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A B S T R A C T   

Deep learning has been widely applied to automated leakage detection and location of natural gas pipe networks. 
Prevalent deep learning approaches do not consider the spatial dependency of sensors, which limits leakage 
detection performance. Graph deep learning is a promising alternative to prevailing approaches as it can model 
spatial dependency. However, the challenge of collecting real-world anomaly data for training limits the accu
racy and robustness of currently used graph deep learning approaches. This study proposes a deep probabilistic 
graph neural network in which attention-based graph neural network is built to model spatial sensor de
pendency. Variational Bayesian inference is integrated to model the posterior distribution of sensor dependency 
so that the leakage can be localized. An urban natural gas pipe network experiment is employed to construct the 
benchmark dataset, in which normal time-series data is applied to develop our proposed model while anomaly 
leakage data is used for performance comparison between our model and other state-of-the-art models. The 
results demonstrate that our model exhibits competitive detection accuracy (AUC) = 0.9484, while the addi
tional uncertainty interval provides more comprehensive leakage detection information compared to state-of- 
the-art deep learning models. In addition, our model’s posterior distribution enhances the leakage localization 
with the accuracy of positioning (PAc) = 0.8, which is higher than that of other state-of-the-art graph deep 
learning models. This study provides a comprehensive and robust alternative for subsequent decision-making to 
mitigate natural gas leakage from pipe networks.   

1. Introduction 

Global natural gas production and consumption demand have 
experienced tremendous growth in the past decades since natural gas is 
considered a ‘cleaner fuel source’ and burning it produces nearly half as 
much carbon dioxide (CO2) per energy unit as coal and oil (Gao, Gong, 
Li, & Wei, 2023). In order to meet demand, natural gas transmission and 
distribution networks have been widely constructed in urban areas, 
which naturally creates safety issues (Tchórzewska-Cieślak, Pietrucha- 
Urbanik, Urbanik, & Rak, 2018). Natural gas leak from urban pipe 
networks is among the most severe hazards since the released plume 
could accumulate into a flammable vapor cloud which, if ignited, can 

cause a severe fire and/or explosion disaster (Shi et al., 2023a). To 
mitigate this risk, real-time automated leakage detection and its location 
in urban natural gas pipe networks is essential for safe and effective 
operation and maintenance. 

Deep learning has been applied for real-time automated pipeline 
leakage detection and location (Lindemann, Maschler, Sahlab, & 
Weyrich, 2021). Based on the training approach and the availability of 
data, these methods could be divided into supervised methods, semi- 
supervised methods and unsupervised methods. Supervised methods 
based on models such as artificial neural networks (ANNs) (Esen et al., 
2008b, 2009), hidden Markov model (HMM) (Zhang, He, Stojanovic, 
Luan, & Liu, 2021), radial basis function neural networks (RBFNNs) 
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(Song, Sun, Song, & Stojanovic, 2022), and convolutional neural 
network (CNN) (Zheng et al., 2022; Zhou et al., 2021) et al., have been 
viewed as strong tools for anomaly detection. However, these supervised 
methods require a large number of labeled anomaly leakage data as 
training data to achieve acceptable detection accuracy (Korlapati, Khan, 
Noor, Mirza, & Vaddiraju, 2022). Since anomaly rarely occurs, collect
ing adequate volumes of real-world anomaly data is difficult (Spando
nidis, Theodoropoulos, Giannopoulos, Galiatsatos, & Petsa, 2022). 

To overcome this limitation, scholars have developed unsupervised 
and semi-supervised deep learning-based detection approaches. Esen, 
Esen, and Ozsolak (2017) proposed an adaptive neuro-fuzzy inference 
system (ANFIS)-based method to decrease the dependency of labeled 
anomaly data. Tao, Cheng, Qiu, and Stojanovic (2022) proposed a few- 
shot learning, namely model agnostic matching network (MAMN), for 
equipment fault diagnosis. Park, Hoshi, and Kemp (2018) and Spando
nidis et al. (2022) introduced long short term memory (LSTM) to vari
ational autoencoder (VAE) to construct unsupervised anomaly detection 
model. Spandonidis et al. (2022) entailed a long short term memory 
autoencoder (LSTM-AE) to process signals from accelerometers, 
providing an unsupervised leakage detection alternative. Although 
achieving desirable accuracy, the aforementioned approaches ignore the 
dependency among spatially-distributed sensors, while such de
pendency may have a significant influence on leakage detection and 
location accuracy (Ding, Sun, & Zhao, 2023). 

