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Continuous Integration and Delivery (CI/CD) practices have shown several benefits for software development

and operations, such as faster release cycles and early discovery of defects. For Cyber-Physical System (CPS)

development, CI/CD can help achieving required goals, such as high dependability, yet it may be challenging

to apply. This article empirically investigates challenges, barriers, and their mitigation occurring when apply-

ing CI/CD practices to develop CPSs in 10 organizations working in eight different domains. The study has

been conducted through semi-structured interviews, by applying an open card sorting procedure together

with a member-checking survey within the same organizations, and by validating the results through a fur-

ther survey involving 55 professional developers. The study reveals several peculiarities in the application

of CI/CD to CPSs. These include the need for (i) combining continuous and periodic builds while balanc-

ing the use of Hardware-in-the-Loop and simulators, (ii) coping with difficulties in software deployment

(iii) accounting for simulators and Hardware-in-the-Loop differing in their behavior, and (vi) combining hard-

ware/software expertise in the development team. Our findings open the road toward recommenders aimed

at supporting the setting and evolution of CI/CD pipelines, as well as university curricula requiring interdis-

ciplinarity, such as knowledge about hardware, software, and their interplay.

CCS Concepts: • Software and its engineering→Maintaining software;

Additional Key Words and Phrases: Continuous Integration and Delivery, Cyber-Physical Systems, empirical

software engineering
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1 INTRODUCTION

Cyber-Physical Systems (CPSs) comprise heterogeneous software and hardware components
interacting with each other. They aim at automating operations in different domains, such as au-
tomotive, aerospace, healthcare, or railways. As it happens for any software system, CPSs contin-
uously evolve to cope with new customer requirements and technology changes. However, CPSs
require a tailored development and operation (DevOps) process and are more challenging to evolve
than conventional software [32, 51, 73, 74].

In such a context, adopting effective Continuous Integration and Delivery (CI/CD) prac-
tices off the DevOps menu is extremely relevant for setting the execution environment, such as
Hardware-in-the-Loop (HiL) or simulators. Even though CI/CD has been found to be effective
in introducing several advantages in software development, such as the reduction of release cy-
cles and the early discovery of defects [75], its application implies overcoming barriers and chal-
lenges [9, 33].

When enacting CI/CD for CPSs, it is expected that further barriers and challenges will arise. In
general, existing CI/CD technology cannot be applied to CPSs as is [39]. On the one hand, CPSs
demand suitable Verification & Validation (V&V) techniques, and the interaction with HiL or
the need to replace them with suitable mock-ups or simulators make the application of CI/CD
challenging at best. On the other hand, although for conventional software systems good and bad
practices for applying CI/CD have been defined [15, 85], for what concerns CPSs, the practice is
still immature to be able to do so. Specifically, the combination of (very diversified and evolving)
hardware devices and software, the complex execution scenarios, and the need for simulating hard-
ware components during some build stages introduce new facets that must be considered when
setting up a CPS development process, and particularly CI/CD pipelines for CPS development.

This article aims to empirically investigate the challenges and barriers practitioners encounter
while setting up and maintaining a CI/CD pipeline for CPSs, as well as the mitigation strategies
adopted to deal with them. Specifically, the study has been conducted through (i) semi-structured
interviews with 10 industrial practitioners involved in CPS development for eight different do-
mains (i.e., aerospace, automotive, energy, healthcare, railways, robotics, identification technology
(i.e., Radio Frequency IDentification (RFID), and acoustic sensors), (ii) by applying open cod-
ing [35] and card sorting [68] to the interview transcripts, (iii) by conducting a member-checking
survey within the same organizations involved in the interviews aiming at corroborating the rela-
tions between challenges/barriers and mitigation strategies, and (iv) by assessing the relevance of
the identified challenges/barriers and related mitigation through a survey involving 55 practition-
ers involved in CPS development for nine different domains.

We start by characterizing the CI/CD practices of the interviewed organizations, focusing more
on their build automation processes. In doing this, we target three aspects of CI/CD for CPSs,
namely (i) the pipeline setting, (ii) the involved phases (static analysis, testing, delivery, etc.), and
(iii) the usage and configuration of simulators and/or HiL. After that, we look at challenges and bar-
riers the organizations encounter, as well as mitigation strategies being adopted to deal with them.

The elicited set of challenges, barriers, and mitigation strategies are impactful by providing in-
sights to project leaders and developers, guiding them to configure CI/CD pipelines for CPSs, as
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well as to staff projects properly to coordinate resources with different skills and expertise and
acquire equipment. Furthermore, results highlight directions in which education for CPS develop-
ment must be improved. This includes not only covering interdisciplinary topics between software
development, measurements, and automated control but also a proper introduction to software
architectures and design principles, making CPS development flexible enough when switching
between simulators and HiL. Last but not least, we identify areas where further research is re-
quired, among others domain-aware decision making, the integration of simulators and HiL in
the pipeline, and further research in the area of test automation and flakiness detection/avoidance.
The specificity of each CPS not only makes some lessons hard to generalize (each pipeline tends
to be very different from others) but also poses challenges when leveraging Machine Learning

(ML) approaches upon developing recommender systems.

Article Structure. The rest of the article is organized as follows. As a basis for the study, Section 2
discusses the relevant literature. Section 3 describes the study methodology, whereas Section 4
reports and discusses the study results. Section 5 details the study implications, whereas threats to
the study validity are discussed in Section 6. Finally, Section 7 concludes the article and outlines
future directions.

The study material (after redacting interview transcripts) is available online [84].

2 RELATED WORK

This section discusses the literature related to (i) CPS development leveraged for the inception
of our study, (ii) CI/CD process, and (iii) CI/CD good and bad practices. Note that this is not an
exhaustive systematic literature review on the topic, but rather it points out papers discussing
challenges in CPS development and in CI/CD. Finally, it is important to highlight that although
challenges related to CPS development are already investigated from previous literature, to the
best of our knowledge there is very limited empirical evidence on how such challenges translate
when setting a CI/CD pipeline for CPS development.

2.1 Development of CPSs

CPSs are more complex and difficult to design, develop, test, and integrate than conventional soft-
ware systems [32, 51, 73, 74]. Specifically, Törngren and Sellgren [74] investigated how CPSs’ en-
gineering deals with the complexity of CPS design, and of the environment in which CPSs operate.
In this context, it is of paramount importance to perform run-time verification of safety require-
ments [27], as well as testing encapsulating Model-in-the-Loop (MiL) [66], Software-in-the-

Loop (SiL), and HiL [2]. With respect to previous studies, we investigate how CPS complexity
impacts the setting of CI/CD pipelines, and how developers deal with such complexity.

Considering the costs, risks, and complexity of conducting system testing in a real environ-
ment [12, 40], simulation is becoming one of the cornerstones in developing and validating CPSs.
CPS developers mainly rely on basic simulation models [29, 67], as well as rigid body [50, 86] and
soft body simulation environments [25, 62]. The usage of CPS simulation environments enables
automated test generation and execution [37, 54]. However, the limited budget allocated for test-
ing activities and the virtually infinite testing space pose challenges for adequately exercising the
CPS behavior [4, 20, 82]. We complement previous studies by looking at the challenges, barriers,
and related mitigation strategies when integrating and combining simulators and HiL in CI/CD to
support the development, V&V, and evolution of CPSs.

Related to DevOps applications in a CPS context, Park et al. [56] analyzed the use and chal-
lenges of the digital twin to enable DevOps approaches for cyber-physical production systems to
continuously improve them. Specifically, Park et al. identified challenges related to (i) discrepancies
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Table 1. Challenges in CPS Development from Previous Literature

Ref. CPS-Related Development Challenges

[74] Environment complexity, co-designing hardware and software
[27] Test generation/automation, verification of safety requirements
[2] Integration of MiL, SiL, and HiL
[12, 40] Where testing is performed (HiL vs. simulators)
[25, 29, 50, 62, 67, 86] Implementation of simulators
[4, 20, 82] Simulator challenges/adequacy
[52] Standards, long build, security, architecture, test environments of embedded systems
[56] Digital twin adoption in manufacturing and related design challenges

between models and their physical counterparts, (ii) integration between heterogeneous models
due to the complexity of CPSs, and (iii) security issues due to the tight coupling between the digital
twin and the physical environment. Instead of only looking at automating the production process,
we focus more on the CI/CD process for CPS development and evolution.

Finally, Mårtensson et al. [52] identified factors to consider for applying CI to software-intensive
embedded systems, such as complexity of user scenarios, compliance to standards, long build
times, security, and test environments. These factors represent real impediments for companies
that want to adopt CI for embedded systems. Although using different research methods, our
study is wider than that of Mårtensson et al. (10 semi-structured interviews, plus an external
survey with 55 participants vs. case studies with two companies) and considers the whole
CI/CD process from development to delivery to the customer side. Finally, although we confirm
findings from Mårtensson et al. [52], our study deepens the analysis of different CI/CD aspects
(e.g., setting, phases, and execution environment) for CPSs, and not only in relation to seven CI
cornerstones.

Table 1 summarizes the main challenges during CPS development, as stated in previous litera-
ture, that are used to drive our study, although we do not focus on specific implementation details
of simulators. We leverage the challenges identified by the aforementioned studies to devise the
interview guide, particularly those related to (i) the complexity of the underlying environment,
(ii) certification and compliance to standards, (iii) test automation, (iv) testing of safety require-
ments, and (v) MiL, HiL, and simulators.

2.2 CI/CD Process

Hilton et al. [34] found that CI is becoming very popular in open source projects. The latter is
also true in industry, even if Ståhl and Bosh [69, 70] found that there is not a uniform adoption
of CI in industry. Furthermore, Vasilescu et al. [75] showed that CI practices improve developers’
productivity without negatively impacting the overall code quality. Finally, Ståhl et al. [71], in a
study involving three companies, found that the lack of traceability may prevent the application
of CI in conventional software systems.

From a different perspective, Elazhary et al. [18] looked at the extent to which companies fol-
low the CI practices by Fowler and Foemmel [21] through interviews. Their results emphasized
differences among companies in terms of repository structure, testing automation, long build, and
deployment challenges. Although we share some goals with Elazhary et al., our study, and the
dimensions being investigated, relate to CI/CD application for CPS development. In a different
study, Elazhary et al. [17] used grounded theory to investigate human factors in CI. Even if our
study considers human factors, it is not focused on that.

Vassallo et al. [79] investigated, by surveying developers of a large financial organization, the
adoption of the CI/CD pipeline during development activities, confirming what is known from
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existing literature (e.g., the execution of automated tests to improve the quality of their product),
or confuting them (e.g., the usage of refactoring activities during normal development).

Finally, deepening the continuous delivery practice, Chen [10] analyzed 4 years of CD adoption
in a multi-billion-euro company, and identified a list of challenges related to CD adoption. Savor
et al. [64], instead, by analyzing the CD adoption in two industrial companies, found that it does
not negatively impact developer productivity even when the project increases in terms of size and
complexity.

Differently from previous studies, our goal is to shed light on the CI/CD process focusing on the
peculiarities of CPS development.

2.3 CI/CD Barriers and Bad Practices

Different authors studied barriers and/or challenges in adopting CI/CD. These were initially iden-
tified by Duvall et al. [13], and are related to the need for maintaining a fully automated build
process, handling dependencies, having different levels of builds, and coping with different target
environments.

Hilton et al. [33] studied barriers developers encounter when moving toward CI (i.e., quality
assurance, security, and flexibility). Olsson et al. [55], instead, looked at the challenges faced while
migrating toward CD: the complexity of the deployment environment, the need to achieve timely
delivery, and the lack of a complete overview of all the development projects.

Previous research also found that CI/CD may be wrongly applied, leading to bad practices.
Specifically, CI/CD antipatterns have been defined by Duvall [15], and empirically elicited by Zam-
petti et al. [85] from interviews and Stack Overflow posts. Our study is complementary to that.
although, where appropriate, we compare the practices observed in our context (CPS specific)
with bad practices recommendations from previous studies. Researchers have developed different
kinds of tools to detect and remove antipatterns from CI configuration files [23, 78], analyzing the
pipeline aging by observing its execution [77], skipping builds [3], or coping with security-related
issues in infrastructure-as-code [60].

To the best of our knowledge, there is no such broad investigation on the application of CI/CD
in CPS development and evolution, as well as the challenges and barriers faced together with
mitigation strategies to overcome them.

3 EMPIRICAL STUDY DEFINITION AND PLANNING

The goal of this study is to investigate the CI/CD practices for CPS development, to identify chal-
lenges and barriers encountered in such practices, together with mitigation strategies adopted to
overcome them. The perspective is of researchers interested to support developers in configuring
CI/CD pipelines for CPSs, and practitioners setting, using, and evolving CI/CD pipelines for CPS
development. The context from which we have inferred the set of challenges and barriers with
related mitigation strategies encountered when setting or evolving CI/CD pipeline for CPS devel-
opment consists of 10 organizations developing CPSs for eight different domains. To assess the
identified set of challenges/barriers and related mitigation strategies, we have surveyed 55 practi-
tioners (not involved in the first step of this study) developing CPSs for nine different domains.

We start by creating organizational profiles by looking at the CI/CD practices adopted by the
interviewed organizations, and in general all the practices the organizations are adopting to auto-
mate different stages of a build. Specifically, we look at the conditions that determine (i) the setting
of the CI/CD pipeline, such as whether an incremental build is used, when the build is triggered, or
whether build matrices are used; (ii) the phases instantiated in the pipeline, such as static analysis,
various testing levels, or deployment; and (iii) the use of simulators and HiL in the context of the
CI/CD pipeline.
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Fig. 1. Study methodology.

The study addresses the following two research questions:

• RQ1: What are the challenges and barriers respondents encounter, and how do developers deal
with them? After having characterized the CI/CD and build automation practices, we inves-
tigate the challenges (e.g., the need to cope with a slow build or flakiness, or with phases
not easy to automate) and barriers (e.g., limited availability of software and/or hardware
resources) encountered by the interviewed organizations when dealing with the setting or
evolution of the CI/CD pipeline for CPS development. Furthermore, we highlight the strate-
gies (e.g., to adopt a pipeline that relies on both simulators and HiL in different build stages)
adopted by the interviewed organizations to deal with challenges and barriers. We vali-
dated the relations between challenges/barriers and mitigation strategies through a member-
checking survey with the same interviewees or practitioners belonging to the same team of
the interviewees involved in the semi-structured interviews.
• RQ2: How relevant are the identified CI/CD challenges/barriers and their mitigation for prac-

titioners involved in CPS development? In the previous research question, we identified a
set of challenges and barriers with related mitigation strategies as experienced by our in-
terviewees; however, this research question aims at performing an external validation by
surveying practitioners involved in the setting, evolution, or usage of a CI/CD pipeline for
CPS development.

