R is the total number of observed feedback and d is the di-
mension of latent factors. Similar to ItemKNN, the time cost of
SLIM with 10-filter setting is acceptable, while it tremendously
increases with origin setting due to its time complexityO(|R|n).
Even with the 10-filter view, it takes the longest training time
among all baselines on the two large datasets (i.e., Yelp and
AMZe). Meanwhile, it also suffers from the huge memory cost
issue because of the learned item similarity matrix. Hence, both
ItemKNN and SLIM are not scalable for large-scale datasets.
Regarding the four DLMs (i.e., NeuMF, NFM, NGCF and
Multi-VAE), NFM and Multi-VAE are usually more efficient
than NeuMF and NGCF regarding time complexity. Although
DLMs yield comparable performance with LFMs, they gener-
ally cost much more training time, especially on larger datasets.
For example, on AMZe, the training time of NeuMF and NGCF
is around 20 times larger than that of BPRMF.

4) Correlations of Evaluation Metrics: As discussed in Sec-
tion IV-B1, we adopt Bayesian HyperOpt to perform hyper-
parameter optimization for 30 trials via optimizing NDCG@10.
However, six metrics are used in our study, namely Precision,
Recall, HR, MAP, MRR and NDCG. The best hyper-parameter
settings for optimal NDCG does not necessarily guarantee
optimums w.r.t. the other five metrics. Hence, we study the
correlation of different metrics when their respective optimums
are achieved. In particular, for each baseline on each dataset with
10-filter view, the Bayesian HyperOpt executes 30 trails; we thus
have 30 entries for the validation performance of the baseline
correspondingly, where each entry includes the results on the
six metrics, e.g., [Precision: 0.24; Recall: 0.07; HR: 0.57; MAP:
0.17; MRR: 0.76; NDCG: 0.42]. Due to the optimal results for
the six metrics may not achieve simultaneously, we select the
optimal one among the 30 entries for each metric, and ultimately
obtain six entries, where each entry records the best result on
the corresponding metric.

Based on the six selected entries of each method per dataset,
we pair-wisely calculate and record the times that any two
of them (e.g., NDCG and HR) can achieve their best results
simultaneously entry by entry. For example, given the optimal
entry for NDCG, we will check whether the rest five metrics
(e.g., HR) in this entry are optimal or not. If yes, we will add
one at the corresponding position (NDCG, HR) of the correlation

matrix; otherwise 0. The same rule is applied to the optimal
entries for the other five metrics. Except MostPop, as it does
not have any hyper-parameters, we accumulate the results of
nine baselines across the six datasets (9*6=54), and ultimately
obtain their correlation matrices regarding time-/random-aware
split-by-ratio and leave-one-out as illustrated by Figures 8(a-d),
where all values are normalized into the range of [0,1] (divided
by 54), and a darker color indicates a stronger correlation, that
is, a higher probability of two metrics achieving their best results
in the meanwhile.

The results help verify our argument that best hyper-parameter
settings for optimal NDCG cannot ensure optimal results for all
the other five metrics. Several detailed findings can be noted.
(1) The correlation matrix is asymmetrical, for instance, the
correlation for (NDCG, HR, 0.69) is higher than (HR, NDCG,
0.61) as shown in Fig. 8(a). That is to say, the probability of a
model with best NDCG to achieve the best HR is higher than that
of a model with best HR to reap the optimal NDCG. (2) Similar
trends can be noticed within a same base data splitting method
(i.e., TSBR and RSBR; TLOO and RLOO) no matter whether
the timestamp information is considered or not; whilst the pat-
terns are different across different base splitting fashions (i.e.,
TSBR/RSBR and TLOO/RLOO). (3) Regarding TSBR/RSBR,
the best MRR and MAP are more easily to be guaranteed
concurrently, e.g., (MRR, MAP, 0.81) and (MAP, MRR, 0.80)
in Fig. 8(a); and (MRR, MAP, 0.89) and (MAP, MRR, 0.78) in
Fig. 8(b). (4) For TLOO/RLOO, Precision, Recall and HR are
more likely to be optimized simultaneously; and MAP, MRR and
NDCG have a higher probability to reach their peaks together.
This is mainly due to only one positive item inside the test set for
each user; consequently, Recall and HR are equivalent, which
is positively correlated with Precision; meanwhile, MAP, MRR
and NDCG are also positively correlated with each other.

Additionally, we examine the Kendall’s correlation [83]
among metrics in terms of indicating recommendation per-
formance on the ten baselines across the six datasets under
10-filter view with different data splitting methods. The results
are depicted in Figures 8(e-h), where a darker color (a stronger
correlation) implies that the metrics produce more identical
ranking. We find that (1) different from Figures 8(a-d), the
Kendall’s correlation matrix is symmetrical; (2) similarly, the
trends are consistent within a same base data splitting method,
e.g., Figures 8(g-h), while vary slightly across different base
splitting ways, e.g., Figures 8(e) and 8(g); and (3) a common
observation across Figures 8(e-h) is that MAP, MRR and NDCG
are more likely to generate consistent ranking. Besides, for
TSBR/RSBR, (Precision, NDCG) and (Recall, HR) show a
fairly strong correlation, while w.r.t. TLOO/RLOO, (Precision,
Recall, HR) exhibits obvious correlation, which is also caused
by the single positive item inside the test set for each user
as explained previously. In summary, a convincing and solid
evaluation should be performed w.r.t. more diverse metrics.

C. Analysis on Model-Dependent Hyper-Factors

1) Impacts of Loss Functions: To examine the impacts of
different objective functions, we adopt the optimal parameters

Authorized licensed use limited to: TU Delft Library. Downloaded on June 27,2023 at 12:06:40 UTC from IEEE Xplore. Restrictions apply.

8218 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 7, JULY 2023

Fig. 8. The correlations of evaluation metrics w.r.t. different data splitting methods on 10-filter. ‘Pre’ and ‘Rec’ are Precision and Recall, respectively.

Fig. 9. Performance of baselines w.r.t. time-aware split-by-ratio on 10-filter
view across the six datasets with different loss functions.

for the baselines found on 10-filter view with time-aware split-
by-ratio in Section IV-B1, and only vary objective functions for
MF, FM, NeuMF, NFM and NGCF. The results are depicted in
Fig. 9, where BPR (pair-wise log loss), CE (point-wise cross
entropy loss), Hinge (pair-wise hinge loss) and Top1 (pair-wise
top1 loss) correspond to Lpai + fll,Lpoi + fcl,Lpai + fhl and
Lpai + ftl in Table IV, respectively. Several conclusions can be
drawn. As a whole, for different baselines on the six datasets,
(1) BPR loss generally achieves the best performance; (2) CE
loss and Hinge loss perform comparably; and (3) Top1 loss

possesses the largest performance variation. From the perspec-
tive of different baselines, (1) MF and FM usually achieve the
best performance with BPR loss; (2) NeuMF performs better
with CE loss in most cases; (3) NFM is relatively less sensitive to
different losses; and (4) NGCF generally obtains better accuracy
with either BPR or Top1 loss.

2) Impacts of Negative Sampling Strategies: We now ex-
plore the impact of different negative samplers, i.e., uniform
(U), high-popularity (HP), low-popularity (LP), uniform+high-
popularity (U+HP) and uniform+low-popularity (U+LP) on
BPRMF, BPRFM, NeuMF, NFM and NGCF across the six
datasets under 10-filter view with time-aware split-by-ratio.
To this end, we only vary negative samplers for the baselines
while keeping other parameters fixed. First, the uniform sampler,
though simple, achieves comparable performance in comparison
with popularity samplers (HP and LP) as illustrated in Fig. 10.
Intuitively, users may not tend to buy the less popular items, that
is, the items with low popularity are more likely to be the negative
items for users. However, it is overturned by the empirical re-
sults. Second, U+HP and U+LP samplers are generally defeated
by U/HP/LP samplers. However, there are some exceptions, e.g.,
BPRMF on ML-1 M and NeuMF on Yelp. Lastly, U+LP exceeds
U+HP in most cases, indicating that generally the popular items
have a lower probability to be negative items than the less popular
ones.