Graph neural networks (GNNs) have become one of the most popular 
alternatives for anomaly detection and location since GNNs view such 
networks as non-Euclidean graph structure and capture spatial de
pendency between nearby graph nodes by introducing an adjacency 
matrix (Du, Liu, & Lu, 2021; Jiang & Luo, 2022). Choi, Yi, Park, and 
Yoon (2021) comparatively analyze state-of-the-art semi-supervised and 
unsupervised deep-anomaly-detection models, and conducted that 
GNN-based models were more effective on datasets with dependent time 
series. Zanfei, Menapace, Brentan, Righetti, and Herrera (2022) applied 
a graph convolutional neural networks (GCN) and a graph convolutional 
recurrent neural network (GCRNN) for burst detection in water distri
bution systems. They compared the performance of the two GCN-based 
models and highlighted the significant potential of the anomaly detec
tion models learned from a graph structure. Nevertheless, it is worth 
noting that such graph neural networks are supervised and still require 
labeled anomaly data for model training. The challenge of collecting 
real-world anomaly data may compromise GNN performance. With re
gard to anomaly detection without labeled anomaly data, Deng and Hooi 
(2021) combined a structure learning approach with GNNs, namely 
graph deviation network (GDN), additionally using attention weights to 
explain localization. However, such GNNs apply ‘point-estimation’ ap
proaches such as maximum likelihood estimation (MLE) approach, 
maximum a posteriori (MAP) expectation maximization (EM), and so 
on, to optimize the parameters, which may provide ‘over-confident’ 
detection results even when detection deficiency exists. In natural gas 
pipeline networks, pressure signals resulting from leakage can be highly 
fluctuated, leading to larger variation in signal recorded by nearby 
sensors (Gupta, Thein Zan, Wang, Dauwels, & Ukil, 2018). However, 
existing GNN-based methods have utilized ‘point-estimation’ techniques 
to optimize a specific group of neural network parameters and finally 
estimate the specific results as well. These specific estimations may not 
reflect the larger variation of pressure signal recorded by sensors more 
closed to leakage position and thereby affect the leakage localization 
accuracy of existed GNN-based methods. 

Variational Bayesian inference provides a robust alternative by 
modelling the posterior distribution of parameters inside deep neural 
networks compared to ‘point-estimation’ approaches (Liu et al., 2023; 
Shi et al., 2021, 2023b). Variational inference is one of the most well- 
known alternatives, which replaces the true posterior distribution with 
an approximate distribution and solves the Kullback-Leibler (KL) 
divergence between two distributions (Blei, Kucukelbir, & McAuliffe, 
2017; Gal & Ghahramani, 2016). Recently researchers demonstrated the 

performance of variational Bayesian inference to estimate the uncer
tainty of spatiotemporal features and estimation accuracy by incorpo
rating neural networks compared to traditional Bayesian inference such 
as Monte Carlo simulations etc. (Y. Liu et al., 2020; Shi et al., 2022). 
Pang, Zhao, Hu, Yan, and Liu (2022) applied variational Bayesian 
inference to construct a Bayesian spatio-temporal graph transformer (B- 
STAR) architecture, which achieves state-of-the-art performance in 
modeling the relationship of multiple agents under uncertainties. G. Liu 
et al. (2023) proposed a variational Bayesian edge-conditioned graph 
convolution model to assess the spatial connectivity effects, which 
exhibited excellent performance with probabilistic prediction reliability 
on daily streamflow prediction. Although variational Bayesian inference 
has shown state-of-the-art performance in graph-based probabilistic 
forecasting, its potential in anomaly detection has yet to be fully 
explored. 

This study aims to propose a deep probabilistic graph learning model 
for natural gas leak detection and localization without labeled anomaly 
data. First, the attention-based graph neural network is used to capture 
spatial dependency among sensors. Then, the variational Bayesian 
inference is applied to model the larger variation of pressure signal 
recorded by sensors more closed to leakage position. Besides, a pipeline 
leakage experiment is conducted to construct the benchmark dataset, 
using which comparisons between the proposed approach and state-of- 
the-art models are performed. The major contributions and novelty of 
this study are listed as follows:  

(1) This is the first study to integrate variational Bayesian inference 
with GNN to model the posterior distribution of dependency 
weights among spatially-distributed sensors to improve leakage 
detection and location accuracy in urban natural gas pipe net
works without labeled anomaly leakage data.  

(2) The experimental study demonstrates our model exhibits 
competitive detection accuracy while providing uncertainty in
tervals of leakage detection to support comprehensive decision- 
making compared to state-of-the-art GNNs. 

(3) The experimental study also shows our model provides accept
able overall positioning accuracy, which indicates its higher ac
curacy for automated natural gas leakage location compared to 
state-of-the-art GNNs. 

(4) This study provides a reliable and accurate alternative for auto
mated anomaly detection and location using GNNs without 
labeled anomaly data. 

This paper is organized as follows: section 2 and section 3 give the 
mathematical problem and modeling framework of proposed deep 
probabilistic graph learning. Section 4 presents benchmark dataset 
constructed by a pipeline leakage experiment. Section 5 and section 6 
illustrate the development, validations and comparisons of the proposed 
model. Finally, limitations and conclusions are provided in section 7 and 
section 8, respectively. 

2. Problem statement 

Our task is to improve the accuracy and reliability of automated 
leakage detection and localization and demonstrate it by comparing it 
with monitored time-series data collected by spatially-distributed sen
sors. Existing GNN-based approaches are based on the ‘point-estimation’ 
approach and cannot handle uncertainty of detection results. In addi
tion, such approaches locate the leakage position using the single de
pendency weights among sensors, which are calculated using graph 
attention learning. The pressure data fluctuates steadily under normal 
conditions in the natural gas transmission and distribution pipeline 
system. Once a leak occurs, the loss of fluid will change the fluid density 
near the leakage location and a rapid pressure drop can be seen. The 
pressure difference forces the natural gas to squeeze towards the leakage 
location, establishing a new pressure gradient in the leakage region. The 
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pressure variation in the leakage location is larger compared to areas 
distant from the leak. Due to the unavoidable stochastic background 
noise in the pipe network, the pressure fluctuations decay with 
increasing distance (Gupta et al., 2018). However, the aforementioned 
dependency weights calculated by prevalent ‘point-estimation’-based 
GNN methods cannot represent pressure variation recorded by sensors 
near the leakage location. 

