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Abstract: The microscopic structure of low-permeability tight reservoirs is complicated due to
diagenetic processes that impact the pore-fluid distribution and hydraulic properties of tight rocks.
As part of an ongoing study of carbon dioxide-enhanced oil and gas recovery (CO2-EOR/EGR) and
CO2 sequestration, this research article adopts an integrated approach to investigate the contribution
of the micropore system in pore-fluid distribution in tight sandstones. A new dimensionless number,
termed the microscopic confinement index (MCI), was established to select the right candidate for
microscopic CO2 injection in tight formations. Storativity and containment indices were essential
for MCI estimation. A set of experiments, including routine core analysis, X-ray diffraction (XRD),
scanning electron microscopy (SEM), mercury injection capillary pressure (MICP), and nuclear
magnetic resonance (NMR), was performed on three tight sandstone rock samples, namely Bandera,
Kentucky, and Scioto. Results indicate that the presence of fibrous illite acting as pore bridging
in Bandera and Kentucky sandstone samples reduced the micropore-throat proportion (MTMR),
leading to a significant drop in the micropore system confinement in Kentucky and Bandera sandstone
samples of 1.03 and 0.56, respectively. Pore-filling kaolinite booklets reduced the micropore storativity
index (MSI) to 0.48 in Kentucky and 0.38 in Bandera. On the other hand, the absence of fibrous
illite and kaolinite booklets in Scioto sandstone led to the highest micropore system capability of
1.44 MTMR and 0.5 MSI to store and confine fluids. Therefore, Scioto sandstone is the best candidate
for CO2 injection and storage among the tested samples of 0.72 MCI.

Keywords: microscopic gas confinement; micropore system’s storativity; pore-fluid distribution; clay
minerals; CO2 injection and storage; low-permeability micropore system

1. Introduction

Tight formations have received significant interest as unconventional reservoirs due to
the substantial proliferation of worldwide resources exhibiting these attributes [1–3]. Tight
reservoirs are classified based on their porosity and permeability, displaying threshold
values of less than 10% and 0.1 mD, respectively [4–6]. Some studies extend the range of
permeability to less than 1 mD [2,7]. Tight reservoirs are also defined as those structures
characterized by low permeability, either close to or distant from the source rocks, that
require the use of hydraulic fracturing to enhance hydrocarbon production [8–10]. Tight
sandstone is an essential type of unconventional resource [11] and is characterized by
complex pore systems due to its depositional conditions [12,13]. Tight sandstones can be
classified using the reservoir quality index (RQI), and any reservoir with RQI within the
range of 0 to 0.5 microns is considered tight; however, complex pore structures (throats and
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bodies) can render the RQI inconclusive in tight sandstone characterization [14,15]. Table 1
shows the typical tight formation properties gathered from the literature.

Table 1. Typical rock/formation and fluid properties of tight oil reservoirs.

Property Typical Range References

Permeability <2 mD [2,7]
Porosity <20% [15]

Pore–throat size 0.03 µm–2 µm [16,17]
Clay content 7%–30% [18]

Lithology shale, sandstone, carbonate [19]
Driving mechanism poor connectivity [20]

Industry professionals and researchers express varying opinions on the permeability
threshold for tight reservoirs. While some designate the value of 0.1 mD, others prefer dif-
ferent cut-off values [2,7,15]. In tight reservoirs, the permeability cut-off value can vary due
to the pore system’s heterogeneity [16]. We therefore believe that pore-size characterization
is essential in the classification of these reservoirs. Pore-fluid distribution (PFD) is complex
in tight reservoirs due to the rock’s depositional and diagenetic conditions [19,20]. PFD,
including the bound volume index (BVI) and free fluid index (FFI), significantly influences
fluid flow behavior in sandstone rocks [20–22]. Hence, understanding these indices and
their controlling factors is vital for the successful injection of fluid(s), such as CO2 injec-
tion, which has gained a lot of momentum recently for many reasons including carbon
geo-sequestration (CGS) from an environmental perspective and enhanced oil recovery
(CO2-EOR) [23,24]. The CO2-EOR technique has proved to have substantial potential in
increasing oil recovery in conventional and tight reservoirs [25]. Injecting CO2 into oil
reservoirs can be performed under miscible or immiscible conditions. However, numerous
studies indicate that oil recovery is higher when CO2 is injected in a miscible state or as a
supercritical fluid. When the injection pressure exceeds the minimum miscibility pressure
(MMP), the CO2 and oil phases become miscible, resulting in no interfacial tension between
them. This leads to oil swelling and reduced oil viscosity, which ultimately increases oil
recovery [26–28].