3) Impacts of Parameter Initializers: To study the impact of
different parameter initializers, we compare the results of six
baselines (BPRMF, BPRFM, NeuMF, NFM, NGCF and Multi-
VAE) across the six datasets under 10-filter view with time-
aware split-by-ratio. Specifically, for BPRMF and BPRFM, we
adopt uniform (a = 1) and normal distribution (σ = 0.01) for
initialization; while for the rest four deep learning baselines, we
utilize Xavier uniform and normal distribution for initialization.
As depicted in Fig. 11, we can note that (1) for the two LFMs,
i.e., BPRMF and BPRFM, initializer with normal distribution
dramatically beats that with uniform distribution; and (2) for the
four DLMs, some baselines (e.g., NGCF) gain better accuracy
with uniform distribution than normal distribution on the six

Authorized licensed use limited to: TU Delft Library. Downloaded on June 27,2023 at 12:06:40 UTC from IEEE Xplore. Restrictions apply.

SUN et al.: DAISYREC 2.0: BENCHMARKING RECOMMENDATION FOR RIGOROUS EVALUATION 8219

Fig. 10. Performance of baselines w.r.t. time-aware split-by-ratio on 10-filter
view across the six datasets with different sampling strategies.

Fig. 11. Performance of baselines w.r.t. time-aware split-by-ratio on 10-filter
across the six datasets with different initializers.

Fig. 12. Performance of baselines w.r.t. time-aware split-by-ratio on 10-filter
across the six datasets with different optimizers.

datasets; while some perform comparably with the two types of
initializers, e.g., Multi-VAE, across the six datasets. In a nutshell,
different parameter initializers produce different recommenda-
tion performance. With a proper initializer, the LFMs may easily
beat DLMs, for example, BPRMF defeats DLMs on LastFM and
Book-X.

4) Impacts of Model Optimizers: We further investigate the
impacts of different optimiziers on the final recommendation
performance. In particular, we vary optimizers (i.e., SGD, and
Adam) for the six baselines (i.e., BPRMF, BPRFM, NeuMF,
NFM, NGCF and Multi-VAE) on the six datasets under 10-filter
view with time-aware split-by-ratio. The results are presented in
Fig. 12, where we observe that a better performance is achieved
via SGD in comparison with Adam for LFMs (i.e., BPRMF and
BPRFM); whereas Adam generally outperforms SGD regarding
DLMs (i.e., NeuMF, NFM, NGCF and Multi-VAE).

5) Impacts of Strategies to Avoid Over-Fitting: As illustrated
in Section III-C5, regularization term, dropout and early-stop
mechanism are widely adopted to avoid over-fitting. To verify
their impacts, we compare the results of six baselines (BPRMF,
BPRFM, NeuMF, NFM, NGCF and Multi-VAE) across the
six datasets under 10-fiter view with time-aware split-by-ratio
by removing these strategies. In particular, +all, -L2, -dropout
and -ES respectively indicate the baseline with all over-fitting
prevention strategies, variant without L2 regularization term,
variant without dropout (only for deep learning baseline), and
variant without early-stop. The results are displayed in Fig. 13,

Authorized licensed use limited to: TU Delft Library. Downloaded on June 27,2023 at 12:06:40 UTC from IEEE Xplore. Restrictions apply.

8220 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 7, JULY 2023

Fig. 13. Performance of baselines w.r.t. time-aware split-by-ratio on 10-filter
across the six datasets with different strategies to avoid over-fitting.

where several observations can be noted. First, the over-fitting
prevention strategies generally facilitate to enhance the recom-
mendation accuracy to some extent for all baselines across the
six datasets. However, there are a few exceptions, e.g., NeuMF
on ML-1 M, indicating some of these strategies may also lead
to the under-fitting issue occasionally. Second, the impact of
these strategies is more significant on DLMs (e.g., NeuMF) than
LFMs (e.g., BPRMF). Lastly, the performance of DLMs may be
remarkably affected by a certain strategy, e.g., NFM is heavily
affected by dropout, whilst a major impact of L2 regularization
term on Multi-VAE can be observed.

6) Impacts of Hyper-Parameter Tuning Strategies: As illus-
trated in Section III-C6, a validation set should be held out for
hyper-parameter tuning to avoid data leakage. To investigate its
impact, we compare with the results by directly tuning hyper-
parameters on the test set under 10-filter view with time-aware
split-by-ratio. For simplicity, we only select four representative
baselines on four datasets as displayed in Fig. 14. Accordingly,
we can easily find that in most cases directly tuning hyper-
parameters on the test set indeed guarantees a better performance
compared with tuning hyper-parameters on the validation set.
This implies that the empirical results reported in existing studies
without a validation set might be overestimated.

D. Summary and Further Discussion

For ease of reading, Table VI summarizes the most im-
portant findings w.r.t. the impact of different hyper-factors on

Fig. 14. Performance of baselines w.r.t. time-aware split-by-ratio on 10-filter
across the six datasets by tuning on validation and test sets.

recommendation evaluation in Sections IV-B and C. These
findings seek to provide invaluable instructions and guidance
for both researchers and practitioners in the area of recom-
mender systems. Moreover, we further perform the horizontal
comparison to examine which factors affect more for the eval-
uation. To this end, regarding each hyper-factor, we calculate
and average the relative performance gap (i.e., (best_result
- worst_result)/worst_result) for each baseline across all the
datasets shown in Table VII, where ‘DP, DS, LF, NS, MI,
MO, OP, HT’ are short for Dataset Pre-processing, Dataset
Splitting, Loss Function, Negative Sampling, Model Initializer,
Model Optimizer, Over-fitting Prevention and Hyper-parameter
Tuning, respectively. Note that a larger relative performance gap
indicates a higher impact of the corresponding hyper-factor. As
such, the result highlighted in bold in each row suggests the
corresponding hyper-factor has the highest impact; ‘-’ denotes
the result is not available; and the last row ‘Average’ implies the
overall impact generated by each hyper-factor regardless of the
baselines. According to the table, we find that (1) the impacts
of different hyper-factors vary a lot across different baselines,
for instance, the most impactful hyper-factor for BPRMF and
NeuMF is ‘Loss Function,’ whereas ‘Model Optimizer’ affects
Multi-VAE the most; and (2) as a whole, ‘Dataset Splitting,’
‘Loss Function’ and ‘Model Optimizer’ are the top-3 impact-
ful hyper-factors in recommendation evaluation based on our
empirical study.

V. BENCHMARKING RECOMMENDATION

A. Standardized Procedures

Section III shows the hyper-factors in recommendation eval-
uation, and their impacts are empirically analyzed in Section IV.
To achieve a rigorous evaluation, the mixed mode discussed in
Section III-D is encouraged to be adopted. Accordingly, we
propose a series of standardized procedures and correspond-
ingly call for endeavors of all researchers, aiming to effectively

Authorized licensed use limited to: TU Delft Library. Downloaded on June 27,2023 at 12:06:40 UTC from IEEE Xplore. Restrictions apply.

SUN et al.: DAISYREC 2.0: BENCHMARKING RECOMMENDATION FOR RIGOROUS EVALUATION 8221

TABLE VI
SUMMARY OF IMPORTANT FINDINGS IN SECTION IV-B AND SECTION IV-C

TABLE VII
THE RELATIVE PERFORMANCE GAP BETWEEN THE BEST AND WORST RESULT

OF DIFFERENT BASELINES REGARDING VARIOUS HYPER-FACTORS

enhance the standardization of recommendation evaluation. Re-
garding model-independent hyper-factors, five procedures are
recommended.
� It is impossible to evaluate recommenders on all public

datasets covering each domain. However, at least one
widely-used dataset discussed in Section III-B1 should
be considered, especially for the papers evaluated on the
private datasets (e.g., confidential data from commercial
companies). Otherwise, the results could not be easily
reproduced by the subsequent studies.