We aim to model the posterior distribution of dependency weights to 
present the larger pressure variation nearby and accordingly locate the 
leakage more accurately by integrating variational Bayesian inference 
with attention-based GNN. By variational Bayesian inference, we also 
provide the additional uncertainty of leakage detection. From a math
ematical perspective, this is to say we need to model the probability 
density P(A|X) at time t. A is dependency weight among spatially- 
distributed sensors and X is the previous s-steps pressure data moni
tored by sensors, which can be expressed as: 

A =

⎛

⎝
α1,1 ⋯ α1,J
⋮ ⋱ ⋮

αm,1 ⋯ αm,J

⎞

⎠ (1)  

X =

⎛

⎝
x1,t− s ⋯ x1,t− 1

⋮ ⋱ ⋮
xm,t− s ⋯ xm,t− 1

⎞

⎠ (2)  

where m is the number of sensors, J is the number of neighbor sensors of 
the target sensor. 

3. Proposed approach 

Fig. 1 demonstrates the architecture of the proposed variational 
Bayesian inference-graph attention neural network, namely VB_GAno
maly, for real-time automated leakage detection and localization in 
complex pipe networks. 

Fig. 1. Architecture of VB_GAnomaly.  
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3.1. Attention-based graph neural network as the backbone 

The attention-based graph neural network is applied as a backbone 
because the attention mechanism could capture the dependency among 
spatially-distributed sensors accurately (Choi et al., 2021).  

(1) The first part of our proposed VB_GAnomaly is an association 
graph presenting the connections among sensors of the pipeline 
network (Hao et al., 2022; Li, Yu, Zhang, & Xu, 2023). Such 
connections depend on the flow state such as flow direction, 
speed etc., inside the pipeline network. We then construct the 
association graph structure G= (V, E) with nodes V presenting 
sensors and edges E presenting the connections among sensors. 
We denote the number of sensors as Nnodes = m and the number of 
connections as Nedges = n. We further define the adjacency matrix 
Adij presenting whether connection between sensor i and j exists. 
In addition, a linear embedding operation is applied to calculate 
the feature vector vi of time-series data from sensor i, which can 
be expressed as: 

vi = Embeddingwe ([xi,t− s, xi,t− s+1,⋯, xi,t− 1] (3)  

where i ∈ {1,2,⋯,m}, we denotes the parameters in the linear embed
ding neural layer. 

By integrating vi with time-series data Xi, the initial node represen
tation corresponding to each sensor γi can be calculated as: 

γi = vi ⊕ wgXi (4)  

where ⊕ denotes matrix concatenation and wg is the weight matrix.  

(2) The second part of our proposed VB_GAnomaly is to quantify the 
connections among sensors by using attention-based neural 
network. We first apply LeakyReLU as the nonlinear activation to 
determine dependency weights ξ(i, j) between sensor i and its 
neighbor sensor: 

ξ(i, j) = attention(i, j) = LeakyReLU
[
wa

⊤(γi ⊕ γj)
]

(5)  

where wa is weight vector of learned dependency weights for the 
attention mechanism, and γi, γj are the initial node representation of 
sensor i and sensor j. 

Then, we apply the softmax function to normalize the dependency 
weights. 

αi,j = softmax(ξ(i, j) ) =
exp(ξ(i, j) )

∑
k∈N(i)U{i}exp(ξ(i, k) )

(6)  

where αi,j is normalized dependency weights. 
The normalized dependency weights of sensor itself and the weights 

between sensor and its neighbor sensors are then integrated with feature 
vector vt

i of time-series data from sensor i, which can be expressed as: 

hi = ReLU

(

αi,iwgvi +
∑

j∈N(i)

αi,jwgvj

)

(7)  

where hi is learned node representation. 
Subsequently, the set of learned node representations h for all nodes 

can be expressed as: 

h = {h1, h2,⋯, hm} (8) 

Then, h is regarded as input to a multilayer perceptron layer (MLP) to 
forecast the pressure Y = {Y1,Y2,⋯,Ym}. 

Y = MLPwf (h) (9)  

where wf denotes the parameters in the MLP neural layer. 

3.2. Variational Bayesian inference 

Variational Bayesian inference is then applied to model the posterior 
distribution density of dependency weights P(A|X), where A is de
pendency weight among spatially-distributed sensors and X is the pre
vious s-steps data monitored by sensors. Given χ = (X, A), the 
probability density P(A|X) can be expressed as: 

P(A|X) =
∫

P(A|X,w)P(w)dw,w P(w|χ) (10)  

where w presents a set of parameters in the Linear embedding neural 
layer and the graph attention deep neural network, w =

{
we,wa,wg

}
. 

P(A|X,w) denotes the conditional probability density of the dependency 
weight A given pressure sequence X as well as the parameters w of the 
deep learning neural network. 

According to Bayesian theory, the log probability of P(w|χ) can be 
inferenced as: 

logP(w|χ) = log
(

P(χ|w)P(w)
P(χ)

)

(11)  

P(χ|w) is the likelihood of χ given w, P(w) is the prior probability of 
initially assumed a list of w values, P(χ) is the marginal probability. 