The study methodology used for addressing the research questions is depicted in Figure 1 and
described in the following. After having recruited participants be involved in the semi-structured
interviews through personal knowledge, we conducted the interviews and transcribed their con-
tent. Note that since this is an exploratory study, we prefer to rely on convenience sampling, as
previously done in the literature [18, 33]. This is because practitioners involved in CPS develop-
ment represent a hidden population, and therefore we did not have a sampling frame [8]. The latter
helps us conveniently reach a suitable number of study participants. After that, we performed an
incremental (in four steps) open coding [35] of the transcripts, discussing the independent cod-
ing of multiple annotators, solving conflicts, and creating, through a card sorting strategy [68],
categorizations for practices, as well as for barriers, challenges, and mitigation strategies. The re-
lationships between challenges/barriers and mitigation strategies have been validated through a
member-checking survey, and finally we performed a further survey to validate our findings be-
yond the interview context.

3.1 Data Collection: Semi-Structured Interviews

We defined the interview structure through an iterative process, which started from the existing
knowledge on the topic summarized in Table 1 (see Section 2). From such knowledge, all theoretical
pending points were distilled and matched with interview structure areas and questions for each
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Table 2. Interview Structure

Section Content

Overview Company description, domain, programming languages
Respondent background and role

CI/CD pipeline structure Phases and steps
Tools (versioning, build automation, CI/CD, use of containers)
V&V approaches
Deployment

Simulators and HiL Simulator development/acquisition
Simulator/HiL integration in the pipeline
Simulators vs HiL tradeoffs

ML-based components In the developed software
In the pipeline

CI/CD pipeline configuration Pipeline stability
Build strategies
Triggering

Conclusion Challenges
Barriers
Expected benefits

interview structure area. As summarized in Table 2, we start with demographics about the orga-
nization and the interviewee, and get a first glance at the development and lifecycle management
practices [5] adopted in the context of interest. Then, we gather data about the pipeline structure
and technology, paying particular attention to V&V and deployment. We then explore the usage
of simulators and HiL. We also investigate the presence of any ML-intensive components to be
automated (e.g., trained/tuned) or executed by the pipeline over any CPSs’ software artifact, or,
conversely, the use of ML and Artificial Intelligence (AI) for pipeline automation (e.g., as part of
the testing oracle)—that is, AIOps [11]. After that, we investigated how the interviewees config-
ure the overall CI/CD pipeline in terms of build triggering strategies and the possibility to handle
different pipeline configurations, each one environment specific. The interview ends with general
questions about the main benefits achieved, barriers encountered, and challenges to tackle when
configuring and evolving the CI/CD pipeline.

Interview Participant Selection. The interview participants have been selected based on personal
knowledge, with the goal of identifying experienced practitioners over the theoretical constructs
(CI/CD pipelines for CPS) under investigation. The resulting study size (10) is not particularly
high, yet it is on the same order of magnitude as similar interview-based studies on CI/CD [18, 33]
(although the study by Hilton et al. was followed by a larger survey). It has to be considered
also that, differently from previous studies, we targeted a very specific development domain and
technology (i.e., application of CI/CD for CPSs in industrial settings). After participants accepted
our invitation, we gave them an overview of the questions to expect in the interview, to allow
them to gather any additional information.

Table 3 summarizes demographic information about organizations and interviewees involved
in the study. Five out of 10 organizations are large (i.e., more than 1,000 employees), 1 is medium
(i.e., between 50 and 1,000 employees), 2 are small (between 10 and 20 employees), and 2 are micro
(fewer than 10 employees). Furthermore, the sample covers eight different domains: aerospace, au-
tomotive, energy, healthcare, railways, robotics, identification technology (i.e., RFID), and acoustic
sensors. Finally, the participants’ professional experience in the CPS field varies from 3 to 25 years,
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Table 3. Participant Demographics

OrgI D

Organization
Role

CPS

Domain Size Exp. (Y)

O1 Aerospace Small R&D Manager 8
O2 Healthcare Large DevOps Architect 18
O3 Acoustic Sensors Small SW and HW Integrator 6
O4 Robotics Medium Team Leader 7
O5 Automotive Large R&D Manager 20
O6 Aerospace Large R&D Manager 20
O7 Railways Large SW and HW Integrator 10
O8 Railways Micro Team Leader 25
O9 Identification Technology Micro Software Engineer 3
O10 Energy Large Project Leader 5

with varying job titles, and all of them are currently involved in the configuration of the CI/CD
pipeline.

As it will be clearer later, we intentionally selected participants having different maturity levels
in the implementation of a CI/CD pipeline for CPSs. In other words, we also included organizations
that, although having experience in setting CI/CD pipelines, only partially automated CPS builds,
without having a full-fledged CI/CD pipeline. This allowed us to understand, in those cases, how
they automated certain phases, as well as the reasons they are still facing challenges in having a
complete CI/CD pipeline.

Conducting Interviews. Interviews were conducted using a videoconferencing system, by one
researcher (with the support of one or two other researchers), following an order based on in-
terviewees’ availability. Before starting the interview, the interviewer recalled study goals and
gathered consent for recording. The interview structure was followed rigorously, varying only the
level of detail over different areas of the interview based on the provided answers. For instance, if
a participant mentioned the use of simulators, we asked deeper questions on the topic, whereas
we skipped questions not applicable to a given participant. It is important to remark that inter-
views are treated as independent from each other, meaning that questions were not adjusted over
different interviews. This is because, as shown in Table 3, the involved organizations cover a broad
range of domains, and the main goal was to achieve a similar understanding among those domains.

Creating Transcripts. After interviews have been completed, a researcher transcribed the audio,
creating a document organized into sections as shown in Table 2. The transcripts contain a total
of 15,329 words and 787 sentences.

3.2 Data Analysis from Interview Transcripts

Two authors, experts of the domain (hereinafter referred to as “coders”), independently used on-
line spreadsheets to assign codes (i.e., open coding) to sentences in the transcripts. The coding
was carried out following the approach illustrated by Hoover [35] (i.e., annotating a code near sen-
tences of the transcript). A code is defined as a mnemonic label identifying a concept defined in
a text fragment (e.g., by applying the label ‘TEST’ to any part of text reflecting a software testing
activity). Wherever appropriate, the coder added a memo that could be leveraged to better explain
the observed phenomenon, as well as to identify possible relationships between codes dealing with
different aspects of the CI/CD pipeline setting and evolution.

Open coding has been performed over four subsequent sessions by arranging the 10 interview
transcripts into four groups. Each group included two, three, four, and one interview, respectively.
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After each coding session, the coders held a discussion meeting, in which similar codes created
by multiple coders were merged, and conflicts were resolved. After each round, we computed the
Krippendorff α [45] to determine the achieved level of agreement. The obtained α values for the
four iterations were 0.65 (close to the minimum acceptability of α = 0.66 [45]), 0.71, 0.69, and
0.86 (substantial agreement). Starting from the second iteration, the coders could reuse, through a
drop-down cell, codes created during previous iterations, or create new ones. Note that to further
limit agreement by chance, each code annotation was reviewed during the meetings, not just the
disagreements.

During the discussion meetings, broad groups of codes were also defined. For instance, we dis-
tinguished codes belonging to the CI/CD pipeline from those related to the development process.
In addition, we started grouping codes belonging to different phases of the pipeline, and codes
related to challenges, barriers, and mitigation strategies. Such a categorization started during the
first discussion meeting and then was refined over the next ones. After the first two sessions of
the open coding (after the first session the set of codes was too immature for this purpose), three
researchers iteratively produced—by adopting a card sorting strategy [68]—the first version of a
mind map grouping codes into categories. Such a mind map has been used as a support to ease
the subsequent open coding phases and to evaluate the extent to which non-leaf nodes were satu-
rated. Note that we do not expect a full saturation [63] in this study, due to the high diversity of
the considered application domains. The mind map was then refined after each subsequent coding
phase.

Overall, we identified a set of 179 codes, which led to the construction of a categorization of
codes explaining the phenomenon, organized across 43 high-level categories.

Finally, the two coders performed three iterations over the transcripts, codes, and memos to de-
rive relations between different codes. For instance, it is possible that process constraints (e.g., the
need to use a specific type of simulator or tool imposed by the domain, or to adopt certain coding
standards) introduce challenges while setting the pipeline (e.g., the need to cope with phases not
easy to automate, or slow build and flakiness) that may be addressed by relying on a particular mit-
igation strategy (e.g., push small changes when using incremental builds). As an example, when
talking about flaky behavior experienced in the build process, O4 mentioned: “of course, we have
some retry for network issues,” whereas “in case of resources problems we do not have retries, but the
pipeline maintainers can open issues aimed at solving the problem.” The outcome of this step con-
sists of 90 relations from 128 sentences. We will present how different codes relate to each other
and are spread among different organizations through storytelling.

3.3 Member-Checking Survey to Validate Relations Between Challenges/Barriers and

Mitigation Strategies

To verify our understanding of how the interviewed organizations act to address the challenges
and barriers encountered while setting and maintaining the CI/CD pipeline for CPS development,
we conducted a member-checking survey by involving the interviewees themselves, or people
working in the same team of the interviewees. Asking outside the same team, especially in large
organizations, would have reached completely different projects or even different domains, even
unrelated to CPS, making the member-checking worthless.

The survey has been designed by following guidelines for survey design and operation from
social science [31] and software engineering [41–44, 57]. Specifically, the survey contains:

• An introduction explaining the study goals;
• A set of 10 sections in which we validate the relations between the 10 challenges/barriers

for which we found at least one mitigation strategy from the transcripts; and
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• A demographic section in which we asked the participant the application domain, the role
within the organization, the years of experience in CPS development, as well as information
about the CI/CD pipeline (i.e., (i) whether or not the organization has a CI/CD pipeline in
place, (ii) years from its introduction, and (iii) how the participant interacts with it).

Since the main goal of the survey is to validate our correct understanding of the chal-
lenges/barriers and related mitigation strategies, we asked the participants to provide their per-
sonal contacts (among them the name of the organization) mainly for traceability purposes.

For each section in the survey, we start by asking whether or not the challenge/barrier has been
faced at least once by the team they are working with. Specifically, instead of using a yes/no ques-
tion, we added a third option aimed at highlighting those cases where the challenge/barrier cannot
be encountered due to the development process adopted by the organization. For instance, if an
organization does not use HiL in its development process, it will never experience problems due
to the high cost or lack of scalability of the hardware devices. If the challenge/barrier has been
encountered at least once within the organization, we list a set of questions, each one aimed at in-
vestigating the adoption of the identified mitigation strategy to overcome the previously presented
challenge/barrier. Specifically, the respondent could choose between three different options: (i) yes,
and we used it, (ii) yes, but we never used it, and (iii) no. Two out of 17 questions dealing with mit-
igation strategies provide only two options: (i) yes, it happened, and (ii) no, it never happened. At
the end of each section, respondents could use an optional free comment field to provide additional
mitigation strategies adopted for overcoming the related challenge/barrier.

The questionnaire was administrated through Survey Hero,1 and we kept the questionnaire open
for 12 weeks. Note that nobody reported having particular issues (e.g., privacy issues) with the
used survey administration tool. Furthermore, because of constraints imposed during the survey
administration, we had to keep it anonymous.

After closing the survey, we obtained 11 responses from the 10 organizations involved in the
semi-structured interviews. Specifically, for O5, we obtained two different responses, even if one
of them did not provide demographic information. Among the 10 respondents providing their per-
sonal contacts, four of them have also participated in the semi-structured interviews. Furthermore,
4 respondents are R&D managers, 3 are software and hardware integrators, 2 are DevOps archi-
tects, and 1 is a DevOps QA engineer. In terms of years of experience with CPS development, 5
respondents have between 1 and 5 years of experience, 2 have between 5 and 10, and the remaining
2 have more than 10 years. Seven out of 9 participants (the ones answering this specific question)
declare that their organization already has in place a CI/CD pipeline used while developing CPSs (1
introduced it less than one year ago and 1 has a mature pipeline introduced more than 5 years ago,
and 5 between 1 and 5 years ago), and in terms of the way they interact with the pipeline, among
the 6 participants who answered this question, 1 only uses the CI/CD pipeline, 2 are involved in
its setting and maintaining, and 3 set, maintain, and use it for their development tasks.

3.4 Evaluation Through an External Survey

To address RQ2, we conducted a survey involving practitioners using (or trying to set up) a CI/CD
pipeline for CPS development in their organization. To recruit participants, we used two different
sources:

(1) Snowball sampling [30], where we shared the survey link to some personal contacts
and encouraged them to indicate us further participants. This choice has been dictated
because, although we had a relatively limited set of contacts reachable with our knowledge,

1https://www.surveyhero.com/.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 3, Article 73. Pub. date: April 2023.

https://www.surveyhero.com/


Continuous Integration and Delivery Practices for Cyber-Physical Systems 73:11

snowballing could help us reach the relevant people (those involved in CPS development
by relying on a CI/CD pipeline).

(2) An infrastructure for recruiting survey participants, namely Prolific.2 This platform allows to
reach additional participants by paying a small fee. The platform has a participant screening
facility (we required participants to have at least a bachelor’s degree in computer science
or similar, and knowledge about relevant software development technology, including
versioning, monitoring, virtualization, and testing). In addition, similarly to what was done
in the member-checking survey, we collected further information about CI/CD competences
to further filter participants. At the same time, we are aware that with Prolific, we have less
control over the participants’ reliability than with snowballing. To mitigate this problem,
our online package contains separate results belonging to the snowball sub-sample and the
Prolific sub-sample.

The online survey presented to the participants has (i) an introduction explaining the study
goals (i.e., to assess a catalog of challenges and barriers concerning the setting and maintaining
of a CI and CD pipeline for CPS development); (ii) 14 sections in which we validate challenges,
barriers and mitigation strategies; and (iii) a demographic section similar to the one described in
Section 3.3.

