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A B S T R A C T

The parabolic growth rate constant (𝑘𝑝) of high-temperature oxidation of steels is predicted via a data
analytics approach. Four machine learning models including Artificial Neural Networks, Random Forest, k-
Nearest Neighbors, and Support Vector Regression are trained to establish the relations between the input
features (composition and temperature) and the target value (𝑘𝑝). The models are evaluated by the indices:
Mean Absolute Error, Mean Squared Error, Root Mean Squared Error and Coefficient of Determination. The
steel composition regarding Cr and Ni content and the temperature were the most significant input features
controlling the oxidation kinetics.
1. Introduction

High-temperature oxidation occurs at different stages of steelmak-
ing. The oxidation reaction can significantly influence the steel’s prop-
erties, including the near-surface composition, wettability, corrosion
performance, mechanical properties, etc. Therefore, knowing the oxida-
tion behavior of the alloys is of great importance. Currently, evaluating
the alloys’ high-temperature oxidation occurs through lengthy and
costly experimental trials. Hence, developing the capability of predict-
ing the oxidation behavior of steels in a variety of conditions is highly
desirable. Although analytical [1–3] and numerical [4–8] simulations
have significantly improved the high-temperature oxidation investiga-
tions, they are usually applicable for specific material compositions or
a given oxidizing condition such as exposure time and gas mixture
composition.

Facing the limitations of the conventional modeling approaches in
the field of materials science, together with recent improvements in
machine learning (ML) techniques, open a pathway to the use of data
analytics to predict the properties of materials [9–14]. Such algorithms
have many advantages in providing insight into complex experiments
on multi-component alloys. For instance, recent data analytics tech-
niques in the design and development of new materials lead to a lower
cost and can be considered as an alternative for experiments [13–15].

Despite the successful application of ML algorithms in the field
of materials science, very limited studies addressed predicting high-
temperature oxidation kinetics of alloys via data analytics approaches.

∗ Corresponding author.
E-mail address: s.agheian@tudelft.nl (S. Aghaeian).

In a recent work by Peng et al. [13] on NiCr-based alloys, a couple of
different ML approaches have been applied to an experimental dataset
to predict the parabolic growth rate constant (𝑘𝑝) of oxidation. Alloy
composition and temperature were the parameters, and 𝑘𝑝 in both
isothermal and cyclic oxidation was the target variable. The key input
features were identified by Pearson’s correlation coefficient (PCC) [16].
The oxidation temperature was found to have the biggest impact on the
parabolic constant in all cases. It was also observed that Cr content, as
the major alloying element in the studied alloys, had the most negative
correlation with 𝑘𝑝, i.e. reduces the oxide growth kinetic constant. This
agrees with previous studies, which showed that the presence of Cr
promotes the formation of an external chromia solid-state diffusion
barrier that slows down the oxidation reaction [17,18].

In another work by Bhattacharya et al. [14] ML algorithms were
applied to predict the high-temperature oxidation kinetics of Ti alloys
between 550 and 750 °C. The alloy composition, constituent phase of
the alloy, the temperature of oxidation, time for oxidation, oxygen
and moisture content, and mode of oxidation were considered as the
independent input features, and 𝑘𝑝 was set as the target value. When
the Gradient Boosting Regressor algorithm [19] was employed, a good
agreement was achieved between the experimental and the predicted
𝑘𝑝. Anirudh et al. [20] applied several ML models with a bottom-up
approach (i.e. focussed on a very specific range of features) to predict
the kinetics of elevated temperature cyclic oxidation of Fe-Cr and Fe-
Cr-Ni alloys between 650 and 800 °C in 10% water vapor. The amount
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of Ni and Cr, temperature, and time were considered the independent
input features, while the mass change was the target value. In that case,
CastBoost was found to give the best performance among all the ML
models. On the other hand, in a work by Taylor et al. [15], oxidation
kinetics for some grades of steels, as well as other corrosion-resistant
alloys, were investigated via machine learning models with a top-down
approach (i.e. including a large range of features). Therefore, the effects
of many features including the wide range of composition, temperature,
and gas environment were considered in the models. The models were
applicable for more varied oxidizing circumstances since they had
multiple features and a wide range for each, but they subsequently had
substantial prediction errors. Finally, they found Ni, Cr, Al, and Fe to
be the most significant elements controlling the oxidation kinetics.