� Section IV-B1 verifies that different data pre-processing
strategies impact the performance. Besides origin view, 5-
and 10-filter views are recommended to ease the data spar-
sity issue, and a clear description on data pre-processing
details is indispensable.

� For data splitting methods, both time-aware split-by-ratio
and time-aware leave-one-out are recommended. With
timestamp, the real recommendation scenario will be better
simulated. W.r.t. split-by-ratio, both global- and user-level
work well and ρ = 80% is recommended for a more feasi-
ble and convenient comparison.

� The representative baselines with different types (MMs,
LFMs and DLMs) in Section III-B4 are recommended to
be selected and compared. As shown in Section IV-B1, the
performance of different types of baselines vary a lot in
different scenarios, that is, the MMs (e.g., MostPop) and
simple LFMs (e.g., PureSVD) sometimes even perform
better than DLMs (e.g., NeuMF). The more diverse base-
lines are compared, the more comprehensive and reliable
the evaluation is.

� At least two of the six discussed metrics in Section III-B5
should be adopted, where one (e.g., Precision) measures
whether a test item is present on the top-N recommendation
list, and the other (e.g., NDCG) measures the ranking
positions of the recommended items.

With respect to model-dependent hyper-factors, there are also
five procedures recommended as below.
� For a fair comparison, it is better to evaluate all methods

with a same type of objective functions and thus better
positioning a proposed method’s contributions.

� All the compared methods should adopt the same negative
sampler, except the papers with the goal of proposing or
studying different negative sampling strategies.

� The parameter initializer and model optimizer should be
consistent across all compared methods as demonstrated
in Section IV-C3 and Section IV-C4.

� The same basic overfitting prevention strategies should be
applied to all compared methods, except the methods with
specially-designed strategies, e.g., the message dropout in
NGCF [102].

� With regards to the hyper-parameter tuning, a nested val-
idation is mandatory, that is, retaining partial (e.g., 10%)
training data as validation set. Bayesian HyperOpt, as a
more intelligent parameter searching strategy, is recom-
mended, and the search space should be kept the same for

Authorized licensed use limited to: TU Delft Library. Downloaded on June 27,2023 at 12:06:40 UTC from IEEE Xplore. Restrictions apply.

8222 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 7, JULY 2023

the shared parameters of different baselines. The number
of trails (we set 30 in this study by following [6]) may
be increased for further performance improvements. Most
importantly, the optimal parameter settings should be well
reported for reproduction.

Meanwhile, the source codes and datasets for each publication
should be available for reproduction [190]. The conference
venues could make them as necessities, measure the quality,
and even require a short code demonstration along with each
accepted paper during the conference.

B. Performance of Baselines

With the goal of providing a better reference for fair com-
parison, Tables 12-17 (Appendix, available in the online sup-
plemental material) show the performance of ten baselines
across six metrics on the six datasets under three different
views (i.e., origin, 5-filter and 10-filter) with time-aware split-
by-ratio (N = 10). Due to space limitation, other results (e.g.,
N = 1, 5, 20, 30, 50 and other data splitting methods) are on our
GitHub. All optimal hyper-parameters are found by Bayesian
HyperOpt to optimize NDCG@10 for 30 trials (see Sec-
tion IV-B1), and the corresponding detailed parameter settings
are shown in Tables 18-21.

Based on the results, several major observations can be noted.
(1) BPRFM achieves the best performance on ML-1 M across
all views. (2) Regarding LastFM, ItemKNN/NGCF performs the
best on origin and 5-filter views, while SLIM achieves the best
performance on 10-filter view. (3) For Book-X, BPRFM/NGCF
and PureSVD/NGCF respectively beat other baselines on origin
and 5-filter views, and PureSVD is the winner on 10-filter
view. (4) W.r.t. Epinions, NeuMF obtains the highest accu-
racy on origin view; and NeuMF/NGCF helps reach the best
performance on 5- and 10-filter views. (5) On Yelp, the best
performance on the origin, 5- and 10-filter views are respec-
tively gained by BPRFM, NGCF and NGCF. (6) With regards
to AMZe, NeuMF/Multi-VAE defeat other baselines on origin
view; BPRFM/NFM obtains the optimal results on 5-filter view;
and Multi-VAE is the top method on 10-filter view.

VI. CONCLUSION

This paper aims to benchmark recommendation for repro-
ducible evaluation and fair comparison from the angles of both
practical theory analysis and empirical study. Regarding theory
analysis, 141 recommendation papers published in the four
recent years (2017-2020) from eight top tier conferences have
been systematically reviewed, whereby we define and extract the
hyper-factors affecting recommendation evaluation, classified
into model-independent (e.g., dataset splitting methods) and
-dependent (e.g., loss function design) factors. Accordingly, dif-
ferent modes for rigorous evaluation are defined and discussed
in-depth. To support the empirical study, a user-friendly Python
toolkit – DaisyRec 2.0 has been released and updated by seam-
lessly accommodating the extracted hyper-factors. Thereby, the
impacts of different hyper-factors on evaluation are then empiri-
cally examined and comprehensively analyzed. Lastly, we create
benchmarks for rigorous evaluation by proposing standardized

procedures and providing the performance of ten well-tuned
state-of-the-art algorithms on six widely-used datasets across
six metrics as a reference for later study. For the future work,
we plan to deepen our investigation by, for example, diving into
more diverse (e.g., session/sequential-aware) recommendation
tasks, and more evaluation metrics (e.g., diversity, novelty and
serendipity).

REFERENCES

[1] Z. Sun et al., “Research commentary on recommendations with side
information: A survey and research directions,” Electron. Commerce Res.
Appl., vol. 37, 2019, Art. no. 100879.

[2] A. Said and A. Bellogín, “Comparative recommender system evaluation:
Benchmarking recommendation frameworks,” in Proc. ACM Conf. Rec-
ommender Syst., 2014, pp. 129–136.

[3] A. Said and A. Bellogín, “Rival: A toolkit to foster reproducibility in
recommender system evaluation,” in Proc. ACM Conf. Recommender
Syst., 2014, pp. 371–372.

[4] Z. Sun et al., “Are we evaluating rigorously? Benchmarking recommen-
dation for reproducible evaluation and fair comparison,” in Proc. ACM
Conf. Recommender Syst., 2020, pp. 23–32.

[5] S. Rendle et al., “On the difficulty of evaluating baselines: A study on
recommender systems,” 2019, arXiv:1905.01395.

[6] M. F. Dacrema et al., “Are we really making much progress? A worrying
analysis of recent neural recommendation approaches,” in Proc. ACM
Conf. Recommender Syst., 2019, pp. 101–109.

[7] B. Sarwar et al., “Item-based collaborative filtering recommendation
algorithms,” in Proc. World Wide Web Conf., 2001, pp. 285–295.

[8] Z. Sun et al., “Exploiting both vertical and horizontal dimensions of
feature hierarchy for effective recommendation,” in Proc. Conf. Assoc.
Advance. Artif. Intell., 2017, pp. 189–195.

[9] D. Li et al., “ERMMA: Expected risk minimization for matrix
approximation-based recommender systems,” in Proc. Conf. Assoc. Ad-
vance. Artif. Intell., 2017, pp. 1403–1409.

[10] L. Yu et al., “Walkranker: A unified pairwise ranking model with multiple
relations for item recommendation,” in Proc. Conf. Assoc. Advance. Artif.
Intell., 2018, pp. 2596–2603.

[11] M. Wang et al., “Collaborative filtering with social exposure: A modular
approach to social recommendation,” in Proc. Conf. Assoc. Advance.
Artif. Intell., 2018, pp. 2516–2523.

[12] T. D. T. Do and L. Cao, “Coupled poisson factorization integrated with
user/item metadata for modeling popular and sparse ratings in scalable
recommendation,” in Proc. Conf. Assoc. Advance. Artif. Intell., 2018,
pp. 2918–2925.