We started by asking, for each challenge/barrier (properly grouped in categories), whether they
have ever encountered it as a factor preventing/limiting the setting up of a CI/CD pipeline, or, if the
participant did not encounter it, whether she perceives the challenge/barrier as a real impediment.
Specifically, the respondent could choose between four different options: (i) yes, it is relevant (and
I encountered it), (ii) yes, it is relevant (but I never encountered it), (iii) no, I do not consider it
as relevant, and (iv) does not apply to my context. If at least one of the challenges/barriers in the
category was felt as relevant to the respondent, the survey shows a new section asking about the
mitigation strategies used (or felt as relevant) to address the previously selected challenges/barriers
by using a multiple choice answer. Specifically, the respondent could choose among the mitigation
strategies we obtained as a result of RQ1, but could also add new (unseen) mitigation strategies.
Finally, the survey contains an open-ended question aimed at collecting other challenges/barriers
that did not apply to the 10 interviewed organizations.

Also in this case, the survey has been administrated through Survey Hero, and nobody reported
having particular issues with this administration tool. For the snowball sample, the questionnaire
has been left open for 1 month, and due to constraints imposed during the survey administration,
we kept it anonymous. For what concerns Prolific, we obtained the requested responses within the
same days the survey has been opened.

In the end, we obtained 19 responses from the snowball sampling and 50 further responses from
Prolific. However, through a screening of the participants’ answers, we discarded 14 responses
from Prolific—that is, (i) it was difficult to infer whether or not the participant works for CPS
development (e.g., education or applications for cosmetic stores), and (ii) the participant declares
to not have a CI/CD pipeline in place within the organization, and at the same time declares that
the CI/CD pipeline has been adopted only recently. As a result, we obtain a final set of 55 valid
responses covering nine different application domains (as shown in Figure 2).

Among the respondents providing demographic information (51), in terms of the role played in
their organization, there are 23 software and hardware integrators, 13 R&D managers, 7 DevOps
architects, 5 software developers/testers, 1 project manager, and 1 CTO (chief technology officer).
In terms of years of experience with CPS development, 19 respondents have less than 1 year of

2https://www.prolific.co.
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Fig. 2. CPS domains from the external validation survey.

experience, 27 between 1 and 5, 2 between 5 and 10, and the remaining 3 more than 10 years.
Forty-seven out of 51 respondents declare that their organization already has in place a CI/CD
pipeline used while developing CPS (19 introduced it less than 1 year ago, 7 have a mature pipeline
introduced more than 5 years ago, and 21 between 1 and 5 years ago). Finally, in terms of the
way our respondents interact with the pipeline, 31 only use the CI/CD pipeline, 6 are involved
in its setting and maintaining, and the remaining 10 set, maintain, and use the pipeline for their
development tasks. Finally, among the respondents who declare that their organization does not
have a CI/CD process in place for CPS development, 3 declare being involved in setting it.

4 STUDY RESULTS

In the following, we report and discuss the results addressing the RQs defined in Section 3. To
properly contextualize challenges, barriers, and their mitigation strategies, it is important to sum-
marize the development process of the interviewed organizations. Specifically, Section 4.1 briefly
describes, for each organization participating in the semi-structured interviews, the CPS develop-
ment process, focusing more on the adoption of CI/CD pipelines and, in general, on their level of
build automation. The interested reader can find more details in the appendix.

4.1 Contextualization: Organization Profiles

Table 4 provides an overview of the main analyzed dimensions for the 10 organizations considered
in our study. In the following, we briefly describe them.

4.1.1 O1 (Aerospace). O1 is involved in V&V tasks for aerospace software (i.e., on-board soft-
ware for satellites), hence their CI/CD pipeline is only for V&V and not for development. The stan-
dards in the aerospace domain enforce the adoption of conventional programming languages (i.e.,
“We mainly use ANSI C-99 following the MISRA rules” ) as well as the need for certifying software.

O1 started to adopt CI/CD practices for CPSs less than 1 year ago. Due to the application domain
and the related standards and certification constraints, the pipeline compiles the software provided
and developed by the customer, relies on SonarQube for static code analysis checks, and executes
unit and robustness tests to “check how the system behaves/reacts in the presence of unexpected
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Table 4. Summary of the CPS Development Process Adopted Within the 10 Interviewed Organizations

(i.e., OI D )

Property
Organizations

O1 O2 O3 O4 O5 O6 O7 O8 O9 O10

Prog. Language C
C# C C++

RTJ
C

C
C C# Java

C++ C++ Python C++ C++ Java Python

Pipeline Maturity < 1 [1, 5) ✗ — < 1 — [1, 5) ✗ ✗ ≥ 5

Phases

Static Analysis ● ● ✗ ● ✗ ● ❍ ❍ ✗ ●
Unit Test ● ● ❍ ● ● ● ● ❍ ◗ ●
Int. Test ✗ ● ❍ ● ✗ ● ● ❍ ◗ ●
System Test ✗ ● ✗ ● ✗ ◗ ◗ ❍ ❍ ✗
Non-Func. Test ● ◗ ❍ ❍ ◗ ❍ ◗ ❍ ◗ ●
Deploy ✗ ● ◗ ● ● ● ● ◗ ◗ ●

Triggering
Continuous ✓ — ✓ ✓ ✓ ✓ — —
Incremental ✓ — — — ✓
Nightly ✓ ✓ — ✓ ✓ — —

Pipeline Config.
Env. Stable

Domain
— Stable —

Device Device
— — Stable

specific specific specific
Staged

✗ ✓ — ✗ ✗ ✗ ✓ — — ✗
Builds

Mocking ✗ ✗ — ✗ ✗ ✗ ✗ — — ✓

Simulators Ext. Int. — Ext. Int. Int. Int. Int. Int. Int.

HiL ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Containerization VMs — — —
—

✓ — ✓ — ✗ ✗

Docker — — —
Deploy

✗ ✗ — — Deploy HiL Deploy
and HiL

The ✓ (✗) occurs when the property (does not) apply to the organization, the — represents cases where the property is

not applicable/available for the organization, ● means that the phase is automatized within the pipeline, ◗ means that

the phase is automatized but not included in the pipeline, and ❍ means that the phase is done manually.

inputs.” The triggering of the pipeline is almost manual, even if there are scheduled nightly builds
for running test suites requiring a long time to complete.

Finally, O1 cannot involve HiL in the pipeline, as it would require a clean room not accessible
from the outside. Instead, it relies on third-party simulators provided by the customer, reducing
the costs/efforts needed to develop the simulators from scratch, as well as guaranteeing the trust-
worthiness of the outcome being produced.

4.1.2 O2 (Healthcare). O2 is a large organization involved in the healthcare domain. It adopts
conventional programming languages (i.e., mainly C# and C++ during the development process).

O2 has a CI/CD pipeline in place for CPS development that was introduced 4 years ago, and they
are still improving it. Furthermore, based on its application domain, O2 is constrained to “follow
medical application frameworks providing a base set of rules in terms of how to build applications
and how to integrate them.”

O2 adopts both incremental and nightly builds. Nightly builds leverage HiL and run three differ-
ent types of testing, namely unit/component, sub-system, and system testing, whereas incremental
builds leverage self-developed simulators to provide developers fast feedback about the impact of
their changes (i.e., only a subset of the whole set of functional tests are executed). Furthermore,
both incremental and nightly builds run static code analysis tools. Finally, nightly builds imply an
automated deployment on a “real” Computed Tomography (CT) scanner (i.e., “physical systems
that are equivalent to the real hardware in the CT scanner but not connected to anything around it
which has a simulator running on it.”
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4.1.3 O3 (Acoustic Sensors). O3 is involved in CPS innovation for the industry, among others,
the development of the SPL Noise Meter Board, by using conventional programming languages
(i.e., Python for testing and C and C++ for micro-controllers development). Each team is composed
of both software and hardware experts who work together.

O3 does not have a CI/CD pipeline for CPS development; however, the deployment is fully au-
tomated, whereas the testing is manual (i.e., impossibility to automatically test acoustic signals).
Finally, at the moment, O3 only uses real hardware devices, yet they wish to include simulators in
their CI/CD process.

4.1.4 O4 (Robotics). O4 is involved in the development of autonomous robots, and similarly to
O3, each team accounts for both hardware and software experts. In their development process,
O4 mainly adopts C++, together with Python for users’ interfaces and for interacting with the
hardware devices.

O4 has a fully containerized (using Docker) pipeline for CPS development. It relies on continuous
and nightly builds for running regression testing activities on already packaged components and
for deployment to the customers. Furthermore, continuous builds also execute static code analysis
tools to inform developers about code quality degradation, and unit tests relying on simulators. The
application domain does not introduce certification constraints, whereas it hinders the automation
of non-functional testing within the pipeline. Finally, O4 relies on third-party simulators and HiL
into different stages of the whole CI/CD process.

4.1.5 O5 (Automotive). O5 is a large organization operating in the automotive domain working
on the software-focused driving platform. This is the only organization in our study relying on real-
time languages (i.e., real-time Java to cope with scheduling requirements of embedded systems).

O5 already has a CI/CD pipeline in place mainly for deployment purposes, even if it is working
on improving it. However, unlike the others, O5 relies on virtual machines instead of using Docker
containers. Moreover, O5 does not test all the developed modules together since it “deploy[s] indi-
vidual bundles to a platform.”

Finally, since O5 develops software for embedded entertainment in the automotive domain, the
HiL is only available for a final validation on the customer’s side, so most of the work is done
relying on virtual environments.

4.1.6 O6 (Aerospace). O6 operates in the aerospace domain, and it is mainly involved in devel-
oping and refining the routing algorithm for the FRA (Free Route Airspace). Similarly to O1, it
relies on conventional languages: “C and C++ [are] used for the back-end.”

O6 already has a CI/CD pipeline including static code analysis, unit testing, integration testing,
and deployment. Similarly to O1, it is required that the developed code satisfies strict certification
requirements that are mainly checked by relying on code coverage tools. However, differently from
other organizations, O6 does not rely on nightly builds, meaning that also time-intensive tasks are
executed at each change: “even the slow builds are continuously built.” Finally, the pipeline provides
a monitoring mechanism for what concerns aspects of the real-time operating system such as
scheduling and memory that “gives us the possibility to collect feedback/evidence that may help us
in obtaining the certifications.”

With regard to HiL and simulators, O6 relies on both, however it does “not have simulators and
HiL in the same pipeline mostly for certification issues.”

4.1.7 O7 (Railways). O7 is involved in delivering software for railways (i.e., TCMS (Train Con-
trol Management System)). In terms of programming languages being used, the interviewee men-
tions the need of adapting the programming language to the device on which the software has to
be executed.
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O7 already has a CI/CD pipeline in place for CPS development that, at the moment, is in a
continuous improvement state. Based on the application domain, O7 adopts staged builds following
the “green-build rule.” In the first stage, the build process is executed on a virtual machine, and in
the presence of a green status, all the components are deployed together, enabling the execution
on the virtual train. In the presence of a green status, it is possible to move to the next stage that
relies on the hardware test track, “where [there is] the whole set of devices and even some more that
[are not] in the virtual train.” Finally, in the presence of a green status, it is possible to run the last
stage relying on a real train. All the stages include functional testing, whereas the deployment is
automated only for the first stage. Based on the previous statements, it is possible to conclude that
O7 adopts both simulators and HiL in different stages of the build process, with the use of HiL
occurring only in the last stage of the pipeline.

4.1.8 O8 (Railways). O8 is involved in the railways domain (i.e., the development of a specific
component used for transmitting data between on-board and ground applications). O8 uses C and
C++ (i.e., conventional programming languages), and it has strict certification requirements (e.g.,
compliance with the railway standards and specifications).

O8 does not have a CI/CD pipeline in place for CPS development and it has, in general, little
automation in the development process (i.e., only the adherence to standards and specifications
is automated). Finally, due to the high cost of the hardware devices in this particular domain, O8

mainly relies on simulators that are self-developed. However, once per week, O8 performs a testing
session with a real “train running in a real environment with real traffic.”

4.1.9 O9 (Identification Technology). O9 is involved in “develop[ing] software relying on identifi-
cation technologies such as RFID [Radio Frequency IDentification], Bluetooth low energy or bar codes”
relying on conventional programming languages such as Java and C#.

Due to a lack of culture for setting a pipeline dealing with sensors and actuators, O9 does not
have a CI/CD pipeline for CPS development. However, the testing phases are almost fully auto-
mated. For what concerns the deployment of CPS-related software, O9 relies on Docker for creat-
ing images that are manually deployed onto the servers. The development process also features
a monitoring component for the internal development platform and customers’ devices, to notify
about anomalies and errors, as soon as they occur. Finally, the development process considers both
(self-developed) simulators and HiL.

4.1.10 O10 (Energy). O10 is involved in the development of prototypes and proof of concepts
for the energy domain. It has a mature (i.e., introduced in 2016) pipeline for CPS development that
uses conventional programming languages, mostly Java and Python.

Other than having a compilation phase, the CI/CD pipeline is aimed at executing static code
analysis tools and linters, unit, and integration tests, followed by a deployment phase where the
packaged version of the software is usually stored into an artifact repository as a docker image.
O10 does not rely on nightly builds; it only uses incremental builds.

O10 does not need to run the software on embedded devices, implying that O10, other than
simulating the hardware when needed, mainly replaces it with mock-ups. Only when the real
devices are available and it is safe to use them for testing does O10 use Docker images for checking
the correct behavior over the real devices.

4.2 RQ1: What are the Challenges and Barriers Respondents Encounter, and How Do

Developers Deal with Them?