Additionally, deep learning methods such as Artificial Neural Net-
work (ANN) models have significantly influenced the development
of materials and associated processes [21–27]. This is because these
models can deal with complex problems in materials science, where the
target value depends on a large number of variables. However, there
are distinct patterns that knowledgeable metallurgists can recognize
and comprehend. As shown by the work of Dewangan et al. [23] ANN
is applicable to predict the oxidation kinetics of high entropy alloys
(HEA). The composition of the alloys, oxidation time, and temperature
were chosen as input parameters, while the mass gain of the oxidized
sample was the output of the ANN model. Finally, it was shown that the
ANN model predicts the high-temperature oxidation behavior of HEA
in a consistent and precise manner. Kim et al. [24] analyzed the high-
temperature oxidation resistance of Ni-based superalloys using the ANN
model. Finally, although ML algorithms have been successfully applied
for predicting the oxidation behavior of several alloys, there is very
limited work on steels with a broad range of alloying element content.

Our literature review reveals no works on employing ML models for
predicting oxidation kinetics for a variety of steel compositions, in air.
Such high-temperature oxidation behavior is observed in the hot rolling
process, which involves exposing heated sheets to air to cool down,
which can have a substantial impact on the steel’s performance and
quality. In comparison to conventional steel development approaches
based purely on limited experimental investigations or physical-based
simulations, machine learning (ML) has the benefit of combining com-
putational tools with experiments to forecast such oxidation behavior,
having the potential to decrease development costs and time.

Here, a data analytics work is presented, which includes a corre-
lation analysis of the high-temperature oxidation of a wide range of
steels based on reported experimental data. In our work, the focus is on
predicting the high-temperature oxidation kinetics of different steels,
regardless of their phases, numerically represented by 𝑘𝑝. Because of
having complex oxidation mechanisms, a broad, physics-based simula-
tion of composition-dependent oxidation behavior is not yet feasible
for steels. Correlation analysis was performed by PCC to find the
interaction strengths between the input features (material and physical
descriptors) and 𝑘𝑝 statistically and rank them. Four widely used ML
models were employed: Artificial Neural Network (ANN), Random
Forest (RF), k-Nearest Neighbors (KNN), and Support Vector Regression
(SVR). The performance of the models in predicting the 𝑘𝑝 values was
evaluated by different metrics and discussed.

2. Methods

2.1. Dataset

Most of the reported experimental works on high-temperature ox-
idation of steels, focus on the steady-state parabolic scaling kinetics
where the oxide’s growth rate is controlled by diffusion. Therefore, as
a first step, a simple parabolic law (Eq. (1)) was chosen to describe the
high-temperature oxidation kinetics
(𝛥𝑚)2

= 𝑘 𝑡 (1)
2

𝐴 𝑝
Table 1
List of the alloying elements range in wt%, oxidizing condition, and dataset details.

Steel composition Fe (47.91–100), Mn (0–40), Cr (0–25),
Al (0–14.33),C (0–0.82), Si (0–7.2),
Ni (0–24.59), Cu (0–2.65), S (0–0.048),
P (0–0.22)

Commercial grade Crofer 22 APU, Crofer 22 H, SUS 310S,
SUS 430, AISI 304, AISI 430, AISI 439,
AISI 441, AISI 1018, HR3C, AFA, SIMP,
FHSS, HSLA

Temperature, °C 500–1200
Atmosphere Dry air
Input features Elemental composition in wt%, and

oxidation temperature
Target value, g2cm−4s−1 Parabolic growth rate constant

(𝑘𝑝 = 3.2 × 10−15–1.21 × 10−4)

Fig. 1. Temperature distribution of the dataset between 500 and 1200 °C. The values
on the bars show the portion of the data points in that range.

where 𝛥𝑚 is the mass gain in g, 𝐴 is the specimen surface area in cm2,
𝑡 is time in s, and 𝑘𝑝 is parabolic oxidation constant in g2 cm−4 s−1.
Parabolic growth rate constants, 𝑘𝑝, were collected directly from pub-
lished reports [3,28–56] where they were obtained from the mass gain
results provided by Thermogravimetric analysis (TGA). The steps to
get the parabolic growth rate constant are typically the same and
begin with plotting the mass gain data on a squared mass gain vs.
time plot. Then, a line is fitted to the linear part of the plot that
represents the parabolic growth, and the slope of the fitted line would
be the parabolic constant 𝑘𝑝. It is important to note that the dataset
preparation was a manual literature survey to obtain values for 𝑘𝑝,
without any extrapolation or interpolation. In this work, the focus is
on the effect of steel composition and temperature (as input features)
on oxidation kinetics 𝑘𝑝 (target value). It is noted that data from the
theoretical calculations were not included.