[13] J. Zhang et al., “Hierarchical reinforcement learning for course recom-
mendation in MOOCs,” in Proc. Conf. Assoc. Advance. Artif. Intell.,
2019, pp. 435–442.

[14] C. Wang et al., “CAMO: A collaborative ranking method for content
based recommendation,” in Proc. Conf. Assoc. Advance. Artif. Intell.,
2019, pp. 5224–5231.

[15] C. Lin et al., “Non-compensatory psychological models for recom-
mender systems,” in Proc. Conf. Assoc. Advance. Artif. Intell., 2019,
pp. 4304–4311.

[16] J. Li et al., “From zero-shot learning to cold-start recommendation,” in
Proc. Conf. Assoc. Advance. Artif. Intell., 2019, pp. 4189–4196.

[17] C. Liu et al., “Discrete social recommendation,” in Proc. Conf. Assoc.
Advance. Artif. Intell., 2019, pp. 208–215.

[18] Z.-H. Deng et al., “DeepCF: A unified framework of representation
learning and matching function learning in recommender system,” in
Proc. Conf. Assoc. Advance. Artif. Intell., 2019, pp. 61–68.

[19] L. Hu et al., “HERS: Modeling influential contexts with heterogeneous
relations for sparse and cold-start recommendation,” in Proc. Conf. Assoc.
Advance. Artif. Intell., 2019, pp. 3830–3837.

[20] X. Wang et al., “Explainable reasoning over knowledge graphs for
recommendation,” in Proc. Conf. Assoc. Advance. Artif. Intell., 2019,
pp. 5329–5336.

[21] T. Shen et al., “PEIA: Personality and emotion integrated attentive model
for music recommendation on social media platforms,” in Proc. Conf.
Assoc. Advance. Artif. Intell., 2020, pp. 206–213.

[22] Q. Zhu et al., “A knowledge-aware attentional reasoning network for
recommendation,” in Proc. Conf. Assoc. Advance. Artif. Intell., 2020,
pp. 6999–7006.

Authorized licensed use limited to: TU Delft Library. Downloaded on June 27,2023 at 12:06:40 UTC from IEEE Xplore. Restrictions apply.

SUN et al.: DAISYREC 2.0: BENCHMARKING RECOMMENDATION FOR RIGOROUS EVALUATION 8223

[23] C. Chen et al., “Efficient heterogeneous collaborative filtering without
negative sampling for recommendation,” in Proc. Conf. Assoc. Advance.
Artif. Intell., 2020, pp. 19–26.

[24] G. Guo et al., “Leveraging title-abstract attentive semantics for paper
recommendation,” in Proc. Conf. Assoc. Advance. Artif. Intell., 2020,
pp. 67–74.

[25] M. Li et al., “Symmetric metric learning with adaptive margin for
recommendation,” in Proc. Conf. Assoc. Advance. Artif. Intell., 2020,
pp. 4634–4641.

[26] Y. Xu et al., “Multi-feature discrete collaborative filtering for fast cold-
start recommendation,” in Proc. Conf. Assoc. Advance. Artif. Intell., 2020,
pp. 270–278.

[27] J. Chen et al., “Fast adaptively weighted matrix factorization for recom-
mendation with implicit feedback,” in Proc. Conf. Assoc. Advance. Artif.
Intell., 2020, pp. 3470–3477.

[28] D. D. Le and H. W. Lauw, “Stochastically robust personalized ranking
for LSH recommendation retrieval,” in Proc. Conf. Assoc. Advance. Artif.
Intell., 2020, pp. 4594–4601.

[29] C. Wang et al., “SetRank: A setwise Bayesian approach for collaborative
ranking from implicit feedback,” in Proc. Conf. Assoc. Advance. Artif.
Intell., 2020, pp. 6127–6136.

[30] Y. Zhang et al., “Joint representation learning for top-n recommendation
with heterogeneous information sources,” in Proc. Conf. Inf. Knowl.
Manage., 2017, pp. 1449–1458.

[31] D. D. Le and H. W. Lauw, “Indexable Bayesian personalized ranking
for efficient top-k recommendation,” in Proc. Conf. Inf. Knowl. Manage.,
2017, pp. 1389–1398.

[32] W. Pei et al., “Interacting attention-gated recurrent networks for recom-
mendation,” in Proc. Conf. Inf. Knowl. Manage., 2017, pp. 1459–1468.

[33] L. Mei et al., “An attentive interaction network for context-aware recom-
mendations,” in Proc. Conf. Inf. Knowl. Manage., 2018, pp. 157–166.

[34] H. Wang et al., “RippleNet: Propagating user preferences on the knowl-
edge graph for recommender systems,” in Proc. Conf. Inf. Knowl. Man-
age., 2018, pp. 417–426.

[35] T. Tran et al., “Regularizing matrix factorization with user and item
embeddings for recommendation,” in Proc. Conf. Inf. Knowl. Manage.,
2018, pp. 687–696.

[36] J. Ma et al., “DBRec: Dual-bridging recommendation via discovering
latent groups,” in Proc. Conf. Inf. Knowl. Manage., 2019, pp. 1513–1522.

[37] W.-C. Kang and J. McAuley, “Candidate generation with binary codes for
large-scale Top-N recommendation,” in Proc. Conf. Inf. Knowl. Manage.,
2019, pp. 1523–1532.

[38] F. Xu et al., “Relation-aware graph convolutional networks for agent-
initiated social e-commerce recommendation,” in Proc. Conf. Inf. Knowl.
Manage., 2019, pp. 529–538.

[39] B. Chang et al., “Learning graph-based geographical latent representa-
tion for point-of-interest recommendation,” in Proc. Conf. Inf. Knowl.
Manage., 2020, pp. 135–144.

[40] B. Chen et al., “TGCN: Tag graph convolutional network for tag-
aware recommendation,” in Proc. Conf. Inf. Knowl. Manage., 2020,
pp. 155–164.

[41] D. Lee et al., “News recommendation with topic-enriched knowledge
graphs,” in Proc. Conf. Inf. Knowl. Manage., 2020, pp. 695–704.

[42] R. Sun et al., “Multi-modal knowledge graphs for recommender systems,”
in Proc. Conf. Inf. Knowl. Manage., 2020, pp. 1405–1414.

[43] S. Kang et al., “DE-RRD: A knowledge distillation framework for recom-
mender system,” in Proc. Conf. Inf. Knowl. Manage., 2020, pp. 605–614.

[44] Y.-N. Chuang et al., “TPR: Text-aware preference ranking for recom-
mender systems,” in Proc. Conf. Inf. Knowl. Manage., 2020, pp. 215–224.

[45] Z. Xu et al., “E-commerce recommendation with weighted expected
utility,” in Proc. Conf. Inf. Knowl. Manage., 2020, pp. 1695–1704.

[46] Y. Wang et al., “DisenHAN: Disentangled heterogeneous graph attention
network for recommendation,” in Proc. Conf. Inf. Knowl. Manage., 2020,
pp. 1605–1614.

[47] Y. Xian et al., “CAFE: Coarse-to-fine knowledge graph reasoning for e-
commerce recommendation,” in Proc. Conf. Inf. Knowl. Manage., 2020,
pp. 1645–1654.

[48] F. Yuan et al., “Exploring missing interactions: A convolutional gener-
ative adversarial network for collaborative filtering,” in Proc. Conf. Inf.
Knowl. Manage., 2020, pp. 1773–1782.

[49] F. Zhao and Y. Guo, “Learning discriminative recommendation systems
with side information,” in Proc. Int. Joint Conf. Artif. Intell., 2017,
pp. 3469–3475.

[50] Z. Sun et al., “MRLR: Multi-level representation learning for personal-
ized ranking in recommendation,” in Proc. Int. Joint Conf. Artif. Intell.,
2017, pp. 2807–2813.

[51] H.-J. Xue et al., “Deep matrix factorization models for recommender
systems,” in Proc. Int. Joint Conf. Artif. Intell., 2017, pp. 3203–3209.