This research question describes barriers and challenges emerging from the semi-structured
interviews. We start by describing the challenges related to the CPS development process in
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Table 5. Process-Related Challenges

Category ID Challenge Organizations

General
PRC1 Cycle-time reduction O2

PRC2 Onboard developers O7

Culture
PRC3 Limited CI/CD culture O1

PRC4 Limited CI/CD culture for CPS development O9

Environment
PRC5 Complexity of the environment O2, O4, O5, O6, O8

PRC6 Variability of the environment O7

PRC7 Lack of redundancy in the environment O7

Testing

PRC8 Test cases manually derived O5, O8

PRC9 Test cases manually executed O3, O9

PRC10 Different interpretations for the same requirements O7

PRC11 Need a controlled environment for test automation O3, O4

PRC12 Complexity in oracle specification for test automation O3, O5, O6, O8, O9

PRC13 Complexity for deriving integration tests O10

PRC14 Complexity for deriving safety tests O4, O5, O8

Deployment
PRC15 Late deployment O2

PRC16 Expensive deployment O7

Simulators
PRC17 Lack of trustworthiness for simulators O3

PRC18 Complexity for oracle automation with simulators O8

general. Then, we describe barriers and challenges encountered when setting and maintaining
the CI/CD pipeline for CPS development, together with the related mitigation strategies. Note
that we did not find mitigation strategies for all the barriers and pipeline-related challenges, and
as described in Section 3.3, the member-checking survey only considers the barriers/challenges
for which there was an explicit mitigation strategy reported by at least one of the interviewed
organizations.

4.2.1 Process-Related Challenges. Table 5 reports the process-related challenges identified in
our interviews, together with the traceability among which challenge has been encountered by
which organization. It is important to remark that process-related challenges may not be specific
to CI/CD, but are, more in general, challenges in the development process that, based on what was
reported by the interview participants, have an impact on setting up and maintaining a CI/CD
pipeline.

The challenges have been grouped into six different categories: general, culture, environment,
testing, deployment, and simulators. For each category, in the following, we provide a brief de-
scription of the challenges belonging to it, together with some examples.

General. This category accounts for two challenges, each one mentioned by only 1 out of 10
organizations. One of the main benefits of adopting a CI/CD pipeline is related to the overall cycle
time reduction (PRC1). However, even if O2 has already invested effort and money in reducing the
release time, it already sees space for reducing it: “The biggest problem . . . is cycle time. Three years
ago, the cycle time was six weeks, while now we could do it every day. It is still not enough from a
developer perspective because the feedback is not fast enough.” Although this challenge also applies
to conventional software, when it comes to the CPS context, the challenge is exacerbated mainly
due to the need of interacting with both HiL and simulators. In this regard, O2 mentioned that
the cycle time cannot be easily reduced due to (i) the high costs for the infrastructure and (ii) the
translation of test strategies to hardware devices being very demanding.

O7 is facing problems when trying to onboard new developers (PRC2) mainly due to the complex-
ity of the railways’ domain, as also found by Törngren and Sellgren [74]. The interviewee stressed
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that in the railways’ domain, it is crucial to follow specific standards that need to be known and
properly understood by developers and testers.

Culture. This category groups two challenges related to the presence of a limited CI/CD culture
in the development teams. This may limit the possibility of properly leveraging CI/CD facilities
throughout the development process. O1 reports the adoption of a pipeline that only includes tasks
that are easy to automate mainly due to “lack of knowledge” (PRC3), as also found by Zampetti
et al. [85]. Instead, although O9 has already in place a pipeline for developing and deploying mobile
apps to the app-store (i.e., “The setting of a CI/CD pipeline in the mobile context has been very easy” ),
it does not have a pipeline for CPS development due to “a lack of a deeper knowledge in the CI/CD
context for CPS,” in particular for what concerns the interaction between software and hardware
components (PRC4). Specifically, there is a need for knowledge on how to properly account for the
inclusion and setting of both HiL and simulators in the CI/CD pipeline configuration, as well as
how to include a feedback mechanism to gather information directly from the field.

Environment. This category features three different challenges dealing with the characteristics
of the physical environment in which the developed code has to be deployed.

Among them, only PRC5 (i.e., environment complexity) is mentioned by multiple organizations
(5 out of 10), whereas the remaining 2 only come from O7. The complexity of the environment
impacts the execution environment being set (i.e., simulators or HiL). The unavailability of third-
party simulators (and the need for self-developing them) impacts the ability to simulate certain
behaviors, or even in deviations between HiL and simulated environments. The consequence is
that builds executed on simulators will have a different outcome when run on HiL. For instance,
O4 mentioned: “Walking is not so easy to simulate so we need a real walking robot for spotting bugs,”
whereas O8 stated: “It could be difficult, demanding and expensive to have a one-to-one relationship
between simulators and real systems.” Our findings stress what is already known from previous lit-
erature in terms of relying on simulated environments—that is, the testing over simulators may fail
to expose problems that would only manifest when running the system on the real hardware [52].

O7 faces a problem related to the high environment variability (PRC6) [74], due to trains hav-
ing different characteristics: “We can rarely copy-paste software that has to run on different train
architectures.” At the same time, O7 also faces a challenge due to the structure of its development
process that is not cloud-based and has no redundancy (PRC7), implying that “in the presence of
network issues or server issues we are totally black and this is affecting everyone.”

Testing. This category groups seven challenges. O5 and O8 mention as a challenge the substantial
manual effort required for the test case specification process (PRC8). O3 and O9, instead, felt the
manual execution of testing activities to be challenging—that is, PRC9 (e.g., “Another big barrier is
related to the test case execution that, at the moment, we are doing manually since both the environ-
ment setting and the oracle definition require manual intervention” for O9). Our findings confirm
what is already pointed out by Mårtensson et al. [52] in terms of the presence of complex user
scenarios implying the need of manual testing.

O7 found it difficult to automate the test case specification mainly because the standards might
be interpreted differently by different developers, and both might be correct (PRC10): “how do you
read the standard? The standard is interpreted so the same requirement can be differently interpreted
by different people (a challenge for automation).” A different challenge experienced by O3 and O4 is
related to the need for a controlled test environment (PRC11) impacting the execution environment
to be used in the pipeline. For instance, O3 mentioned: “Since the output of the system is sound and
the test should check the sound quality it is better to have it in a controlled environment that makes
use of simulation.”
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Another test automation challenge is related to oracle specification (PRC12), as mentioned by 5
out of 10 organizations. The impossibility of specifying an automated oracle hinders what kinds
of tests one can run in the pipeline. This may happen, for instance, when one needs to evaluate a
signal received from a sensor—that is, “The main challenges for automatizing the test execution: a
good way to model the test itself and have an oracle that can compare with the actual behavior” stated
by O3. This aspect has already been mentioned by Mårtensson et al. [52]; however, although they
only talked about usability testing, we stress more the impediment in automatically determining
and checking the test oracles, also for functional testing mainly due to outcome coming from real
hardware devices working in a real environment with many external factors to control for (e.g., to
check the quality of the acoustic signal coming from sensors) (O3).

The remaining two challenges are related to difficulties encountered when specifying/deriving
integration (PRC13) and safety (PRC14) tests. With regard to the former, O10 develops prototypes re-
quiring the interconnection of many different sub-components. This makes it difficult to determine
the expected system behavior: “It is quite hard to derive integration test cases due to the complex com-
bination of all different parts.” With regard to the specification of safety tests, in agreement to what
indicated by Gautham et al. [27], O4, O5, and O8 pointed out the complexity to identify situations
“that could never happen” or “that you do not expect to happen.” Checking for safety requirements
is highly important, especially in those domains, such as aerospace and railways, where the safety
integrity level of the system must be equal to or higher than 3.

Deployment. This category features two challenges occurring when deploying software on the
customers’ side. Having deployment too late in the development process (PRC15) may result in
installation issues (PC9 shown later in Table 7), as experienced by O2: “we will not be able to run
the software on the system because the installation even does not work on the system, because the
update/upgrade does not work, or because the system behavior is not being considered in the early
stages of development.”

Then, there are cases where the deployment is expensive (PRC16) in terms of time and effort
needed to complete it. This impacts both the type of execution environment adopted within the
pipeline, as well as the build triggering strategy. As experienced by O8 in the railways’ domain,
the deployment on a test track requires “one day with people involved in the testing and on a train
a couple of days where many people need to be involved.”

The late and expensive deployment is strictly related to the CPS nature. Indeed, as already high-
lighted in Section 4.1, the organizations deploy on real hardware devices only during the last stages
of the overall CI/CD process, mainly due to the high costs of the hardware in specific domains such
as railways and aerospace.

Simulators. The last category, among the process-related challenges, deals with the usage of
simulators. O3 pointed out the presence of scenarios where it is complex to trust the outcome
provided by the simulators since there might be many external factors impacting the behavior of
the system in a real environment (PRC17). Finally, as reported by O8, some scenarios cannot rely
on simulators. Specifically, if it is complex for a human to specify the expected behavior for some
scenarios, of course, it is not possible to rely on simulators that can emulate the same behavior
(PRC18).

4.2.2 Barriers for CI/CD Pipeline Setting and Maintaining and Related Mitigation. Table 6 sum-
marizes the five barriers encountered by the 10 organizations when applying CI/CD to CPSs. These
barriers have been grouped into two categories, described in the following.

Resources. This category groups the barriers dealing with limited availability of human (B1) and
software and/or hardware resources (B2), both influencing the type of execution environment
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Table 6. Pipeline-Related Barriers

Category ID Barrier Organizations

Resources
B1 Limited human resources O8, O9

B2 Limited availability of software and/or hardware resources O1, O2, O3, O4, O5, O6, O7, O8, O9, O10

Domain
B3 Complex non-functional requirements O6

B4 Security configuration prevents CD O2

B5 HiL not usable (e.g., for safety or security reasons) O1, O2, O8, O9, O10

adopted within the pipeline. Although we are aware that those barriers can also apply to con-
ventional software systems, the barriers worsen for CPS development, where it is mandatory
(i) to rely on simulators, mostly self-developed where you need high expertise about the domain,
and (ii) to use HiL that is very expensive particularly in the CPS domain, such as railways and
aerospace. For instance, O8 mostly relies on HiL due to limited availability of human resources
having the skills needed to develop/configure simulators: “given the needs and the budget of our
company, it’s much better for more complex scenarios to rely on the hardware in the loop and only
use simulations when whatever needs to be simulated is very simple.”

All the interviewed organizations reported the limited availability of software and hardware
resources. Specifically, O6 mentioned: “Based on the fact that in the avionics domain the cost of the
hardware is very expensive, we do most of the work in simulated environments,” whereas O7 stated
that “Resources for the hardware devices (hardware test tracks and testbeds as real trains) represent
an issue for us. We have a limited number of test tracks.”

As reported later in Table 8, the analysis of the interviews’ transcripts has elicited two mitiga-
tion strategies: (i) prioritize and select the test cases to be included within the pipeline (i.e., “Some
strategies rely on genetic algorithms to optimize the resources available for the testing execution envi-
ronment” from O1), and (ii) adopt incremental builds mainly relying on impact analysis, as reported
by O2: “for what concerns rolling builds we try to limit the amount of testing being executed in them to
be as fast as possible.” The member-checking survey confirms the previous findings, and, as shown
later in Table 8, 6 out of 10 organizations (O1, O2, O5, O6, O7, O10) report to rely on test prioritiza-
tion, whereas O3, O4, O8, and O9 consider it useful while having never used it. With regard to the
adoption of incremental builds, instead, O1, O2, O4, O7, and O9 mention its adoption, whereas O8

considers it a useful approach to deal with limited hardware/software resources.
Alternative solutions reported in the member-checking survey to cope with limited availability

of resources are “architectural changes with improved testing concepts” (O7) and, unsurprisingly,
“platform virtualization” (O5).

Domain. This category includes three different barriers, two of them highlighted by only one or-
ganization. Specifically, B3 and B4 are related to difficulties arising when automating certain phases
in the CI/CD pipeline. For instance, O6 had to cope with the use of a real-time operating system
that made task automation difficult: “the complexity of integrating within the pipeline the execution
of nonfunctional testing and system testing,” whereas O2 could not implement automated deploy-
ment due to security policies for the healthcare domain: “We cannot deploy at the moment because
a change in the security configuration of the software prevented our standard [deployment] process.”

B5 is related to coping with a complex execution environment. Specifically, O10 mentions
that they could not integrate HiL in the CI/CD pipeline for safety reasons and adopts simula-
tion/mocking for the hardware devices to overcome it. As shown later in Table 8, all the orga-
nizations facing this barrier used the same mitigation strategy to deal with it. Furthermore, O2

mentions the possibility to rely on “digital twin hardware that avoids the safety issues (no moving
parts, no radiation) but simulates the hardware to some much better.”
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Table 7. Pipeline-Related Challenges

Category ID Challenge Organizations

Pipeline Properties

PC1 Long build execution time O1, O2, O4, O5, O6, O7, O8

PC2 Build time estimation O9

PC3 Static code analysis tools configuration O3, O7

PC4 Lack to access the production code from the pipeline O1

PC5 CI/CD configuration highly coupled with the environment O2, O5

PC6 Reusability of build artifacts O2

Thoroughness

PC7 Development environment detached from the execution environment O1

PC8 Detecting deployment-related errors O2, O6

PC9 Continuous installation O2, O3, O4, O5, O7, O8

PC10 Closing the loop introduces performance degradation O5

PC11 Complexity in closing the loop due to uncontrollable factors O4, O9

PC12 Complexity in closing the loop due to data collection from the field O5

Simulators

PC13 Limited in their functionality O1, O2, O4, O5, O7, O8, O9, O10

PC14 Functional correctness O5, O6, O7, O10

PC15 Deal with real-time properties O5, O9

PC16 Interaction with the environment O2, O3, O4, O5, O6, O7, O8, O9

PC17 Accessibility O1, O5, O7, O9, O10

HiL

PC18 Availability O10

PC19 Automated deployment on HiL O7, O8, O9

PC20 Test automation on HiL O2, O4, O6, O7, O9

PC21 Costs and scalability O1, O2, O3, O4, O5, O7, O8, O9

Flaky Behavior

PC22 Dependency installation O4

PC23 Features’ interaction O2

PC24 HiL availability O10

PC25 HiL inputs O5, O10

PC26 Lack of control over resources O2, O4, O5, O6, O7, O9, O10

PC27 Network issues O1, O2, O4, O5, O6, O7, O9, O10

PC28 Timing issues O4, O10

4.2.3 Pipeline-Related Challenges and Related Mitigation. Table 7 summarizes the pipeline-
related challenges faced by the 10 organizations. The challenges have been grouped into five cat-
egories, each one related to a specific aspect of the CI/CD pipeline setting and evolution: pipeline
properties, thoroughness, simulators, HiL, and flaky behavior. In the following, we discuss each
identified challenge, together with some examples from the study participants’ experiences, and
related mitigation strategies.