By using the variational Bayesian inference, an approximate density 
distribution Qε(w) can be found to represent the posteriori probability 
P(w|χ). In order to measure the approximation between Qε(w) and 
P(w|χ), KL divergence is introduced to describe the similarity between 
both probability distributions, as illustrated below: 

KL(Qε(w)||P(w|χ) ) =
∫

Qε(w)log
(

Qε(w)
P(w|χ)

)

dw  

=

∫

Qε(w)
(

logQθ(w) − log
(

P(χ|w)P(w)
P(χ)

))

dw  

=

∫

Qε(w)(logQε(w) − log(P(χ|w) − logP(w) + logP(χ))dw  

= logP(χ) −
∫

Qε(w)log
(

P(χ|w)P(w)
Qε(w)

)

dw (12) 

Since we aim to minimize the KL(Qε(w)||P(w|χ) ), and logP(χ) is a 
constant that depend on the determined dataset, thus, minimizing the 
KL(Qε(w)||P(w|χ) ) is equivalent to maximizing the second terms of right 
side. Moreover, given that KL divergence is greater than or equal to 0 (0 
if and only if Qε(w) is equal to P(w|χ)), it can be deduced that the second 
terms of the right side is a lower bound of logP(χ), donated as, ELBO 
(Evidence Lower Bound). 

ELBO =

∫

Qε(w)log
(

P(χ|w)P(w)
Qε(w)

)

dw (13)  

=

∫

Qε(w)logP(χ|w)dw −

∫

Qε(w)log
(

Qε(w)
P(w)

)

dw  

= Ew Qε(w)logP(χ|w) − KL(Qε(w)‖P(w))

where the first term of the right hand is the expectation term of logP(χ|w)

and the second term of the right hand is the KL divergence between 
Qε(w) and P(w). Therefore, the variational distribution Qθ(w) can be 
estimated by maximizing the expectation term of logP(χ|w) and mini
mizing the KL divergence term KL(Qε(w)‖P(w)). Maximizing the 
expectation term of logP(D|w) and minimizing MSE between the pre
dicted and observed pressure values, the first term of the right hand can 
be expressed as: 

Ew Qε(w)logP(χ|w) = − MSE(X, Y) (14) 

Assuming any distribution could be modeled by multi-Gaussian 
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mixture distributions, we determine Qε(w) = PN(θ, σ2I)+(1 − P)N(0,
σ2I) and P(w) = N(0, σ2I). Then, the KL divergence term KL(Qε(w)‖P(w))

can be expressed as: 

KL(Qε(w)‖P(w)) ≈
ρ
2
εT ε − C1σ2 − C2lnσ2 +C3 (15)  

where ρ is the pre-defined dropout probability, ε is the optimized vari
ational parameter, C1, C2 and C3 are constants. 

Eventually, the loss function can be minimized by maximizing the 
expectation term of logP(χ|w) and minimizing the KL divergence term 
KL(Qε(w)‖P(w)): 

LOSS ≈ − MSE
(
X,VB GAnomalyw Qε(w)(X)

)

+
ρ
2

εT ε − C1σ2 − C2lnσ2 + C3

(16) 

A stochastic gradient descends (SGD) optimization algorithm is 
applied to minimize the loss function for the determination of varia
tional distribution Qε(w). 

3.3. Leakage detection and localization 

Given the new testing input X*, the posterior distribution P(A*|X*)

can be approximated by w Qε(w), as expressed in Eq. (17): 

P(A*|X*) =

∫

P(A*|X*,w)Qε(w)dw,w Qε(w) (17) 

Further, the Kernel density estimation (KDE) are used to approxi
mate the probability density function (PDF) of the dependency weights 
A* (He & Zhang, 2020). Numerous dependency weights can be 
computed by Monte Carlo (MC) sampling parameters w from the vari
ational distribution Qε(w) in the deep learning of the Eq. (3)- Eq. (6). 
Accordingly, the predicted pressure can be expressed as: 

Y*1, Y*2,⋯, Y*mc = VB GAnomalyw1 ,w2 ,⋯,wmc
(X*),w1,w2,⋯,wmc Qε(w)

(18)  

where, mc represents the pre-defined sampling number of our proposed 
model.Y*mc is the predicted pressure of all sensors under mc-th sampling 
parameter wmc. 

For each predicted pressure Y*z
i of sensor i under z-th sampling 

parameter wz, a proportional error Er*z
i can be computed comparing to 

the observed pressure X′

i, as expressed below: 

Er*z
i =

⃒
⃒X ′

i − Y*z
i

⃒
⃒

X ′

i
(19) 

The mean value of the proportional deviation under mc sampling is 
calculated as the deviation Zi of sensor i, as expressed bellow: 

Zi =
1

mc
∑mc

z=1
Er*z

i (20) 

By comparing the deviation of each sensor, the sensor ηt with the 
maximum deviation at time t can be obtained. The mc proportional er
rors of the sensor ηt are sorted according to their values, and the median 
value of sensor ηt’s proportional error Er*

ηt is donated as Me Er*: 

Me Er* =
Ermc

2
+ Ermc

2 +1

2
(21)  

where Ermc
2 

is the mc
2 -th proportional error after sorting. 

Then, the proportional error of sensor ηt is compared with the normal 
threshold to determine whether time t is in an anomaly, and the normal 
threshold Th(i) of sensor i generated by the maximum deviation in 
validation dataset, which is normal data without label. 