There are several primary factors involved in the control of sandstone pore distribution,
including mineralogy, diagenetic processes, grain size, and pore structure [29–31]. It is
noteworthy that primary pores and micropores are the principal components of the pore-
fluid distribution in sandstones [32]. Primary pores are voids between detrital grains that
form during the depositional process, while micropores originate prior to the depositional
process and commonly exist between detrital grains and authigenic clay minerals [33–35].
Sandstone rocks exhibit a proportional relationship between the primary pore and grain
size [35–37].

Compaction primarily reduces primary pores and thus decreases sandstone’s total
porosity [38]. Several studies claim that common long-side, concavo-convex, sutured grain
contacts correspond to considerable rock compaction, decreasing primary pores [39,40].
The results of the investigation into the effect of grain shape on porosity by Beard and Weyl
in 1973 [41] show that as the sphericity increases, the primary pores decrease because of
the tight packing. Furthermore, sorting accounts for the variety in sandstone grain size
and correlates well with porosity [42]. Sandstones with good sorting attributes possess
a significant number of primary pores due to grain size homogeneity [43,44]. However,
poor sorting leads to complex pore–throat size distribution, leading to a sharp reduction in
porosity due to small particles filling the intergranular pores [45–47]. The dissolution of
feldspar can cause a remarkable increase in the percentage of primary pores [48], leading
to better pore connectivity [49].

The presence of clay minerals can reduce or enhance pore-size distribution in sand-
stone rocks. Several studies have investigated the impact of total clay content on the
petrophysical properties of tight sandstone [50–52]. Yuan et al. [53] indicate the existence of



Minerals 2023, 13, 895 3 of 19

an inverse relationship between both porosity and permeability with clay content. Kaolinite
booklets can fill the rock pores and hence lower sandstone’s porosity [54,55]; however,
kaolinite has fewer effects on permeability [55]. Conversely, the presence of fibrous illite
clay tends to clog the pore–throat diameter and consequently leads to reduced permeabil-
ity [56]. Quartz overgrowth affects porosity and permeability by including a reduction in
the reducing primary pores in sandstones [57–59]. However, a clay coating can preserve
primary pores by coating the detrital quartz grains, thus inhibiting their overgrowth [60,61].

Chima et al. [42] studied the impact of pore structure on NMR T2 distributions at
various pore sizes. The authors found that sandstone samples with a higher percentage
of primary pores exhibit longer NMR T2 peak values, suggesting the existence of a direct
relation between movable water and primary pores. This further implies that a higher
movable fluid proportion corresponds to more interconnected pores [62,63]. Both movable
and bound-fluid volumes can be determined using both centrifuge and NMR measure-
ments [64–66]. In these methods, movable fluid is discharged from interconnected pores
using a high-speed centrifuge, while bound fluid is confined inside the micropore system
due to the clay presence and capillarity [66,67]. Notably, the presence of clay minerals
reduces primary pores, turning them into micropores [68,69]. Micropore systems are char-
acterized by having pore bodies smaller than 10 microns and micropore throats smaller
than 1 micron in size [70]. These systems play significant roles in EOR, CO2 sequestration,
and hydrogen storage [71–73].

Previous studies have focused on movable fluid and other dominant factors affecting
fluid flow in tight sandstones. Nevertheless, a limited number of studies have investigated
the relationship between the proportion of the micropore system and factors that influence
gas and fluid confinement. This study explores the relationship between tight sandstone’s
micropore system and pore-fluid distribution. In order to achieve this goal, we develop an
integrated workflow of set of experimental measurements on different sets of tight outcrop
sandstone samples. New dimensionless indices are developed in order to provide novel
selection criteria for planning CO2 injection and optimal storage processes.