Pipeline Properties. This category accounts for six different challenges, two of which deal with the
build execution time (PC1 and PC2), whereas the remaining four are related to the overall pipeline
configuration. Four out of 10 organizations faced long build execution time, influencing the type
of tasks automatized within the pipeline. For example, O6 mentioned: “Slow builds hinder the inclu-
sion of running non-functional testing in the pipeline.” Although this is also considered a relevant
challenge for conventional applications [14, 77, 85], for CPSs the problem can be further exacer-
bated when deploying and executing software on simulators or HiL. The latter confirms what is
already found by Mårtensson et al. [52] highlighting how working with a highly integrated (tightly
coupled) system, a small delivery to the main track may cause building and linking of a large part
of the system resulting in long build times. The latter has been also mentioned by O2 where there
is a single integration branch where the components developed by their 70 teams are integrated
into a single join point: “each component has a test service so running unit tests is very fast but we
have a huge amount of high-level testing that is easy to write but kills us in terms of execution time.”
By looking at the result of the survey (Table 8), the interviewed organizations mentioned a wide
set of actions to deal with the preceding challenge. One possibility is to prioritize and select only
a subset of test cases in the test suite to be executed (used also by O1, O2, and O7, and considered
a useful action by O4 and O8). A different approach, highlighted by O2, deals with the introduc-
tion of parallelization within the overall build process: “We have 20 test machines in parallel for
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Table 8. Relations Between Challenges/Barriers and Mitigation Strategies as Seen from the

Semi-Structured Interviews and the Member-Checking Survey

Challenge/Barrier Mitigation Organizations

B2: Limited hw/sw resources
Test Prioritization O1, O2, O3, O4, O5, O6, O7, O8, O9, O10

Incremental Builds O1, O2, O4, O7, O8, O9

B5: Domain hinders HiL Rely on sim./mock-up O1, O2, O8, O9, O10

PC1: Long build

Test Prioritization O1, O2, O4, O7, O8

Adopt Parallelization O2, O4, O5, O6, O7, O8

Nightly Builds O1, O2, O4, O5, O6, O7, O8

Incremental Builds O2, O4, O5, O6, O7, O8

PC9: Continuous installation Containerization O3, O4, O5, O7, O8

PC13: Sim. limited func. Combine sim. and HiL O4, O7, O8, O9, O10

PC16: Sim. coupled with env. Combine sim. and HiL O2, O3, O4, O8, O9

PC17: Sim. accessibility Timeout O1, O5, O7, O10

PC21: HiL costs and scalability
Combine sim. and HiL O1, O2, O3, O4, O5, O7, O8, O9

Green-build rule O2, O3, O4, O7

PC26: No resources’ control
Fix the code O4, O6, O7, O9, O10

Fix pipeline config. O6, O7, O9

PC27: Network issues Retry O2, O4, O5, O6, O7, O10

Organizations that do not rely on the mitigation are shown in bold but consider it a useful solution.

managing the overall test size, especially for nightly builds.” The latter is also used by O4, O5, O6, and
O7, whereas O8 only felt it as useful. It is also possible to run the whole build process only within
nightly builds, even if this may be controversial since it defeats the CI/CD purpose [13]. However,
this is considered acceptable for O1, as its pipeline is limited in scope (i.e., used only for V&V pur-
poses). In addition, O2, O5, O6, and O7 rely on nightly builds to execute time-intensive tasks while
adopting incremental builds during working hours (O2, O5, and O10). The latter is also used by O7

and O8, whereas O4 and O6 consider the mitigation useful even if they have never adopted it.
A different challenge, experienced by O9, that can also apply to conventional systems, although

it is more critical for CPSs, is related to the build time variability (PC2), due to the adopted in-
frastructure “since our platform works in the cloud we need to know how much time it is required to
acquire and elaborate a huge amount of data points.”

Moving to the overall pipeline configuration, in the absence of clear coding standards or guide-
lines, the adoption of code style checking tools becomes problematic, if not unfeasible (PC3). In
this scenario, approaches for coding style inference may be desirable [61, 83]. Similar considera-
tions apply to bug-finding tools, sometimes inapplicable to CPSs for automating code review, as
experienced by O7: “we need expertise on the developers’ side for determining whether or not a train
is behaving in the expected way.” The latter is strictly related to PRC2 where, in the presence of
safety-critical systems, like the ones in the aerospace and railways domains, it is very difficult to
find skilled experts in the domain from both the hardware and software viewpoints.

The lack of access to production code (as experienced by O1) limits the ability to properly set
static analysis or testing tools (PC4): “One big challenge is that we need to guarantee the protection
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of the source code: How to test a component without having its production code?” The latter is a
specialization of the restricted access to information due to security aspects impediment found
by Mårtensson et al. [52]. On the same line, there is a challenge (PC5) related to the extent to
which technology restrictions, or restrictions coming from the application domain, may impact
the pipeline setting. For instance, O2 mentioned that “the Windows situation does not help us with
dockerization,” and at the same time, they are having trouble in properly configuring the CI/CD
pipeline for CPS since “[they] need to follow medical application frameworks providing a base set
of rules in terms of how to build applications and how to integrate them.” The latter results in the
last challenge related to the impossibility to reuse previously built artifacts (PC6) in the integration
branch (i.e., O2 mentioned:“It’s a huge pain that we do not reuse artifacts” ), mainly due to constraints
imposed by the domain.

Thoroughness. This category groups six challenges related to (i) ensuring the overall accuracy
and completeness of the CI/CD pipeline (PC7, PC8, PC9) scattered across eight organizations, and
(ii) closing the DevOps loop by gathering data from the hardware (i.e., PC10, PC11, and PC12 expe-
rienced by 3 out of 10 organizations).

O1 faces a challenge related to having a development environment detached from the execution
environment (PC7). Another challenge (PC8 experienced by O2 and O6) occurs in the presence of
incremental deployment, which makes it difficult to detect and isolate deployment errors. Further-
more, O6 reported how this even makes it necessary to reconfigure the entire pipeline: “you deploy
blocks, if there is an error in one of the blocks detecting it and reconfigure and reset the pipeline is
a problem.” Finally, continuous installation (PC9) cannot be achieved due to the late deployment
strategy (PRC17). This is because changes to the environment impact the pipeline configuration,
which needs to be adapted every time. For what concerns continuous installation problems, O2, O3,
O4, O5, O7, and O8 have encountered them, with O4 pointing out that by using containerization
it is possible to facilitate the switching between software versions to deploy, meaning that it will
be possible to handle the variability of the environment in terms of dependencies. As shown in
Table 8, containerization is also used by O5, whereas O3, O7, and O8 consider it a viable solution.

Moving on to the need for closing the DevOps loop, the interviews indicated three different
challenges hindering the acquisition of data from the physical environment (or hardware device).
Working in a CPS context implies having a tight interaction with multiple hardware devices (i.e.,
sensors and actuators), in which gathering data from them could be problematic due to the pres-
ence of many external environmental factors that must be taken into account, as well as the need
for having invasive measurement instruments directly in the field. Specifically, O5 stressed the
introduction of performance degradation (PC10) due to invasive measurement instruments: “The
challenge is that monitoring becomes invasive with respect to the system performance,” as well as
the presence of noise in the collected data (PC12): “There are architectural ways to deal with that
so that if some sensor does not update on time, you still can make a relatively informed decision. But
even then, you have to make sure that the drift is not over a certain size because then you cannot
make reasonable decisions anymore.” O4 and O9 highlighted the presence of uncontrollable factors
in a CPS execution environment, making it challenging to close the DevOps loop. For instance, O4

reported: “Differently from other software applications, there is data that we cannot control such as
the presence of something on the floor that the robot is not able to perceive so it will fail. You have to
analyze the video data and this is very hard.”

Simulators. This category groups five challenges related to simulators’ issues and limitations
stressed more in the CPS domain due to the high environment complexity [74], which very often
results in having scenarios that cannot be emulated, such as in the presence of many external
environmental factors to be controlled. Specifically, the need to develop them in-house or the lack
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of specific skills may lead to simulators that are limited in their functionality (PC13). For instance,
O8 stated, “we prefer to spend time in testing on real hardware instead of spending time in developing
complex simulators,” whereas O4 reported, “Walking is not so easy to simulate, so we need a real
walking robot for spotting bugs.” As shown in Table 8, it is a common habit to adopt a pipeline that
relies on both simulators and HiL in different build stages to overcome the preceding challenge.
A clear example of this happens in O7, where there is a build process made up of three different
build stages, each one adopting a specific execution environment (see Section 4.2).

A lack of knowledge about the device/system to simulate can lead to wrong assumptions, af-
fecting the simulator’s correctness (PC14) as experienced within O10: “This happens more at the
beginning of a project when you are not too familiar with the device and you make assumptions on
how it works.” These problems might have an impact on the whole CI/CD pipeline setting and trust-
worthiness, because it is possible to have deviations of the monitored system behavior between
the real hardware and simulators.

As experienced by O5, the limited capability to simulate real-time properties (PC15) hinders the
applicability of simulators or at least raises the need for further tests on HiL. The latter is also
confirmed by O9: “for what concerns the simulation for the RFID we think that the simulation will
not give us any benefits due to their unpredictable behavior.”

Likewise for PC13, the high level of interaction between different components (PC16) forces
organizations to directly test feature interaction by using real devices instead of simulating them.
Indeed, when using simulators for CPSs, it is important to remark that they have to interact with
a too complex environment that must be simulated as well. As an example, O6 mentions problems
faced when simulating a car behavior: “for the CAN data, what do you want to wish to happen here?
If you are driving around something you need to know how fast the wheels are turning, as well as
what the engine revolutions are together with other sensitive data you might pick up over the canvas.
There are a lot of details that are very application dependent.” Also in this case, as shown in Table 8,
organizations rely on pipeline configurations including different execution environments—that is,
five out of eight organizations facing the challenge declare that this is a useful mitigation strategy
(O2, O3, O4, O8, O9).

If an organization has to test third-party software, as in the case of O1, there may be the need to
run the simulated environment on a remote machine, which may be problematic when attempting
to properly integrated it into a local pipeline (PC17), due to network security restrictions. Such a
scenario typically occurs in the development of safety-critical systems (which very often are CPSs),
because the software needs to be tested by somebody different from the development organization.
To deal with this problem, O1 mentions the usage of “timeout” within the pipeline. As shown in
Table 8, O1 and O5 handle external simulator unavailability through timeouts, whereas O7 and O10

consider this useful yet they do not use it. O1 also mentions they often “request some customization
at the customer side of their simulators. Sometimes it is accepted, most of the times not.”

HiL. This category groups four challenges related to issues and limitations of using HiL in the
CI/CD pipeline. As shown in Table 7, three out of four challenges in this category are experienced
by multiple organizations, whereas PC18 is organization dependent. Specifically, O10 faces prob-
lems with checking hardware availability before running tests (PC18): “One of the biggest problems,
when any particular hardware is involved, is that the hardware may either not be available, or it may
be switched off.”

From a different perspective, as experienced by O7, O8, and O9, deployment on HiL may be chal-
lenging (PC19). Specifically, in O8, “remote installation cannot be used with real systems,” whereas
in O9, “The other challenge is related to having a fully automated deployment over the customers’
server in which it is possible to have full control on what is going on and try to identify, as soon as
possible, failures/errors occurring during the deployment.”
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Testing on HiL (PC20) is considered very demanding to achieve. O2 reports, “If you translate test
strategies to the hardware it is very demanding,” and this is mostly a consequence of limited human
resources being available. However, there are cases where testing on HiL is constrained by the
high cost and lack of scalability (PC21) of the hardware devices/systems: “This costs and does not
scale” for O2, or “ it is very costly to test on trains” for O7.

As shown in Table 8, the study participants identified two possible strategies to deal with these
cost and scalability problems: (i) relying on a mixed pipeline where continuous builds run on
simulators and some periodic builds on HiL (used by O2, O4, and O9, and considered useful by O1,
O3, O5, and O8), or (ii) adopting the green build rule when transitioning between simulators and
HiL [15], as highlighted by O7, “Only when the tests in the virtual train are green can we move to
the next step,” and also used by O2, O3, and O4. The alternative would be, as pointed out by the O5

survey respondent, “working with virtual devices instead of real hardware devices.”

Flaky Behavior. This category accounts for seven different root causes that may lead to
non-determinism in the build execution used for CPS development. Flakiness related to non-
determinism during test execution [89] has been largely studied [16, 46, 48, 58, 90], and approaches
to detect and cope with it have been proposed [47, 49, 59, 65, 87]. Although similar to conventional
software, dependency installation within the pipeline (PC22) may result in pipelines having a flaky
behavior (e.g., for O4, “ROS uses GitHub repositories for dependency resolution so when GitHub or
the repositories are down our build jobs will fail due to the impossibility of resolving dependencies” )
or else little control over external resources (PC26) (e.g., “the most important root cause we experi-
enced is related to the load on the server-side” )—the root causes behind flaky behavior in CPSs may
be different from conventional software. Specifically, a CI/CD pipeline for CPSs can suffer from
flakiness due to the following:

• The complex interacting environment (PC23) (i.e., CPSs are systems of systems with tight in-
teractions among different components). For example, for O2, “the complexity of [the] subsys-
tems whose features interact across many indirections may lead to non-deterministic behaviors.”
• HiL unavailability (PC24), where without a proper check of the availability of hardware, the

build outcome might fail intermittently since the pipeline was not able to properly commu-
nicate with the device. O10 reported: “We experienced flakiness in terms of non-deterministic
behavior mainly due to hardware not being available.” In this specific scenario, it is important
to properly discriminate between intermittent failures caused by communication issues
with the HiL from failures due to wrongly implemented functionality.
• Presence of noise in the measurements (PC25) when using HiL (i.e., difficulty in removing

the effect of external environmental factors from the data read from the sensors, as
experienced by O5 and O10). Specifically, for O10, “Other times the charge level that you read
out would go a little bit higher or there is noise in the measurements,” whereas for O5, “you
need to understand what your sensors are sensing and what the acceptable range of inputs are.”
• Network issues (PC27) where, for instance, glitches in the network lead to a connections

being lost, as reported by O10, stressing more in the CPS domain where you need to control
among the communication occurring across a huge number of different hardware devices
operating in a complex environment.
• Simulators not coping with timing issues (PC28). For example, O10 stated: “the last problem

is related to multi-threaded programming.”