[52] Y. Liu et al., “Dynamic Bayesian logistic matrix factorization for recom-
mendation with implicit feedback,” in Proc. Int. Joint Conf. Artif. Intell.,
2018, pp. 3463–3469.

[53] Z. Wang et al., “Matrix completion with preference ranking for Top-
N recommendation,” in Proc. Int. Joint Conf. Artif. Intell., 2018,
pp. 3585–3591.

[54] W. Zhao et al., “PLASTIC: Prioritize long and short-term information
in top-n recommendation using adversarial training,” in Proc. Int. Joint
Conf. Artif. Intell., 2018, pp. 3676–3682.

[55] J. Ding et al., “Improving implicit recommender systems with view data,”
in Proc. Int. Joint Conf. Artif. Intell., 2018, pp. 3343–3349.

[56] W. Cheng et al., “DELF: A dual-embedding based deep latent factor
model for recommendation,” in Proc. Int. Joint Conf. Artif. Intell., 2018,
pp. 3329–3335.

[57] H. Liu et al., “Discrete factorization machines for fast feature-
based recommendation,” in Proc. Int. Joint Conf. Artif. Intell., 2018,
pp. 3449–3455.

[58] X. Xin et al., “CFM: Convolutional factorization machines for context-
aware recommendation,” in Proc. Int. Joint Conf. Artif. Intell., 2019,
pp. 3926–3932.

[59] J. Jiang et al., “Convolutional Gaussian embeddings for personalized
recommendation with uncertainty,” in Proc. Int. Joint Conf. Artif. Intell.,
2019, pp. 2642–2648.

[60] G. Guo et al., “Discrete trust-aware matrix factorization for fast
recommendation,” in Proc. Int. Joint Conf. Artif. Intell., 2019,
pp. 1380–1386.

[61] Y. Xu et al., “Learning shared vertex representation in heterogeneous
graphs with convolutional networks for recommendation,” in Proc. Int.
Joint Conf. Artif. Intell., 2019, pp. 4620–4626.

[62] S. Zhang et al., “Quaternion collaborative filtering for recommendation,”
in Proc. Int. Joint Conf. Artif. Intell., 2019, pp. 4313–4319.

[63] W. Fan et al., “Deep adversarial social recommendation,” in Proc. Int.
Joint Conf. Artif. Intell., 2019, pp. 1351–1357.

[64] Z. Wang et al., “Unified embedding model over heterogeneous informa-
tion network for personalized recommendation,” in Proc. Int. Joint Conf.
Artif. Intell., 2019, pp. 3813–3819.

[65] P. Han et al., “Contextualized point-of-interest recommendation,” in Proc.
Int. Joint Conf. Artif. Intell., 2020, pp. 2484–2490.

[66] R. Xie et al., “Internal and contextual attention network for cold-start
multi-channel matching in recommendation,” in Proc. Int. Joint Conf.
Artif. Intell., 2020, pp. 2732–2738.

[67] H. Chen and J. Li, “Neural tensor model for learning multi-aspect factors
in recommender systems,” in Proc. Int. Joint Conf. Artif. Intell., 2020,
pp. 2449–2455.

[68] R. Liu et al., “Hypernews: Simultaneous news recommendation and
active-time prediction via a double-task deep neural network,” in Proc.
Int. Joint Conf. Artif. Intell., 2020, pp. 3487–3493.

[69] X. Li and J. She, “Collaborative variational autoencoder for recom-
mender systems,” in Proc. Int. Conf. Knowl. Discov. Data Mining, 2017,
pp. 305–314.

[70] H. Zhu et al., “Learning tree-based deep model for recommender
systems,” in Proc. Int. Conf. Knowl. Discov. Data Mining, 2018,
pp. 1079–1088.

[71] E. Christakopoulou and G. Karypis, “Local latent space models for Top-N
recommendation,” in Proc. Int. Conf. Knowl. Discov. Data Mining, 2018,
pp. 1235–1243.

[72] B. Hu et al., “Leveraging meta-path based context for Top-N recom-
mendation with a neural co-attention model,” in Proc. Int. Conf. Knowl.
Discov. Data Mining, 2018, pp. 1531–1540.

[73] X. Wang et al., “KGAT: Knowledge graph attention network for rec-
ommendation,” in Proc. Int. Conf. Knowl. Discov. Data Mining, 2019,
pp. 950–958.

[74] X. Tang et al., “AKUPM: Attention-enhanced knowledge-aware user
preference model for recommendation,” in Proc. Int. Conf. Knowl. Dis-
cov. Data Mining, 2019, pp. 1891–1899.

[75] J. Zhao et al., “IntentGC: A scalable graph convolution framework fusing
heterogeneous information for recommendation,” in Proc. Int. Conf.
Knowl. Discov. Data Mining, 2019, pp. 2347–2357.

[76] H. Wang et al., “Knowledge-aware graph neural networks with label
smoothness regularization for recommender systems,” in Proc. Int. Conf.
Knowl. Discov. Data Mining, 2019, pp. 968–977.

[77] Y. Chen et al., “LambdaOpt: Learn to regularize recommender models
in finer levels,” in Proc. Int. Conf. Knowl. Discov. Data Mining, 2019,
pp. 978–986.

Authorized licensed use limited to: TU Delft Library. Downloaded on June 27,2023 at 12:06:40 UTC from IEEE Xplore. Restrictions apply.

8224 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 7, JULY 2023

[78] J. Jin et al., “An efficient neighborhood-based interaction model for
recommendation on heterogeneous graph,” in Proc. Int. Conf. Knowl.
Discov. Data Mining, 2020, pp. 75–84.

[79] C. Ma et al., “Probabilistic metric learning with adaptive margin for top-K
recommendation,” in Proc. Int. Conf. Knowl. Discov. Data Mining, 2020,
pp. 1036–1044.

[80] S. Ji et al., “Dual channel hypergraph collaborative filtering,” in Proc.
Int. Conf. Knowl. Discov. Data Mining, 2020, pp. 2020–2029.

[81] R. Otunba et al., “MPR: Multi-objective pairwise ranking,” in Proc. ACM
Conf. Recommender Syst., 2017, pp. 170–178.

[82] D. Rafailidis and F. Crestani, “Learning to rank with trust and distrust in
recommender systems,” in Proc. ACM Conf. Recommender Syst., 2017,
pp. 5–13.

[83] D. Valcarce et al., “On the robustness and discriminative power of
information retrieval metrics for top-N recommendation,” in Proc. ACM
Conf. Recommender Syst., 2018, pp. 260–268.

[84] Z. Sun et al., “Recurrent knowledge graph embedding for effective recom-
mendation,” in Proc. ACM Conf. Recommender Syst., 2018, pp. 297–305.

[85] L. Zheng et al., “Spectral collaborative filtering,” in Proc. ACM Conf.
Recommender Syst., 2018, pp. 311–319.

[86] S. Ouyang et al., “Asymmetric Bayesian personalized ranking for one-
class collaborative filtering,” in Proc. ACM Conf. Recommender Syst.,
2019, pp. 373–377.

[87] H. Liu et al., “Deep generative ranking for personalized recommenda-
tion,” in Proc. ACM Conf. Recommender Syst., 2019, pp. 34–42.

[88] A. N. Nikolakopoulos et al., “Personalized diffusions for top-n recom-
mendation,” in Proc. ACM Conf. Recommender Syst., 2019, pp. 260–268.

[89] F. S. d. Costa and P. Dolog, “Collective embedding for neural context-
aware recommender systems,” in Proc. ACM Conf. Recommender Syst.,
2019, pp. 201–209.

[90] E. Frolov and I. Oseledets, “HybridSVD: When collaborative informa-
tion is not enough,” in Proc. ACM Conf. Recommender Syst., 2019,
pp. 331–339.

[91] E. Elahi et al., “Variational low rank multinomials for collaborative
filtering with side-information,” in Proc. ACM Conf. Recommender Syst.,
2019, pp. 340–347.