Thus, the leakage detection results can be obtained by comparing 
Me Er* with the normal threshold Th(ηt) of sensor ηt, which is generated 

by the maximum deviation in the validation dataset without label. The 
leakage detection result is expressed as a set of binary labels indicating 
whether time t is leaking or not, i.e. B ∈ {(0,1) }, where B = 1 indicates 
that time t is leaking. And the detection result B is expressed as: 

B =

{
0if − Th(ηt) ≤ Me Er* ≤ Th(ηt)

1ifMe Er* > Th(ηt)orMe Er* < − Th(ηt)
(22)  

where − Th(ηt) is the lower of the normal interval and Th(ηt) is the upper 
of the normal interval. 

Given mc sampling proportional errors of sensor ηt, mc leakage 
detection results can be obtained. Our model also gives a probabilistic 
result of distribution P(B) at time t, which can be expressed as: 

P(B) =
β

mc

B

(1 −
β

mc
)

B (23)  

where β is the number of anomaly, 0 ≤ β ≤ mc. 
Once an anomaly is detected, the leakage can be positioned ac

cording to the uncertainty dependency weights. 
The number of maximum deviations for sensor i during the leakage 

time T is donated as Ndi: 

Ndi =
∑T

t=1
(ηt = i) (24) 

Then, given sensor φ as the sensor with the maximum Ndi, the 
standard deviation of dependency weights between the sensor φ and the 
neighbor sensor j is output as Stdφ,j, 

Stdφ,j =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑mc

r=1

∑T
t=1(α

*t,r
φ,j − α*mean

φ,j )

mc × T

√
√
√
√
√

(25) 

Therefore, a maximum standard deviation Stdφ,ζ among all the 
neighboring sensors is calculated, as expressed: 

Stdφ,ζ = max{Stdφ,1, Stdφ,2,⋯, Stdφ,j} (26) 

Thus, Stdφ,ζ indicating that the position of the edge with the largest 
weight fluctuation is between nodes φ and, that is, the leak is located 
between sensor φ and sensor ζ. 

3.4. Evaluation metrics for leakage detection and localization 

In this work, we use precision (Prec), recall (Rec), F1-score (F1), the 
area under the receiver operating characteristic curve (AUC) and the 
overall positioning accuracy (PAc) as the evaluation metrics (Ding et al., 
2023). Given the confusion matrix of the predicted results and the true 
labels of leakage detection, we denote true positive samples, true 
negative samples, false positive samples, and false negative samples as 
TP, TN, FP, and FN, respectively. Precision indicates the percent of 
positive anomalies to all detected anomalies. Recall is the percent of 
correctly detected anomalies to all actual anomalies. F1-score can show 
the trade-off between the value of precision and recall regarding the 
positive anomalies. Precision, recall and F1-score can be calculated 
following Eq. (27)–Eq. (29). 

Prec =
TP

TP + FP
(27)  

Rec =
TP

TP + FN
(28)  

F1 = 2
Prec⋅Rec

Prec + Rec
(29) 

Given K as the number of positive samples and N as the number of 
negative samples, AUC can be calculated as: 

AUC =

∑
insi∈positiveclassrankinsi −

K×(K+1)
2

K × N
(30) 
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where positiveclass is the set of order numbers of positive samples, and 
rankinsi is order number of the i-th sample. 

In addition, the overall positioning accuracy is measured by the 
percentage of leakage that has been correctly localized, as expressed 
bellow: 

PAc =
1
n

∑n

i=1
L(Ei,Ei) (31)  

where the L(Ei, Ei) is the number of samples with a leakage position Ei 
that are localized in pipeline Ei, n is the number of all the pipelines. 

4. Benchmark dataset 

4.1. Experimental configuration 

A natural gas leakage experiment system of urban gas transmission 
and distribution pipeline network is used to simulate gas flow with/ 
without leakage. Fig. 2 demonstrates the experimental system, which 
mainly consists of main pipeline and pipeline branches. The diameter of 
the main pipelines is 80 mm, while the branch pipelines are of diameter 
50 mm. A gas regulator and several valves are installed in the pipeline 
network. The gas regulator maintains the inside pressure at 0.1 MPa. 5 
ball valves installed at 5 pipeline positions are used to generate 5 gas 
leakages, namely leak1, leak2, leak3, leak4 and leak5. In addition, 
pressure signals which are convenient and stable indicators in pipeline 
leakage diagnosis (Zheng, Dai, Liang, Liao, & Zhang, 2020), are used as 
benchmark time-series data. Four pressure sensors, denoted as P1, P2, 
P3, and P4 are installed along the main pipeline and branches to collect 
the benchmark time-series data. The location of each leakage position 
and the installed sensor are summarized in Table 1. Finally, an online 
data processing system (DPS) is used to collect the online monitoring 
time-series pressure signals. The topology graph of experimental pipe
line network is constructed with nodes presenting sensors and edges 
presenting the pipeline connection between sensors, as introduced in 
section 3.1. The topology graph is shown in Fig. 3. 

By using such an experimental system, we monitor the inside pres
sure for 1 h and collect 3600 = 3600 s *1 pressure values from each 
sensor with pressure sampling interval of 1 s. Then, we divide all the 
pressure values into 3590 sequences, each of which includes 10 pressure 
values. Finally, we generate the benchmark training datasetXtrain ∈ R 
(4,3590,10), without leakage from 4 sensors. For benchmark testing 
dataset construction, we simulate 5 leakage scenarios by considering 5 
leakage positions. For each scenario, we first monitor the inside pressure 
without leakage for 80 s and then set the occurrence of leakage lasting 
for 80 s. Then, we collect 800 = 5*160 pressure valves, which are 

divided with 790 sequences and each sequence includes 10 pressure 
values. Finally, we generate the benchmark testing datasetXtest ∈ R 
(4,790,10) from 4 sensors. 