For what concerns flakiness mitigation, as highlighted in Table 8, when the problem is related
to the lack of control over resources (PC26), the solutions adopted are (i) to change and fix the
pipeline configuration (i.e., O7 stated, “The misbehavior is reported back to the integration team
responsible for the Jenkins configuration to find a solution” ), as well as (ii) to fix the root cause of
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Fig. 3. Results of barriers perception.

the flaky behavior within the code: “to not experience it anymore in the system” from O2. When the
root cause of the flaky behavior is in the networking (PC27), the organizations leverage the “usual”
retries (O2, O4, O5, O7, O10)—for example, “of course we have some retry for network issues” for O4,
or “For what concerns flaky connections, you have to be concerned about missed messages and retries”
for O5. O6 instead only considers it a viable solution. Furthermore, the respondent belonging to
O2 mentioned as an alternative solution the “introduction of quarantine builds together with an
appropriate process of how to deal with these tests.”

4.3 RQ2: How Relevant are the Identified CI/CD Challenges/barriers and their

Mitigation for Practitioners Involved in CPS Development?

This research question describes the results of the evaluation of the findings in RQ1 made through
an external survey leveraging practitioners who have not been involved in the semi-structured
interviews. Note that we have only validated the barriers and the pipeline-related challenges to-
gether with their associated mitigation strategies.

With regard to the five barriers encountered when trying to configure a CI/CD pipeline for CPS
development, by looking at the results in Figure 3, we found that among the participants who
answered each question, the limited number of human and software/hardware resources together
with the presence of complex non-functional requirements to be checked within the pipeline are
the ones felt as more relevant (>72%). Furthermore, although 30 out of 55 respondents still consider
as relevant the barriers dealing with security aspects hindering the inclusion of HiL in the CI/CD
process, 31% do not consider such barriers as a real impediment. All three mitigations previously
identified were considered relevant by the survey participants. Specifically, the adoption of test
case prioritization techniques is predominant (31 out of 55 respondents), followed by the usage of
simulators or mock-ups (28), and the usage of incremental builds (17).

Figure 4 shows the results of the survey in terms of the six challenges belonging to the Pipeline
Properties category. Unsurprisingly, 47 out of 55 respondents consider the long build execution
time as a relevant challenge. In addition, although from the semi-structured interviews the re-
maining five challenges were experienced by one or at most two different organizations, the survey
indicates how some of such challenges are felt as relevant by more than 69% of our participants.
These are (i) the need to properly estimate the build time before timing out the CI/CD process,
(ii) the difficulty in properly configuring static code analysis tools, and (iii) the presence of a CI/CD
configuration highly coupled with the environment. Regarding the impossibility of having access
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Fig. 4. Results of pipeline challenges perception: Pipeline Properties.

Fig. 5. Results of pipeline challenges perception: Thoroughness.

to the production code, if we do not consider the 7 participants reporting that this challenge cannot
apply to their context, �31% of the respondents do not consider it as a relevant challenge.

Moving onto the mitigation strategies, more than half of our respondents (30) rely on test case
prioritization techniques, 28 rely on parallelization, and 26 rely on nightly builds for time-intensive
tasks, whereas 18 consider useful the adoption of incremental builds during normal working hours.
Finally, 1 participant reported a new mitigation strategy dealing with long builds where “we sim-
ulate faster than in the reality where possible” ; however, the same participant also points out the
drawback of this mitigation—that is, having different build outcomes when using simulators and
HiL: “this can introduce subtle timing differences in the test results.”

For what concerns pipeline-related challenges in the Thoroughness category dealing with
ensuring the overall accuracy and completeness of the CI/CD pipeline (see PC7, PC8, and PC9

in Figure 5), differently from the RQ1 results, more than half of our survey respondents consider
the presence of a development environment detached from the execution environment as a real
impediment to set up a CI/CD process for CPSs. This is also true for the difficulties in detecting
deployment-related errors (39 respondents). The preceding differences stress the impossibility
to have a “standardized” CI/CD configuration that can be applied to almost all CPS domains.
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Fig. 6. Results of pipeline challenges perception: Simulators.

Although all participants considered the adoption of containerization a viable solution to over-
come these challenges, one new mitigation strategy comes up from a survey participant, which,
for PC8, suggests the possibility of developing and adopting static analysis tools able to analyze
(and detect errors from) deployment scripts.

Moving to the three challenges related to closing the DevOps loop by gathering data from the
hardware (i.e., real environment), by looking at the bottom part of Figure 5, it is possible to state
that more than 65% of the respondents consider them as relevant, with the presence of uncontrol-
lable factors to account for having the highest percentage (� 71%). Although from RQ1 we did not
find any mitigation strategy for these challenges, we obtained some feedback from eight survey re-
spondents. First of all, it could be possible to continuously analyze the logs also after the operation
has started. At the same time, one survey respondent points out the possibility to make the moni-
toring less impactful on performance by “disabl[ing] invasive logging methods.” For what concerns
the presence of uncontrollable factors, one respondent pointed out how using continuous testing
allows to “better overcome the problem of the uncontrollable factors in real life systems and usually
diminish the future costs and improve efficiency.” There are also mitigation strategies dealing with
the overall CI/CD process. Specifically, one respondent mentions the possibility to use parallel
DataOps observability pipeline: “we use ELK, but it is still under debate/migration.” However, a dif-
ferent respondent highlights as possible mitigation the presence of “cross-functional teams which
bring in more collaborations and ideas.”

Figure 6 shows the results of the external validation survey for the challenges dealing with the
inclusion of simulators in the CI/CD process. As can be seen from the figure, at least 36 out of 55
respondents considered such challenges relevant. The only exception is the challenge of dealing
with the impossibility of accessing the third-party simulators adopted in the pipeline (PC17). In this
case, 13 respondents mention that it does not apply to their context, meaning that the simulators
are mainly self-developed within the organization they belong to. In terms of mitigation, instead,
(i) 28 respondents use a CI/CD process made up of both simulators and HiL for overcoming the
presence of limited functionality, (ii) 24 use both simulators and HiL for overcoming the complexity
due to a tight interaction among different components and the environment, and (iii) among the
31 respondents struggling with the simulators’ accessibility, 14 adopt the “timeout” feature.

With regard to the four challenges dealing with the inclusion of HiL in the CI/CD process,
as shown in Figure 7, the costs and scalability challenge is the predominant one (49 out of 55
respondents), followed by the need to check for HiL availability (41), and the complexity for
automating both deployment and testing activities on HiL (42 and 40 respondents for PC19 and
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Fig. 7. Results of pipeline challenges perception: HiL.

Fig. 8. Results of pipeline challenges perception: Flaky Behavior.

PC20, respectively). No new mitigation strategy comes up from the survey results. However, 28
respondents confirm that the adoption of simulators and HiL in different build stages can help
deal with costs and scalability issues, whereas 19 adopt the “green-build” rule—that is, HiL can
only be considered when the CI/CD process relying on simulators has a green status.

The last category of pipeline-related challenges being validated through the external survey con-
siders the root cause for flaky behavior experienced in the CI/CD process. As shown in Figure 8, for
each challenge we have that more than half of our respondents consider it relevant for CPSs. More-
over, 49 out of 55 respondents consider it challenging to deal with HiL availability and simulators
not coping with timing issues. Unsurprisingly, the two challenges being not specific to the CPS
development (i.e., PC22 and PC26) are the ones where several respondents (13 and 12, respectively)
mentioned that it is not relevant. Fixing the pipeline configuration is the most frequent mitigation
strategy, as indicated by 31 respondents, but no further mitigation strategies are suggested.

Finally, by looking at the 15 answers to the open-ended question aimed at eliciting other chal-
lenges that we did not encounter in the semi-structured interviews, we gathered the following
additional challenges:
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(1) Guaranteeing the supply chain security (three respondents);
(2) The impossibility to use simulated environments unless the quality of specific data types is

ensured (one respondent);
(3) The need to have field tests included in the DevOps cycle even with a lower frequency as both

simulators and HiL can only cover a fraction of what usually happens during real field testing
activities (one respondent);

(4) The difficulty to implement a “quick-retry” feature in the CI/CD process, to selectively rollback
at specific stages mainly because this is highly dependent on the infrastructure language (one
respondent); and

(5) The difficulty to reduce the build execution time when dealing with HiL due to the need for
checking the HiL availability—that is, “very long hardware boot times” (one respondent).

5 DISCUSSION AND IMPLICATIONS

This section summarizes the main findings and implications of our study. We divide the section
into implications for (i) developers, (ii) educators, and (iii) researchers.

5.1 Implications for Developers

We start by discussing what, based on insights learned from this study, developers must consider
when trying to set up and evolve a CI/CD pipeline for CPS development.

Simulators are necessary to achieve continuous builds on CI/CD pipelines. Performing CI/CD on
real hardware is often unfeasible, for different reasons. The automated deployment may be com-
plicated, or the hardware may not be available on-site. In addition, organizations doing V&V tasks
only may have limited/no access to hardware, simulators, or even to the production code. There-
fore, simulation is often the only choice available. However, having a reliable simulator is challeng-
ing for many CPS developers. In some cases, simulators come from hardware producers; however,
in other circumstances, the only option is to develop them in-house. This requires the allocation
of suitable skills and efforts in the development process. Failing to do so would have severe con-
sequences on the ability to set up not only CI/CD but also even simple test automation without
relying on the hardware directly, when this is possible.

Balancing the use of simulators and HiL in the pipeline. Deploying and running CPSs on HiL at
every change could be troublesome and expensive, and may result in slow feedback. At the same
time, for the reasons mentioned before, it is unlikely that developers could fully trust a quality
assessment performed solely on simulators. Therefore, it is highly desirable to configure staged
builds relying on different execution environments, namely (i) continuous builds on simulators,
aimed at providing fast feedback to developers (e.g., about the outcome of static checks, or possi-
ble integration issues discovered by tests), and (ii) periodic (e.g., nightly) builds on HiL, to verify
whether the assumptions made on simulators are still valid, checking properties that often cannot
be verified on simulators (e.g., response time properties), testing the system in scenarios that can-
not be easily simulated, or verifying the compatibility of the software against hardware variants
not fully reproduced by the simulators.

Late delivery is the crux of CPS development. For the reasons explained previously, CPS software
tends to reach target production hardware very late in the development. This has several negative
side effects, including the late discovery of defects that could not be identified through simulation,
but also having a system that reaches the end user very late. Allocating sufficient effort, resources,
and competences to enable automated delivery is therefore highly desirable.
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Having hardware experts on-board may be a plus. Based on what we learned from this study, it
is clear how CPS development may highly benefit from the availability of both software and hard-
ware experts so that it is much easier to self-develop simulators whose behavior is as much as pos-
sible like the one of the real device. This would help reduce the differences that might be observed
in terms of build outcome, such as the number and type of failing tests, when running the process
on simulators and HiL. However, the presence of hardware experts in a team, when available, has
been found to be useful by our interviewees. Yet a context in which both hardware and software
evolve makes tasks such as change impact analysis more challenging to handle—for example, to de-
termine whether and to what extent a hardware change would impact some software components,
or some software evolution would hinder the integration of certain pieces of hardware.

5.2 Implications for Educators

In the following, we discuss what, based on insights learned from this study, would be expected
for what concerns the creation (or enhancement) of curricula related to CPS development.

Blended curricula with hardware and software competencies. Any effective DevOps organizational
setting or management of a CI/CD pipeline likely requires software engineering expertise other
than what is currently taught in regular graduate-level courses, such as knowledge about the hard-
ware, software-hardware interplay, and domain standards expertise. On the one hand, university
curricula shall strive to include such aspects in their teaching. On the other hand, practitioners
should more actively engage in standardizing CPS application lifecycle management practices,
patterns, and tools to enable the aforementioned educational augmentation exercise.

Specialized courses on simulator development. In a context for which CPS specific curricula are
highly desirable, one competence assumes paramount importance, and this is the development of
simulators. The latter requires combining knowledge from physics, automated control (e.g., sys-
tem dynamics, discrete systems), and virtual reality (many simulators leverage 3D or even virtual
reality environments, similar to those used in video games).

Teaching CI/CD in complex, heterogeneous environments. CI/CD is oftentimes taught in the con-
text of conventional system development. To favor the adoption of CI/CD for complex systems,
particularly for CPSs, courses on CI/CD should touch on topics related to (i) coping with complex
hardware or simulators attached to the pipeline, and (ii) pondering fast builds with the need for
testing a CPS on multiple devices (or simulators), where this is appropriate. In addition, although
conventional CI/CD literature advocates “building at every change” [13], CPS developers need to
face reality, and therefore such a common wisdom need to be revisited. Similarly, we found that for
large and complex CPSs, “retest all” does not work, and therefore incremental builds are a widely
adopted practice.

Software architectures for CPSs. CPSs heavily interact with HiL interfaces (and sometimes mul-
tiple HiL, having different characteristics and varying APIs) and, during the development process,
with simulators. The latter may be updated or even replaced by better ones. From an educational
perspective, it is desirable that courses related to software architectures properly treat such sce-
narios, discussing the proper architectural choices or design choices allowing an easy (even at
runtime) replacement of different kinds of HiL and simulators in the software systems. Software
components of CPSs may need to be deployed on, or interact with, multiple types of devices (e.g.,
a control software may be deployed on different car models). This requires that developers must
have suitable knowledge of product line engineering and follow related practices when designing
CPSs. Furthermore, it is desirable to teach prospective CPS developers about how to design a CPS
architecture to make a system scalable, but also secure, and easy to be monitored and tested.
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5.3 Implications for Researchers

Implications for researchers aim at developing approaches and tools to support developers in set-
ting up, maintaining, and using CI/CD pipelines for CPSs.

The target environment of CPS is multifaceted and diversified, making CI/CD pipelines complex and
expensive. Often a CPS may target multiple devices, as well as both HiL and simulators. This may
entail a build matrix against which the pipeline must be run—that is, the matrix describes differ-
ent combinations of parameters (e.g., simulator models, HiL instances, other settings) for the build.
That being said, it is possible that although some changes may entail different behavior on different
matrix instances, other changes do not, and therefore running the build on all possible configura-
tions would be a waste of resources. On the one hand, this stimulates research toward approaches
aimed at recommending the creation of a suitable build matrix system based on similar systems,
and in general systems targeting similar devices. In addition, these kinds of recommenders should
be able to point out the need for maintaining build matrices by learning “from the crowd” (e.g.,
the need to prune out obsolete environments and add new ones). On the other hand, proper ap-
proaches should be developed to trigger builds on different matrix instances based on the changes
performed.