2. Materials and Methods

A suite of three tight sandstones was received from Kocurek Industries company™,
Caldwell, TX, USA (Figure 1). The samples comprised Bandera, Kentucky, and Scioto
sandstones cut from several U.S outcrops. These outcrops are not representative of any
hydrocarbon reservoir, and their samples are typically used in petroleum engineering
laboratories for research purposes. In preparation for the experimental work, cylindrical
samples, 3.8 cm in diameter and 7.6 cm in length, were dried and vacuumed for two days
at 75 ◦C. Figure 2 is a flow chart showing the methodology used to satisfy the goal of this
study. The upper parts of these dry core plugs were cut into 1 cm thick disks in order to
subject them to X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses.
XRD was performed on ground samples to determine the mineral composition of sandstone
samples using a Rigaku™ ULTIMA IV powder X-Ray diffractometer instrument with Cukα
radiation at 40 kV and 40 mA (Figure 2a) from Osaka, Japan. The measurements were
acquired at a 2θ range from 3◦ to 100◦, with a step increment of 0.02◦ and a duration of 8 min.
XRD patterns were then analyzed using X’Pert High Score Software (Malvern, UK). Thin
disks of circa 0.5 cm were used for SEM experiments. We utilized a TESCAN™ instrument,
from Brno, the Czech Republic instrument, (model MIRA3) coupled with an EDX detector
to generate SEM density images with a nanometric pixel resolution. This allowed us to
identify the micropore and clay morphologies of these sandstones (Figure 2b) [74,75]. We
then conducted porosity and permeability measurements at ambient conditions. A Vinci™
helium porosimeter from Nanterre, France was then used in order to determine the samples’
total connected porosity, while a Core-Lab™ from Houston, TX, USA, gas permeameter
was utilized for the assessment of gas permeability and Klinkenberg liquid permeability
(Figure 2c). A synthetic formation brine with a salinity of 236.84 ppm was used in this
study to represent connate water saturation. The brine was prepared using NaCl, CaCl2,
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MgCl2, Na2SO4, and NaHCO3, dissolved in deionized water (Figure 2d). The brine density
and viscosity were measured using a benchtop density meter (Anton Paar-DMA 4500 M)
and an Oswald viscometer, respectively. Subsequently, these dry sandstone samples were
saturated with synthetic brine, utilizing a saturation unit at room temperature and with a
pressure of 13.8 MPa (2000 psi) for 24 h to ensure full brine saturation (Figure 2e). NMR
measurements were performed on brine-saturated sandstones to determine the relaxation
time (T2) using the Oxford Instruments 2 MHz GeoSpec 2–75 equipped with Green Imaging
Technologies (v6.1) software (Figure 2f). NMR T2 measurements were generated using
the Carr–Purcell–Meiboom–Gill (CPMG) pulse sequence, which is proportional to the
pore-size distribution of sandstones [76–78]. The main acquisition parameters used in these
experiments are listed in Table 2.
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Subsequently, we utilized a URC-628 CoreTest™ centrifuge from California, USA to
analyze brine-saturated core samples at a rotational speed of 4000 revolutions per minute
(rpm) (Figure 2g), using air as the displacing phase. NMR T2 measurements were then
conducted on these partially saturated core samples to assess the bound-fluid volume
trapped in the micropores (Figure 2h), and hence to determine pore-fluid distributions.
The BVI was determined as the cumulative NMR porosity after the centrifuge test in
order to indicate the fluid trapped within the micropores, while the FFI was obtained as
the difference between the fully saturated cumulative NMR porosity and the BVI. The
microscopic storativity index (MSI) describes the ability of a micropore system to store
fluid. The MSI estimated the proportion of fluid stored within the micropores of sandstone
rock relative to the overall pore volume.

The mercury-injection capillary pressure (MICP) technique was conducted to deter-
mine the pore-throat distribution of sandstone samples. A Micromeritics Auto-pore IV
9400 apparatus was applied to three dry cylindrical samples of radii and length of 1.27 cm
using progressive injection pressures up to 60,000 psi (450 MPa) in order to confirm the
mercury invasion of the micropores. The micropore-throat modality ratio (MTMR) is a di-
mensionless number that relates the abundance size of the micropore throat to the macropore
throat. The MTMR was used to characterize the microscopic fluid confinement (Figure 2i).

Table 2. Main parameters of NMR acquisition.