[92] Y. Zhang et al., “Content-collaborative disentanglement representation
learning for enhanced recommendation,” in Proc. ACM Conf. Recom-
mender Syst., 2020, pp. 43–52.

[93] D. Liu et al., “KRED: Knowledge-aware document representation for
news recommendations,” in Proc. ACM Conf. Recommender Syst., 2020,
pp. 200–209.

[94] J. P. Zhou et al., “TAFA: Two-headed attention fused autoencoder for
context-aware recommendations,” in Proc. ACM Conf. Recommender
Syst., 2020, pp. 338–347.

[95] J. Chen et al., “Attentive collaborative filtering: Multimedia recommenda-
tion with item-and component-level attention,” in Proc. Int. ACM SIGIR
Conf. Res. Develop. Informat. Retrieval, 2017, pp. 335–344.

[96] X. He et al., “Adversarial personalized ranking for recommendation,”
in Proc. Int. ACM SIGIR Conf. Res. Develop. Informat. Retrieval, 2018,
pp. 355–364.

[97] T. Ebesu et al., “Collaborative memory network for recommendation sys-
tems,” in Proc. Int. ACM SIGIR Conf. Res. Develop. Informat. Retrieval,
2018, pp. 515–524.

[98] Q. Xu et al., “GraphCAR: Content-aware multimedia recommendation
with graph autoencoder,” in Proc. Int. ACM SIGIR Conf. Res. Develop.
Informat. Retrieval, 2018, pp. 981–984.

[99] R. Canamares and P. Castells, “Should I follow the crowd?: A probabilis-
tic analysis of the effectiveness of popularity in recommender systems,”
in Proc. Int. ACM SIGIR Conf. Res. Develop. Informat. Retrieval, 2018,
pp. 415–424.

[100] W. Wang et al., “Streaming ranking based recommender systems,” in
Proc. Int. ACM SIGIR Conf. Res. Develop. Informat. Retrieval, 2018,
pp. 525–534.

[101] Y. Chen et al., “Bayesian personalized feature interaction selection for
factorization machines,” in Proc. Int. ACM SIGIR Conf. Res. Develop.
Informat. Retrieval, 2019, pp. 665–674.

[102] X. Wang et al., “Neural graph collaborative filtering,” in Proc. Int. ACM
SIGIR Conf. Res. Develop. Informat. Retrieval, 2019, pp. 165–174.

[103] G. Wu et al., “Noise contrastive estimation for one-class collaborative fil-
tering,” in Proc. Int. ACM SIGIR Conf. Res. Develop. Informat. Retrieval,
2019, pp. 135–144.

[104] X. Xin et al., “Relational collaborative filtering: Modeling multiple item
relations for recommendation,” in Proc. Int. ACM SIGIR Conf. Res.
Develop. Informat. Retrieval, 2019, pp. 125–134.

[105] Z. Wang et al., “CKAN: Collaborative knowledge-aware attentive net-
work for recommender systems,” in Proc. Int. ACM SIGIR Conf. Res.
Develop. Informat. Retrieval, 2020, pp. 219–228.

[106] C. Chen et al., “Jointly non-sampling learning for knowledge graph
enhanced recommendation,” in Proc. Int. ACM SIGIR Conf. Res. Develop.
Informat. Retrieval, 2020, pp. 189–198.

[107] J. Gong et al., “Attentional graph convolutional networks for knowledge
concept recommendation in MOOCs in a heterogeneous view,” in Proc.
Int. ACM SIGIR Conf. Res. Develop. Informat. Retrieval, 2020, pp. 79–88.

[108] C. Hansen et al., “Content-aware neural hashing for cold-start recommen-
dation,” in Proc. Int. ACM SIGIR Conf. Res. Develop. Informat. Retrieval,
2020, pp. 971–980.

[109] X. He et al., “LightGCN: Simplifying and powering graph convolution
network for recommendation,” in Proc. Int. ACM SIGIR Conf. Res.
Develop. Informat. Retrieval, 2020, pp. 639–648.

[110] S. Shi et al., “Beyond user embedding matrix: Learning to hash for
modeling large-scale users in recommendation,” in Proc. Int. ACM SIGIR
Conf. Res. Develop. Informat. Retrieval, 2020, pp. 319–328.

[111] C.-Y. Tai et al., “MVIN: Learning multiview items for recommendation,”
in Proc. Int. ACM SIGIR Conf. Res. Develop. Informat. Retrieval, 2020,
pp. 99–108.

[112] L. Wu et al., “Joint item recommendation and attribute inference: An
adaptive graph convolutional network approach,” in Proc. Int. ACM
SIGIR Conf. Res. Develop. Informat. Retrieval, 2020, pp. 679–688.

[113] D.-K. Chae et al., “AR-CF: Augmenting virtual users and items in col-
laborative filtering for addressing cold-start problems,” in Proc. Int. ACM
SIGIR Conf. Res. Develop. Informat. Retrieval, 2020, pp. 1251–1260.

[114] X. Wang et al., “Disentangled graph collaborative filtering,” in Proc.
Int. ACM SIGIR Conf. Res. Develop. Informat. Retrieval, 2020,
pp. 1001–1010.

[115] L. Zou et al., “Neural interactive collaborative filtering,” in Proc. Int.
ACM SIGIR Conf. Res. Develop. Informat. Retrieval, 2020, pp. 749–758.

[116] J. Sun et al., “Neighbor interaction aware graph convolution networks for
recommendation,” in Proc. Int. ACM SIGIR Conf. Res. Develop. Informat.
Retrieval, 2020, pp. 1289–1298.

[117] Q. Zhao et al., “Multi-product utility maximization for economic rec-
ommendation,” in Proc. Int. Conf. Web Search Data Mining, 2017,
pp. 435–443.

[118] Y. Zhang et al., “Discrete deep learning for fast content-aware recommen-
dation,” in Proc. Int. Conf. Web Search Data Mining, 2018, pp. 717–726.

[119] Z. Jiang et al., “Recommendation in heterogeneous information net-
works based on generalized random walk model and Bayesian person-
alized ranking,” in Proc. Int. Conf. Web Search Data Mining, 2018,
pp. 288–296.

[120] W. Niu et al., “Neural personalized ranking for image recommendation,”
in Proc. Int. Conf. Web Search Data Mining, 2018, pp. 423–431.

[121] C. Ma et al., “Gated attentive-autoencoder for content-aware recommen-
dation,” in Proc. Int. Conf. Web Search Data Mining, 2019, pp. 519–527.

[122] A. N. Nikolakopoulos and G. Karypis, “RecWalk: Nearly uncoupled
random walks for top-n recommendation,” in Proc. Int. Conf. Web Search
Data Mining, 2019, pp. 150–158.

[123] C. Chen et al., “Social attentional memory network: Modeling aspect-
and friend-level differences in recommendation,” in Proc. Int. Conf. Web
Search Data Mining, 2019, pp. 177–185.

[124] D. Liu et al., “Spiral of silence in recommender systems,” in Proc. Int.
Conf. Web Search Data Mining, 2019, pp. 222–230.

[125] H. Steck et al., “ADMM SLIM: Sparse recommendations for many users,”
in Proc. Int. Conf. Web Search Data Mining, 2020, pp. 555–563.

[126] R. Li et al., “Adversarial learning to compare: Self-attentive prospective
customer recommendation in location based social networks,” in Proc.
Int. Conf. Web Search Data Mining, 2020, pp. 349–357.

[127] F. Liu et al., “End-to-end deep reinforcement learning based recommen-
dation with supervised embedding,” in Proc. Int. Conf. Web Search Data
Mining, 2020, pp. 384–392.

[128] Y. Gu et al., “Hierarchical user profiling for e-commerce recommender
systems,” in Proc. Int. Conf. Web Search Data Mining, 2020, pp. 223–231.

[129] J. Wang et al., “Key opinion leaders in recommendation systems: Opinion
elicitation and diffusion,” in Proc. Int. Conf. Web Search Data Mining,
2020, pp. 636–644.