Coping with multiple root causes for flaky behavior. The complex technological stack, the behav-
ior of simulators and HiL, their (sometimes uncontrollable) unavailability or lack of accessibility,
and the mechanisms used to collect test outputs (e.g., sensors or video cameras) require not only
to better monitor all possible elements causing flakiness but also to combine and enhance various
mitigation approaches, including checking the status of HiL/simulators, and leveraging the “usual”
retries. As indicated by the participants, flaky behaviors in CPSs are often due to the complex inter-
acting environment (e.g., lack of complete control on the hardware status) rather than on the order
with which the tests are executed. Hence, flaky test detectors that target flaky tests considering
their ordering [24, 88] are not effective for environment-dependent flakiness. CPS-specific detec-
tors could be inspired to those for undetermined specifications [87], or based on ML models [59]
but trained on CPSs data and encompassing CPS-specific features, such as changes to simulators or
HiL configurations, as well as their build logs. To improve CI/CD infrastructures for CPS, it may be
useful to develop recommenders, integrated into the pipeline, that are able to support developers
in the identification of flakiness behavior and identify its root causes.

Challenges in automated test execution. We found that one of the reasons that impede full CI/CD
automation for CPS is the difficulty to automate test execution, especially when the system is
deployed on the hardware. In other words, the system receives inputs from sensors and interacts
with actuators. Full test automation requires (i) tools, such as scenario generators or record replay
tools able to seed inputs to the CPS, and (ii) the capability of CI/CD infrastructure to support the
execution of such tools. Very often, these tools are GUI oriented and not particularly well suited
to be integrated in a CI/CD pipeline.

Challenges in automated oracle creation. The CPS execution environment (e.g., simulators or HiL)
drastically complicates the definition and automatic check of oracles. The latter requires to ponder
several factors: (i) the test scenario (or requirement to assess), (ii) the accepted level of realism in
simulations, (iii) the readiness level or maturity of the hardware proxies used in the pipeline, and
(iv) the output sources (e.g., based on actual sensors’ data or mocking/synthetic data). Besides,
the oracles consist of value ranges (e.g., time intervals) instead of scalars, or they may be signals
that need to be properly processed, as highlighted in existing studies on testing for CPS [6, 53].
It may be important to account for non-functional properties, including timing ones [80]. In
addition, to cope with inputs originating from sensors or even from a multimedia recording of
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the CPS execution (as pointed out by O3 and O4), it is desirable to develop approaches for pattern
recognition [28, 38, 72].

Need for specific fault models. Looking more broadly at configuring V&V phases within the CPS
pipeline, respondents would like to discover early some defects through static analysis. This re-
quires a clear fault modeling in the CPS context (as the ones for autonomous cars [26] and un-
manned vehicles [81]), but also to develop CPS-specific linters, which can be integrated into the
CI/CD pipelines to allow early detection of build failures, hence avoid to perform expensive testing
activities, and hence long builds, which constitute a major problem for CPS developers according
to our study results. Moreover, CPS-specific fault models can be useful for other purposes, not only
to facilitate root-cause analysis [26] but also to create domain-specific mutation testing strategies,
as has been done in other cases such as deep learning [36] or mobile development [19, 76].

6 THREATS TO VALIDITY

Threats to construct validity concern the relationship between theory and observations. The in-
terview participants might have misinterpreted our questions, or they might have reported their
personal (and biased) views of the phenomenon. Although this is typical for interview-based stud-
ies [17, 33], we mitigated the threat by using semi-structured interviews and following up with
clarifications every time we realized this was needed.

There could be threats to construct validity related to how survey respondents interpreted
the survey questions and provided their answers. We mitigated this threat by providing a self-
explanatory description of the challenges, barriers, and mitigation strategies. In addition, we left
them the possibility to provide open comments to also point out cases of misunderstanding. How-
ever, based on the provided answers, we had no evidence of cases where respondents had difficul-
ties in understanding the posed questions. As well, for the external survey, we leveraged demo-
graphic information to filter out responses where the information provided made it evident that a
participant did not have the required knowledge.

Threats to internal validity concern confounding factors that could have influenced our results.
To limit subjectivity in our coding, we employed multiple coders, computed inter-rater reliability,
and used follow-up discussions not only to resolve cases of inconsistent coding but also to review
any single coding. We elicited codes and relations only based on explicit occurrences of words
in the transcripts. However, we could not exclude imprecision due to our interpretation of the
participants’ answers.

Another threat could be the low representativeness of the respondents in the semi-structured
interviews and, to some extent, in the external survey. In the first case, participants were obtained
through personal contacts, as we need people available to participate in a relatively long interview.
However, such participants cover a relatively diversified set of domains (8). As for the survey, the
use of snowballing and especially the use of Prolific allowed us to mitigate a possible bias due to
the direct personal contacts.

Threats to reliability validity relate to the extent to which results can be reproduced. To achieve
this goal, we (i) describe the data collection and analysis process in detail and (ii) provide in our
replication package the detailed outcome of the coding phases.

Finally, threats to external validity concern the generalizability of our findings. The interview-
based study has been conducted involving 10 organizations developing CPS for eight different do-
mains. We are aware that the obtained findings may not generalize to different organizations and
domains. Indeed, from the performed interviews, we found that CI/CD pipelines were extremely
different from case to case. Therefore, as in other interview studies conducted within a limited set
of organizations, and also considering the study topic, the generalizability is relatively limited. To
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mitigate this threat, when addressing RQ2, we validated the findings collected in RQ1 through an
external survey with practitioners different from the ones involved in our semi-structured inter-
views, and belonging to nine domains. Still, it is possible that, also in this case, as Figure 2 shows,
some domains are better covered than others, and some are still not covered at all.

7 CONCLUSION AND FUTURE WORK

In this article, we investigated the adoption, usage, and evolution of CI/CD pipelines for CPS de-
velopment by focusing on challenges and barriers that DevOps teams face when setting up or
evolving CI/CD processes for CPS development, highlighting that the configuration is highly de-
pendent on the domain. The study is based on interviews from 10 organizations developing CPSs
in eight different domains, followed by a member-checking survey within the same development
teams, and an external validation survey involving 55 participants from nine domains. By perform-
ing an open coding on the interview results, we elicited a set of challenges/barriers, along with
their mitigation strategies.

The obtained findings are a first step toward supporting DevOps teams in properly using
and configuring CI/CD for CPSs. In addition, they have implications on how to enhance educa-
tion/training for CPS developers and trigger future research. Based on that, future work aims at
triangulating this study through other channels, such as in-field observations, and at investigat-
ing bad practices in applying and maintaining CI/CD for CPSs. In particular, our goal will be to
automatically detect, by analyzing CI/CD pipeline configurations and runtime data, problematic
situations (“smells”) that would require an intervention on the DevOps side, and, for what is pos-
sible, automatically suggest repairs.

APPENDIX

A DETAILS ABOUT THE INTERVIEW PARTICIPANTS

The interviews’ transcripts together with the labeling procedure helped us in forming organization
profiles, focusing more on how the interviewed companies set and maintain a pipeline for CPS
development.

In the following, we detail the development process of the interviewed organizations, focusing
more on the status of their CI/CD pipeline in terms of (i) build triggering strategies (e.g., continu-
ous or periodic), (ii) co-existence of multiple pipeline configurations (e.g., for different devices) and
the frequency of changes occurring to them, (iii) the phases being automated/executed within the
pipeline, and (iv) the usage and setting of HiL and simulators within the pipeline (e.g., a pipeline
can be a mix of different environments used in different circumstances). In the following, for each
organization participating in the interviews, we describe—by leveraging the codes elicited dur-
ing the interviews’ transcripts analysis phase—the CPS development process and especially the
adoption of CI/CD pipelines and, in general, of build automation.3

O1 (Aerospace)

Context: O1 is involved in V&V tasks for aerospace software (i.e., on-board software for satellites),
hence their CI/CD pipeline is only for V&V and not for development. This is because, due to
the safety integrity level of the CPS, the development and the V&V teams and pipelines must be
kept distinct [22]. O1 relies on conventional programming languages dictated by standards in the
aerospace domain (“We mainly use ANSI C-99 following the MISRA rules” ). This implies the need

3The interested reader can find the code mind maps in the replication package [84].
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for certifying software (i.e., following the MISRA (Motor Industry Software Reliability Association)
standards [1, 7]).

Pipeline Status: O1 started adopting CI/CD practices less than 1 year ago, mainly due to a
limited culture within the team about CI/CD principles. Moreover, it does not have a strict sepa-
ration of roles for what concerns the type of interaction with the pipeline (“a developer who needs
to customize a CI/CD pipeline by simply using yaml files can customize it directly” ). O1 does not
rely on build matrices with jobs related to different environment variants since “the pipeline does
not have to change/evolve based on the changes in the technologies being used (version for compilers
and or programming languages), the aerospace domain follows the waterfall process. So everything is
[frozen]: no changes may occur later on in the process.”

Automated Tasks: Due to the application domain and the related standards and certification
constraints, the pipeline compiles the software provided and developed by the customer, relies
on SonarQube for (i) checking the fulfillment of the MISRA rules for certification, (ii) identifying
maintainability problems (i.e., “we also have non-functional requirements expressed in terms of rules
available in SonarQube” ) mainly related to the presence of duplicated code, and (iii) identifying
bugs as soon as they are introduced, and executing unit and robustness tests to “check how the
system behaves/reacts in the presence of unexpected inputs ([e.g., ] inputs having values out of the
admissible range).” Furthermore, considering the overall scope of the pipeline, its triggering is
manual, even if there are also nightly builds used for running test suites requiring a long time to
complete. It is important to note that the testing criteria to derive the test cases to include within
the pipeline are expressed from the customer as non-functional requirements (“i.e., use MC/DC
for deriving the test suite” ). Finally, O1 has to consider time constraints for the pipeline setting
to deal with possible issues that may arise when launching the simulator (e.g., memory leaks or
impossibility to access the simulator).

HiL and Simulators: O1 cannot involve HiL in the pipeline, as it would require a clean
room not accessible from the outside. Instead, it relies on third-party simulators dictated by the
customer. This is because the customer follows “a framework for simulation aimed at hosting
different simulators for different satellite models for the digital twin of the satellite.” Relying on
third-party simulators helps in reducing the costs/efforts needed to develop the simulators from
scratch, as well as helps in guaranteeing the trustworthiness of the outcome being produced
and provided to the customer. Of course, the level of trustworthiness increases for those cases
where the simulator is provided by the same vendor of the hardware device that must be
simulated.

O2 (Healthcare)

Context: O2 is a large organization involved in the healthcare domain: it provides CT scanners
for clinical use. With regard to the development process, O2 has a team for each component be-
ing developed—around 17 different teams working on 70 branches—together with an integration
branch where all of the other branches are integrated into a “single joined point.” Furthermore, each
team adopts conventional programming languages (i.e., mainly C# and C++).

Pipeline Status: O2 already has a CI/CD pipeline in place for CPS development that was intro-
duced 4 years ago, and they are still improving it. Furthermore, based on its application domain, O2

is constrained to “follow medical application frameworks providing a base set of rules in terms of how
to build applications and how to integrate them.” The latter requires the adoption of processes aimed
at verifying whether or not the overall development process adheres to the regulatory standards
for developing medical applications.

Automated Tasks: O2 adopts both incremental and nightly builds. Of course, the tasks
involved in the different types of builds, as well as the execution environment involved in them,
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vary. Specifically, nightly builds leverage HiL and run three different types of testing, namely
unit/component, sub-system, and system testing. To provide developers fast feedback about the
impact of their changes, O2 relies on incremental builds executing only a subset of the whole
set of functional tests—by doing “impact based testing to figure out the impact of the changes and
select the tests to be executed based on the impact.” To control the overall build execution time, O2

encourages developers to push small changes leading to “small sets of tests to be executed.” Finally,
both incremental and nightly builds run static code analysis tools mainly aimed at identifying
maintainability and security flows in the code.

There is a specific type of build aimed at checking performance requirements like “test whether
each component (some components) stays within the resource limits they are assigned to.” The out-
come of such a build is compared over time to identify and monitor possible performance degrada-
tion within the whole system. Moreover, O2 has a specific DevOps team for checking the fulfillment
of security requirements, even if this is not done continuously while only “near the finalization of
the product,” and it is not automated.

HiL and Simulators: As explained earlier, both the triggering strategies adopted by O2 and the
tasks being automatized within each type of build influence the choice between using simulators
and/or HiL. Nightly builds have an automated deployment on a “real” CT scanner “without reusing
existing artifacts while building all of them from scratch in a clean environment,” for executing the
whole test suite in a real production environment. Note that when talking about “real” CT scanner,
O2 refers to “physical systems that are equivalent to the real hardware in the CT scanner but not
connected to anything around it which has a simulator running on it.”

For what concerns simulators, O2 relies on self-developed simulators —there are suitable knowl-
edge and skills to properly develop simulators (i.e., O2 develops both the software and the hard-
ware). However, at the moment, O2 does not use simulators (“mainly used for functional testing
only” ) for checking non-functional (i.e., performance) requirements.

O3 (Acoustic Sensors)

Context: O3 is involved in CPS innovation for the industry, among others the development of the
SPL Noise Meter Board—a low-cost, high quality, electronic sensing board capable of measuring
noise of the environment. It does not have any separation of roles between the members of the
team (“The team is the company” ); however, the team is composed of both software and hardware
experts who work together, simplifying the overall development process, particularly for those ac-
tivities requiring the integration and communication between software and hardware components
(“Useful for sensors’ integration . . . [it] help[s] having knowledge about the hardware components, how
they work and how it is possible to communicate with them” ).

O3 adopts a Pull-Request (PR) development process with one branch per feature (i.e., “Several
branches for maintaining and developing different features” ). Furthermore, even if it does not have
strict guidelines in terms of coding standards, O3 attempts to adopt similar coding styles within
each branch. Finally, it relies on conventional programming languages, such as Python for testing
and C and C++ for micro-controllers development.