Parameter Value

Larmor frequency 2 MHz
Echo spacing time, TE 110 µs
Signal-to-noise ratio 150

Total number of scans 32
Number of echoes 27,272

Maximum T2 300 ms

The sandstone samples were assessed for their microscopic confinement index (MCI)
in order to determine the effectiveness of the micropore system at retaining stored fluid.
The MCI is a dimensionless number that combines two parameters, namely MTMR and
MSI. The sandstone samples exhibiting the highest MCI values were considered the best
microscopic containment candidates for CO2-EOR and storage processes in tight rocks.
(Figure 2j).
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Figure 2. Workflow diagram used in this study: (a) Determine mineral contents. (b) Identify
mineral grains and pore morphology. (c) Measure He porosity and N2 permeability of sandstones.
(d) Measure the density and viscosity of brine. (e) Ensure complete brine saturation of sandstones
(Sw = 1). (f) Determine pore size distribution of brine-saturated sandstones. (g) Use air to displace
brine to reach irreducible water saturation. (h) Estimate movable, bound fluid volumes and micro-
storativity index (MSI). (i) Estimate pore-throat distribution and micropore throat modality ratio
(MTMR). (j) Identify the suitable sandstone for microscopic CO2 injection and storag.
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3. Results

An integrated approach was implemented in order to investigate the impact of the
micropore system and its clay content on the pore-fluid distribution in tight sandstones.
The purpose of undertaking this procedure was to determine sandstone containment and
confinement. This section presents a detailed description of the experimental results and
their interpretation.

3.1. Mineralogy and Morphology

We performed mineralogy and pore morphology analyses of the three sandstones
using XRD and SEM techniques, respectively. XRD analysis showed that the Scioto sample
had the highest quartz percentage of 89.2%, followed by 77.1% and 64.2% for Kentucky
and Bandera sandstones, respectively. The findings indicated that the Bandera sandstone
sample had the highest clay content at 14.3%. This was followed by the Scioto and Kentucky
samples with clay contents of 4.1% and 3.6%, respectively. Table 3 summarizes the mineral
composition of the tested sandstone samples.

Table 3. Mineralogical Composition of Bandera, Kentucky, and Scioto sandstone samples (units in
wt%).

Sample Quartz Plagioclase Orthoclase Anhydrite Ilmenite Siderite Dolomite Halite Hematite Pyrite Chlorite Illite Kaolinite

Bandera 64.4 12 1 3 1 0.5 0.4 1.4 1.2 0.8 3.4 6.4 4.5
Kentucky 77.1 10.2 2.8 3.6 0 0.7 0.9 0.8 0.3 0 0 3.6 0
Scioto 89.2 2.1 0.7 3 0 0.2 0 0.2 0.5 0 0.9 2.2 1

The SEM observations indicated that Bandera sandstone had sharp surfaces on account
of quartz overgrowths and visible pores between elongated grains. Booklets of kaolinite
and filamentous illite were observed as overlying the quartz overgrowth (Figure 3a), a
phenomenon that occurred in addition to the filling of the pores with pore-filling chlorite
(Figure 3b). SEM images of Scioto sandstone show visible micropores with pore-lining illite
platelets coating quartz grains (Figure 3c). Images of Kentucky sandstone show booklets of
kaolinite distributed abundantly in the sample (Figure 3d).

3.2. Porosity and Permeability

A routine core analysis indicated that Bandera sandstone had the highest permeability
and porosity values; this was followed by Scioto sandstone and Kentucky sandstone, which
were characterized by the lowest porosity and permeability values.

3.3. Pore-Fluid Distribution and Pore Structures

The microscopic confinement index (MCI) was considered in order to evaluate sand-
stone’s microscopic storage and containment for CO2 injection. The MCI combines MTMR
and MSI parameters.

The MICP was used to assess the distribution of pore throats in the tested samples.
Subsequently, we estimated the contribution of the micropore-throat system in these sand-
stone samples using the throat system criteria [79]. The results demonstrate that the
Bandera sandstone samples exhibited a bi-modal pore-throat distribution covering micro-
and macro-throat systems, with a dominant peak throat radius of approximately 6 microns.
The micropore-throat system showed poor contribution to these sandstone samples com-
pared with other sandstones, comprising around 36% of the total pore system. Kentucky
and Scioto sandstones showed a bi-modal pore-throat distribution ranging from 0.02 to
2.48 microns, with a dominant peak of around 1.8 microns for both samples (Figure 4).