The collected dataset was tabulated for 76 different steel grades
exposed to dry air at temperatures between 500 and 1200 °C. Within
the data collection process, the dataset was visualized and studied
at different stages to fill in the missing points. Finally, from a large
amount of literature, 31 references were selected to prepare the dataset
of 162 data points. It is not claimed to be a comprehensive dataset,
but it will be shown later that it is enough to give precise quantitative
predictions. The steel composition ranges, experimental conditions, and
dataset details are shown in Table 1. The distribution of the dataset for
temperature is shown in Fig. 1 as an example. The detailed information
about the distribution of data for all of the features and the target value
is depicted in Fig. A.1 and Fig. A.2, respectively in the appendix. To
identify gaps in the experimental dataset and suggest experiments to
improve model predictions, ML can ultimately be effectively merged
with the automated design of experiment methods in future research.

Investigating the high-temperature oxidation of multi-component
alloys and, specifically, steels is a complex process that requires in-
formation about the thermodynamics and kinetics of the reaction [57].
The parabolic growth rate constant (𝑘 ) includes this information about
𝑝
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the material and conditions in high-temperature oxidation implic-
itly [13,14]. Such information encompasses the composition, tempera-
ture, gas mixture, etc. Since high-temperature oxidation in wet air has
a different mechanism [57], only data for dry air has been collected for
this work. ML algorithms utilize the collected data during the training
process to predict the target value (𝑘𝑝) for the testing data. However,
the values for 𝑘𝑝 were very small and it was difficult to visualize the
differences between the calculated values. Therefore, by applying a
logarithmic transformation (natural logarithm) of (𝑘𝑝), the target value
is converted. Therefore, the ML models in use will estimate the value
of ln 𝑘𝑝.

2.2. Correlation analysis and machine learning models

To identify the effect of each input feature on (𝑘𝑝) and the in-
teraction between different features, a PCC correlation analysis was
conducted. PCC calculates the magnitude of the linear relationship
between different features and allocates a value between 1 and −1.
Positive and negative values, respectively, show a correlation and anti-
correlation, while zero indicates no correlation. A correlation analysis
facilitates the training of the ML model with the top-ranking fea-
tures, which are the input features with the highest absolute value of
correlation with the target.

The dataset was split into training and testing sets in a range of 60%
to 95% and 40% to 5% of the dataset, respectively. As shown in Fig. A.3
in the appendix, smaller test sizes lead to high performances, but it is
not reliable since the models are not tested with a sufficient number
of data points and lead to unreproducible results. On the other hand,
larger test sizes reduce the size of the training such that the reliability of
the predictions is limited. A train and test size of respectively 80% and
20% were chosen as an optimum for reliable results. The data points
were randomly distributed to the training and test sets by applying
shuffling to the data before the split, which ensures the reproducibility
of the results.

Four different models were employed to predict the parabolic
growth rate constant (𝑘𝑝): (a) Artificial Neural Network (ANN) [21],
(b) Random Forest (RF) [58], (c) k-Nearest Neighbors (KNN) [59],
and (d) Support Vector Machine (SVM) [60]. The regressor models
of RF, KNN, and SVM were taken from Scikit-learn [61] sub-libraries
to predict the continuous values of the target value (𝑘𝑝). For ANN
implementation, Keras was used, which is the high-level library built on
top of TensorFlow [62]. Sequential and Dense models from the Keras
library were used to add dense Neural Network layers. In addition,
ReLU (Rectified Linear Unit) and Linear functions were employed
respectively in hidden layers and the output layer.

In the KNN, the average number of neighbors for a given data
point, or the k-nearest neighbors, is output by this non-parametric
regression model. RF is a supervised learning technique that leverages
the ensemble learning approach for regression. The ensemble learning
method combines predictions from various ML algorithms (trees) to
provide more accurate predictions than those from a single model. SVM
is a powerful algorithm that allows choosing the tolerance of errors,
both through an acceptable error margin (𝜖) and through tuning the
tolerance of falling outside that acceptable error rate. Linear Regression
(LR) [63] which is the most basic and commonly used predictive
analysis algorithm was also employed in this work. It fits a linear
equation to relate the input and output variables; however, the results
are only described in the appendix due to lower accuracy.