Pipeline Status: At the moment, O3 does not have a CI/CD pipeline for CPS development.
Automated Tasks: Even if O3 does not have a CI/CD pipeline in place, the deployment is fully

automated, although the testing is still manual mainly due to the impossibility of automating the
oracle specification, particularly for testing acoustic signals. Furthermore, even if O3 does not have
certification constraints for the developed code, they need to cope with certification constraints
“for the acoustic signals.”

HiL and Simulators: O3 only uses real hardware devices, even if within the organization
there is the wish of including simulators in the process to test the acoustic signal (i.e., the main
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outcome of their product) in a controlled environment (i.e., “removing noise from the surrounded
environment” ).

O4 (Robotics)

Context: O4 is involved in the development of autonomous robots, and is made up of several
development teams where each team accounts for both hardware and software developers. Fur-
thermore, it adopts a PR development process with one branch per feature (i.e., “We have a branch
for each feature that needs to be implemented and/or improved and we use PRs to merge the work in
the stable release branch” ). Based on the application domain, it mainly adopts C++, together with
Python for users’ interfaces and for interacting with the hardware devices.

Pipeline Status: O4 has a fully containerized (using Docker) pipeline for CPS development.
It relies on continuous and nightly builds, even if they are not used for running time-intensive
tasks (i.e., “that is not so expensive in terms of execution time” ), while for running regression testing
activities on already packaged components and for deployment to the customers. Furthermore, the
CI/CD configuration is pretty stable, meaning that even if each branch may rely on a customized
CI/CD process, the configuration does not have to change over time.

Automated Tasks: Our interviewee mentions the execution of static code analysis tools to
inform developers about code quality degradation and unit tests relying on simulators. Only when
a PR is peer reviewed and there are no failures in the entailed CI/CD process is it possible to
merge the change on the stable repository and enact a release process for shipping the product
to the customers. O4 monitors the overall quality of the development process in terms of static
analysis metrics and code coverage from the unit test execution. The application domain does not
introduce certification constraints (i.e., “If you want to sell a robot you do not need to have a certified
robot” ), but it hinders the automation of non-functional testing within the pipeline. Specifically,
our interviewee mentions the manual execution of reliability and safety tests “running the robot
a long time with a guy supervising the test execution to understand when and why the robot starts
to not work anymore”, or “guaranteeing that once pressing the stop button the robot actually shuts
down.”

HiL and Simulators: O4 relies on third-party simulators and HiL. One point raised by our
interviewee is related to the partial usage of Docker on the hardware so that it is possible to run
the robot in a privileged mode and switch between software versions quite easily: “each one may
choose the version of the software that has to be run over the robot.”

O5 (Automotive)

Context: O5 is a large company operating in the automotive domain working on the software-
focused driving platform. The development process is organized into three different teams each
one with a specific goal: “one working on virtual machines, one working on web services because
we provide DevOps solutions for embedded systems, and finally, we have a small team working on
customer delivery with the goal of adapting our tools to the customers’ needs.” This is the only orga-
nization in our study relying on real-time languages (i.e., real-time Java) to cope with scheduling
requirements of embedded systems.

Pipeline Status: O5 already has a CI/CD pipeline in place mainly for deployment purposes
(“we are able to support updating software on devices on the fly” ), even if it is working on improving
it—“it is still kind of an infancy we are still working on improving.”

Automated Tasks: O5 mainly uses the pipeline for deployment. However, differently from
other organizations, O5 relies on virtual machines instead of using containers for several reasons:
(i) better control over the resources (i.e., “the ability to enforce our resource usage inside the virtual
machine while you do not have quite the same extent with a container” ), (ii) versioning capability
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(i.e., “when a new service comes in, you register it so it is easy to start a new version of this service,
run down the old one and switch over the new one during run-time” ), and (iii) memory safety guar-
antee, (i.e., “by looking at a recent post by both Google and Microsoft we found that around 70% of
the security violations are due to failures of memory safety. So by using a garbage-collected environ-
ment, we can prevent those issues from occurring” ). Going deeper into how the deployment process
works, O5 first creates the virtual machine (i.e., emulating the virtual environment), then the OSGi
infrastructure, and finally it tests individual modules. The latter means that O5 does not test all
the developed modules together since it “deploy[s] individual bundles to a platform.”

For what concerns the verification of non-functional requirements, O5 performs security and
performance testing, even if they are not included in the pipeline. Specifically, for real-time sys-
tems, it is important to monitor the impact of each change on performance properties to be able
to identify, as soon as possible, the change introducing performance degradation (i.e., “we have
various performance tests that we run regularly to track our performance as the system evolves” ).

HiL and Simulators: Since O5 develops software for embedded entertainment in the automo-
tive domain, HiL is only available for a final validation on the customer’s side: “then employ our
customer for the last mile,” so most of the work is done relying on virtual environments.

O6 (Aerospace)

Context: Similar to O1, O6 operates in the aerospace domain, and is mainly involved in the devel-
opment and refining of the routing algorithm for the FRA. For what concerns the programming lan-
guage being adopted, O6 relies on conventional languages: “C and C++ [are] used for the back-end.”

Pipeline Status: O6 already has a CI/CD pipeline mainly for deployment and testing purposes,
which is under continuous improvements. Moreover, our interviewee mentions that the pipeline
is more an MLOps than a simple DevOps pipeline.

Automated Tasks: Among the phases being automated, there are (i) static code analysis for
identifying maintainability flows and spotting bugs as soon as they are introduced, (ii) unit testing,
(iii) integration testing, and (iv) deployment. Furthermore, the execution of non-functional testing
activities is mainly carried out manually and outside the pipeline, due to the high complexity of the
real-time operating system under development. Similarly to O1, it is required that the developed
code satisfies strict certification requirements that are mainly checked by relying on code cover-
age tools. Differently from other organizations, O6 does not rely on nightly builds, meaning that
also time-intensive tasks are executed at each change (i.e., “even the slow builds are continuously
built” ). O6 recommends that developers use private builds before pushing their changes on the
stable release branch, at least for what concerns the execution of unit testing. Finally, the pipeline
provides a monitoring mechanism for what concerns aspects of the real-time operating system
such as scheduling and memory that “gives us the possibility to collect feedback/evidence that may
help us in obtaining the certifications.”

HiL and Simulators: O6 relies on both simulators and HiL; however it does “not have simulators
and HiL in the same pipeline mostly for certification issues.” Specifically, it is possible to rely on real
devices only when there is enough trustworthiness about the software in terms of correct behavior,
as well as the absence of crashes gained by relying on self-developed simulators.

O7 (Railways)

Context: O7 is involved in delivering software for railways (i.e., TCMS), and similarly to what
is reported for the aerospace domain, due to the safety integrity level of the software under
development, developers and testers must be different (i.e., “Testers and Developers are in separate
teams in presence of new functionality to be implemented both start together to implement and write
test cases” ).
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Pipeline Atatus: O7 already has a CI/CD pipeline in place for CPS development—“introduced
two years ago”—that, at the moment, is in a continuous improvement state since it does not autom-
atize the whole development process (i.e., “The deployment on the real train or on the hardware test
track is not automated at the moment even if we are working on making it automatic” ). In terms of
programming language, the interviewee mentions the need of adapting the programming language
to the device on which the software has to be executed; however, they mainly rely on conventional
languages.

Based on the application domain, O7 adopts staged builds following the “green-build rule.” In
the first stage, the build process is executed on a virtual machine (i.e., “ [a] virtual train, software
running on a PC that should behave like it does on a real train” ). Once a change occurs on a specific
component, the related build process is enacted and, in the presence of a green status, all the
components are deployed together so that it is possible to enable the execution using the virtual
train (“the devices are run in some kind of containers and we have frameworks building and connecting
the whole set of devices and components” ). If the build process ends with a successful state, it is
possible to move to the next stage that relies on the hardware test track (i.e., “where we have the
whole set of devices and even some more that we do not have in the virtual train” ). Finally, if the build
process for the second stage ends with a green status, it is possible to run the last stage relying on
a real train. Note that each device/component has a proper CI/CD configuration.

Automated Tasks: O7 uses the pipeline to automatically test basic functionality (i.e., “We test
specific train functionality such as whether we should activate the train in [a specific] mode” ), as well
as the interaction between different components/devices (i.e., “we have a long sequence of events for
each test that involves different devices and components so we are mainly doing integration testing” ).
The test suites used in different stages of the build process may be different since “for some test
cases, we are not allowed to rely on the virtual environment while we must consider the hardware track
or a real train.” At the moment, O7 has automated deployment within the pipeline only for the first
stage—that is, relying on the virtual train (for which the overall build execution is “around one hour
and [a] half” )—whereas it is done manually for what concerns the other two stages: hardware test
track and a real train. Testing against non-functional requirements is also done manually, because
of the high variability and complexity of the environment.

Going deeper into how developers interact with the CI/CD pipeline, O7 enforces developers to
run private builds before pushing their changes on the main stable repository. The private builds
are aimed at executing the same test suite later executed on the CI/CD servers: “for the moment
we cannot configure the number and type of tests to be executed locally.” Furthermore, the “green-
build rule” is used for determining the development tasks: “in presence of a failure all developers
are stopped until the build becomes green again.”

HiL and Simulators: O7 adopts both simulators and HiL in different stages of the build process,
with the use of HiL occurring only in the last stage of the pipeline.

O8 (Railways)

Context: The application domain of O8 is railways, and particularly the development of a specific
component used for transmitting data between on-board and ground applications. O8 uses C and
C++ (i.e., conventional programming languages), and it has strict constraints for what concerns
the production code that has to satisfy strict certification requirements, as well as the compliance
with the railway standards and specifications. The latter is mainly checked by relying on “a specific
complex tool that can be configured based on specifications and standards.”

Pipeline Status: Due to the limited availability of human resources together with the complex-
ity and the safety integrity level of the application domain, O8 does not have a CI/CD pipeline in
place for CPS development, and it has, in general, little automation in the development process.
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Automated Tasks: Only the adherence to standards and specifications is automated, whereas
functional “tests are written manually starting from requirements and system specification[s] but also
their execution requires a manual effort.” This is also the case for non-functional and integration
testing (i.e., “we have a set of testers in front of a screen who monitor and check for the presence of any
discrepancies about what is expected and what is instead observed while running the system” ). Due to
the effort and time needed to manually verify the reliability of the software under test, functional
tests are executed at every change, whereas integration tests are only executed when the change
impacts the “interfaces with other modules/components.”

HiL and Simulators: Due to the high cost of the hardware devices involved in this particular
application domain, O8 mainly relies on simulators that are self-developed (“we do not rely on third
party very expensive simulators” ). However, once per week, O8 performs a testing session with a
real “train running in a real environment with real traffic [and] possibly without people.”

O9 (Identification Technology)

Context: O9 is involved in “develop[ing] software relying on identification technologies such as
RFID [Radio Frequency IDentification], Bluetooth low energy or bar codes,” other than mobile app
development for which there is a CI/CD pipeline used for testing and automated deployment on
the play stores. For what concerns the CPS development, O9 relies on conventional programming
languages such as C# and Java.

Pipeline Status: The limited availability of human resources, together with a lack of culture
for setting a pipeline dealing with sensors and actuators, results in not having a CI/CD pipeline in
place for CPS development.

Automated Tasks: The testing phases are almost fully automated. Specifically, there are “RFID-
readers connected to a network” on which it is possible to execute unit and integration testing
activities automatically. For what concerns integration testing, it is important to remark that there
are cases requiring the manual intervention of the tester (i.e., “For instance, when we need to test
a transfer of tags between different antennas we cannot use automation” ), as well as cases where
it is required to interact with the hardware devices that cannot be simulated. Of course, in this
specific setting, it is not possible to guarantee the overall reproducibility of the results of the test;
however, “the reproducibility of the test in this context is not required.” Furthermore, O9 does not run
the whole test suite at each change. Instead, they manually select some test cases based on impact
analysis: “select what are the test cases that are impacted by the change that, consequently, need to
be executed.” Other than having unit and integration testing activities, O9 also executes, from time
to time, performance testing.

For what concerns the deployment of CPS-related software, O9 relies on Docker for creating
images that are manually deployed onto the servers.

Finally, the development process also features a monitoring component for the internal devel-
opment platform and customers’ devices, to notify about anomalies and errors, as soon as they
occur.

HiL and Simulators: The development process adopted by O9 relies on both (self-developed)
simulators and HiL. Simulators are developed based on specific organization needs and use case
scenarios, implying that they are limited in their functionality.

O10 (Energy)

Context: O10 is involved in the development of prototypes and proof of concepts for the energy
domain. The development of prototypes rather than real products represents concrete facilitation,
since there may be less stringent constraints in terms of pipeline setting and evolution.
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Pipeline Status: What is mentioned previously justifies the presence of a mature (i.e., intro-
duced in 2016) pipeline adopted within the organization for CPS development that uses conven-
tional programming languages, mostly Java and Python. The pipeline configuration is pretty stable
probably due to the development of prototyping solutions that do not need to be shipped to real
environments.

Automated Tasks: Other than having a compilation phase, the CI/CD pipeline is aimed at exe-
cuting unit and integration tests (“Our pipeline is mostly for unit testing (80%) but there is also some
integration testing” ), followed by a deployment phase where the packaged version of the software
is usually stored into an artifact repository as a Docker image. Furthermore, safety requirements,
such as checking that a battery is not charged more than a certain rate, are specified and checked
through unit test cases that do not involve the real devices. Thanks to the need for developing pro-
totyping solutions, the pipeline accounts for static code analysis tools and linters that are mainly
used for checking maintainability issues only (i.e., “They are not used for checking out bugs, but
mostly for making sure that the code is easy to read for other colleagues and for maintainability pur-
poses” ). Moving the attention on the triggering strategies, O10 does not rely on nightly builds. It
only uses incremental builds so that each build execution time does not overcome the 10-minute
rule.

HiL and Simulators: Looking at the execution environment, O10 does not need to run the
software on embedded devices, meaning that it “tr[ies] to find devices having interfaces to commu-
nicate with. So basically we run our software on a traditional machine and it just communicates with
the hardware.” So, differently from other organizations, O10, other than simulating the hardware
when needed (i.e., “we simulate the battery for testing the charging protocol” ), mainly replaces it
with mock-ups (i.e., “it is very easy to mock a client just to see if our software sends the right com-
mands or does not use any register twice” ). Only when the real devices are available and it is safe to
use them for testing does O10 use Docker images for checking the correct behavior over the real
devices as well.
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