Although the pore-throat distribution of both Kentucky and Scioto sandstones was
generally comparable, Scioto sandstone had the largest micropore-throat contribution of
nearly 60% of the total pore system compared with 23.5% for Kentucky sandstone (Table 4).
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Figure 3. SEM images: (a) Bandera sandstone shows clear pores between quartz grains a top sharp
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sandstone shows visible micropores associated with illite platelets. (d) Kentucky sandstone reveals
books of kaolinite filling the micropores.
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Figure 4. Pore throat distributions of the tested sandstone samples.

NMR T2 measurements were conducted on fully brine-saturated sandstone samples in
order to obtain the pore-size distribution of these sandstones (Figure 5a–c). Macropores can
be identified by their high T2 values, whereas micropores exhibit low T2 values [80]. Results
show that the Bandera sandstone had a bi-modal distribution, with T2 values ranging from
0.1 ms to almost 140 ms. The dominant T2 peak value representing the macropores was
40 ms, while the second peak representing the micropores was 2.5 ms (Figure 5a). Scioto
and Kentucky sandstones exhibited unimodal T2 spectra curves spanning from around
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0.1 ms to approximately 100 ms, with single peak values of 35.5 ms and 25 ms, respectively
(Figure 5b,c). This indicated that Scioto and Kentucky sandstones had smaller pore-size
distributions than the Bandera variety, which displayed a broader T2 distribution than
that seen in Bandera sandstone (0.1–140 ms). The cumulative NMR porosities of Bandera,
Scioto, and Kentucky sandstones were estimated at 22.9, 17.9, and 15.68 p.u., respectively.

Table 4. Porosity and permeability values of the tested sandstone samples. All core samples have a
diameter of 3.8 ± 0.1 cm and a length of 4.0 ± 0.1 cm.

Sample Porosity Permeability

(vol.%) (mD)
Bandera 24.4 ± 0.20 24.12 ± 1.50

Kentucky 15.0 ± 0.11 0.98 ± 0.10
Scioto 17.5 ± 0.13 1.21 ± 0.10
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NMR T2 measurements were also conducted on partially saturated samples after
centrifugation in order to determine the movable and bound-fluid contributions of the
tested sandstone samples. As mentioned earlier, the movable fluid relates to macropores
that are displaced easily. In contrast, the bound fluid corresponds to micropores that
cannot be drained because of the capillarity and wettability forces. Figure 6a–c show the
NMR T2 measurements for brine-saturated and partially saturated conditions for the tested
sandstone samples. After displacement tests, the NMR T2 distributions of the partially
saturated samples showed a unimodal distribution, varying from 0.1 ms to approximately
25 ms for Kentucky, 0.1 ms to nearly 23 ms for Bandera, and 0.1 ms to 35 ms for Scioto
sandstone. These NMR spectra represented the fluid trapped in the micropore system [81].
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NMR T2 peak values exhibited shorter T2 relaxations of 14.1 ms for Scioto, 3.2 ms for
Bandera, and 3.5 ms for Kentucky. The drop in T2 peak values indicated that pore-size
distributions were reduced significantly due to the production of movable fluid from
macropores. Scioto sandstone had a higher T2 peak value (Figure 6b), indicating a large
contribution from micropores compared with Kentucky and Bandera sandstones, which
showed low T2 peak values (Figure 6a,c).
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The T2 cut-off value is a crucial parameter in the identification of rock bounds and
movable water [82,83]. The movable water typically had a relaxation time value higher than
the rock’s cut-off value, while bound water exhibits a relaxation time lower than the cut-off
value [84]. The T2 cut-off value was related to rock mineralogy [85], where the threshold
time for sandstone rocks ranged from 9.72 to 35.16 ms [86]. Our results demonstrate that T2
cut-off values of the tested sandstones were 17.8, 12.2, and 24.6 ms for Bandera, Kentucky,
and Scioto sandstones, respectively, which lie in the typical range for sandstone rocks
(Table 4). Based on these results, we may assert that the T2 threshold value is not always
33 ms for sandstone rocks, as recommended by other scholars [86–88]. The cumulative
NMR-porosities of partial saturation conditions represent the bound-fluid volume of these
sandstones. Their measurements indicated values of 8.6 p.u., 8.96 p.u., and 7.49 p.u. for
Bandera, Scioto, and Kentucky sandstones, respectively (Figure 6).
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3.4. Microscopic Confinement Index (MCI)