To cover a wider class of ML algorithms, Artificial Neural Networks
(ANNs) were used. ANNs are inspired by the biological nervous system
and use interconnected mathematical nodes, also known as neurons, to
describe complicated functional relationships. A typical ANN has input,
hidden, and output layers. Building blocks of each layer are neurons
that work as computational operation units. A neuron takes inputs
from previous neurons, multiplies them by weights, and finally adds
3

them up. Then this information is translated into output information S
by an activation function, and it can be used as input by other layers
of neurons. This process is called feed-forward propagation, which
generates the output layer. In addition, a back-propagation process is
needed to update the weight values and improve system performance.

Other than training and test sets, in ANN there is a validation set
that is different from the test dataset, and its role is to test the trained
model but within the training phase. During training, the model is
evaluated on the validation dataset after each epoch to see how well
it is generalizing to new, unseen data. For the ANN model, the data
points are randomly distributed between training, validation, and test
data sets with a 0.6 ∶ 0.2 ∶ 0.2 ratio, respectively.

2.3. Evaluation of models

The ML models mentioned above were trained with different pro-
portions of training data and by considering different numbers of
top-ranking features found via PCC analysis. Then, the performance
of each model was evaluated with four metrics [64]: (a) Mean Ab-
solute Error (MAE), (b) Mean Squared Error (MSE), (c) Root Mean
Squared Error (RMSE), and (d) Coefficient of Determination (R2) (see
Eqs. (2)–(5)),

𝑅2 = 1 −
∑𝑛

𝑘=1
(

𝑦𝑘 − �̂�𝑘
)2

∑𝑛
𝑘=1

(

𝑦𝑘 − �̄�
)2

(2)

MSE = 1
𝑛

𝑛
∑

𝑘=1

(

𝑦𝑘 − �̂�𝑘
)

(3)

MAE =
∑𝑛

𝑘=1 |�̂�𝑘 − 𝑦𝑘|
𝑛

(4)

RMSE =

√

∑𝑛
𝑘=1

(

�̂�𝑘 − 𝑦𝑘
)2

𝑛
(5)

where 𝑦𝑘 = measured 𝑘𝑝 value, �̂�𝑘 = predicted 𝑘𝑝 value, �̄� = mean 𝑘𝑝
alue, and 𝑛 = number of data points.

. Result and discussion

.1. Correlation analysis

The correlation coefficient between all the variables (input features
nd the target value) is presented in Fig. 2. While Fe content is the
alance of the remaining alloying elements as the base element, it is
mportant to note that Fe content is still utilized as an input feature
ecause ML algorithms only solve mathematical problems and do not
ecognize this correlation. The last row and the last column of the
atrix in Fig. 2 show the correlation between the features on the target

alue, and the absolute values show the magnitude of each feature’s
nfluence on the target value (see Section 2.2). The amount of Cr was
dentified to have the most significant negative impact on ln(𝑘𝑝) among

all the features. It was also found that the oxidation temperature had
the second-highest impact on the target value. Fe and Ni were the third
and fourth top-ranking features, respectively.

The findings from the correlation analysis were in agreement with
the current oxidation knowledge [57]. For instance, it is known that
increasing the amount of Cr in steels, promotes the formation of the
external chromia solid-state diffusion barrier, which results in a slower
oxidation reaction and a lower value of 𝑘𝑝 [65,66], which is consistent
with the big negative correlation value (−0.72) between Cr and ln(𝑘𝑝).

oreover, iron produces rapidly forming oxides, and it has the high-
st positive correlation with ln(𝑘𝑝) [67]. PCC also correctly identified
hat temperature has a high positive correlation with the target value
0.48). This is well-explained because increasing the temperature in the
arabolic regime – which is known to be controlled by diffusion – can
ccordingly lead to higher 𝑘𝑝 values [68]. It can also be observed in
ig. 2 that Ni has a large negative correlation with the target value.

uch correlation, which is due to the formation of protective oxides, has
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Fig. 2. Graphical representation of the correlation between the input features and ln(𝑘𝑝)
for the training set determined using the PCC method.

been seen and discussed before in the literature [20,57,67]. Moreover,
the relative effect of the absolute correlation values of different features
could also be analyzed. For instance, the bigger correlation value of
Cr-ln(𝑘𝑝) compared with temperature-ln(𝑘𝑝) was in agreement with the
results found in previous experimental [69] and machine learning [20]
works.