[130] C. Sun et al., “LARA: Attribute-to-feature adversarial learning for new-
item recommendation,” in Proc. Int. Conf. Web Search Data Mining,
2020, pp. 582–590.

[131] H. Zamani and W. B. Croft, “Learning a joint search and recommendation
model from user-item interactions,” in Proc. Int. Conf. Web Search Data
Mining, 2020, pp. 717–725.

Authorized licensed use limited to: TU Delft Library. Downloaded on June 27,2023 at 12:06:40 UTC from IEEE Xplore. Restrictions apply.

SUN et al.: DAISYREC 2.0: BENCHMARKING RECOMMENDATION FOR RIGOROUS EVALUATION 8225

[132] I. Shenbin et al., “RecVAE: A new variational autoencoder for top-n
recommendations with implicit feedback,” in Proc. Int. Conf. Web Search
Data Mining, 2020, pp. 528–536.

[133] C.-K. Hsieh et al., “Collaborative metric learning,” in Proc. World Wide
Web Conf., 2017, pp. 193–201.

[134] X. He and T.-S. Chua, “Neural factorization machines for sparse predic-
tive analytics,” in Proc. Int. ACM SIGIR Conf. Res. Develop. Informat.
Retrieval, 2017, pp. 355–364.

[135] W. Yu et al., “Aesthetic-based clothing recommendation,” in Proc. World
Wide Web Conf., 2018, pp. 649–658.

[136] D. Liang et al., “Variational autoencoders for collaborative filtering,” in
Proc. World Wide Web Conf., 2018, pp. 689–698.

[137] H. Wang et al., “Multi-task feature learning for knowledge graph
enhanced recommendation,” in Proc. World Wide Web Conf., 2019,
pp. 2000–2010.

[138] W. Ma et al., “Jointly learning explainable rules for recommendation with
knowledge graph,” in Proc. World Wide Web Conf., 2019, pp. 1210–1221.

[139] Y. Cao et al., “Unifying knowledge graph learning and recommendation:
Towards a better understanding of user preferences,” in Proc. World Wide
Web Conf., 2019, pp. 151–161.

[140] T. Tran et al., “Signed distance-based deep memory recommender,” in
Proc. World Wide Web Conf., 2019, pp. 1841–1852.

[141] H. Wang et al., “Knowledge graph convolutional networks for recom-
mender systems,” in Proc. World Wide Web Conf., 2019, pp. 3307–3313.

[142] C.-M. Chen et al., “Collaborative similarity embedding for recommender
systems,” in Proc. World Wide Web Conf., 2019, pp. 2637–2643.

[143] F. Khawar et al., “Learning the structure of auto-encoding recom-
menders,” in Proc. World Wide Web Conf., 2020, pp. 519–529.

[144] H. Liu et al., “Deep global and local generative model for recommenda-
tion,” in Proc. World Wide Web Conf., 2020, pp. 551–561.

[145] A. Javari et al., “Weakly supervised attention for hashtag recom-
mendation using graph data,” in Proc. World Wide Web Conf., 2020,
pp. 1038–1048.

[146] C. Wang et al., “Personalized employee training course recommendation
with career development awareness,” in Proc. World Wide Web Conf.,
2020, pp. 1648–1659.

[147] Q. Tan et al., “Learning to hash with graph neural networks for recom-
mender systems,” in Proc. World Wide Web Conf., 2020, pp. 1988–1998.

[148] C. Chen et al., “Efficient non-sampling factorization machines for optimal
context-aware recommendation,” in Proc. World Wide Web Conf., 2020,
pp. 2400–2410.

[149] Y. Koren et al., “Matrix factorization techniques for recommender sys-
tems,” Computer, vol. 42, no. 8, pp. 30–37, 2009.

[150] S. Rendle et al., “BPR: Bayesian personalized ranking from implicit
feedback,” in Proc. Conf. Uncertainty Artif. Intell., 2009, pp. 452–461.

[151] B. Hidasi et al., “Parallel recurrent neural network architectures for
feature-rich session-based recommendations,” in Proc. ACM Conf. Rec-
ommender Syst., 2016, pp. 241–248.

[152] G. Guo et al., “LibRec: A Java library for recommender system,” in
Proc. 23rd Conf. User Modelling Adapt. Personalization Posters Demos
Late-Breaking Results Workshop, 2015, pp. 38–45.

[153] S. Zhang et al., “DeepRec: An open-source toolkit for deep learning based
recommendation,” in 2019, arXiv:1905.10536.

[154] W. X. Zhao et al., “RecBole: Towards a unified, comprehensive and
efficient framework for recommendation algorithms,” in Proc. Conf. Inf.
Knowl. Manage., 2021, pp. 4653–4664.

[155] P. Cremonesi et al., “Performance of recommender algorithms on top-n
recommendation tasks,” in Proc. ACM Conf. Recommender Syst., 2010,
pp. 39–46.

[156] O. S. Collaboration et al., “Estimating the reproducibility of psycholog-
ical science,” Science, vol. 349, no. 6251, 2015, Art. no. aac4716.

[157] M. Baker, “Reproducibility crisis,” Nature, vol. 533, no. 26, pp. 353–66,
2016.

[158] M. R. Munaf ò et al., “A manifesto for reproducible science,” Nat. Hum.
Behav., vol. 1, no. 1, pp. 1–9, 2017.

[159] N. Ferro and D. Kelly, “SIGIR initiative to implement ACM artifact
review and badging,” vol. 52, no. 1, pp. 4–10, 2018.

[160] J. Freire et al., “Report from Dagstuhl seminar 16041: Reproducibility
of data-oriented experiments in e-science,” Dagstuhl Rep., vol. 6, no. 1,
pp. 108–159, 2016.

[161] R. Clancy et al., “Overview of the 2019 open-source IR replicability
challenge (OSIRRC 2019),” in Proc. 42nd Int. ACM SIGIR Conf. Res.
Develop. Inf. Retrieval, 2019, pp. 1–7.

[162] J. Pineau et al., “Improving reproducibility in machine learning research:
A report from the NeurIPS 2019 reproducibility program,” J. Mach.
Learn. Res., vol. 22, pp. 7459–7478, 2021.

[163] A. Hanbury et al., Advances in Information Retrieval: 37th European
Conference on IR Research, ECIR 2015, Vienna, Austria, March 29-
April 2, 2015. Proceedings, vol. 9022. Berlin, Germany: Springer,
2015.

[164] Proc. 29th ACM Int. Conf. Multimedia, New York, NY, USA, 2021.
[165] A. Hotho et al., The Semantic Web–ISWC 2021: 20th International

Semantic Web Conference, ISWC 2021, Virtual Event, October 24–28,
2021, Proceedings, vol. 12922. Berlin, Germany: Springer, 2021.

[166] Proc. 14th ACM Conf. Recommender Syst., New York, NY, USA,
2020.

[167] V. W. Anelli et al., “Elliot: A comprehensive and rigorous framework
for reproducible recommender systems evaluation,” in Proc. Int. ACM
SIGIR Conf. Res. Develop. Informat. Retrieval, 2021, pp. 2405–2414.

[168] J. Beel et al., “Towards reproducibility in recommender-systems re-
search,” User Model. User-Adapted Interact., vol. 26, no. 1, pp. 69–101,
2016.

[169] N. Sachdeva, C.-J. Wu, and J. McAuley, “On sampling collaborative
filtering datasets,” in Proc. Int. Conf. Web Search Data Mining, 2022,
pp. 842–850.

[170] S. M. McNee et al., “Being accurate is not enough: How accuracy metrics
have hurt recommender systems,” in Proc. Conf. Extended Abstr. Hum.
Factors Comput. Syst., 2006, pp. 1097–1101.

[171] Z. Gantner, S. Rendle, C. Freudenthaler, and L. Schmidt-Thieme, “My-
MediaLite: A free recommender system library,” in Proc. ACM Conf.
Recommender Syst., 2011, pp. 305–308.