The MCI is a dimensionless value that combines the estimated storage capacity of
the micropore system, as represented by the MSI parameter, and the micropore system’s
containment, as evaluated by the MTMR number [89]. Our calculations indicated that
Scioto sandstone possessed the highest micropore system confinement with 1.44 MTMR,
followed by Kentucky with 1.03 MTMR, and Bandera sandstone, which was characterized
by the weakest microporosity confinement of 0.56 MTMR. CO2 microscopic confinement
index (MCI) values were calculated for the three sandstone samples tested. The results
confirmed that Scioto sandstone had the highest value of 0.72 MCI, followed by Kentucky
and Bandera sandstones with MCI values of 0.49 and 0.21, respectively (Table 5). The MCI
was then utilized to estimate the micro-storativity index (MSI), defined as the ratio of NMR
porosity at a partial saturation state to the NMR porosity at a fully brine-saturated state.
MSI calculations for the three sandstone samples demonstrated that Scioto sandstone had
the highest value of 0.5 MSI, followed by Kentucky sandstone with 0.48 MSI, and Bandera
sandstone, which exhibited the lowest value of 0.38 MSI (Table 4).

Table 5. Summary of the micro-containment indices of three sandstones.

Sample T2 Cut-Off MSI Micro-Throat
Proportion MTMR MCI

(ms) (v/v) (%) (v/v) (v/v)
Bandera 17.8 0.38 36 0.56 0.21

Kentucky 12.2 0.48 50.9 1.03 0.49
Scioto 24.6 0.50 60 1.44 0.72

Although the MSI of the Kentucky and Scioto samples showed comparable values,
the difference in their calculated MCI values revealed an almost 40% difference between
these two sandstones in favor of the Scioto sandstone variety. As a result, Scioto sandstone
was considered to be the best candidate on account of the fact that its microscopic CO2
confinement index was the highest among the tested sandstones.

4. Discussion

The results of the routine core analysis revealed that Bandera sandstone exhibited the
best reservoir quality compared with the other samples. Conversely, Kentucky and Scioto
sandstones displayed fair porosities and reasonably low permeability values
(15% porosity and 0.98 mD permeability for Kentucky and 17.5% porosity and 1.21 mD
permeability for Scioto) (Figure 7a). We hypothesized that the diagenetic process was ac-
countable for the substantial decrease in the Kentucky and Scioto sandstone’s permeability
values. Permeability and micro-throat size proportion were found to be inversely related
(R2 = 0.9827, Figure 7b). This confirmed that the low permeability values of these sand-
stones could be ascribed to the small throat size and thereby validated the hypothesis of the
diagenesis effect. Schmitt et al. [1] and Wang et al. [90] showed that high porosity values
associated with low permeabilities, and vice versa, in tight sandstones arose due to the
depositional conditions that led to reductions in the pore structure of the sandstone rock.
Considering the complexity of the pore system in tight rocks, we advise against the use
of permeability as a cut-off parameter with which to identify tight reservoirs; rather, we
recommend including pore-size distribution as an essential characterization parameter in
tight reservoir classifications.

It ought to be mentioned that the micropore system represented a significant pro-
portion of the tight rock’s total porosity [88,89]. Our study confirmed that the micropore
systems of the studied sandstones significantly contributed to overall sandstone porosity,
with contributions of 38% in the Bandera, 48% in the Kentucky, and 50% in the Scioto sam-
ples. These results are consistent with those of Lai et al. [85], who reported that bound-fluid
contribution (micropore system) can account for up to 60% of the total pore system. Thus,
it is more convenient to investigate the relationship between the micropore system and