The aim of this correlation study is not only to acquire information
about how input features affect 𝑘𝑝, but also to implement it for finding
the top-ranking input features for ML model training and to study the
effect of this selection on model performance.

3.2. The performances of machine learning algorithms

Four different algorithms (ANN, RF, KNN, and SVM) are trained
and their performances have been evaluated by four metrics of MAE,
MSE, RMSE, and R2. In each of the employed models, there are several
hyperparameters that can be tuned. Some parameters such as the
number of considered top-ranking input features, and the test/training
dataset ratio are applicable for all of the employed models and can be
optimized for each separately. However, each model can have its own
specific hyperparameters as well. For instance, the number of trees in
RF, the number of neighbors in KNN, or the number of hidden layers
and nodes in ANN.

The final structure of ANN used in this study is shown in Fig. 3.
It can be seen that the four top-ranking features are considered to
be the input nodes. The developed ANN has one input layer with 4
neurons, three hidden layers with 128, 64, and 32 neurons, and an
output layer with 1 neuron. The linear activation function with Adam
optimizer [70] showed the best result in 1000 epochs [71]. An epoch
is a hyperparameter that determines how many times the learning
algorithm will run over the whole training dataset. Every sample in
the training dataset has had a chance to update the internal model
parameters once during an epoch.

The effect of the considered number of top-ranking features on the
performance of each model is shown in Fig. 4. The top-ranking features
are taken from the |PCC| ranking (the absolute values in Fig. 2). Results
indicate that, to varying degrees, the models are sensitive to the number
4

Fig. 3. Graphical view of the ANN model with the parameters used in this work.

Table 2
Performance comparison of ML models trained with four top-ranking features over
the mean absolute error (MAE), mean squared error (MSE), root mean squared error
(RMSE), and coefficient of determination (R2).

MAE MSE RMSE R2

RF 2.65 11.86 3.44 0.93
KNN 3.41 21.77 4.67 0.87
ANN 2.89 15.17 3.89 0.82
SVR 5.99 59.30 7.70 0.66

of considered features in training. ANN, RF, and KNN showed better
performances by reaching R2 > 0.9, while SVR could not surpass 0.7.
Generally, increasing the number of considered top-ranking features to
3 increased the performances of the models significantly. For SVR and
RF, considering more than 3 features did not considerably enhance the
efficiency of the models. On the other hand, KNN and ANN reached
maximum efficiency when using the top 7 to 10 features.

Furthermore, the different indices show approximately the same
trends in terms of the number of features’ influence on the perfor-
mances. While R-squared (Fig. 4(d)) shows a clear difference in the pre-
cision of the models (RF>KNN>ANN>SVR), the other indices (Fig. 4(a),
(b), and (c)) show a comparable performance for ANN, RF, and KNN.
However, it is worth mentioning that the computational cost for models
such as ANN is much more than SVR. In our work, the execution time
for the models was measured in the code and the approximate ratio
was 1 ∶ 1 ∶ 12 ∶ 2671, for SVR, KNN, RF, and ANN, respectively. So, in
(industrial) applications where the dataset is huge, the calculation time
is an important parameter in choosing the most efficient model.

From Figs. 2 and 4, it is clear that employing just 3 features makes
the predictions comparable to those made with all 11 features. In
other words, adding features with lower PCC absolute values did not
increase the accuracy of the predictions. Though, it is worth mentioning
that such observation is only based on the prepared dataset which is
made from the available experimental results on HT oxidation of steels.
Therefore, the results are limited to the included range of features and
not beyond that.

The performances of the employed ML models trained with four
top-ranking input features are indicated in Table 2. Regarding all four
indices, and for models trained with the four top-ranking features,
RF and SVR had the best and the worst performances, respectively.
It can be seen that ANN and KNN models show comparable perfor-
mances evaluated via different indices. For instance, the R-squared
value shows better performance of KNN compared with ANN, while
the other indices show the opposite.