An example of time-series pressure data monitored by 4 sensors 
under leak2 is presented in Fig. 4. As can be seen, before the occurrence 
of the leakage, the pressure fluctuates steadily. However, a rapid drop is 
observed once the leakage is initiated. Among all the sensors, the pres
sure of P3 shows a larger variance among all sensors, and reaches the 
lowest pressure of 0 due to its closer location to the leakage position. 

4.2. Benchmark dataset processing 

Since the experimental pipeline network is composed of pipelines 
with different pressure grades, i.e., DN50 and DN80, the variation of the 
monitoring time-series pressure signal among different sensors has a 
great discrepancy. In this regard, data processing is required to ensure 
all the monitoring data with the same magnitude in order to accelerate 
the model’s convergence and generalization capability. The min-max 
normalization approach is adopted to normalize all the time-series 
data X between 0 and 1 as expressed (Zheng et al., 2020): 

xn =
xl − xmin

xmax − xmin
(32) 

Fig. 2. Lab-scale experimental system of urban gas transmission and distribution pipeline leakage simulation.  

Table 1 
Location of the leakage point.  

Leak Upstream sensor Downstream sensor Location 

Leak1 P3 P4 P3-P4 
Leak2 P1 P3 P1-P3 
Leak3 P1 P2, P3 P1-P2/P3 
Leak4 P1 P2 P1-P2 
Leak5 P1 P2, P3 P1-P2/P3  

Fig. 3. Topology graph of experimental pipeline network. Nodes present sen
sors and edges present pipeline connection between sensors. 

X. Zhang et al.                                                                                                                                                                                                                                   



Expert Systems With Applications 231 (2023) 120542

7

where xn is the normalized value, xl is the original value, xmax and xmin 
are the maximum and minimum of the original values. 

5. Probabilistic graph deep learning model development 

Our VB_GAnomaly model is compiled by using Python version 3.6 
and PyTorch version 1.5.1 with computer server of Intel(R) Xeon(R) 
Silver 4214R CPU @ 2.40 GHz 2.39 GHz and 4 NVIDIA GeForce RTX 
2080Ti GPU. Increasing Monte Carlo samples induces the posterior 
distribution of predicted pressure by Eq.(18) converged, which however 
increases the computational burden and harms our model’s real-time 
capability for decision-making. Therefore, the trade-off between our 
model’s accuracy and real-time capability should be determined by 
determining the optimal Monte Carlo mc sampling number. 

Taking experimental scenario of Leak 1 under inside pressure of 0.1 
MPa as example, we first extract 10 groups of weights from variational 
distribution Qε(w) and accordingly calculate 10 groups of pressure 
values by Eq.(18). For each group, we extract the weights mc times, and 
then determine mc pressure values. This indicates each group includes 
mc predicted pressure values. Fig. 5 displays 10 groups of Cumulative 
Density Function (CDF) curves of predicted pressure values under mc =
50, 300 and 500, respectively. From it, one can see an obvious decrease 
of the uncertainty interval of predicted pressure value from 0.010564 to 
0.005367, as the number of MC samples increases from 50 to 300 when 
CDF value is 0.5. With further increasing the mc number from 300 to 
500, such decrease becomes negligible. However, increasing the MC 
samples would harm our model’s efficiency. In this regard, mc = 300 is 
selected as the optimal for the trade-off between model’s accuracy and 
efficiency. 

Fig. 6 displays the probability density function (PDF) distribution of 
the predicted pressure values of Leak 1 under inside pressure of 0.1 MPa. 
From it, one can see distribution of the predicted pressure follows the 
Gaussian distribution with a mean pressure value mu = 0.0977 MPa and 
standard deviation std = 0.0288. The difference between the mean 
pressure value mu = 0.0977 MPa and the experimental pressure value 
0.10 MPa is 0.0023, indicating our model’s accuracy under mc = 300. 

6. Model validation and comparison 

In this section, comparisons between our developed VB_GAnomaly 

model and six baseline models are conducted to validate our model’s 
accuracy and reliability for leakage detection and localization without 
labeled anomaly data by using benchmark testing dataset. 

6.1. Baseline models 

Several neural network-based models on time-series anomaly 
detection and localization with/without labeled anomaly data are 
applied as baselines. They are as follows:  

(1) ANN (Rostek, Morytko, & Jankowska, 2015): An artificial neural 
network (ANN) consisting of multiple hidden units was applied 
for unknow attacks detection. Noting that this model requires 
labelled anomaly data as training data and does not consider the 
dependency between sensors.  

(2) SVM (Esen, Inalli, Sengur, & Esen, 2008a): The support vector 
machine (SVM) model was developed for ground coupled heat 
pump system performance modeling. This model did not require 
a pre-knowledge about the system, which means that the model 
could be trained without labeled anomaly data.  

(3) LSTM-VAE (Park et al., 2018): Long short-time memory based 
variational autoencoder (LSTM-VAE) model was developed for 
multi-modal sensory anomaly detection. This model is unsuper
vised indicating it may not require labelled anomaly data as 
training data. However, this model also does not consider the 
dependency between sensors.  

(4) GAT (Veličković, Casanova, Liò, Cucurull, Romero, & Bengio, 
2018): Graph attention network (GAT) applied attention-based 
neural layers to address dependency weights between target 
node and its neighboring nodes to improve anomaly detection 
accuracy. GAT is supervised deep graph learning model, which 
requires labelled anomaly data as training data. 