Minerals 2023, 13, 895 11 of 19

the pore-fluid distribution in tight sandstones in order to enable geologists and petroleum
engineers to improve the efficiency of CO2 injection into the micropores of tight rocks.
Bandera sandstone possesses a wider pore-size distribution than other sandstones, with
values ranging from 0.1 ms to 140 ms, as yielded by our NMR analyses (Figure 5a). Fur-
thermore, the NMR findings show that 62% of Bandera sandstone’s pore-fluid distribution
is mobile (within the macropore system). This finding aligns with the MICP outcomes,
demonstrating that Bandera sandstone’s significant contribution to flow comes from the
macropore throat system (64%) (R2 = 0.9006, Figure 8). Additionally, SEM images illustrate
that Bandera sandstone contains visible macropores (Figure 3a). The SEM findings also
show the presence of clay-coated grains, which inhibit quartz overgrowth and hence pre-
serve the macropore system [91,92]. Consequently, the combination of the above findings
leads us to conclude that Bandera sandstone demonstrates, by comparison, the highest
proportion of a macropore system (Figure 8). The low contribution of the micropore system
in Bandera sandstone is attributed to the presence of clay minerals, including kaolinite
booklets, chlorite, and fibrous illite minerals, which tend to clog throats and fill pores
and therefore cause a significant reduction in the micropore system (the lowest micropore
system among the tested samples was 38% to the total pore system) (Table 4). Furthermore,
negative correlations can be observed between the clay mineral content and the bound-fluid
contribution represented by the micropore system, as derived from the NMR analyses
(R2 = 0.9726, Figure 9a) and micropore-throat proportion (R2 = 0.781, Figure 9b). Hence, the
low clay content of the other sandstones (50.1% for Scioto and 48% for Kentucky) leads to
the presence of high micropore-system proportions, and to the relatively high contribution
of the micropore-throat system (60% for Scioto and 50.9% for Kentucky sandstone).
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In our research, a strong inverse relationship was found between the illite clay mineral
and the micro-throat proportion for the tested sandstones, indicating that the contribution
of the micropore-throat system decreases as illite clay content increases (R2 = 0.9875, s 9f).
We also demonstrated that chlorite and kaolinite clay minerals have less of an effect on
the micropore-throat proportion compared with illite minerals (R2 = 0.625 for chlorite
and R2 = 0.581 for kaolinite) (Figure 9h,d). Based on the above findings, we believe that
injected fluids can access the tiny pores as long as the rock’s micropore system suits the
newly established index, known as the microscopic containment index (MCI). The MCI
can be used to evaluate the micropore system of the tested sandstones, taking into account
both the micropore system confinement and storativity. The confinement of the micropore
system is calculated based on the MTMR [93], whereas the micropore system’s storativity
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is estimated as the ratio of the NMR porosity at a partial saturation condition to the NMR
porosity at a fully brine-saturated state. A high MCI value implies that the micropore
system in tight rocks is suitable for use in microscopic CO2 injection on account of its high
storage capacity and well-confined micropore system. On the contrary, low MCI values
demonstrate that the sandstone micropore system exhibits limited capacity; additionally,
inadequate fluid containment makes this system unsuitable for microscopic CO2 injection.
The MCI analyses were compared to the results of the containment and storativity of the
tested sandstone samples, and the results showed a direct relationship (R2 = 0.8478 for
micro-storativity (Figure 10a) and R2 = 0.9976 for micro-containment (Figure 10b)). This
relationship confirmed that the MCI increases as the storativity and containment of the
micropore system increase. For the tight sandstones analyzed, the results show that the MCI
of Scioto sandstone was the highest among the tested sandstone samples with a value of
0.72, and this is attributed to the great capacity of the Scioto sandstone’s micropore system
of 0.5 MSI and the excellent micropore system confinement of 1.44 MTMR, suggesting that
Scioto sandstone is a suitable candidate for microscopic CO2 injection. The low contribution
of micro-storativity and containment in Bandera sandstone of 0.38 MSI and 0.56 MTMR,
respectively, led to a significant reduction in the microscopic containment index to 0.38 MCI;
therefore, Bandera is not recommended for use in macroscopic CO2 injection.
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If a researcher wishes to gain a deeper insight into this relationship between the
MCI results and micro-storativity and micro-confinement indices, it is more convenient
to focus on the factors impacting these indices. The increase in the micropore-throat
proportions results in an increase in the storage capacity of the micropore system in the
examined sandstones (R2 = 0.9006, Figure 11a), a phenomenon which can be related to
the significant influence of clay minerals on the micropore system as a result of diagenetic
alteration [89]. Furthermore, the reduction in the micropore’s storativity proportion is
related to the increase in the clay mineral content (R2 = 0.9726, Figure 11b), and this is in
line with the fact that the fibrous illite and booklets of kaolinite clay minerals can act as
pore-bridging and pore-filling substances, respectively. These processes reduce the existing
micropore system and thus affect the bound-fluid contribution [94].