The training and validation losses over time for the ANN model
are shown in Fig. 5. The training loss indicates how well the model is
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Fig. 4. The performances of the ML models (KNN, RF, SVM, and ANN) as a function of the number of top-ranking features evaluated by (a) MAE, (b) MSE, (c) RMSE, and (d)
R-squared indices.
Fig. 5. Comparison of training and validation losses in ANN model.

fitting the training data, while the validation loss shows how well the
model is adapting to the unseen data. The MAE metric is implemented
to evaluate the performance of the ANN model by calculating the
validation loss, and MSE is used to minimize the loss function and
determine the training loss throughout the training process. It is shown
that both losses are going down, which means that the predictions
are good and the error is decreasing (no under-fitting). On the other
hand, there is no divergence between the lines at longer times (higher
epochs), and the validation loss does not increase, which shows that
the ANN model is good at predicting the new data (no over-fitting).

For RF to perform at its best in this study, the top three features had
to be included; after that, the performance was virtually completely
independent of the number of features taken into account. The same
trend was seen for the RF model in a previous work [13]. Such a trend
is understandable because as an ensemble learning method, RF gives
varied importance to each feature during model training; as a result,
5

fewer important features would have less or even no contribution to its
performance. This leads to a performance that is not sensitive to the
number of features when the maximum accuracy is achieved.

The performances of all four models in predicting the target value
for the testing data points when they were trained with four top-
ranking features have been visualized in Fig. 6 . These plots show
the comparison between the predicted and actual 𝑘𝑝 values. The blue
lines depict the case when the actual and predicted values are identical
(perfect prediction), and the red dots are the testing dataset. All four
graphs show the predicted results from models tested with 20% of the
dataset, which means 32 data points. Therefore, having the red points
close to the blue line means a good prediction for the models. It can
be seen that all the models except SVR could reasonably predict the
𝑘𝑝 for high-temperature oxidation of steels. Furthermore, RF is clearly
generating more precise values for 𝑘𝑝. Similar to what was reported in
Table 2, it can also be seen in Fig. 6 that the performances of ANN and
KNN are relatively comparable. While R-squared shows slightly better
results for KNN, the other indices show significantly lower errors in
ANN predictions. Such a difference relates to the nature of the indices
and the way that they calculate the errors [64] (see Eqs. (2)–(5)).

A general summarizing schematic of this data-driven work is shown
in Fig. 7, from stating the problem to finalizing the predictions via the
trained ML models.

4. Conclusion

The kinetic data (𝑘𝑝) for high-temperature oxidation of a wide range
of steel grades, regardless of their phases, in dry air was extracted
from published data. Four different machine-learning models namely
ANN, RF, KNN, and SVR were employed to predict 𝑘𝑝 using the Phyton-
libraries: Scikit-learn and TensorFlow. The models were evaluated by
MAE, MSE, RMSE, and R-squared indices, and they were improved
by optimizing the hyperparameters to get their best performance. The
most significant features controlling the oxidation kinetics were the Cr,
Fe, and Ni content as well as the temperature. Moreover, the models
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Fig. 6. Actual values of experimental parabolic growth rate constants of high-temperature oxidation compared with values obtained from the ML models (ANN, RF, KNN, and
SVM), where all the models were trained with four top-ranking features and tested with 20% of the dataset (32 red dots).
Fig. 7. A general schematic of the steps taken in this work.
could successfully establish the relationship between the input features
(composition and temperature) and the target value (𝑘𝑝). Finally, it was
shown that including more than three features, did not significantly
improve the ML predictions. However, when trained with four top-
ranking features, RF was found to have the smallest error in predictions,
while KNN and ANN were shown to have almost the same prediction
6

accuracy. SVR showed the largest errors in predicting the target value.
The knowledge gained from this work can be useful in predicting
the oxidation behavior of newly designed steel grades at different
steps of the steel-making process where high-temperature oxidation can
happen. It is possible with the valuable quantitative information pro-
vided about the correlation values of different features. Furthermore,
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Fig. A.1. The distribution of the dataset for all the features. The X axes show the
normalized values.

the described method can be applied to datasets for other alloys, or
investigate the effect of other features such as the components of the
gas environment and their partial pressures on the kinetics of oxidation.
In the end, in order to discover gaps in the experimental dataset and
suggest experiments to improve the model predictions even further,
machine learning can be effectively integrated with the automated
design of experiment techniques.
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Fig. A.4. The performance of the LR model as a function of the number of top-ranking features evaluated by (a) MAE, (b) MSE, (c) RMSE, and (d) R-squared indices.
Fig. A.5. Actual values of experimental parabolic growth rate constants of high-
temperature oxidation compared with values obtained from the LR model where it
was trained with four top-ranking features and tested with 20% of the dataset (32 red
dots).
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