(5) GCN and GCRNN (Zanfei et al., 2022): GCN and graph convolu
tional recurrent neural network (GCRNN) models were devel
oped and their performance were also compared for anomaly 
detection in complex water distribution system. These two graph 
models are supervised and require labelled anomaly data to 
ensure models’ performance.  

(6) GDN (Deng & Hooi, 2021): Graph deviation network (GDN) was 
an unsupervised graph learning model which leverages the self- 

Fig. 4. Time-series pressure data from 4 sensors under pressure 0.1 MPa and leak2.  
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attention mechanism to quantify dependency weights for anom
aly localization. 

6.2. Comparison of leakage detection performance 

The baseline models are trained by using the default parameters 
reported in the original paper. Where such parameters are not reported, 
the parameters employed in our proposed model are adopted to ensure a 
fair comparison of performance. The specifics include a training epoch 
of 20, a batch size of 1, and 200 neurons. 

Table. 2 demonstrates accuracy comparison of leak detection by 
using AUC, F1-score, precision, and recall as criterion. From it, one can 
see that our VB_GAnomaly model has the highest AUC value = 0.9484. 
Relatively, ANN model has the lowest AUC value = 0.7398 indicating its 
lowest leakage detection accuracy. This may be attributed to the fact 

that ANN model cannot accurately learn the spatial dependency be
tween sensors and requires labelled anomaly data for model training 
process. As an unsupervised model not requiring labelled anomaly data, 
SVM and LSTM-VAE exhibit a higher AUC value compared to ANN 
model. However, due to the fact that SVM and LSTM-VAE cannot present 
the spatial dependency between sensors, its detection accuracy is rela
tively lower than our VB_GAnomaly model. Although accurately 
learning dependency features from spatially-distributed sensors, the 
graph neural network-based models, namely GCN, GCRNN and GAT 
models, still exhibit lower AUC value compared to our model. The lack 
of labeled leakage data as training data limits their accuracy. As an 
unsupervised model which requires no anomaly data and considers the 
spatial dependency, GDN model has a relatively higher AUC value =
0.9302 compared to the GCN, GCRNN and GAT models. However, GDN 
model’s AUC value is still lower than that of our model. This may be 
attributed to the fact that GDN mode apply ‘point-estimation’, which is 
‘over-confident’ when detection deficiency exists. Relatively, our model 
provides additional detection uncertainty, which effectively avoids 
detection deficiency. 

To further illustrate our model’s higher accuracy over GDN model, 
the leakage detection curves as shown in Fig. 7 by our model and GDN 
model under leak 2 scenario and leakage duration from 290 s to 309 s 
are used as the example. Please note that the box plot of proportional 
error Er* is constructed by first extracting mc = 300 groups of weights 
from QE(w) and then applying Eq.(20) to calculate 300 Er* values. Also, 
noting that if Er* value is located between the upper and lower normal 
interval, this indicates no leakage exists, otherwise indicating leakage 
occurrence. From Fig. 7, one may see from 290 s to 297 s, both of our 
model and GDN model estimate Er* values larger than the upper value of 
normal interval, which indicates both models accurately detect the 
leakage. However, from 298 s to 309 s, GDN model provides Er* values 
within the normal interval, indicating no leakage exists. This detection 
result is incorrect since the benchmark experimental scenario includes 
the leakage. Although estimating the medium value Me Er* within the 
normal interval at, for example t = 306 s, our model also provides the 
additional Er* values larger than the upper value of normal interval or 
smaller than the lower value of normal interval due to the variational 
Bayesian inference. By using Eq.(21), our model gives probability of 
58% to identify the occurrence of leakage corresponding to the bench
mark experimental scenario. This indicates the variational Bayesian 
inference can effectively improve our model’s detection accuracy even 
though model’s detection deficiency exists. Compared to state-of-the-art 
models based on the point-estimation approach, our VB_GAnomaly 
model provides more comprehensive and reliable detection information 
for follow-up action and decision-making. 

6.3. Comparison of leakage localization performance 

Among the above six baseline models, only GDN model can be 
applied to localize the anomaly. Therefore, we further compare our 
model and GDN model in terms of leakage localization accuracy. Table. 
3 demonstrates the comparative results by using the testing dataset. 
Noting that leak3 and leak5 occur in the main pipeline rather than the 
branches, as shown in Fig. 2. Taking leak3 as example to clarify, leak3 is 
located between upstream sensor P1 and downstream sensor P2 and 
between upstream sensor P1 and downstream sensor P3 as well. It would 
be correct if our model identifies the leakage position between P1 and P2 
or between P1 and P3. If our model identifies leak3 is located between 
P2 and P3, this estimation would be incorrect. 

From Table. 3, one can see our model accurately determines 4 
leakage positions among 5 benchmark experimental leakage positions 
and exhibits higher PAc = 0.8. Relatively, GDN model only accurately 
localizes 1 leakage position and thereby has lower PAc = 0.2. This in
dicates our model’s higher accuracy of leakage localization compared to 
the GDN model. 