Our analysis further shows that the percentage of micropore throat in the tested sand-
stones is strongly correlated to the micropore’s containment (R2 = 0.9836, Figure 12a). This
can be explained by the fact that smaller throat diameters can lead to greater capillary
pressures, preventing fluid mobilization within the pore system [95]. In our results, com-
pared with the relation between the total clay content and the micropore system storativity
index (R2 = 0.9726, Figure 11b), a fair relation was found between the total clay content and
micropore system containment (R2 = 0.666, Figure 12b). Gathering a larger dataset would
provide a more in-depth understanding of our newly discovered dimensionless numbers;
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however, these outcrops from which the samples were obtained are known for their clean
and very homogeneous nature. This presents a potential area for future research based on
our current findings.
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Figure 9. Cross-plots showing the relation between bound-fluid contribution, micro-throat proportion
and clay mineral content in tested sandstones: (a) cross-plots between bound-fluid contribution and
total clay mineral content; (b) cross-plots between micro-throat contribution and clay mineral content;
(c) cross-plots between bound-fluid contribution and kaolinite clay content; (d) cross-plots between
micro-throat contribution and kaolinite clay content; (e) cross-plots between bound-fluid contribution
and illite clay content; (f) cross-plots between micro-throat contribution and illite clay content; (g)
cross-plots between bound-fluid contribution and chlorite clay content; (h) cross-plots between
micropore throat-size proportion and chlorite clay content.
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Figure 10. Cross-plots showing the relation between (a) the microscopic containment index and the
micro-storativity index; and (b) the microscopic confinement index and the micro-containment index
of the tested sandstones.
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Figure 12. Cross-plots showing the relation of the micro-containment index to the micro-throat
proportion and total clay mineral content in tight sandstone samples: (a) cross-plots showing the
relation of the micro- containment index to the micro-throat proportion; (b) cross-plots showing the
relation of the micro-containment index to the total clay mineral content (the trendlines show the
relation between measurements).
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5. Conclusions

This study focused on determining pore-fluid distribution and investigated its impact
on the tight sandstones’ micropore system. A new dimensionless number, termed the MCI,
was developed to select a suitable tight sandstone for CO2 injection and storage. Based on
the findings obtained, the following conclusions were derived:

• The findings indicated that the Bandera sandstone sample had the highest clay content,
followed by the Scioto and Kentucky sandstone samples. Nevertheless, a routine core
analysis indicated that Bandera sandstone had the highest permeability and porosity
values followed by Scioto sandstone and, finally, by Kentucky sandstone, which had
with the lowest porosity and permeability values.

• SEM analyses indicated Bandera sandstone to be characterized by quartz overgrowths
and booklets of kaolinite and filamentous illite overlying the quartz in addition to
pore-filling chlorite filling the pores. Scioto sandstone showed visible micropores with
pore-lining illite platelets coating the quartz grains, while Kentucky sandstone showed
an abundant distribution of booklets of kaolinite.

• The MICP results demonstrated that all sandstone samples exhibited a bi-modal
pore-throat distribution covering micro- and macropore throat systems. The Bandera
sandstone micropore-throat system showed poor contribution, while Scioto sandstone
made the largest micropore-throat contribution to the total pore system.

• NMR T2 measurements conducted on partially saturated samples after the displace-
ment tests reveal longer T2 relaxations for Scioto and comparable values for Bandera
and Kentucky sandstones, indicating a large contribution from Scioto micropores
compared with Kentucky and Bandera sandstones.

• Bandera sandstone’s micropore system’s ability to store and confine fluid or gas was
found to be the weakest among the tested sandstone samples. The low contribution val-
ues of the storativity and confinement of the micropore system in Bandera sandstone
could be attributed to the presence of clay mineral content. In particular, this could
be explained by the presence of pore-filling kaolinite booklets, which significantly
reduced the micropore storativity, and the presence of pore-bridging fibrous illite,
which reduced the micropore-throat proportion and, hence, reduced the confinement
of the micropore system.

• A strong positive correlation was obtained between the micro-throat proportion and
the micro-confinement contribution in the tested sandstone samples, indicating that
the higher the micro-throat contribution in the pore system was, the more confined
the micropore system became.

• The MCI indicated that Scioto sandstone was a suitable candidate for microscopic
CO2 injection and storage due to its high contributions of micropore confinement and
storativity compared with the other tested samples; these factors will improve CO2
injectivity in the micropore system of tight sandstones.
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