[172] N. Hug, “Surprise: A Python library for recommender systems,” J. Open
Source Softw., vol. 5, no. 52, 2020, Art. no. 2174.

[173] I. Cantador et al., “The 2nd workshop on information heterogeneity
and fusion in recommender systems (HetRec),” in Proc. ACM Conf.
Recommender Syst., 2011, pp. 387–388.

[174] J. Tang et al., “eTrust: Understanding trust evolution in an online world,”
in Proc. Int. Conf. Knowl. Discov. Data Mining, 2012, pp. 253–261.

[175] C.-N. Ziegler et al., “Improving recommendation lists through topic
diversification,” in Proc. World Wide Web Conf., 2005, pp. 22–32.

[176] S. Rendle, “Factorization machines,” in Proc. Int. Conf. Des. Minings,
2010, pp. 995–1000.

[177] Y. Hu et al., “Collaborative filtering for implicit feedback datasets,” in
Proc. Int. Conf. Des. Minings, 2008, pp. 263–272.

[178] X. Ning and G. Karypis, “SLIM: Sparse linear methods for top-N recom-
mender systems,” in Proc. Int. Conf. Des. Minings, 2011, pp. 497–506.

[179] X. He et al., “Fast matrix factorization for online recommendation with
implicit feedback,” in Proc. Int. ACM SIGIR Conf. Res. Develop. Infor-
mat. Retrieval, 2016, pp. 549–558.

[180] H. Zhang et al., “Discrete collaborative filtering,” in Proc. Int. ACM SIGIR
Conf. Res. Develop. Informat. Retrieval, 2016, pp. 325–334.

[181] F. Zhang et al., “Collaborative knowledge base embedding for recom-
mender systems,” in Proc. Int. Conf. Knowl. Discov. Data Mining, 2016,
pp. 353–362.

[182] Y. Wu et al., “Collaborative denoising auto-encoders for top-N recom-
mender systems,” in Proc. Int. Conf. Web Search Data Mining, 2016,
pp. 153–162.

[183] Q. Zhao et al., “Interpreting user inaction in recommender systems,” in
Proc. ACM Conf. Recommender Syst., 2018, pp. 40–48.

[184] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks,” in Proc. Int. Conf. Artif. Intell. Statist.,
2010, pp. 249–256.

[185] N. Srivastava et al., “Dropout: A simple way to prevent neural networks
from overfitting,” J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929–1958,
2014.

[186] J. Bergstra and Y. Bengio, “Random search for hyper-parameter
optimization,” J. Mach. Learn. Res., vol. 13, no. 1, pp. 281–305,
2012.

[187] J. Snoek et al., “Practical Bayesian optimization of machine learn-
ing algorithms,” in Proc. Int. Conf. Neural Inf. Process. Syst., 2012,
pp. 2960–2968.

[188] L. Yang et al., “OpenRec: A modular framework for extensible and
adaptable recommendation algorithms,” in Proc. Int. Conf. Web Search
Data Mining, 2018, pp. 664–672.

[189] D. Jannach and M. Ludewig, “When recurrent neural networks meet the
neighborhood for session-based recommendation,” in Proc. ACM Conf.
Recommender Syst., 2017, pp. 306–310.

[190] E. Raff, “A step toward quantifying independently reproducible machine
learning research,” in Proc. Int. Conf. Neural Inf. Process. Syst., 2019,
pp. 5485–5495.

[191] B. McFee et al., “The million song dataset challenge,” in Proc. World
Wide Web Conf., 2012, pp. 909–916.

Authorized licensed use limited to: TU Delft Library. Downloaded on June 27,2023 at 12:06:40 UTC from IEEE Xplore. Restrictions apply.

8226 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 45, NO. 7, JULY 2023

Zhu Sun received the PhD degree from Nanyang
Technological University, Singapore, in 2018. Her
main research topic is recommender systems. Her re-
search has been published in leading conferences and
journals (e.g., IJCAI, AAAI, SIGIR, CIKM, RecSys,
IEEE Transactions on Knowledge and Data Engi-
neering and IEEE Transactions on Neural Networks
and Learning Systems). She is the AE with ECRA
journal, and PC Member for KDD, SIGIR, IJCAI,
AAAI, CIKM, RecSys, IUI and UMAP, etc.

Hui Fang received the PhD degree from Nanyang
Technological University, Singapore. She is an as-
sociate professor with the Shanghai University of Fi-
nance and Economics, China. Her main research topic
is personalized machine learning, including trust/link
prediction in online communities, and recommender
systems. She has published papers in leading confer-
ences (e.g., IJCAI, AAAI and AAMAS), and journals
(e.g., Journal of Artificial Intelligence, IEEE Trans-
actions on Knowledge and Data Engineering, ACM
Transactions on Information Systems and Decision

Support Systems). She is the SE of the ECRA journal, and serves as a PC Board
of IJCAI, and (Senior) PC Member for UMAP, IJCAI, AAAI and AAMAS, etc.

Jie Yang is assistant professor with the Web Informa-
tion Systems group of Delft University of Technology
(TU Delft). Before joining TU Delft, he worked as a
machine learning scientist with Amazon and a senior
researcher with the eXascale Infolab, University of
Fribourg. His research focuses on human-centered
AI for Web-scale information systems, aiming at
leveraging the joint power of human and machine
intelligence for understanding and making use of data
in large-scale information systems.

Xinghua Qu received the Phd degree from Nanyang
Technological University, Singapore in 2022. Cur-
rently he is a research scientist with Bytedance AI
Lab, Singapore. His primary research interest in-
cludes machine learning and optimisation. Recently
his research interests mainly focus on the adversarial
robustness of diverse machine learning areas, includ-
ing deep reinforcement learning, computer vision,
and speech recognition.

Hongyang Liu is currently working toward the mas-
ter’s degree with the School of Information Science
and Engineering, Yanshan University, China. His re-
search topic includes machine learning and recom-
mender systems. He mainly focused on applying deep
learning techniques (e.g., reinforcement learning and
generative adversarial networks) to improve the per-
formance of recommender systems in the related
areas.

Di Yu received the bachelor’s degree in computer
science and master’s degree in management science
from Shanghai University of Finance and Economics,
China in 2017 and in 2019, respectively. He is cur-
rently working toward the master’s degree with Singa-
pore Management University. His research interests
include personalized recommendation and FinTech.

Yew-Soon Ong (Fellow, IEEE) received the PhD
degree from the University of Southampton, U.K.,
in 2003. He is president’s chair professor in Com-
puter Science with Nanyang Technological Univer-
sity (NTU), and holds the position of chief artifi-
cial intelligence scientist of A*STAR, Singapore. At
NTU, he serves as co-director of the Singtel-NTU
Cognitive & Artificial Intelligence Joint Lab. His
research interest is in artificial and computational in-
telligence. He is founding EIC of IEEE Transactions
on Emerging Topics in Computational Intelligence

and AE of IEEE Transactions on Neural Networks and Learning Systems, IEEE
on Transactions on Cybernetics, IEEE Transactions on Artificial Intelligence
and others. He has received several IEEE outstanding paper awards and was
listed as a Thomson Reuters highly cited Researcher and among the World’s
Most Influential Scientific Minds.

Jie Zhang received the PhD degree from the Uni-
versity of Waterloo, Canada, in 2009. He is currently
an associate professor with the School of Computer
Science and Engineering, Nanyang Technological
University and Singapore Institute of Manufactur-
ing Technology, Singapore. He was a recipient of
the Alumni Gold Medal at the 2009 Convocation
Ceremony, which is awarded once a year to honor
the top PhD graduate from the University of Water-
loo. During his PhD study, he held the prestigious
NSERC Alexander Graham Bell Canada Graduate

Scholarship rewarded for top PhD students across Canada. His papers have
been published by top journals and conferences and received several best paper
awards. He is also active in serving research communities.

Authorized licensed use limited to: TU Delft Library. Downloaded on June 27,2023 at 12:06:40 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