Fig. 5. CDF curves of 10 groups of predicted pressure value corresponding to 
sensor1 under mc = 50, 300 and 500. 
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Fig. 8 demonstrates the leakage localization results by our model 
under leak 2 scenario and leakage duration from 232 s to 305 s. Fig. 8(a) 
shows the number of maximum deviations calculated by Eq.(24) cor
responding to each sensor. As can be seen, sensor P1 has the largest 
number of maximum deviations compared to the additional sensors, 
which indicates the leakage is in the adjacent pipe of sensor P1. Fig. 8(b) 

demonstrates posterior distribution of dependency weights α1,2 between 
sensor P1 and P2, and Fig. 8(c) shows the posterior distribution of de
pendency weights α1,3 between sensor P1 and P3. As can be seen, the 
variance of dependency weight α1,3 is higher than the variance of de
pendency weights α1,2, which means that the larger variation of moni
tored time-series pressure data between sensor P1 and P3. We thereby 
localize the leakage position between sensor P1 and P3, which is cor
responding to the benchmark experimental leakage position. Overall, 
due to the integrated variational Bayesian inference, our developed 
VB_GAnomaly model can detect and localize natural gas leakage from 

Fig. 6. PDF distribution of predicted pressure under mc = 300 corresponding to sensor1.  

Table 2 
Leakage detection accuracy of our model and the baselines.  

Method AUC F1 Prec Rec 

ANN  0.7398  0.6872  0.3727  0.5125 
SVM  0.8144  0.6850  0.9155  0.5426 
LSTM-VAE  0.8915  0.6429  0.9086  0.4975 
GCN  0.7641  0.7246  0.9026  0.6025 
GCRNN  0.8356  0.7678  0.9806  0.6325 
GAT  0.7619  0.7458  0.9531  0.6100 
GDN  0.9302  0.8727  0.8652  0.8825 
Our model  0.9484  0.8970  0.9013  0.8900  

Fig. 7. Leakage detection results of our model and GDN model under leak 2 condition and leakage duration from 290 s to 309 s. Please noting that Er* within normal 
interval indicates model gives the result of no leakage, otherwise indicating leakage occurrence. 

Table 3 
Comparison of leakage localization accuracy.  

Method Leak1 Leak2 Leak3 Leak4 Leak5 PAc 

Benchmark location P3-P4 P1-P3 P1-P2/ 
P3 

P1-P2 P1-P2/ 
P3  

– 

GDN P2-P4 P2-P4 P2-P4 P1-P3 P1-P3  0.2 
Our model P1-P3 P1-P3 P1-P3 P1-P2 P1-P2  0.8  
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Fig. 8. Leakage localization results.  
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complex pipe network without any labelled anomaly data. 

7. Discussion 

This study provides a new idea for anomaly detection in complex 
system without labeled anomaly data. The proposed model can be 
implemented for anomaly detection in various domains such as water or 
gas distribution network, process industry system, and social network, 
etc. 

Compared to baseline models, the advantages of the proposed model 
are higher accuracy for leakage detection and localization in urban 
natural gas pipeline network without labeled anomaly data. This is 
because that the proposed model could apply the attention-based graph 
neural network to capture spatial dependency among sensors, making it 
superior to traditional deep learning-based anomaly detection models. 
Additionally, compared to existing GNN-based anomaly detection 
models, the proposed model could utilize the variational Bayesian 
inference to model the larger variation of pressure signal recorded by 
sensors more closed to leakage position. 

Nevertheless, there are also limitations to be addressed in future 
work. Firstly, our proposed model was developed by using labor-scale 
experimental system and cannot be directly applied to real-world full- 
scale urban pipeline network. This is to say the performance, i.e., 
inference accuracy and speed of proposed model would be significantly 
affected by the scale effect of experimental system. For example, the 
real-world full-scale urban natural gas pipeline network has more sen
sors. Accordingly, the topology of constructed GNN network for this full- 
scale pipeline network would be more complex with more nodes, 
resulting in longer inference time. Future work is expected to investigate 
this scale effect on proposed model performance. 

Secondly, the proposed model outperformed baseline models in 
comparison with several referenced evaluation metrics, in which the 
leakage detection evaluation indicators are set according to the anomaly 
detection studies (Chalé & Bastian, 2022; Ding et al., 2023; Wu, Pi, 
Chen, Xie, & Cao, 2020), and the leakage localization indicator is set 
according to the leakage localization indicator in (Quiñones-Grueiro, 
Bernal-de Lázaro, Verde, Prieto-Moreno, & Llanes-Santiago, 2018). Be
sides, there are other indicators about the anomaly detection and 
localization. The model performance should be further evaluated based 
on different indicators in future studies. 

8. Conclusions 

This study proposed a deep probabilistic graph neural network, 
namely VB_GAnomaly for leakage detection and localization without 
labelled anomaly data in urban natural gas pipe network. Variational 
Bayesian inference was incorporated with attention-based graph neural 
network to model the posterior distribution of dependency weights 
among spatially-distributed sensors. An experimental study considering 
various leakage positions was conducted to demonstrate our VB_GAno
maly model’s performance. The conclusions were as follows:  

(1) Compared to state-of-the-art graph neural networks, our 
VB_GAnomaly model exhibits higher leakage detection accuracy 
of AUC = 0.9484 and provides additional detection uncertainty 
intervals for comprehensive and robust decision-making.  

(2) Compared to state-of-the-art graph neural networks, our 
VB_GAnomaly model utilizes variation of dependency weights 
among sensors to localize leakage and exhibits a higher leakage 
position accuracy of PAc = 0.8.  

(3) Overall, our VB_GAnomaly model is expected to provide a robust 
alternative for constructing a digital twin of operation and 
maintenance management of urban natural gas pipe infrastruc
ture to accurately detect and localize leaks. 
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